Meaning of Energy Resources
The use of energy has been a key in the development of the human society by helping it to control and adapt to the environment. Managing the use of energy is inevitable in any functional society. In the industrialized world the development of energy resources has become essential for agriculture, transportation, waste collection, information technology, communications that have become prerequisites of a developed society. The increasing use of energy since the Industrial Revolution has also brought with it a number of serious problems, some of which, such as global warming, present potentially grave risks to the world.
In society and in the context of humanities, the word energy is used as a synonym of energy resources, and most often refers to substances like fuels, petroleum products and electricity in general. These are sources of usable energy, in that they can be easily transformed to other kinds of energy sources that can serve a particular useful purpose. This difference vis a vis energy in natural sciences can lead to some confusion, because energy resources are not conserved in nature in the same way as energy is conserved in the context of physics. The actual energy content is always conserved, but when it is converted into heat for example, it usually becomes less useful to society, and thus appears to have been “used up”.
Economics
Production and consumption of energy resources is very important to the global economy. All economic activity requires energy resources, whether to manufacture goods, provide transportation, run computers and other machines.
Environment
Consumption of energy resources, (e.g. turning on a light) requires resources and has an effect on the environment. Many electric power plants burn coal, oil or natural gas in order to generate electricity for energy needs. While burning these fossil fuels produces a readily available and instantaneous supply of electricity, it also generates air pollutants including carbon dioxide (CO2), sulfur dioxide and trioxide (SOx) and nitrogen oxides (NOx). Carbon dioxide is an important greenhouse gas which is thought to be responsible for some fraction of the rapid increase in global warming seen especially in the temperature records in the 20th century, as compared with tens of thousands of year’s worth of temperature records which can be read from ice cores taken in Arctic regions. Burning fossil fuels for electricity generation also releases trace metals such as beryllium, cadmium, chromium, copper, manganese, mercury, nickel, and silver into the environment, which also act as pollutants.
The large-scale use of renewable energy technologies would “greatly mitigate or eliminate a wide range of environmental and human health impacts of energy use”. Renewable energy technologies include biofuels, solar heating and cooling, hydroelectric power, solar power, and wind power. Energy conservation and the efficient use of energy would also help.
Politics
Since now energy plays an essential role in industrial societies, the ownership and control of energy resources plays an increasing role in politics. At the national level, governments seek to influence the sharing (distribution) of energy resources among various sections of the society through pricing mechanisms; or even who owns resources within their borders. They may also seek to influence the use of energy by individuals and business in an attempt to tackle environmental issues.
The most recent international political controversy regarding energy resources is in the context of the Iraq wars. Some political analysts maintain that the hidden reason for both 1991 and 2003 wars can be traced to strategic control of international energy resources. Others counter this analysis with the numbers related to its economics. According to the latter group of analysts, U.S. has spent about $336 billion in Iraq as compared with a background current value of $25 billion per year budget for the entire U.S. oil import dependence.
Production
Producing energy to sustain human needs is an essential social activity, and a great deal of effort goes into the activity. While most of such effort is limited towards increasing the production of electricity and oil, newer ways of producing usable energy resources from the available energy resources are being explored. One such effort is to explore means of producing hydrogen fuel from water. Though hydrogen use is environmentally friendly, its production requires energy and existing technologies to make it, are not very efficient. Research is underway to explore enzymatic decomposition of biomass.
Other forms of conventional energy resources are also being used in new ways. Coal gasification and liquefaction are recent technologies that are becoming attractive after the realization that oil reserves, at present consumption rates, may be rather short lived. See alternative fuels.
Transportation
All societies require materials and food to be transported over distances, generally against some force of friction. Since application of force over distance requires the presence of a source of usable energy, such sources are of great worth in society.
While energy resources are an essential ingredient for all modes of transportation in society, the transportation of energy resources is becoming equally important. Energy resources are invariably located far from the place where they are consumed. Therefore their transportation is always in question. Some energy resources like liquid or gaseous fuels are transported using tankers or pipelines, while electricity transportation invariably requires a network of grid cables. The transportation of energy, whether by tanker, pipeline, or transmission line, poses challenges for scientists and engineers, policy makers, and economists to make it more risk-free and efficient.
Energy crises
Economic and political instability can lead to an energy crisis. Notable oil crises are the 1973 oil crisis and the 1979 oil crisis. The advent of peak oil, the point in time when the maximum rate of global petroleum extraction is reached, will likely precipitate another energy crisis.
