
CHAPTER 2: OBJECT ORIENTED

PROGRAMMING CONCEPTS
Concepts associated with OOP
Concepts of OOP:

 Objects

 Classes

 Data Abstraction and Encapsulation

 Inheritance

 Polymorphism

 Overloading

 Reusability

Objects and Classes

Class is a collection of data member and member function. Class is a user define data

type. Object is a class type variable. Objects are also called instance of the class. Each

object contains all members (variables and functions) declared in the class.

A class is the collection of related data and function under a single name. A C++

program can have any number of classes. When related data and functions are kept

under a class, it helps to visualize the complex problem efficiently and effectively.

A Class is a blueprint for objects
When a class is defined, no memory is allocated. You can imagine like a datatype.

int var;

The above code specifies var is a variable of type integer; int is used for specifying

variable var is of integer type. Similarly, class are also just the specification for objects

and object bears the property of that class.

Defining the Class

Class is defined in C++ programming using keyword class followed by identifier(name

of class). Body of class is defined inside curly brackets an terminated by semicolon at

the end in similar way as structure.

class class_name

 {

 // some data

 // some functions

 };

Example of Class in C++

class temp

 {

 private:

 int data1;

 float data2;

 public:

 void func1()

 { data1=2; }

 float func2(){

 data2=3.5;

 retrun data;

 }

 };

Explanation
As mentioned, definition of class starts with keyword class followed by name of

class(temp) in this case. The body of that class is inside the curly brackets and

terminated by semicolon at the end. There are two keywords: private and public

mentioned inside the body of class.

Keywords: private and public

Keyword private makes data and functions private and keyword public makes data and

functions public. Private data and functions are accessible inside that class only

whereas, public data and functions are accessible both inside and outside the class. This

feature in OOP is known as data hiding. If programmer mistakenly tries to access

private data outside the class, compiler shows error which prevents the misuse of data.

Generally, data are private and functions are public.

Objects

When class is defined, only specification for the object is defined. Object has same

relationship to class as variable has with the data type. Objects can be defined in

similary way as structure is defined.

Syntax to Define Object in C++

class_name variable name;

For the above defined class temp, objects for that class can be defined as:

temp obj1,obj2;

Here, two objects(obj1 and obj2) of temp class are defined.

Data member and Member functions

The data within the class is known as data member. The function defined within the

class is known as member function. These two technical terms are frequently used in

explaining OOP. In the above class temp, data1 and data2 are data members and

func1() and func2() are member functions.

Accessing Data Members and Member functions

Data members and member functions can be accessed in similar way the member of

structure is accessed using member operator(.). For the class and object defined above,

func1() for object obj2 can be called using code:

obj2.func1();

Similary, the data member can be accessed as:

object_name.data_memeber;

Note: You cannot access the data member of the above class temp because both data

members are private so it cannot be accessed outside that class.

Example to Explain Working of Object and Class in C++ Programming

/* Program to illustrate working of Objects and Class in C++

Programming */

#include <iostream>

using namespace std;

class temp

{

 private:

 int data1;

 float data2;

 public:

 void int_data(int d){

 data1=d;

 cout<<"Number: "<<data1;

 }

 float float_data(){

 cout<<"\nEnter data: ";

 cin>>data2;

 return data2;

 }

};

 int main(){

 temp obj1, obj2;

 obj1.int_data(12);

 cout<<"You entered "<<obj2.float_data();

 return 0;

 }

Output:

Number: 12

Enter data: 12.43

You entered: 12.43

Explanation of Program
In this program, two data members data1 and data2 and two member function

int_data() and float_data() are defined under temp class. Two objects obj1 and obj2 of

that class are declared. Function int_data() for the obj1 is executed using code

obj1.int_data(12);, which sets 12 to the data1 of object obj1. Then, function

float_data() for the object obj2 is executed which takes data from user; stores it in data2

of obj2 and returns it to the calling function.

Note: In this program, data2 for object obj1 and data1 for object obj2 is not used and

contains garbage value.

