CHAPTERS

SUBPROGRAMS IN C

A sub-program is a series of C statements thabparé specific task in a program. A
subprogram can be called within another procedtvery C program has at least one
function, which ismain(). A C program can be divided up into separate funstio

A function declaration tells the compiler aboutiadtion's name, return type, and

parameters. A function definition provides the attiody of the function.

The C standard library provides numerous builtdnctions that your program can
call. Forexample, function strcat() to concatenate two g#jfunction memcpy() to
copy one memory location to another location andymaore functions.

A function is known with various names like a metloy a sub-routine or a
procedure, etc. However fanction returns a value while @rocedure doesn't: it just
executes commands.

A Subprogram is:
* apart of a program that performs one or n\%geedlmsks

¢ has its own name O
» written as an independent part of thqup\()“gram
\\'

Benefits of using sub-procedures in p,rQ’gYammmg are

= Sub-programs help to break@dgrams into sevetdbigical sections. The
smaller programs/routlne@hakmgrammlng debuggingand subsequent
maintenanceeasier. .g;},‘

= They also help mtocb’n:g repeated operationsuch as frequently used
calculations, text etc thus making programming fepetitive and faster.

= Procedures used in one program can act as buibdieggs for other programs
with slight modifications i.ecode re-use

= Programmers working on large projects can divigewbrkload by making
different functions.

TYPES OF FUNCTIONS

Basically, there are two types of functions in Cbasis of whether it is defined by
user or not.

+ Library function
« User defined function

LIBRARY FUNCTION

Library functions are the in-built function in Cqgramming system. For example:

48

KEVOH
Highlight

printf()
-printf() is used for displaying output in C.
scanf()

- scanf () is used for taking input in C.

USER DEFINED FUNCTION

C allows programmers to define their own functiocnading to their requirements
known as user defined functions.

How user-defined function works in C Programming?

#include <stdio.h>
void function_name(){

int main(){ \3\5}
........ O
function_name(); VU
........... R
........... X/
} RS
| | o0
As mentioned earlier, every C pre begins fraaim() and program starts

executing the codes insidin() . furiction. When the control of program reaches to
function_name() insidemain${*$$unction. The control of program jumpswvad
function_name() and exe@ﬁ‘és the codes inside it. When, all tdesmside that
user-defined function are“executed, control ofgtagram jumps to the statement just
afterfunction_name() ~ from where it is called. Analyze the figure beltav
understanding the concept of function in C programgm

49

KEVOH
Highlight

#include <stdio,h>
void function_name(){ «——

— }

int main() {

step 1
function_name();

step 2

B IR RN R]

Fig: Working of Fmg\lﬁbi

~X ®
Rememober, the function name is an identifier a;u}ﬁlmbe unique.

Ve X
3
AN
9,
O\

PR

DEFINING A FUNCTION

The general form of a function:deéfinition in C pragiming language is as follows:

O

return_type function_nar@?(parameter list)

{
body of the function

}

A function definition in C programming language consists of a functieader and a
function body. Here are all the parts of a function

1. Return Type: A function may return a value. The return_typéhis data type of
the value the function returns. Some functionsgerfthe desired operations
without returning a value. In this case, the rettype is the keyworgoid.

2. Function Name: This is the actual name of the function. The fiorchame and
the parameter list together constitute filnection signature.

3. Parameters: A parameter is like a placeholder. When a funcisoinvoked, you
pass a value to tHermal parameter. This value is referred to astual
parameter or argument. Theparameter list refers to the type, order, and
number of the parameters of a function. Paramatersptional; that is, a function
may contain no parameters.

4. Function Body: The function body contains a collection of stateta¢hat define
what the function does.

50

KEVOH
Highlight

Example
Following is the source code for a function calteax(). This function takes two
parameters numl1 and num2 and returns the maximtweée the two:

[* function returning the max between two numbers *

int max(int num1, int num2)
{
/* local variable declaration */
int result;
if (hum1 > num2)
result = numil,
else
result = numz;
return result;

}
FUNCTION DECLARATIONS

A function declaration tells the compiler about a function name and howelbthe
function. The actuabody of the functioncan be deﬂ(g@separately.