TYPES OF ENERGY RESOURCE
SOURCES OF ENERGY
Energy is the force that produce motion.It also does work.It is used in the manufactured of products
The development of industries depends on the availability of energy to make produce of various. Human apply their anergy even in their daily activities.There are two mjor forms of energy;
- Renewable Energy and
- Non-Renewable energy
Renewable Energy
Renewable energy is the energy which comes from natural resources such as sunlight wind, rain, tides and geothermal heat, which is renewale (naturally replacement), they include the following:
WIND POWER
Airflows can be used to run wind. It also applied for wind mills and propelling sailing boats and ships. Currently it’s used to generate electricity and pumping of water to one of the renewable sources of energy.
Wind energy
The Earth is unevenly heated by the sun, such that the poles receive less energy from the sun than the equator; along with this, dry land heats up (and cools down) more quickly than the seas do. The differential heating drives a global atmospheric convection system reaching from the Earth’s surface to the stratosphere which acts as a virtual ceiling. Most of the energy stored in these wind movements can be found at high altitudes where continuous wind speeds of over 160 km/h (99 mph) occur. Eventually, the wind energy is converted through friction into diffuse heat throughout the Earth’s surface and the atmosphere.
The total amount of economically extractable power available from the wind is considerably more than present human power use from all sources. The most comprehensive study as of 2005 found the potential of wind power on land and near-shore to be 72 TW, equivalent to 54,000 MToE (million tons of oil equivalent) per year, or over five times the world’s current energy use in all forms. The potential takes into account only locations with mean annual wind speeds ≥ 6.9 m/s at 80 m. The study assumes six 1.5 megawatt, 77 m diameter turbines per square kilometer on roughly 13% of the total global land area (though that land would also be available for other compatible uses such as farming). The authors acknowledge that many practical barriers would need to be overcome to reach this theoretical capacity.
The practical limit to exploitation of wind power will be set by economic and environmental factors, since the resource available is far larger than any practical means to develop it.
Distribution of wind speed
Distribution of wind speed (red) and energy (blue) for all of 2002 at the Lee Ranch facility in Colorado. The histogram shows measured data, while the curve is the Rayleigh model distribution for the same average wind speed.
The strength of wind varies, and an average value for a given location does not alone indicate the amount of energy a wind turbine could produce there. To assess the frequency of wind speeds at a particular location, a probability distribution function is often fit to the observed data. Different locations will have different wind speed distributions. The Weibull model closely mirrors the actual distribution of hourly wind speeds at many locations. The Weibull factor is often close to 2 and therefore a Rayleigh distribution can be used as a less accurate, but simpler model.
Because so much power is generated by higher wind speed, much of the energy comes in short bursts. The 2002 Lee Ranch sample is telling; half of the energy available arrived in just 15% of the operating time. The consequence is that wind energy from a particular turbine or wind farm does not have as consistent an output as fuel-fired power plants.
Electricity generation
In a wind farm, individual turbines are interconnected with a medium voltage (often 34.5 kV), power collection system and communications network. At a substation, this medium-voltage electric current is increased in voltage with a transformer for connection to the high voltage electric power transmission system.
The surplus power produced by domestic microgenerators can, in some jurisdictions, be fed into the network and sold to the utility company, producing a retail credit for the microgenerators’ owners to offset their energy costs.
Grid management
Induction generators, often used for wind power, require reactive power for excitation so substations used in wind-power collection systems include substantial capacitor banks for power factor correction. Different types of wind turbine generators behave differently during transmission grid disturbances, so extensive modelling of the dynamic electromechanical characteristics of a new wind farm is required by transmission system operators to ensure predictable stable behaviour during system faults (see: Low voltage ride through). In particular, induction generators cannot support the system voltage during faults, unlike steam or hydro turbine-driven synchronous generators. Doubly-fed machines generally have more desirable properties for grid interconnection. Transmission systems operators will supply a wind farm developer with a grid code to specify the requirements for interconnection to the transmission grid. This will include power factor, constancy of frequency and dynamic behavior of the wind farm turbines during a system fault.
Capacity factor
Since wind speed is not constant, a wind farm’s annual energy production is never as much as the sum of the generator nameplate ratings multiplied by the total hours in a year. The ratio of actual productivity in a year to this theoretical maximum is called the capacity factor. Typical capacity factors are 20–40%, with values at the upper end of the range in particularly favourable sites.[19] For example, a 1 MW turbine with a capacity factor of 35% will not produce 8,760 MW·h in a year (1 × 24 × 365), but only 1 × 0.35 × 24 × 365 = 3,066 MW·h, averaging to 0.35 MW. Online data is available for some locations and the capacity factor can be calculated from the yearly output.
Unlike fueled generating plants, the capacity factor is limited by the inherent properties of wind. Capacity factors of other types of power plant are based mostly on fuel cost, with a small amount of downtime for maintenance. Nuclear plants have low incremental fuel cost, and so are run at full output and achieve a 90% capacity factor. Plants with higher fuel cost are throttled back to follow load. Gas turbine plants using natural gas as fuel may be very expensive to operate and may be run only to meet peak power demand. A gas turbine plant may have an annual capacity factor of 5–25% due to relatively high energy production cost.
