
 120

Chapter 18

Errors Handling

� Learning how to handle errors

18.1 Introduction

Error handling is an essential procedure in Visual Basic 2010 programming because it

can help make the program error-free. An error-free program can run smoothly and

efficiently, and the user does not have to face all sorts of problems such as program

crash or system hang.

Errors often occur due to incorrect input from the user. For example, the user might

make the mistake of attempting to enter a text (string) to a box that is designed to

handle only numeric values such as the weight of a person, the computer will not be

able to perform arithmetic calculation for text therefore will create an error. We call

these errors synchronous errors.

Therefore, a good programmer should be more alert to the parts of program that could

trigger errors and should write errors handling code to help the user in managing the

errors. Writing errors handling code is a good practice for Visual Basic programmers, so

do not try to finish a program fast by omitting the errors handling code. However, there

should not be too many errors handling code in the program as it create problems for

the programmer to maintain and troubleshoot the program later.

VB2010 has improved a lot in built-in errors handling compared to Visual Basic 6. For

example, when the user attempts to divide a number by zero, Vb2010 will not return an

error message but gives the 'infinity' as the answer (although this is mathematically

incorrect, because it should be undefined)

18.2 Using On Error GoTo Syntax

Visual Basic 2010 still supports the VB6 errors handling syntax that is the On Error

GoTo program_label structure. Although it has a more advanced error handling method,

ww
w.
kn
ec
no
tes
.co
.ke

 121

we shall deal with that later. We shall now learn how to write errors handling code in

VB2010. The syntax for errors handling is

On Error GoTo program_label

Where program_label is the section of code that is designed by the programmer to

handle the error committed by the user. Once the program detects an error, the

program will jump to the program_label section for error handling.

Example 18.1: Division by Zero

In this example, we will deal with the error of entering non-numeric data into the

textboxes that suppose to hold numeric values. The program_label here is

error_hanldler. When the user enter a non-numeric values into the textboxes, the error

message will display the text "One of the entries is not a number! Try again!” If no error

occurs, it will display the correct answer. Try it out yourself.

The Code

Public Class Form1

Private Sub CmdCalculate_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdCalculate.Click

Lbl_ErrorMsg.Visible = False

Dim firstNum, secondNum As Double

On Error GoTo error_handler

firstNum = Txt_FirstNumber.Text

secondNum = Txt_SecondNumber.Text

Lbl_Answer.Text = firstNum / secondNum

ww
w.
kn
ec
no
tes
.co
.ke

 122

Exit Sub 'To prevent error handling even the inputs are valid

error_handler:

Lbl_Answer.Text = "Error"

Lbl_ErrorMsg.Visible = True

Lbl_ErrorMsg.Text = " One of the entries is not a number! Try again!"

End Sub

End Class

 The Output

Figure 18.1

ww
w.
kn
ec
no
tes
.co
.ke

 123

18.3 Errors Handling using Try...Catch...End Try Structure

VB2010 has adopted a new approach in handling errors, or rather exceptions handling.

It is supposed to be more efficient than the old On Error Goto method, where it can

handles various types of errors within the Try...Catch...End Try structure.

The structure looks like this

Try

statements

Catch exception_variable as Exception

statements to deal with exceptions

End Try

Example 18.2

This is a modification of Example 18.1. Instead of using On Error GoTo method, we use

the Try...Catch...End Try method. In this example, the Catch statement will catch the

exception when the user enters a non-numeric data and return the error message. If

there is no exception, there will not any action from the Catch statement and the

program returns the correct answer.

The code

Public Class Form1

Private Sub CmdCalculate_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdCalculate.Click

Lbl_ErrorMsg.Visible = False

Dim firstNum, secondNum, answer As Double

Try

firstNum = Txt_FirstNumber.Text

ww
w.
kn
ec
no
tes
.co
.ke

 124

secondNum = Txt_SecondNumber.Text

answer = firstNum / secondNum

Lbl_Answer.Text = answer

Catch ex As Exception

Lbl_Answer.Text = "Error"

Lbl_ErrorMsg.Visible = True

Lbl_ErrorMsg.Text = " One of the entries is not a number! Try again!"

End Try

End Sub

End Class

 The output is shown in Figure 18.2

Figure 18.2

Summary

� In section 18.1, you learned the basic principle of handling errors.

� In section 18.2, you learned how to use On Error Goto Syntax.

� In section 18.3, you learned how to write code to handle errors using

Try...Catch...End Try structure.

ww
w.
kn
ec
no
tes
.co
.ke

