
CHAPTER 3: LANGUAGE STRUCTURES OF

OOP
Basic Structure of C++ Program

As C++ is a programming language so it follows a predefined structure. The program

is divided into many sections, it is important to know the need of every section. The

easiest way to understand the basic structure of c++ program is by writing a program.

The basic C++ program is as follows:

//simple c++ program

#include<iostream> // header file included

 using namespace std;

 int main()

{

int a=10,b=34;

cout<<"simple c++ program \n"; // c++ statement

cout<<"hello world";

cout<<a<<b;

return 0; // returning no errors

 }

The basic structure of c++ program mentioned above can be divided into following

sections:

 Documentation Section : This section comprises of comments. As the name

suggests, this section is used to improve the readability and understanding of the

program.// (Double Slash) represents comments in C++ program. Comments can

be of single line or multiple lines. Double Slash comments are used to represent

single line comments. For multiple line comment, you can begin with /* and end

with */. For example :

/* Text line number 1

Text line number 2

Text line number 3 */

In the above C++ program //simple c++ program represents single line comment.

 Linking and Directives Section : The program written above begins with

#include<iostream>. <iostream> represents header file which includes the

functionalities of predefined functions. In linking section, the compiler in-built

functions such as cout<<, cin>> etc are linked with INCLUDE subdirectory‘s header

file <iostream>. The ‗#‘ symbols tells about ―address to‖ or ―link to‖. Iostream is

input/output stream which includes declarations of standard input-output library in c++.

 main() Section : This is the section in which the program coding is written.

Basically, it acts as a container for c++ program. The execution of the c++ program

begins with main() function and it is independent of the location of main() function in

the program. main() is a function as represented by parenthesis ―()‖. This is because it

is a function declaration. The body of the main() function can be found right after these

parenthesis, the body is enclosed in braces ―{ }‖.

 Body of main() Section : The body of the main() function begins with ―{―.

o Local Variable Declaration : In this the variables which are used in the body o

f the main() functions are declared. These are called the local variables as their

scope is limited within the main() function only, unless they are declared

globally outside the main() function. ‖ int a=10, b=34;‖ in the above program

represents local variables

o Statements to Execute : This section includes statements for reading, writing

and executing data using I/O functions, library functions, formulas, conditional

statements etc. Above written program has many executable statements

like cout<<“simple c++ program \n”;

o return 0; in the above program causes the function to finish and 0 represents

that function has been executed with zero errors. This is considered as most

usual way to end a C++ program.

o Finally the body of the main() function ends with ―}‖.

 Global Declaration Section : There are certain programs which requires variables

that can be used in more than one function, so then the variables can be declared

outside the main() function or respective functions. Then those variables become

accessible in any of the functions, Hence named as Global Variables as their scope

becomes global to the program.

 User Defined Functions : There are certain functions that are called by calling

statements from the main() function. Every function includes local variable

declaration section and executable statement section similar to main program.

One more example which explains the basic structure of c++ program is as follows :

1

2

3

/* basic example

 which

 explains

http://en.wikipedia.org/wiki/Linker_%28computing%29

4

5

6

7

8

9

10

11

12

13

14

15

 the structure of c++ program */

 #include <iostream> // header file include

using namespace std;

 float f=10.2,j=4.5;

 int main()

{

 int a=10,b=34;

cout<<"simple c++ program \n"; // c++ statement

cout<<"hello world";

cout<<a<<b;

 return 0; // returning no errors

}

 Multiple line comments :

 /* basic example

 which

 explains

 the structure of c++ program */ .

 float f=10.2, j=4.5; are global variables which are declared outside the main()

function.

The statements written in the above mentioned programs can be written in a single line

for example :

int main(){int a=10,b=34; cout<<"simple c++ program \n";

cout<<"hello world"; cout<<a<<b; return 0;}

 The separation between statements is specified with a semicolon (;). The
statements are written in separate lines just to improve the readability of the
program.

Features of the Object Oriented programming

 Emphasis on data rather than procedure

 Programs are divided into entities known as objects

 Data Structures are designed such that they characterize objects

 Functions that operate on data of an object are tied together in data structures

 Data is hidden and cannot be accessed by external functions

 Objects communicate with each other through functions

 New data and functions can be easily added whenever necessary

 Follows bottom up design in program design

Header and Source Files and extensions

In this lesson we will talk about some relatively new concepts that I‘ve postponed over

and over, until this point, where we can actually use them for a better understanding.

