
Page 23 of 72 
 

CHAPTER 4: RELATIONAL DATABASE SYSTEM 

 Introduction to relational database management system  
RDBMS (relational database management system), A database based on the relational model 

developed by E.F. Codd. A relational database allows the definition of data structures, storage and 

retrieval operations and integrity constraints. In such a database the data and relations between them 

are organised in tables. 

A relational database is a collection of data items organized as a set of formally-described 

tables from which data can be accessed or reassembled in many different ways without 

having to reorganize the database tables 

 

Characteristics of Relational Databases 
CODD'S RULES FOR RELATIONAL DATABASES,  The relational model for databases 

described by Dr. Codd contains 12 rules. 

  

Relational Database Characteristics 
  

1) Data in the relational database must be represented in tables, with values in columns within 

rows. 

2) Data within a column must be accessible by specifying the table name, the column name, and 

the value of the primary key of the row. 

3) The DBMS must support missing and inapplicable information in a systematic way, distinct 

from regular values and independent of data type. 

4) The DBMS must support an active on-line catalogue. 

5) The DBMS must support at least one language that can be used independently and from 

within programs, and supports data definition operations, data manipulation, constraints, and 

transaction management. 

6) Views must be updatable by the system. 

7) The DBMS must support insert, update, and delete operations on sets. 

8) The DBMS must support logical data independence. 

9) The DBMS must support physical data independence. 

10) Integrity constraints must be stored within the catalogue, separate from the application. 

11) The DBMS must support distribution independence.  The existing application should run 

when the existing data is redistributed or when the DBMS is redistributed. 

12) If the DBMS provides a low level interface (row at a time), that interface cannot bypass the 

integrity constraints. 

 

 

 



Page 24 of 72 
 

Relational algebra  
Relational algebra is a procedural query language, which takes instances of relations as input and 

yields instances of relations as output. It uses operators to perform queries. An operator can be 

either unary or binary. They accept relations as their input and yields relations as their output. 

Relational algebra is performed recursively on a relation and intermediate results are also 

considered relations.  

Fundamental operations of Relational algebra:  
 Select  

 Project  

 Union  

 Set different  

 Cartesian product  

 Rename  
 

These are defined briefly as follows:  

Select Operation (σ)  
Selects tuples that satisfy the given predicate from a relation.  

 

Notation σp(r)  

Where p stands for selection predicate and r stands for relation. p is prepositional logic formulae 

which may use connectors like and, or and not. These terms may use relational operators like: =, 

≠, ≥, < , >, ≤.  

For example:  

σsubject="database"(Books)  

 

Output : Selects tuples from books where subject is 'database'.  
 

σsubject="database" and price="450"(Books)  

 

Output: Selects tuples from books where subject is 'database' and 'price' is 450.  
 

σsubject="database" and price < "450" or year > "2010"(Books)  

 

Output : Selects tuples from books where subject is 'database' and 'price' is 450 or the publication 

year is greater than 2010, that is published after 2010.  

 
Project Operation (Π)  
Projects column(s) that satisfy given predicate.  
Notation: ΠA1, A2, An (r)  

Where a1, a2 , an are attribute names of relation r.  

Duplicate rows are automatically eliminated, as relation is a set.  

 



Page 25 of 72 
 

 

for example:  
 

Πsubject, author (Books)  
 

Selects and projects columns named as subject and author from relation Books.  

 
Union Operation (∪)   
Union operation performs binary union between two given relations and is defined as: 
 

r ∪ s = { t | t ∈ r or t ∈ s}  
 

Notion: r U s  

Where r and s are either database relations or relation result set (temporary relation).  

For a union operation to be valid, the following conditions must hold:  

 r, s must have same number of attributes.  

 Attribute domains must be compatible.  

 

Duplicate tuples are automatically eliminated. 

Π author (Books) ∪ Π author (Articles)  

Output: Projects the name of author who has either written a book or an article or both.  