In a 2008 study released by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, the capacity factor achieved by the wind turbine fleet is shown to be increasing as the technology improves. The capacity factor achieved by new wind turbines in 2004 and 2005 reached 36%.
Penetration
Wind energy “penetration” refers to the fraction of energy produced by wind compared with the total available generation capacity. There is no generally accepted “maximum” level of wind penetration. The limit for a particular grid will depend on the existing generating plants, pricing mechanisms, capacity for storage or demand management, and other factors. An interconnected electricity grid will already include reserve generating and transmission capacity to allow for equipment failures; this reserve capacity can also serve to regulate for the varying power generation by wind plants. Studies have indicated that 20% of the total electrical energy consumption may be incorporated with minimal difficulty. These studies have been for locations with geographically dispersed wind farms, some degree of dispatchable energy, or hydropower with storage capacity, demand management, and interconnection to a large grid area export of electricity when needed. Beyond this level, there are few technical limits, but the economic implications become more significant. Electrical utilities continue to study the effects of large (20% or more) scale penetration of wind generation on system stability and economics.
At present, a few grid systems have penetration of wind energy above 5%: Denmark (values over 19%), Spain and Portugal (values over 11%), Germany and the Republic of Ireland (values over 6%). But even with a modest level of penetration, there can be times where wind power provides a substantial percentage of the power on a grid. For example, in the morning hours of 8 November 2009, wind energy produced covered more than half the electricity demand in Spain, setting a new record. This was an instance where demand was very low but wind power generation was very high.
Variability and intermittency
Electricity generated from wind power can be highly variable at several different timescales: from hour to hour, daily, and seasonally. Annual variation also exists, but is not as significant. Related to variability is the short-term (hourly or daily) predictability of wind plant output. Like other electricity sources, wind energy must be “scheduled”. Wind power forecasting methods are used, but predictability of wind plant output remains low for short-term operation.
Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, this variability can present substantial challenges to incorporating large amounts of wind power into a grid system. Intermittency and the non-dispatchable nature of wind energy production can raise costs for regulation, incremental operating reserve, and (at high penetration levels) could require an increase in the already existing energy demand management, load shedding, or storage solutions or system interconnection with HVDC cables. At low levels of wind penetration, fluctuations in load and allowance for failure of large generating units requires reserve capacity that can also regulate for variability of wind generation. Wind power can be replaced by other power stations during low wind periods. Transmission networks must already cope with outages of generation plant and daily changes in electrical demand. Systems with large wind capacity components may need more spinning reserve (plants operating at less than full load).
Pumped-storage hydroelectricity or other forms of grid energy storage can store energy developed by high-wind periods and release it when needed. Stored energy increases the economic value of wind energy since it can be shifted to displace higher cost generation during peak demand periods. The potential revenue from this arbitrage can offset the cost and losses of storage; the cost of storage may add 25% to the cost of any wind energy stored, but it is not envisaged that this would apply to a large proportion of wind energy generated. The 2 GW Dinorwig pumped storage plant in Wales evens out electrical demand peaks, and allows base-load suppliers to run their plant more efficiently. Although pumped storage power systems are only about 75% efficient, and have high installation costs, their low running costs and ability to reduce the required electrical base-load can save both fuel and total electrical generation costs.
In particular geographic regions, peak wind speeds may not coincide with peak demand for electrical power. In the US states of California and Texas, for example, hot days in summer may have low wind speed and high electrical demand due to air conditioning. Some utilities subsidize the purchase of geothermal heat pumps by their customers, to reduce electricity demand during the summer months by making air conditioning up to 70% more efficient; widespread adoption of this technology would better match electricity demand to wind availability in areas with hot summers and low summer winds. Another option is to interconnect widely dispersed geographic areas with an HVDC “Super grid”. In the USA it is estimated that to upgrade the transmission system to take in planned or potential renewables would cost at least $60 billion.
In the UK, demand for electricity is higher in winter than in summer, and so are wind speeds. Solar power tends to be complementary to wind. On daily to weekly timescales, high pressure areas tend to bring clear skies and low surface winds, whereas low pressure areas tend to be windier and cloudier. On seasonal timescales, solar energy typically peaks in summer, whereas in many areas wind energy is lower in summer and higher in winter. Thus the intermittencies of wind and solar power tend to cancel each other somewhat. The Institute for Solar Energy Supply Technology of the University of Kassel pilot-tested a combined power plant linking solar, wind, biogas and hydrostorage to provide load-following power around the clock, entirely from renewable sources.