We will talk about separating your code into separate header and source files.

You will finally see what headers look like and how we can use them to separate

different parts of our code into separate source files and header files. In this way we

can keep our code more organized, by separating different concepts, which will make it

much easier to find what we are looking for when trying to modify our program.

There are also much more upsides of doing this, and we will go through each one of

them, but let‘s first take a look at what headers really are and look like.

Header files

You‘ve been using the help of a header file even from the first program that we wrote

in our lessons. If you remember, I‘ve explained, in a very general way, what headers

are, when we‘ve first encountered the #include <iostream> in our programs.

Headers usually have the .h extension and contain declarations that we will use in our

source files. Let‘s take as an example the iostream header file that we include when

working with input-output in our program. We could have never used cout to print to

the screen without including the iostream header file because we have never declared

and defined that identifier anywhere in our program. That is why we are telling the

compiler to include the iostream header file, which actually means that, the compiler

will locate and read all the declarations from that header file when it reaches the

preprocessor directive, #include.

Usually header files only contain declarations and do not provide the actual definitions.

When we only declare a function and do not provide the definition for it, when we are

calling that function in our program, the linker will complain about ―Unresolved

Symbols―. So, how does the compiler know where to get the definition for cout then?

Well, the cout is actually defined in the standard runtime library which is

automatically linked in the link process.

What are libraries

Well, simply put, libraries are packages, containers of useful code(functions,

objects) with the purpose of being reused in programs. Now, when you are writing a

library, you are also writing a header file which contains the declarations of the

reusable code that exists in that library and you wish to provide to others to include in

their own programs.

When you, or others, wish to use the functionality provided by any library, you

actually do not need the entire source code to be included in your projects. You only

need the compiled library, (.a, .so, .lib, .dll etc. – depending on the platform you are

using) and a header file that you will include in your sources when using any of the

functionality it provides. Think of header files just like you think of a table of contents.

It is just a very simple container of declarations, so the compiler will know the

minimum it needs about the functionality you are using, when it compiles your code.

When using libraries, you do not have to compile the code again, which would be a

waste of time, because libraries are always provided as they are, without the need of

modifying them. When using a library that is not from the standard runtime, you will

also need to let the compiler know which libraries you wish to include, so it knows

where to get the symbols from and link them, once they are used in your program.

For now, we will not use separate libraries, but we will get to learn how all of these

new concepts work by using separate source files and header files in our project.

Creating your first separate header and source files

For the purpose of this lesson, we shall create separate header and source files that will

contain a couple of basic functions that we will use in our main.cpp. Let‘s call that

source file mathPrimer.cpp and the header file, mathPrimer.h. Let‘s create the

file mathPrimer.h first, which will contain the following declarations:

mathPrimer.h

// mathPrimer.h

// ChapterII.HeaderSourceFiles

//

// Created by Vlad Isan on 20/04/2013.

// Copyright (c) 2013 INNERBYTE SOLUTIONS LTD. All rights

reserved.

//

#ifndef mathPrimer_h

#define mathPrimer_h

int add(int a, int b);

int subtract(int a, int b);

#endif

First, let‘s take a look a little at the preprocessor directives in this file. You already

know what #define is, as we have covered it a little when talking about variables and

constants. Let‘s talk a little about the conditional compilation, #ifdef, #ifndef

and #endif.

The conditional compilation preprocessor directives, tell your compiler what should

be compiled or not and under what conditions.

The #ifdef preprocessor directive basically checks if something was previously defined

using the #define preprocessor directive. If this condition is met, then the code between

the #ifdef and the corresponding #endif is compiled, otherwise it is ignored by the

compiler.

The same goes for #ifndef, and, as you can already imagine, it is the complete opposite

of #ifdef, and it allows the compiler to check whether a name has not been defined

with #define.

So, why are we using these preprocessor directives in our header file? These

preprocessor directives in the header files are called header guards, and helps us to

avoid including the same declaration in multiple times.