 
Set Difference ( − )  
The result of set difference operation is tuples which present in one relation but are not in the 

second relation.  

 

Notation: r − s  

Finds all tuples that are present in r but not s.  

 

Π author (Books) − Π author (Articles)  

Output: Results the name of authors who has written books but not articles.  

 
Cartesian Product (Χ)  
Combines information of two different relations into one.  

Notation: r Χ s  

Where r and s are relations and there output will be defined as:  

r Χ s = { q t | q ∈ r and t ∈ s} Π author = 'tutorialspoint'(Books Χ Articles)  
 

Output : yields a relation as result which shows all books and articles written by tutorialspoint.  

 



Page 26 of 72 
 

Rename operation ( ρ )  
Results of relational algebra are also relations but without any name. The rename operation 

allows us to rename the output relation. rename operation is denoted with small greek letter rho ρ  

Notation: ρ x (E)  

Where the result of expression E is saved with name of x.  

Additional operations are:  

 Set intersection  

 Assignment  

Natural join 

Relational Algebra Types and Operations  

An algebra is a formal structure consisting of sets and operations on those sets.  

Relational algebra is a formal system for manipulating relations.  

 Operands of this algebra are relations.  
 Operations of this algebra include the usual set operations (since relations are sets of tuples), 

and special operations defined for relations  
o selection  
o projection  
o join  

Relational algebra is a formal system for manipulating relations (Tables). Operands of this algebra are 
relations. Operations of this algebra include the usual set operations (since relations are sets of tuples 
[Rows]), and special operations defined for relations. 

 
Set Operations on Relations 

For the set operations on relations, both operands must have the same scheme, and the result has 

that same scheme.  

 R1 U R2 (union) is the relation containing all tuples that appear in R1, R2, or both.  
 R1 n R2 (intersection) is the relation containing all tuples that appear in both R1 and R2.  
 R1 - R2 (set difference) is the relation containing all tuples of R1 that do not appear in R2.  

 

Selection (σ) 

Selects tuples from a relation whose attributes meet the selection criteria, which is normally 

expressed as a predicate.  

   



Page 27 of 72 
 

      R2 = select(R1,P) 

   

That is, from R1 we create a new relation R2 containing those tuples from R1 that satisfy (make 

true) the predicate P.  

A predicate is a boolean expression whose operators are the logical connectives (and, or, not) 

and arithmetic comparisons (LT, LE, GT, GE, EQ, NE), and whose operands are either domain 

names or domain constants.  

select(Workstation,Room=633) =  

   

  Name    Room    Mem   Proc  Monitor 

  ==================================== 

  coke     633   16384  SP4   color17 

  bass     633    8124  SP2   color19 

  bashful  633    8124  SP1   b/w 

   

   

select(User,Status=UG and Idle<1:00) =  

   

  Login    Name        Status   Idle  Shell  Sever 

  ================================================ 

  jli      J. Inka     UG       0:00  bsh    UG 

   

   

 

Projection (Π) 

Chooses a subset of the columns in a relation, and discards the rest.  

   

      R2 = project(R1,D1,D2,...Dn) 

   

  That is, from the tuples in R1 we create a new relation R2 containing only 

the domains D1,D2,..Dn.  

project(Server,Name,Status) =  

   

  Name    Status 

  ============== 

  diamond   up 

  emerald   up 

  graphite  down 

  ruby      up 

  frito     up 



Page 28 of 72 
 

   

  project(select(User,Status=UG),Name,Status) =  

   

  Name        Status 

  ================== 

  A. Cohn       UG 

  J. Inka       UG 

  R. Kemp       UG 

   

   

 

Join 

Combines attributes of two relations into one.  

   

      R3 = join(R1,D1,R2,D2) 

Given a domain from each relation, join considers all possible pairs of tuples from the two 

relations, and if their values for the chosen domains are equal, it adds a tuple to the result 

containing all the attributes of both tuples (discarding the duplicate domain D2).  