A report on Denmark’s wind power noted that their wind power network provided less than 1% of average demand 54 days during the year 2002. Wind power advocates argue that these periods of low wind can be dealt with by simply restarting existing power stations that have been held in readiness or interlinking with HVDC. Electrical grids with slow-responding thermal power plants and without ties to networks with hydroelectric generation may have to limit the use of wind power.
Three reports on the wind variability in the UK issued in 2009, generally agree that variability of wind needs to be taken into account, but it does not make the grid unmanageable; and the additional costs, which are modest, can be quantified. A 2006 International Energy Agency forum presented costs for managing intermittency as a function of wind-energy’s share of total capacity for several countries, as shown:
Increase in system operation costs, Euros per MW·h, for 10% and 20% wind share
Capacity credit and fuel saving
Many commentators concentrate on whether or not wind has any “capacity credit” without defining what they mean by this and its relevance. Wind does have a capacity credit, using a widely accepted and meaningful definition, equal to about 20% of its rated output (but this figure varies depending on actual circumstances). This means that reserve capacity on a system equal in MW to 20% of added wind could be retired when such wind is added without affecting system security or robustness. But the precise value is irrelevant since the main value of wind (in the UK, worth 5 times the capacity credit value) is its fuel and CO2 savings.
According to a 2007 Stanford University study published in the Journal of Applied Meteorology and Climatology, interconnecting ten or more wind farms can allow an average of 33% of the total energy produced to be used as reliable, baseload electric power, as long as minimum criteria are met for wind speed and turbine height
Hydropower
Energy in water can be harnsued and used .Hydroelectric energy is the commonly used sources of energy from war. By the use of technology also oceanic energy is used to produce energy.
Solar energy is the energy derived from the sun through the solar radication. Solar powered electrical generation taio on photovoltaics and heat engines.
History
Early uses of waterpower date back to Mesopotamia and ancient Egypt, where irrigation has been used since the 6th millennium BC and water clocks had been used since the early 2nd millennium BC. Other early examples of water power include the Qanat system in ancient Persia and the Turpan water system in ancient China.
Waterwheels and mills
Hydropower has been used for hundreds of years. In India, water wheels and watermills were built; in Imperial Rome, water powered mills produced flour from grain, and were also used for sawing timber and stone; in China, watermills were widely used since the Han Dynasty. The power of a wave of water released from a tank was used for extraction of metal ores in a method known as hushing. The method was first used at the Dolaucothi gold mine in Wales from 75 AD onwards, but had been developed in Spain at such mines as Las Medulas. Hushing was also widely used in Britain in the Medieval and later periods to extract lead and tin ores. It later evolved into hydraulic mining when used during the California gold rush.
In China and the rest of the Far East, hydraulically operated “pot wheel” pumps raised water into irrigation canals. At the beginning of the Industrial revolution in Britain, water was the main source of power for new inventions such as Richard Arkwright’s water frame. Although the use of water power gave way to steam power in many of the larger mills and factories, it was still used during the 18th and 19th centuries for many smaller operations, such as driving the bellows in small blast furnaces and gristmills, such as those built at Saint Anthony Falls, which uses the 50-foot (15 m) drop in the Mississippi River.
In the 1830s, at the peak of the canal-building era, hydropower was used to transport barge traffic up and down steep hills using inclined plane railroads.
Hydraulic power pipes
Hydraulic power networks also existed, using pipes carrying pressurized liquid to transmit mechanical power from a power source, such as a pump, to end users. These were extensive in Victorian cities in the United Kingdom. A hydraulic power network was also in use in Geneva, Switzerland. The world famous Jet d’Eau was originally the only over pressure valve of this network.
Compressed air hydro
Where there is a plentiful head of water it can be made to generate compressed air directly without moving parts. A falling column of water is mixed with air bubbles generated through turbulence at the inlet. This is allowed to fall down a shaft into a subterranean chamber where the air separates from the water. The weight of falling water compresses the air in the top of the chamber. A submerged outlet from the chamber allows water to flow to the surface at a lower height than the intake. An outlet in the roof of the chamber supplies the compressed air to the surface. A facility on this principal was built on the Montreal River at Ragged Shutes near Cobalt, Ontario in 1910 and supplied 5,000 horsepower to nearby mines.
Modern usage
There are several forms of water power currently in use or development. Some are purely mechanical but many primarily generate electricity. Broad categories include:
Hydroelectricity
A conventional dammed-hydro facility (hydroelectric dam) is the most common type of hydroelectric power generation.
- Conventional hydroelectric, referring to hydroelectric dams.
- Run-of-the-river hydroelectricity, which captures the kinetic energy in rivers or streams, without the use of dams.
- Pumped-storage hydroelectricity, to pump up water, and use its head to generate in times of demand.
- Tidal power, which captures energy from the tides in horizontal direction.
- Tidal stream power, usage of stream generators, somewhat similar to that of a wind turbine.
