2901/305
STATISTICS
November 2018
Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL DIPLOMA IN SECRETARIAL STUDIES

STATISTICS

3 hours

INSTRUCTIONS TO CANDIDATES

This paper consists of SEVEN questions.
Answer any FIVE questions in the answer booklet provided.
All questions carry equal marks.
Show all your working.
Candidates should answer the questions in English.

This paper consists of $\mathbf{7}$ printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

1. (a) Using the following sets:
$\mathrm{A}=\{1,2,3,4,5, \mathrm{a}, \mathrm{c}\}$
$B=\{2,3,8,9, d\}$
$\mathrm{C}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
Determine the following:
(i) $\mathrm{AA}(\mathrm{BUC})$;
(ii) $\mathrm{BU}(\mathrm{AAC})$;
(iii) $\mathrm{B} \cap \mathrm{C}$
(b) The following distribution shows the number of customers who visited a hotel in a period of 42 days.

Number of customers	Number of days
$0-4$	4
$4-8$	12
$8-12$	8
$12-16$	7
$16-20$	5
$20-24$	6

(i) Present the data in a histogram.
(ii) Draw a frequency curve on the same graph in (i) above.
2. (a) The following data shows the marks scored by candidates in an interview for a secretarial post in an organisation:

20	50	80	40	85	40
40	70	60	70	40	50
30	30	45	50	20	60

(i) Prepare a frequency distribution table using the data above.
(ii) Using the result in (i) above, calculate:
(I) arithmetic mean;
(II) median.
(b) The following distribution shows the number of units of a product manufactured by a firm over a period of 36 months:

Number of units manufactured	Number of months
$0-30$	5
$30-60$	10
$60-90$	12
$90-120$	5
$120-150$	4

(i) Calculate the:
(I) arithmetic mean;
(II) standard deviation;
(III) mode;
(IV) Pearson's Coefficient of Skewness.
(ii) Interpret the result in (iv) above.
3. (a) The following data shows the number of customers served by a secretary of an organisation over a period of one week.

Day (a?)	Monday	Tuesday	Wednesday	Thursday	Friday
Number of customers (y)	5	12	8	4	10

(i) Determine the regression equation in the form: $y=a+b x$.
(ii) Calculate the Coefficient of Determination.
(iii) Interpret the result in (ii) above.
(b) The probability that a customer will order for a cake in a restaurant is 0.4 . On a certain day, 12 customers visited the restaurant. Calculate the probability that:
(i) 4 customers will order for a cake;
(ii) at most, 3 customers will order for a cake;
(iii) none of the customers will order for a cake.
4. (a) Explain four disadvantages of sampling in the collection of data.
(b) A manager of a game park claims that the average number of customers who visit the park per day is 24 . The following data shows the number of customers who visited the park in a week:

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Number of customers	25	29	20	28	35	12	26

Test the manager's claim at 5% level of significance.
5. (a) Explain four components of a time series.
(b) The following information shows the prices, in Kenya shillings, and quantities
demanded, in units, of three commodities X, Y and Z, for the years 2015 and 2016.

	Prices (Ksh)		Quantity_(units).
Commodity	$\underline{\mathbf{2 0 1 5}}$	$\underline{\mathbf{2 0 1 6}}$	$\underline{\mathbf{2 0 1 5}}$
X	120	140	50
Y	180	290	38
Z	280	480	48

Calculate the price index number for the year 2016, using the weighted average of price relatives method.
(12 marks)
6. (a) Explain each of the following types of matrices, using an example in each case:
(i) Transpose matrix;
(ii) Diagonal matrix;
(iii) Square matrix;
(iv) Scalar matrix.

Student t distribution

t Distribution

Degrees of freedom	$\begin{gathered} .005 \\ \text { (one tail) } \\ .01 \\ \text { (two tails) } \end{gathered}$	$\begin{gathered} .01 \\ \text { (one tail) } \\ .02 \\ \text { (two tails) } \end{gathered}$	$\begin{gathered} .025 \\ \text { (one tail) } \\ .05 \\ \text { (two tails) } \end{gathered}$	$\begin{gathered} .05 \\ \text { (one tail) } \\ .10 \\ \text { (two tails) } \end{gathered}$	$\begin{gathered} .10 \\ \text { (one tail) } \\ .20 \\ \text { (two tails) } \end{gathered}$	$\begin{gathered} .25 \\ \text { (one tail) } \\ .50 \\ \text { (two tails) } \end{gathered}$
1	63.657	31.821	12.706			
2	9.925	6.965	12.706 4.303	6.314 2.920	3.078	1.000
3	5.841	4.541	3.182	2.920	1.886	. 816
4	4.604	3.747	3.776	2.353	1.638	. 765
5	41032	3.365	2.571	2.132 2.015	1.533	. 741
6	3.707	3.143	2.447	2.015	1.476	. 727
7	3.500	2.998	2.447 2.365	1.943	1.440	. 718
8	3.355	2.896	2.306	1:895	$1.41 * 5$. 711
9	3.250	2.821	2.262	1.860	1.397	. 706
10	3.169	2.764	2.228	1.833 1.812	1.383	. 703
11	3.106	2.718	2.201	1.812	1.372	. 700
12	3.054	2.681	2.201 2.179	1.796	1.363	. 697
13	3.012	2.650	2.179 2.160	1.782	1.356	. 696
14	2.977	2.625	2.145	1.771	1.350	. 694
15	2.947	2.602	2.145 2.132	1.761	1.345	. 692
16	2.921	2.584	2.120	1.753	1.341	. 691
17	2.898	2.567	2.120	1.746	1.337	. 690
18	2.878	2.552	2.110 2.101	1.740	1.333	. 689
19	2.861	2.540	2.101	1.734	1.330	. 688
20	2.845	2.528	2.093	1.729	1.328	. 688
21	2.831		2.086	1.725	1.325	. 687
22	2.819	2.518 2.508	2.080	1.721	1.323	. 686
23	2.807	2.508	2.074	1.717	1.321	. 686
24	2.797	2.492	2.069	1.714	1.320	. 685
25	2.787	2.485	2.064	1.711	1.318	. 685
26	2.779		2.060	1.708	1.316	. 684
27	2.77 .1		2.056	1.706	1.315	. 684
28	2.763	2.473 2.467	2.052	1.703	1.314	. 684
29	2.756	2.462	2.048	1.701	1.313	. 683
Large (?)	2.575		2.045 1.960	1.699	1.311	. 683
			1.960	1.645	1.282	. 675