Natural join: If the two relations being joined have exactly one attribute (domain) name in 

common, then we assume that the single attribute in common is the one being compared to see if 

a new tuple will be inserted in the result.  

Assuming that we've augmented the domain names in our lab database so that we use 

MachineName, PrinterName, ServerName, and UserName in place of the generic domain 

"Name", then  

   

      join(Workstations,Printers) 

   

   

is a natural join, on the shared attribute name Room. The result is a relation of all workstation/printer 

attribute pairs that are in the same room.  

 

Example Use of Project and Join 

Find all workstations in a room with a printer.  

 R1 = project(Workstation,Name,Room)  
 R2 = project(Printer,Name,Room)  
 R3 = join(R1,R2)  

   

 



Page 29 of 72 
 

 

  R1              R2              R3 

  Name    Room    Name    Room    WName   Pname   Room 

  ============    ============    ==================== 

  coke     633    chaucer  737    coke    uglab   633 

  bass     633    keats    706    bass    uglab   633 

  bashful  633    poe      707    bashful uglab   633 

  tab      628    dali     737 

  crush    628    uglab    633 

   

   

 

Implementing Set Operations 

To implement R1 U R2 (while eliminating duplicates) we can  

 sort R1 in O(N log N)  
 sort R2 in O(M log M)  
 merge R1 and R2 in O(N+M)  

If we allow duplicates in union (and remove them later) we can  

 copy R1 to R3 in O(N)  
 insert R2 in R3 in O(M)  

If we have an index and don't want duplicates we can  

 copy R1 to R3 in O(N)  
 for each tuple in R2 (which is O(M))  

o use index to lookup tuples in R1 with the same index value O(1)  
o if R2 tuple equals some such R1 tuple, don't add R2 tuple to R3  

Intersection and set difference have corresponding implementations.  

 

Implementing Projection 

To implement projection we must  

 process every tuple in the relation  
 remove any duplicates that result  

To avoid duplicates we can  

 sort the result and remove consecutive tuples that are equal  
o requires time O(N log N) where N is the size of the original relation  

 implement the result as a set  



Page 30 of 72 
 

o set insertion guarantees no duplicates  
o by using a hash table, insertion is O(1), so projection is O(N)  

 
Implementing Selection 

In the absence of an index we  

 apply the predicate to every tuple in the relation  
 insert matches in the resulting relation  

o duplicates can't occur  
 take O(N) time  

Given an index, and a predicate that uses the index key, we  

 Lookup tuples using the key  
 evaluate only those tuples with the predicate  
 take O(K) time, where K tuples match the key  

 
Implementing Join with Nested Loops 

A nested loop join on relations R1 (with N domains) and R2 (with M domains), considers all |R1| 

x |R2| pairs of tuples.  

   

  R3= join(R1,Ai,R2,Bj) 

   

  for each tuple t in R1 do 

    for each tuple s in R2 do 

      if t.Ai = s.Bj then 

        insert(R3, t.A1, t.A2, ..., t.AN, 

          s.B1, ..., s.B(j-1), s.B(j+1), ..., s.BM) 

   

   

This implementation takes time O(|R1|*|R2|).  

 

Index Join 

An index join exploits the existence of an index for one of the domains used in the join to find 

matching tuples more quickly.  

   

  R3= join(R1,Ai,R2,Bj) 

   

  for each tuple t in R1 do 



Page 31 of 72 
 

     for each tuple s in R2 at index(t.Ai) do 

        insert(R3, t.A1, t.A2, ..., t.AN, 

          s.B1, ..., s.B(j-1), s.B(j+1), ..., s.BM) 

   

   

We could choose to use an index for R2, and reverse the order of the loops.  

The decision on which index to use depends on the number of tuples in each relation.  

 

Sort Join 

If we don't have an index for a domain in the join, we can still improve on the nested-loop join 

using sort join.  