This works by skipping the entire contents of the header file if it was already included

in some other place. In our example, when you first include our header

file, mathPrimer.h, the #ifndef condition is met, because we haven‘t defined the

name mathPrime_h by using the #define preprocessor directive until now. So, the

condition is met and everything inside the header file will be compiled, and most

importantly, the mathPrimer_h will be defined as well, by using the #define

mathPrimer_h right after the #ifndef. Now, when you include the header file a

second time, the #ifndef mathPrimer_h condition will not be met, because we have

already defined that name when we included the header file in some other place.

By using these header guards we are avoiding the complaint we could get from the

compiler when declaring the header contents twice, or even multiple times.

OK, now let‘s look at what is declared inside our mathPrimer.h header file. We have

two function declarations, add and subtract, both having two integer parameters and

an integer return type.

We have to also define our functions. Let‘s create another file called mathPrimer.cpp.

This file will contain the function definitions:

mathPrimer.cpp

//

// mathPrimer.cpp

// ChapterII.HeaderSourceFiles

//

// Created by Vlad Isan on 20/04/2013.

// Copyright (c) 2013 INNERBYTE SOLUTIONS LTD. All rights

reserved.

http://www.byteauthority.com/cpp-variables/
http://www.byteauthority.com/cpp-variables/

#include "mathPrimer.h"

int add(int a, int b) {

 return (a + b);

}

int subtract(int a, int b) {

 return (a - b);

}

The first thing we do in this source file is to include our header file, by using the

preprocessor directive #include “mathPrimer.h”. Now, when including header files

from the standard library, you‘ve probably noticed we used angled brackets. The reason

is that when including header files that come with the compiler, such as standard

library header files, we use angled brackets, but when including header files that we

are supplying, we use double quotes, ” “, which tell the compiler to look for the header

file, by first searching for it in the current directory where the source files are contained

in.

Please note that when we only have declarations in the header files, we do not need to

include the header file when defining the functions, as we do in our case. We have to

only include it when we are calling the functions declared in it. But, as we already are

using header guards, it is a good practice to include it in here as well, because header

files can also contain constants which could be used in here as well. As an example,

we can declare a constant in our header file to hold the value of PI, and use that

constant when defining the other functions, in our mathPrimer.cpp.

As you can notice, we are also defining the functions add and subtract which we are

going to use in our main function.

Now, let‘s take a look at our main.cpp:

// main.cpp

// ChapterII.HeaderSourceFiles

//

// Created by Vlad Isan on 20/04/2013.

// Copyright (c) 2013 INNERBYTE SOLUTIONS LTD. All rights

reserved.

//

#include <iostream>

#include "mathPrimer.h" /* including our header file */

using namespace std;

int main()

{

 /* calling our functions, add and subtract */

 cout << add(10, 2) << endl;

 cout << subtract(10, 2) << endl;

 return 0;

}

As you can see we are including our header file in here as well, so we can use

the functions declared in it, add and subtract. If you were to remove the #include

“mathPrimer.h” from here, you will see that you cannot compile the code, because the

compiler would not know anything about those functions, and it will complain about

―Undeclared identifiers―.

An important thing to note about header files is to never include variables in them,

unless they are constants. Header files should only be used for declarations. Also, you

should never include the definition for a function in the header file because it will

change the whole scope of having a header file, and it will make it hard to read.

Also, you should always split the parts of your code into separate header and source

files grouped by a certain criteria or functionality, because when only needing a part of

it, you do not need to include all of the declarations that reside in your program. As in

our example, we have called our header file mathPrime.h, as it will only contain basic

math functions. If we want to make some other helper functions, for example, for

printing to the screen and retrieving user input, we should make another pair

of header/source files, that we should only include when needed.

Data Types in OOP

Data type
In C++ programming, we store the variables in our computer‘s memory, but the

computer has to know what kind of data we want to store in them. The amount of

memory required to store a single number is not the same as required by a single letter

or a large number. Further, interpretation of different data is different inside computer‘s

memory.

The memory in computer system is organized in bits and bytes. A byte is the minimum

amount of memory that we can manage in C++. A byte can store a relatively small

amount of data: one single character or a small integer. In addition, the computer can

manipulate more complex data types that come from grouping several bytes, such as

long numbers or non-integer numbers.

Data types in C++ is used to define the type of data that identifiers accepts in

programming and operators are used to perform a special task such as addition,

multiplication, subtraction and division etc of two or more operands during

programming. C++ supports a large number of data types. Data types can be

categorized into three types which are described below;

Built-in/Simple Data Types

There are four types of built-in data types and let us discuss each of these and the range

of values accepted by them one by one.