- Tidal barrage power, usage of a tidal dam.
- Dynamic tidal power, utilizing large areas to generate head.
Marine energy
- Marine current power, which captures the kinetic energy from marine currents.
- Osmotic power, which channels river water into a container separated from sea water by a semi-permeable membrane.
- Ocean thermal energy, which exploits the temperature difference between deep and shallow waters.
- Tidal power, which captures energy from the tides in horizontal direction. Also a popular form of hydroelectric power generation.
- Tidal stream power, usage of stream generators, somewhat similar to that of a wind turbine.
- Tidal barrage power, usage of a tidal dam.
- Dynamic tidal power, utilizing large areas to generate head.
- Wave power, the use ocean surface waves to generate power.
Non-Renewable sources of Energy
A non-renewable resources as a natural resources which cannot be produced frown generated or used on a scale which can sustain to consumption rate. These resources often exist in fixed amount or consumed mush resources than the nature can creature them they include
Fossil Fuels
Natural resources such as coal petroleum, oil and natural gas take thousand of your to form naturally gas take thousand of years to form naturally and cannot be replacd as fast as they are being consumed.Eventually natural resources will become to costly to harvest and humanity will need to find other sources of energy.At the present the main sources of energy neing used by human are the non-renewable as they are cheap to produce.
Fossil fuels are fuels formed by natural resources such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years. The fossil fuels, which contain high percentages of carbon, include coal, petroleum, and natural gas. Fossil fuels range from volatile materials with low carbon:hydrogen ratios like methane, to liquid petroleum to nonvolatile materials composed of almost pure carbon, like anthracite coal. Methane can be found in hydrocarbon fields, alone, associated with oil, or in the form of methane clathrates. It is generally accepted that they formed from the fossilized remains of dead plants and animals by exposure to heat and pressure in the Earth’s crust over millions of years. This biogenic theory was first introduced by Georg Agricola in 1556 and later by Mikhail Lomonosov in the 18th century.
It was estimated by the Energy Information Administration that in 2007 primary sources of energy consisted of petroleum 36.0%, coal 27.4%, natural gas 23.0%, amounting to an 86.4% share for fossil fuels in primary energy consumption in the world. Non-fossil sources in 2006 included hydroelectric 6.3%, nuclear 8.5%, and others (geothermal, solar, tide, wind, wood, waste) amounting to 0.9 percent. World energy consumption was growing about 2.3% per year.
Fossil fuels are non-renewable resources because they take millions of years to form, and reserves are being depleted much faster than new ones are being made. The production and use of fossil fuels raise environmental concerns. A global movement toward the generation of renewable energy is therefore under way to help meet increased energy needs.
The burning of fossil fuels produces around 21.3 billion tonnes (21.3 gigatonnes) of carbon dioxide (CO2) per year, but it is estimated that natural processes can only absorb about half of that amount, so there is a net increase of 10.65 billion tonnes of atmospheric carbon dioxide per year (one tonne of atmospheric carbon is equivalent to 44/12 or 3.7 tonnes of carbon dioxide). Carbon dioxide is one of the greenhouse gases that enhances radiative forcing and contributes to global warming, causing the average surface temperature of the Earth to rise in response, which most climate scientists agree will cause major adverse effects.
Origin
Petroleum and natural gas are formed by the anaerobic decomposition of remains of organisms including phytoplankton and zooplankton that settled to the sea (or lake) bottom in large quantities under anoxic conditions, millions of years ago. Over geological time, this organic matter, mixed with mud, got buried under heavy layers of sediment. The resulting high levels of heat and pressure caused the organic matter to chemically alter, first into a waxy material known as kerogen which is found in oil shales, and then with more heat into liquid and gaseous hydrocarbons in a process known as catagenesis.
There is a wide range of organic, or hydrocarbon, compounds in any given fuel mixture. The specific mixture of hydrocarbons gives a fuel its characteristic properties, such as boiling point, melting point, density, viscosity, etc. Some fuels like natural gas, for instance, contain only very low boiling, gaseous components. Others such as gasoline or diesel contain much higher boiling components.
Terrestrial plants, on the other hand, tend to form coal and methane. Many of the coal fields date to the Carboniferous period of Earth’s history. Terrestrial plants also form type III kerogen, a source of natural gas.
Importance
Fossil fuels are of great importance because they can be burned (oxidized to carbon dioxide and water), producing significant amounts of energy per unit weight. The use of coal as a fuel predates recorded history. Coal was used to run furnaces for the melting of metal ore. Semi-solid hydrocarbons from seeps were also burned in ancient times, but these materials were mostly used for waterproofing and embalming.
Commercial exploitation of petroleum, largely as a replacement for oils from animal sources (notably whale oil), for use in oil lamps began in the 19th century.