   

  R3= join(R1,Ai,R2,Bj) 

   

   

 Merge the tuples of both relations into a single list  
o list elements must identify the original relation  

 Sort the list based on the value in the join domains Ai and Bj  
o all tuples on the sorted list with a common value for the join domains are consecutive  

 Pair all (consecutive) tuples from the two relations with the same value in the join domains  

 
Comparison of Join Implementations 

Assumptions  

 Join R1 and R2 (on domain D) producing R3  
 R1 has i tuples, R2 has j tuples  
 |R3| = m, 0 <= m <= i * j  
 Every implementation takes at least time O(m)  

Comparison  

 Nested-loop join takes time O(i * j)  
 Index join (using R2 index) takes time O(i+m)  

o lookup is O(1) for each tuple in R1  
o at most O(m) tuples match  

 Sort join takes time O(m +(i+j)log(i+j))  
o O(i+j) to merge the tuples in R1 and R2  
o O((i+j) log (i+j)) to sort the list  
o O(m) to produce the output (0 <= m <= i*j)  



Page 32 of 72 
 

 
Expressing Queries in Relational Algebra 

Relational algebra is an unambiguous notation (or formalism) for expressing queries.  

Queries are simply expressions in relational algebra.  

Expressions can be manipulated symbolically to produce simpler expressions according to the 

laws of relational algebra.  

Expression simplification is an important query optimization technique, which can affect the 

running time of queries by an order of magnitude or more.  

 early "selection" reduces the number of tuples  
 early "projection" reduces the number of domains  

 
Algebraic Laws for Join 

Commutativity (assuming order of columns doesn't matter)  

join(R1, Ai, R2, Bj) = join(R2, Bj, R1, Ai)  

Nonassociativity  

join (join(R1, Ai, R2, Bj),Bj,R3,Ck)  

is not the same as  

join (R1,Ai,join(R2, Bj, R3, Ck),Bj)  

 

Algebraic Laws for Selection 

Commutativity  

select(select(R1,P1),P2) = select(select(R1,P2),P1)  

Selection pushing  

 if P contains attributes of R  

select(join(R,Ai,S,Bj),P) = join(select(R,P),Ai,S,Bj)  

 if P contains attributes of S  



Page 33 of 72 
 

select(join(R,Ai,S,Bj),P) = join(R,Ai,select(S,P),Bj)  

Selection Splitting (where P = A and B)  

select(R,P) = select(select(R,A),B)  

select(R,P) = select(select(R,B),A)  

 

Example: Selection Pushing and Splitting 

Consider the following 4 relation database  

 CSG: Course-StudentID-Grade  
 SNAP: StudentID-Name-Address-Phone  
 CDH: Course-Day-Hour  
 CR: Course-Room  

Implement the query "Where is Amy at Noon on Monday?"  

Let P be (Name="Amy" and Day="Monday" and Hour="Noon")  

We can use a brute-force approach that joins all the data in the relations into a single large 

relation, selects those tuples that meet the query criteria, and then isolates the answer field using 

projection.  

 R1 = join(CSG,SNAP)  
 R2 = join(R1,CDH)  
 R3 = join(R2,CR)  
 R4 = select(R3,P)  
 R5 = project(R4,Room)  

   

  project(select(join(join(join(CSG,SNAP),CDH),CR),P),Room) 

   

The selection uses only Name, Day, and Hour attributes (and not Course or Room), so we can 

push the selection inside the outermost join.  

 R1 = join(CSG,SNAP)  
 R2 = join(R1,CDH)  
 R3 = select(R2,P)  
 R4 = join(R3,CR)  
 R5 = project(R4,Room)  



Page 34 of 72 
 

We cannot push selection further, because the predicate involves attributes from both operands 

of the next innermost join (R1,CDH).  

We can split the selection into two, one based on Name, and the other based on Day-Hour.  

 R1 = join(CSG,SNAP)  
 R2 = join(R1,CDH)  
 R3 = select(R2,Day="Monday" and Hour="Noon")  
 R4 = select(R3,Name="Amy")  
 R5 = join(R4,CR)  
 R6 = project(R5,Room)  

Now we can push the first selection inside the join, since it involves only attributes from the 

CDH relation.  