 Integer data type (int):
An integer is an integral whole number without a decimal point. These numbers are

used for counting. For example 46, 167, -223 are valid integers. Normally an

integer can hold numbers from -32768 to 32767. The int data type can further

categorized into short, long and unsigned int.

The short int data type is used to store integer with a range of -32768 to 32767,

However, if the need be a long integer (long int) can also be used to hold integers

from -2,147,483,648 to 2,147,483,648. The unsigned int can have only positive

integers and its range lies up to 65536.

 Floating point data type (float):
A floating point number has a decimal point. Even if it has an integral value, it must

include a decimal point at the end. These numbers are used for measuring

quantities. Examples of valid floating point numbers are: 35.5, -66.3, and 49.07.

A float type data can be used to hold numbers from 3.4*10-38 to 3.4*10+38 with

six or seven digits of precision. However, for more precision a double precision

type (double) can be used to hold numbers from 1.7*10-308 to 1.7*10+308 with

about 15 digits of precision.

 Void data type:
It is used for following purposes;

o It specifies the return type of a function when the function is not returning any

value.

o It indicates an empty parameter list on a function when no arguments are

passed.

o A void pointer can be assigned a pointer value of any basic data type.

 Char data type:
It is used to store character values in the identifier. Its size and range of values is

given in table below;

Name Description Size* Range

Char Character or small integer 1 byte signed: -128 to 127

unsigned: 0 to 255

short int (short) Short Integer. 2 bytes signed: -32768 to 32767

unsigned: 0 to 65535

int Integer 4 bytes signed: -2147483648 to 2147483648

unsigned: 0 to 4294967295

long int (long) Long Integer 4 bytes signed: -2147483648 to 2147483648

unsigned: 0 to 4294967295

Bool Boolean value. It can take one of

two values: true or false

1 byte true or false

float Floating point number. 4 bytes +/- 3.4e +/-38 (~7 digits)

double Double precision floating point

number.

8 bytes +/- 1.7e +/-308 (~15 digits)

long double Long double precision floating

point number

8 bytes +/- 1.7e +/-308 (~15 digits)

wchar_t Wide character 2 or 4

bytes

1 wide character

Derive Data Types

C++ also permits four types of derived data types. As the name suggests, derived data

types are basically derived from the built-in data types. There are four derived data

types. These are:

 Array

 Function

 Pointer and

 Reference

Array An array is a set of elements of the same data type that are referred to by the

same name. All the elements in an array are stored at contiguous (one after another)

memory locations and each element is accessed by a unique index or subscript value.

The subscript value indicates the position of an element in an array.

Function A function is a self-contained program segment that carries out a specific

well-defined task. In C++, every program contains one or more functions which can be

invoked from other parts of a program, if required.

Reference A reference is an alternative name for a variable. That is, a reference is an

alias for a variable in a program. A variable and its reference can be used

interchangeably in a program as both refer to the same memory location. Hence,

changes made to any of them (say, a variable) are reflected in the other (on a reference).

Pointer A pointer is a variable that can store the memory address of another variable.

Pointers allow to use the memory dynamically. That is, with the help of pointers,

memory can be allocated or de-allocated to the variables at run-time, thus, making a

program more efficient

User Defined Data Types

C++ also permits four types of user defined data types. As the name suggests, user

defined data types are defined are defined by the programmers during the coding of

software development. There are four user defined data types. These are:

 Structure

 Union

 Class, and

 Enumerator

A structure allows for the storage, in contiguous areas of memory, of associated data

items. A structure is a template for a new data type whose format is defined by the

programmer. A structure is one of a group of language constructs that allow the

programmer to compose his/her own data types.

struct [tag]

{

 [variable];

 members;

}

Example

struct Person

{

 char ssn[12]

 ,last_name[20]

 ,first_name[16]

 ,street[20]

 ,city[20]

 ,state[3]

 ,zip_code[11]

 ;

 int age;

 float height

 ,weight

 ;

 double salary;

};

Where tag is optional and only needs to be present if no variable is present. The

members are variables declared as any C supported data type or composed data type. A

structure is a set of values that can be referenced collectively through a variable name.