Natural gas, once flared-off as an unneeded byproduct of petroleum production, is now considered a very valuable resource.
Heavy crude oil, which is much more viscous than conventional crude oil, and tar sands, where bitumen is found mixed with sand and clay, are becoming more important as sources of fossil fuel. Oil shale and similar materials are sedimentary rocks containing kerogen, a complex mixture of high-molecular weight organic compounds, which yield synthetic crude oil when heated (pyrolyzed). These materials have yet to be exploited commercially. These fuels can be employed in internal combustion engines, fossil fuel power stations and other uses.
Prior to the latter half of the 18th century, windmills and watermills provided the energy needed for industry such as milling flour, sawing wood or pumping water, and burning wood or peat provided domestic heat. The widescale use of fossil fuels, coal at first and petroleum later, to fire steam engines enabled the Industrial Revolution. At the same time, gas lights using natural gas or coal gas were coming into wide use. The invention of the internal combustion engine and its use in automobiles and trucks greatly increased the demand for gasoline and diesel oil, both made from fossil fuels. Other forms of transportation, railways and aircraft, also required fossil fuels. The other major use for fossil fuels is in generating electricity and as feedstock for the petrochemical industry. Tar, a leftover of petroleum extraction, is used in construction of roads.
Levels and flows
Levels of primary energy sources are the reserves in the ground. Flows are production. The most important part of primary energy sources are the carbon based fossil energy sources. Coal, oil, and natural gas provided 79.6% of primary energy production during 2002 (in million tonnes of oil equivalent (mtoe)) (34.9+23.5+21.2).
Levels (proved reserves) during 2005-2007
- Coal: 997,748 million short tonnes (905 billion metric tonnes), 4,416 billion barrels (702.1 km3) of oil equivalent
- Oil: 1,119 billion barrels (177.9 km3) to 1,317 billion barrels (209.4 km3)
- Natural gas: 6,183-6,381 trillion cubic feet (175-181 trillion cubic metres),
- 1,161 billion barrels (184.6×10^9 m3) of oil equivalent
Flows (daily production) during 2006
- Coal: 18,476,127 short tonnes (16,761,260 metric tonnes), 52,000,000 barrels (8,300,000 m3) of oil equivalent per day
- Oil: 84,000,000 barrels per day (13,400,000 m3/d)
- Natural gas: 104,435 billion cubic feet (2,960 billion cubic metres), 19,000,000 barrels (3,000,000 m3) of oil equivalent per day
Years of production left in the ground with the current proved reserves and flows above
- Coal: 148 years
- Oil: 43 years
- Natural gas: 61 years
Years of production left in the ground with the most optimistic proved reserve estimates (Oil & Gas Journal, World Oil)
- Coal: 417 years
- Oil: 43 years
- Natural gas: 167 years
The calculation above assumes that the product could be produced at a constant level for that number of years and that all of the proved reserves could be recovered. In reality, consumption of all three resources has been increasing. While this suggests that the resource will be used up more quickly, in reality, the production curve is much more akin to a bell curve. At some point in time, the production of each resource within an area, country, or globally will reach a maximum value, after which, the production will decline until it reaches a point where is no longer economically feasible or physically possible to produce. See Hubbert peak theory for detail on this decline curve with regard to petroleum. Note also that proved reserve estimates do not include strategic reserves, which (globally) amount to 4.1 billion more barrels.
The above discussion emphasizes worldwide energy balance. It is also valuable to understand the ratio of reserves to annual consumption (R/C) by region or country. For example, energy policy of the United Kingdom recognizes that Europe’s R/C value is 3.0, very low by world standards, and exposes that region to energy vulnerability. Alternatives to fossil fuels are a subject of intense debate worldwide.
Limits and alternatives
The principle of supply and demand suggests that as hydrocarbon supplies diminish, prices will rise. Therefore higher prices will lead to increased alternative, renewable energy supplies as previously uneconomic sources become sufficiently economical to exploit. Artificial gasolines and other renewable energy sources currently require more expensive production and processing technologies than conventional petroleum reserves, but may become economically viable in the near future. See Energy development. Different alternative sources of energy include nuclear, hydroelectric, solar, wind, and geothermal.
Environmental effects
In the United States, more than 90% of greenhouse gas emissions come from the combustion of fossil fuels.[18] Combustion of fossil fuels also produces other air pollutants, such as nitrogen oxides, sulfur dioxide, volatile organic compounds and heavy metals.
According to Environment Canada:
“The electricity sector is unique among industrial sectors in its very large contribution to emissions associated with nearly all air issues. Electricity generation produces a large share of Canadian nitrogen oxides and sulphur dioxide emissions, which contribute to smog and acid rain and the formation of fine particulate matter. It is the largest uncontrolled industrial source of mercury emissions in Canada. Fossil fuel-fired electric power plants also emit carbon dioxide, which may contribute to climate change. In addition, the sector has significant impacts on water and habitat and species. In particular, hydro dams and transmission lines have significant effects on water and biodiversity.”