A function declaration has the following partssi“ \A’ |

return_type function_name(parameterﬁlig,}%d

For the above defined function ma\@f,;:‘f”\ollowinghe function declaration:

int max(int num1, int num2); . -
x:;:'

Parameter names are no@iﬁportant in function datiden; only their type is required,
so the following is also valid declaration:

int max(int, int);

Function declaration is required when you defirfierection in one source file and you
call that function in another file. In such case whould declare the function at the
top of the file calling the function.

CALLING A FUNCTION

While creating a C function, you give a definitiohwhat the function has to do. To
use a function, you will have to call that functiiwnperform the defined task.

When a program calls a function, program contrétassferred to the called function.
A called function performs defined task, and whsmreturn statement is executed or
when its function-ending closing brace is reaclte@turns program control back to
the main program. Therefore, the calling prograsuspended during execution of
the called subprogram.

To call a function, you simply need to pass theunegl parameters along with
function name, and if function returns a valuentlieu can store returned value. For
example:

51

KEVOH
Highlight

#include <stdio.h>

[* function declaration */

int max(int num1, int num2);

int main ()

{

/* local variable definition */

int a = 100;

int b = 200;

int ret;

[* calling a function to get max value */
ret = max(a, b);

printf("Max value is : %d\n", ret);
return O;

}

[* function returning the max between two numbers * /
int max(int num1, int num2)

{

* local variable declaration */

int result; O
if (hum1 > num2)
result = numi; O
else D
result = num2; X

RS
;"".\
return result; A

O
} W

\ &
The formal parameters behave like other local béeminside the function and are
created upon entry into t@nction and destraysah exit.

While calling a function, there are two ways thaguenents can be passed to a
function:

Call Type Description

This method copies the actual value of an argunmémthe
formal parameter of the function. In this case ntjes
made to the parameter inside the function havdfecteon
the argument.

This method copies the address of an argumentheto
formal parameter. Inside the function, the addiessed to
access the actual argument used in the call. Teamthat
changes made to the parameter affect the argument.

Call by value

Call by reference

By default, C usesall by valueto pass arguments. In general, this means that cod
within a function cannot alter the arguments usechll the function and above
mentioned example while calling max() function uieel same method.

52

KEVOH
Highlight

FUNCTION ARGUMENTS

If a function is to use arguments, it must declameables that accept the values of the
arguments. These variables are called the fornmahpeters of the function.

The formal parameters behave like other local eminside the function and are
created upon entry into the function and destrayazh exit.

A formal parameter is a dummy variable listed i@ sabprogram header and used in
the subprogram. An actual parameter representiia uaed in the subprogram call
statement.

Caller rf//
ret = max(a, =

Sub ././&(

ubprogram 2)

definition | &2k max(int numl, int n

Actual parameters

Formal parameters

&

When max() is called, we pass it the arguments Immievfunction uses as the values
of ret. This process is callgdrameter passing <"

— ‘ \'

Parametergefers to the list of variables in& wethod deatian. Argumentsare the
actual values that are passed in when tHe) methHaddked. When you invoke a
method, the arguments used must rp@}:h the deolagparameters in type and
order. ~

i\
TYPES OF VARIABLE@‘”

The Programming Ianguag@if‘has two main varialplesty
- Local Variables -3
« Global Variables

o

LOCAL VARIABLES

A local variable is a variable that is declared insle a function.

- Local variables scope is confined within the blocKkunction where it is
defined. Local variables must always be defineth@top of a block.

« When execution of the block starts the variablvisilable, and when the
block ends the variable 'dies'.

GLOBAL VARIABLES

Global variable is defined at the top of the progfde and it can be visible and
modified by any function that may reference it. &bvariables are declared outside
all functions.

53

KEVOH
Highlight