The components of a structure are referred to as members of a structure. A structure

differs from an array in that members can be of different data types. A structure is

defined by creating a template. A structure template does not occupy any memory

space and does not have an address, it is simply a description of a new data type. The

name of the structure is the tag. The tag is optional when a variable is present and the

variable is optional when the tag is present. Each member-declaration has the form

A Class specified by the keyword class, is a user defined type that contains both data

members and member functions...

A union is a user-defined data or class type that, at any given time, contains only one

object from its list of members (although that object can be an array or a class type).

An enumeration, specified by the keyword enum, is a set of integer constants

associated by identifiers--called enumerators. Enumerations provide a manner to

implement names (or identifiers), in place of integer constants. Enumerator values

begin at zero (0), if a value for the initial enumerator was not provided. Enumerators

may be used wherever an int value is utilized. If no user specified value is assigned,

compilers will assign the following integer value after the integer value assigned to the

preceding enumerator.

Variable and variable declaration

Variables are named memory storage reserved for our programs to use (store,

manipulate).
Variable are used in C++, where we need storage for any value, which will change in

program. Variable can be declared in multiple ways each with different memory

requirements and functioning. Variable is the name of memory location allocated by the

compiler depending upon the data type of the variable.

Declaration and Initialization

Variable must be declared before they are used. Usually it is preferred to declare them

at the starting of the program, but in C++ they can be declared in the middle of program

too, but must be done before using them.

Example :

int i; // declared but not initialized

char c;

int i, j, k; // Multiple declaration

Initialization means assigning value to an already declared variable,

int i; // declaration

i = 10; // initialization

Initialization and declaration can be done in one single step also,

int i=10; //initialization and declaration in same step

int i=10, j=11;

If a variable is declared and not initialized by default it will hold a garbage value. Also,

if a variable is once declared and if try to declare it again, we will get a compile time

error.

int i,j;

i=10;

j=20;

int j=i+j; //compile time error, cannot redeclare a variable in same

scope

Program Example

Let's look at an example of how to declare an integer variable in the C++ language

and use it.

a) Below is an example C++ program where we declare an integer variable and

assign value in it:

#include <iostream>

int main()

{

 int age;

 age = 10;

 cout<<"The data in variable age is %d yrs.\n"<< age;

 return 0;

}

This C program would print ―The data in variable age is 10 yrs."

b) Below is an example C++ program where we declare an integer variable and

assign value in it throng an input statement “Cin”:

#include <iostream>

int main()

{

 String name;

 int age;

 cout<<"Enter your name plz:\n";

 cin>>name;

 cout<<"Enter your age plz:\n";

 cin>>age;

 cout<<"Your Name is”<<name<<”and your age is”<<age<<”yrs"<< endl;

 return 0;

}

This C program would print "Your Name is KIM and your age is 10 yrs".

Scope of Variables

All the variables have their area of functioning, and out of that boundary they don't hold

their value, this boundary is called scope of the variable. For most of the cases its

between the curly braces,in which variable is declared that a variable exists, not outside

it. We will study the storage classes later, but as of now, we can broadly divide

variables into two main types,

 Global Variables

 Local variables

Global variables

Global variables are those, which ar once declared and can be used throughout the

lifetime of the program by any class or any function. They must be declared outside the

main() function. If only declared, they can be assigned different values at different

time in program lifetime. But even if they are declared and initialized at the same time

outside the main() function, then also they can be assigned any value at any point in the

program.

Example : Only declared, not initialized

include <iostream>

using namespace std;

int x; // Global variable declared

int main()

{

 x=10; // Initialized once

 cout <<"first value of x = "<< x;

 x=20; // Initialized again

 cout <<"Initialized again with value = "<< x;

}

Local Variables

Local variables are the variables which exist only between the curly braces, in which its

declared. Outside that they are unavailable and leads to compile time error.

Example :

include <iostream>

using namespace std;

int main()

{

 int i=10;

 if(i<20) // if condition scope starts

 {

 int n=100; // Local variable declared and initialized

 } // if condition scope ends

 cout << n; // Compile time error, n not available here

}

Some special types of variable

There are also some special keywords, to impart unique characteristics to the variables

in the program. Following two are mostly used, we will discuss them in details later.