 R1 = join(CSG,SNAP)  
 R2 = select(CDH,Day="Monday" and Hour="Noon")  
 R3 = join(R1,R2)  
 R4 = select(R3,Name="Amy")  
 R5 = join(R4,CR)  
 R6 = project(R5,Room)  

Similarly we can push the second selection inside the preceding join, since it involves only 

attributes from R1 (ie, Name).  

 R1 = join(CSG,SNAP)  
 R2 = select(CDH,Day="Monday" and Hour="Noon")  
 R3 = select(R1,Name="Amy")  
 R4 = join(R2,R3)  
 R5 = join(R4,CR)  
 R6 = project(R5,Room)  

Continuing to push the second select inside the first join  

 R1 = select(SNAP,Name="Amy")  
 R2 = join(CSG,R1)  
 R3 = select(CDH,Day="Monday" and Hour="Noon")  
 R4 = join(R2,R3)  
 R5 = join(R4,CR)  
 R6 = project(R5,Room)  

 

 

 

 

 



Page 35 of 72 
 

 
Algebraic Laws for Projection 

Projection pushing  

To push a projection operation inside a join requires that the result of the projection contain the 

attributes used in the join.  

project(join(R,Ai,S,Bj),D1,D2,...Dn)  

In this case, we know that the domains in the projection will exist in the relation that results from 

the join.  

In performing projection first (on the two join relations)  

 we should only project on those domains that exist in each of the two relations  
 we must ensure that the join domains Ai and Bj exist in the resulting two relations  

Let PDR = {D|D domain in R, D in {D1...Dn}} U Ai  

Let PDS = {D|D domain in S, D in {D1...Dn}} U Bi  

R1 = project(R,PDR)  

R2 = project(S,PDS)  

R3 = join(R1,Ai,R2,Bj) = project(join(R,Ai,S,Bj),D1,D2,...Dn)  

 

Example: Projection Pushing 

Implement the query "Where is Amy at Noon on Monday?"  

 R1 = select(SNAP,Name="Amy")  
 R2 = join(CSG,R1)  
 R3 = select(CDH,Day="Monday" and Hour="Noon")  
 R4 = join(R2,R3)  
 R5 = join(R4,CR)  
 R6 = project(R5,Room)  

This approach carries along unnecessary attributes every step of the way.  

 R1 carries Address and Phone attributes  
 R4 carries Grade attribute  

We use projection pushing to eliminate unnecessary attributes early in the implementation.  



Page 36 of 72 
 

 R1 = select(SNAP,Name="Amy")  
 R2 = join(CSG,R1)  
 R3 = select(CDH,Day="Monday" and Hour="Noon")  
 R4 = join(R2,R3)  
 R5 = project(CR, Course, Room)  
 R6 = project(R4, Course)  
 R7 = join(R5,R6)  
 R8 = project(R7,Room)  

Note that R5 is unnecessary, since the domains in the projection are all the domains of CR.  

Implement the query "Where is Amy at Noon on Monday?"  

 R1 = select(SNAP,Name="Amy")  
 R2 = join(CSG,R1)  
 R3 = select(CDH,Day="Monday" and Hour="Noon")  
 R4 = join(R2,R3)  
 R5 = project(R4, Course)  
 R6 = join(CR,R5)  
 R7 = project(R6,Room)  

We can continue pushing the projection on Course below the join for R4.  

 R1 = select(SNAP,Name="Amy")  
 R2 = join(CSG,R1)  
 R3 = select(CDH,Day="Monday" and Hour="Noon")  
 R4 = project(R2,Course)  
 R5 = project(R3,Course)  
 R6 = join(R4,R5)  
 R7 = join(CR,R6)  
 R8 = project(R7,Room)  

We can continue pushing the projection on Course for R4 below the join for R2.  