According to U.S. Scientist Jerry Mahlman and USA Today: Mahlman, who crafted the IPCC language used to define levels of scientific certainty, says the new report will lay the blame at the feet of fossil fuels with “virtual certainty,” meaning 99% sure. That’s a significant jump from “likely,” or 66% sure, in the group’s last report in 2001, Mahlman says. His role in this year’s effort involved spending two months reviewing the more than 1,600 pages of research that went into the new assessment.
Combustion of fossil fuels generates sulfuric, carbonic, and nitric acids, which fall to Earth as acid rain, impacting both natural areas and the built environment. Monuments and sculptures made from marble and limestone are particularly vulnerable, as the acids dissolve calcium carbonate.
Fossil fuels also contain radioactive materials, mainly uranium and thorium, which are released into the atmosphere. In 2000, about 12,000 tonnes of thorium and 5,000 tonnes of uranium were released worldwide from burning coal. It is estimated that during 1982, US coal burning released 155 times as much radioactivity into the atmosphere as the Three Mile Island incident. However, this radioactivity from coal burning is minuscule at each source and has not shown to have any adverse effect on human physiology.
Burning coal also generates large amounts of bottom ash and fly ash. These materials are used in a wide variety of applications, utilizing, for example, about 40% of the US production. Harvesting, processing, and distributing fossil fuels can also create environmental concerns. Coal mining methods, particularly mountaintop removal and strip mining, have negative environmental impacts, and offshore oil drilling poses a hazard to aquatic organisms. Oil refineries also have negative environmental impacts, including air and water pollution. Transportation of coal requires the use of diesel-powered locomotives, while crude oil is typically transported by tanker ships, each of which requires the combustion of additional fossil fuels.
Environmental regulation uses a variety of approaches to limit these emissions, such as command-and-control (which mandates the amount of pollution or the technology used), economic incentives, or voluntary programs.
An example of such regulation in the USA is the “EPA is implementing policies to reduce airborne mercury emissions. Under regulations issued in 2005, coal-fired power plants will need to reduce their emissions by 70 percent by 2018.”. In economic terms, pollution from fossil fuels is regarded as a negative externality. Taxation is considered one way to make societal costs explicit, in order to ‘internalize’ the cost of pollution. This aims to make fossil fuels more expensive, thereby reducing their use and the amount of pollution associated with them, along with raising the funds necessary to counteract these factors.
Energy conservation
Energy conservation refers to efforts made to reduce energy consumption. Energy conservation can be achieved through increased efficient energy use, in conjunction with decreased energy consumption and/or reduced consumption from conventional energy sources.
Energy conservation can result in increased financial capital, environmental quality, national security, personal security, and human comfort. Individuals and organizations that are direct consumers of energy choose to conserve energy to reduce energy costs and promote economic security. Industrial and commercial users can increase energy use efficiency to maximize profit.
Building design
In passive solar building design, windows, walls, and floors are made to collect, store, and distribute solar energy in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design or climatic design because, unlike active solar heating systems, it doesn’t involve the use of mechanical and electrical devices.
The key to designing a passive solar building is to best take advantage of the local climate. Elements to be considered include window placement and glazing type, thermal insulation, thermal mass, and shading. Passive solar design techniques can be applied most easily to new buildings, but existing buildings can be adapted or “retrofitted”.
Climate change
By reducing emissions, energy conservation is an important part of lessening climate change. Energy conservation facilitates the replacement of non-renewable resources with renewable energy. Energy conservation is often the most economical solution to energy shortages, and is a more environmentally benign alternative to increased energy production.
Energy conservation by country
India
Petroleum Conservation Research Association (PCRA) www.pcra.org is an Indian government body created in 1976 and engaged in promoting energy efficiency and conservation in every walk of life. In the recent past PCRA has done mass media campaigns in television, radio & print media. An impact assessment survey by a third party revealed that due to these mega campaigns by PCRA, overall awareness level have gone up leading to saving of fossil fuels worth crores of rupees besides reducing pollution.
Bureau of Energy Efficiency is an Indian governmental organization created in 2002 responsible for promoting energy efficiency and conservation.
Japan
Since the 1973 oil crisis, energy conservation has been an issue in Japan. All oil based fuel is imported, so indigenous sustainable energy is being developed.
The Energy Conservation Center promotes energy efficiency in every aspect of Japan. Public entities are implementing the efficient use of energy for industries.