1. Final - Once initialized, its value cant be changed.

2. Static - These variables holds their value between function calls.

Example :

include <iostream>

using namespace std;

int main()

{

 final int i=10;

 static int y=20;

{

Type Conversion and Type Casting

In computer science, type conversion or typecasting refers to changing an entity of

one datatype into another. There are two types of conversion: implicit and explicit. The

term for implicit type conversion is coercion. Explicit type conversion in some specific

way is known as casting. Explicit type conversion can also be achieved with separately

defined conversion routines such as an overloaded object constructor.

Both Type conversion and Type casting in C++ are used to convert one predefined type

to another type.

Type Conversion is the process of converting one predefined type into another type.

and type Casting is the converting one predefined type into another type forcefully.

Need of Type Conversion and Type Casting in C++

An Expression is composed of one or more operations and operands. Operands consists

of constants and variables. Constants and expressions of different types are mixed

together in an expression. so they are converted to same type or says that a conversion

is necessary to convert different types into same type.

Types of Type Conversions

C++ facilitates type conversion into 2 forms :

 Implicit Type Conversion

 Explicit Type Conversion

Implicit Type Conversions :

Implicit Type Conversion is the conversion performed by the compiler without

programmer‘s intervention.

It is applied, whenever, different data types are intermixed in an expression, so as not to

loose information.

The C++ compiler converts all operands upto the type of the largest operand, which is

called type promotion.

Usual Arithmetic Conversions are summarized in the following table –

StepNo. If either’stype

of
Then resultant type of other operand Otherwise

http://www.edugrabs.com/type-conversion-and-type-casting-in-c/
https://en.wikibooks.org/wiki/Computer_science
https://en.wikipedia.org/wiki/datatype
https://en.wikibooks.org/wiki/Computer_Programming/Type_conversion#Implicit_type_conversion
https://en.wikibooks.org/wiki/Computer_Programming/Type_conversion#Explicit_type_conversion

1 long double long double Step 2
2 double double Step 3
3 float float Step 4
4 — integral promotion takes place followed by step

5
—

5 unsigned long unsigned long Step 6
6 long int ant the

other is

unsigned int

(i) long int (provided long int can represent all

values of unsigned int)
Step 7

(ii) unsigned long int(if all values of unsigned

int can‘t be represented by long int)
Step 7

7 long long Step 8
8 unsigned unsigned Both

operandsare int

The step 1 and 2 in the above table will be read as –
Step 1: If either operand is of type long double, the other is converted to long double.

Step2 : Otherwise, if either is of type double, the other is converted to double.

After applying above arithmetic conversions, each pair f operands is of same type and

the result of each operation is the same as the type of both operands.

Example of Implicit Type Conversion :

Explicit Type Conversion :

Explicit Type conversion is also called type casting. It is the conversion of one operand

to a specific type. An explicit conversion is a user defined that forces an expression to

be of specific type.

https://i2.wp.com/www.edugrabs.com/wp-content/uploads/2015/07/Type-Compatibility-Example.png
https://i2.wp.com/www.edugrabs.com/wp-content/uploads/2015/07/Type-Compatibility-Example.png

Syntax : (type) expression

Example : float(a+b/5) ; This expression evaluates to type float.

Problem in Explicit Type Conversion :

Assigning a value of smaller data type to a larger data type, may not pose any problem.

But, assigning a value of larger data type to smaller type, may poses problems. The

problem is that assigning to a smaller data type may loose information, or result in

losing some precision.

Conversion Problems –

S.no Conversion Potential Problems
1 Double to float Loss of precision(significant figures)
2 Float to int Loss of fractional part
3 Long to int/short Loss of Information as original valuemay be out of range

for target type

Type Compatibility

In an assignment statement, the types of right types and left side of an assignment

should be compatible, so that conversion can take place. For example,

ch=x; (where ch is of char data type and x is of integer data type)

How and Why Information is loose ?

what is Big Endian ?? ⇒ refer to the link Click here

since the memory representation in Big-Endian, Let

int x=1417;

ch=x;

now, x will be 00000101 10001001 in binary.

https://i1.wp.com/www.edugrabs.com/wp-content/uploads/2015/07/TYpe-Compatibility.png
https://i1.wp.com/www.edugrabs.com/wp-content/uploads/2015/07/TYpe-Compatibility.png