 R1 = select(SNAP,Name="Amy")  
 R2 = project(CSG,Course,StudentID)  
 R3 = project(R1,StudentID)  
 R4 = join(R2,R3)  
 R5 = project(R4,Course)  
 R6 = select(CDH,Day="Monday" and Hour="Noon")  
 R7 = project(R6,Course)  
 R8 = join(R6,R7)  
 R9 = join(CR,R8)  
 R10 = project(R9,Room)  

 



Page 37 of 72 
 

Relational calculus  
An operational methodology, founded on predicate calculus, dealing with descriptive expressions 

that are equivalent to the operations of relational algebra. Codd's reduction algorithm can convert 

from relational calculus to relational algebra.  

Two forms of the relational calculus exist: the tuple calculus and the domain calculus. 
predicate calculus is the system of symbolic logic concerned not only with relations between 

propositions as wholes but also with the representation by symbols of individuals and predicates in 

propositions and with quantification over individuals Also called functional calculus 

In contrast with Relational Algebra, Relational Calculus is non-procedural query language, that 

is, it tells what to do but never explains the way, how to do it.  

Relational calculus exists in two forms:  

 
The Tuple Relational Calculus [TRC] 

1. The tuple relational calculus is a nonprocedural language. (The relational algebra was 
procedural.)  

We must provide a formal description of the information desired.  

2. A query in the tuple relational calculus is expressed as 

 

i.e. the set of tuples for which predicate is true.  

3. We also use the notation  

o to indicate the value of tuple on attribute .  
o to show that tuple is in relation .  

Tuple relational calculus Implementation  
Filtering variable ranges over tuples  

Notation: { T | Condition }  

Returns all tuples T that satisfies condition.  
 

For Example:  

{ T.name | Author(T) AND T.article = 'database' }  

 

Output: returns tuples with 'name' from Author who has written article on 'database'.  

TRC can be quantified also. We can use Existential ( ∃ )and Universal Quantifiers ( ∀ ).  

 

For example:  

{ R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}  
Output : the query will yield the same result as the previous one.  



Page 38 of 72 
 

The Domain Relational Calculus [DRC] 

Domain variables take on values from an attribute's domain, rather than values for an entire tuple.  

A formal query in DRC is expressed as {<x1, x2 , …, xn> | P(x1, x2 , …, xn )} where x1, x2 , …, xn are 

domain variables and P(x1, x2 , …, xn) is a formula involving those variables. 

Formal definition of DRC formula 

Similar to the TRC, formula in Domain Relational Calculus is built up from atoms. An atom in 

the Domain Relational Calculus has one of the following forms: 

 < x1 , x2 , . . . , xn > ∈ r where r is a relation of n attributes and x1, x2 , …, xn are domain 

variables or domain constant. 

 x op y where x, y are domain variables , op is a comparison operation. Note that x, y have 

domains that can be compared by op 

 x op const where x is a domain variable and const is a constant in domain of attribute for 

which x is a variable. 

The following rules are used to build up the Domain Relational Calculus formula from atoms: 

 An atom is a formula 

 If P is a formula , then so are ¬P and (P) 

 If P1 and P2 are formulae, then so are P1∧P2 , P1∨P2and P1 ⇒ P2 

 If P(t) is a formula in x where x is a domain variable then ∃x (P(x)) and ∀x(P(x)) are also 

formulae. 

Domain relational calculus implementation   
In DRC the filtering variable uses domain of attributes instead of entire tuple values (as done in 

TRC, mentioned above).  

Notation:  
{ a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}  
 
where a1, a2 are attributes and P stands for formulae built by inner attributes.  

For example: {< article, page, subject > | ∈ TutorialsPoint ∧ subject = 'database'}  

Output: Yields Article, Page and Subject from relation TutorialsPoint where Subject is database.  

Just like TRC, DRC also can be written using existential and universal quantifiers. DRC also 

involves relational operators.  

Expression power of Tuple relation calculus and Domain relation calculus is equivalent to 

Relational Algebra. 

Example queries 

Query 1: Find all employees whose salary is greater than 30.000 