Lebanon
In Lebanon and since 2002 The Lebanese Center for Energy Conservation (LCEC) has been promoting the development of efficient and rational uses of energy and the use of renewable energy at the consumer level. It was created as a project financed by the Global Environment Facility (GEF) and the Ministry of Energy Water (MEW) under the management of the United Nations Development Programme (UNDP) and gradually established itself as an independent technical national center although it continues to be supported by the United Nations Development Programme (UNDP) as indicated in the Memorandum of Understanding (MoU) signed between MEW and UNDP on June 18, 2007.
New Zealand
In New Zealand the Energy Efficiency and Conservation Authority is responsible for promoting energy efficiency and conservation.
European Union
At the end of 2006, the European Union-EU pledged to cut its annual consumption of primary energy by 20% by 2020. The ‘European Union Energy Efficiency Action Plan’ is long awaited. As part of the EU’s SAVE Programme, aimed at promoting energy efficiency and encouraging energy-saving behaviour, the Boiler Efficiency Directive specifies minimum levels of efficiency for boilers fired with liquid or gaseous fuels. The European Commission is funding large-scale research projects to learn about success factors for effective energy conservation programmes.
United Kingdom
Energy conservation in the United Kingdom has been receiving increased attention over recent years. Key factors behind this are the Government’s commitment to reducing carbon emissions, the projected ‘energy gap’ in UK electricity generation, and the increasing reliance on imports to meet national energy needs. Domestic housing and road transport are currently the two biggest problem areas.
Responsibility for energy conservation fall between three Government departments although is led by the Department for Energy and Climate Change (DECC). The Department for Communities and Local Government (CLG) is still responsible for energy standards in buildings, and the Department for Environment, Food and Rural Affairs (Defra) retains a residual interest in energy insofar as it leads to emissions of CO2, the main greenhouse gas. The Department for Transport retains many responsibilities for energy conservation in transport. At an operational level, there are two main non-departmental governmental bodies (“quangoes”) – the Energy Saving Trust, working mainly in the domestic sector with some interest in transport, and the Carbon Trust, working with industry and innovative energy technologies. In addition there are many independent NGOs working in the sector such as the Centre for Sustainable Energy in Bristol or the National Energy Foundation in Milton Keynes, and directly helping consumers make informed choices on energy efficiency sust-it
United States
The United States is currently the largest single consumer of energy. The U.S. Department of Energy categorizes national energy use in four broad sectors: transportation, residential, commercial, and industrial.
Energy usage in transportation and residential sectors, about half of U.S. energy consumption, is largely controlled by individual consumers. Commercial and industrial energy expenditures are determined by businesses entities and other facility managers. National energy policy has a significant effect on energy usage across all four sectors, and its strengthening is part of the 2010 Presidential-Congressional legislative debate.
Sri Lanka
The Sri lanka is currently consumed Fossil Fuels,hydro power,wind power & solar power for their day to day power generation. Sri lanka Sustainable energy authority is doing major role regarding energy management & energy conservation.Today Most of the industries are forwarded to reduce their energy consumptions using renewable energy resources & optimizing their energy usages.
ENERGY CONSERVATION ISSUES
- The use of telecommuting by major corporations is a significant opportunity to conserve energy, as many Americans now work in service jobs that enable them to work from home instead of commuting to work each day.
- Electric motors consume more than 60% of all electrical energy generated and are responsible for the loss of 10 to 20% of all electricity converted into mechanical energy. Consumers are often poorly informed of the savings of energy efficient products. The research one must put into conserving energy often is too time consuming and costly when there are cheaper products and technology available using today’s fossil fuels. Some governments and NGOs are attempting to reduce this complexity with ecolabels that make differences in energy efficiency easy to research while shopping.
- Technology needs to be able to change behavioral patterns, it can do this by allowing energy users, business and residential, to see graphically the impact their energy use can have in their workplace or homes. Advanced real-time energy metering is able to help people save energy by their actions. Rather than become wasteful automatic energy saving technologies, real-time energy monitors and meters such as the Energy Detective, Enigin Plc’s Eniscope, Ecowizard, or solutions like EDSA’a Paladin Live are examples of such solutions
- It is frequently argued that effective energy conservation requires more than informing consumers about energy consumption, for example through smart meters at home or ecolabels while shopping. People need practical and tailored advice how to reduce energy consumption in order to make change easy and lasting. This applies to both efficiency investments, such as investment in building renovation, or behavioral change, for example turning down the heating. To provide the kind of information and support people need to invest money, time and effort in energy conservation, it is imprtant to understand and link to people’s topical concerns.
- Some retailers argue that bright lighting stimulates purchasing. However, health studies have demonstrated that headache, stress, blood pressure, fatigue and worker error all generally increase with the common over-illumination present in many workplace and retail settings. It has been shown that natural daylighting increases productivity levels of workers, while reducing energy consumption