Defining Member Function Outside the Class
A large program may contain many member functions. For the clarity of the code,

member functions can be defined outside the class. To do so, member function should

be declared inside the class(function prototype should be inside the class). Then, the

function definition can be defined using scope resolution operator ::. Learn more about

defining member function outside the class.

Abstraction and Encapsulation

Abstraction allows us to represent complex real world in simplest manner. It is process

of identifying the relevant qualities and behaviors an object should possess, in other

word represent the necessary feature without representing the back ground details.

Encapsulation It is a process of hiding all the internal details of an object from the

outside real world. The word Encapsulation, like Enclosing into the capsule. It restrict

client from seeing its internal view where behavior of the abstraction is implemented

Inheritance and polymorphism

Inheritance is when an object or class is based on another object or class, using the

same implementation (inheriting from a class) specifying implementation to maintain

the same behavior (realizing an interface; inheriting behavior).

Polymorphism is a concept wherein a name may denote instances of many different

classes as long as they are related by some common superclass.

Comparison between structured and OOP
Keywords and identifiers

Keywords:

Keywords are the reserved words used in programming. Each keywords has fixed

meaning and that cannot be changed by user. For example:

int money;

Here, int is a keyword that indicates, 'money' is of type integer.

As, C++ programming is case sensitive, all keywords must be written in lowercase.

Here is the list of all keywords predefined by C++.

Keywords in C++ Language

auto double int struct

break else long switch

case enum register typedef

char extern return union

continue for signed void

do if static while

default goto sizeof volatile

const float short unsigned

Identifiers

In C++ programming, identifiers are names given to C++ entities, such as variables,

functions, structures etc. Identifier are created to give unique name to C++ entities to

identify it during the execution of program. For example:

int money;

http://www.programiz.com/c-programming/list-all-keywords-c-language

int mango_tree;

Here, money is a identifier which denotes a variable of type integer. Similarly,

mango_tree is another identifier, which denotes another variable of type integer.

Rules for writing identifier

1) An identifier can be composed of letters (both uppercase and lowercase letters),

digits and underscore '_' only.

2) The first letter of identifier should be either a letter or an underscore. But, it is

discouraged to start an identifier name with an underscore though it is legal. It is

because, identifier that starts with underscore can conflict with system names.

In such cases, compiler will complain about it. Some system names that start with

underscore are _fileno, _iob, _wfopen etc.

3) There is no rule for the length of an identifier. However, the first 31 characters of an

identifier are discriminated by the compiler. So, the first 31 letters of two identifiers

in a program should be different.

Literals and constants

A literal is some data that's presented directly in the code, rather than indirectly

through a variable or function call.

Here are some examples, one per line:

42

128

3.1415

'a'

"hello world"
A value written exactly as it's meant to be interpreted. In contrast, a variable is a name

that can represent different values during the execution of the program. And a constant

is a name that represents the same value throughout a program. But a literal is not a

name -- it is the value itself

A constant is an identifier with an associated value which cannot be altered by the

program during normal execution – the value is constant. This is contrasted with a

variable, which is an identifier with a value that can be changed during normal

execution – the value is variable.

Comments and Punctuators

Comments are portions of the code ignored by the compiler which allow the user to

make simple notes in the relevant areas of the source code. Comments come either in

block form or as single lines.

 Single-line comments (informally, C++ style), start with // and continue until the

end of the line. If the last character in a comment line is a \ the comment will

continue in the next line.

 Multi-line comments (informally, C style), start with /* and end with */.

Punctuators: Punctuators are used to group or separate the part of code. These helps to

demarcate the program structure

In the above code, {, } and ; are the punctuators.

 Braces are used to group the multiple statements into a separate block.

 Semicolon is used to terminate the statement.

Operators: It combines the expressions or transforms them.

Ex: a + b.

'+' is called as an operator which combines a and b and performs addition.

In the above example code, ., (), + and = are the operators.

There are several kinds of operators are there in C++ which does different operations

based on the operands(literals).

Reasons for embracing OOP
 Code Reuse and Recycling: Objects created for Object Oriented Programs can easily

be reused in other programs.

 Encapsulation (part 1): Once an Object is created, knowledge of its implementation

is not necessary for its use.

