CHAPTER 6

DATA STRUCTURES

These refer tgroups of data elements that are organized in a ghe unit so that
they can be used more efficientlas compared to the simple data types such as
integers and strings. An example of a data stradtuthe array. Ordinary variables
store one value at a time while an array will stoie than one value at a time in a
single variable name.

Data structures are important for grouping setsiraflar data together and passing
them as one. For example, if you have a methodptinats a set of data but you don't
know when writing the procedure how large thatisgoing to be, you could use an
array to pass the data to that method and loopdird.

Data structures can leassifiedusing various criteria.

a) Linear

In linear data structures, values are arrangedh@al fashion. A linear data structure
traverses the data elements sequentially. The eksnrethe structure are adjacent to
one another other and every element has exactiyéighbour elements to which it is
connected. Arrays, linked lists, stacks and quamag mples of linear data
structures. -\

b) Non-Linear &

The data values in this structure are not/aQ@(mgedjer but every data item is
attached to several other data items inawayishsgiecific for reflecting
relationships. Tree, graph, table and, s are pbesnof non-linear data structures.
¢) Homogenous O

In this type of data structures, \(émes of the stypes of data are stored, as in an
array. O
d) Non-homogenous _«*
In this type of data structures data values déoght types are grouped, as in
structures and classes.

€e) Dynamic

In dynamic data structures such as references @nteps, size and memory locations
can be changed during program execution. Thesesttatztures can grow and shrink
during execution.

f) Static

With a static data structure, the size of the stimacis fixed. Static data structures
such as arrays are very good for storing a welireéefnumber of data items.

56

KEVOH
Highlight

Data Structures

Linear Mon-linear

Arrays Linked Stacks Queues
Lists

Trees | | Grapha| | Tables Sets

ARRAYS

An array is a named list of elements, all with saene data type. It is better defined as
a consecutive group of memory locations all of wiHieye the same name and the
same data type. Arraydore a fixed-size sequentig[swlection of elermaritthe same

type. (}"

Instead of declaring individual variables, sééﬁambero, numberl, ..., and
number99, you declare one array vari suctuatbersand use numbers[0],
numbers[1], and ..., numbers[99] to répresent idda variables. A specific element
in an array is accessed by an indQ(.V’

All arrays consist of contigu@%\‘fnemory locatiofise lowest address corresponds to
the first element and the highest address to steslament.
A\

First Element Last Element

! !

Mumbers[0] | Numbers[1] | Numbers[2] | Numbers[3]

DECLARING ARRAYS

To declare an array in C, a programmer specifiesythe of the elements and the
number of elements required by an array as follows:

type arrayName [arraySize |;
This is called a&ingle-dimensionahrray. ThearraySize must be an integer constant
greater than zero artglpe can be any valid C data type. For example, toadea 10-

element array calleblalanceof type double, use this statement:

double balance[10];

57

KEVOH
Highlight

Now balanceis a variable array which is sufficient to hold toplO double numbers.

INITIALIZING ARRAYS

You can initialize an array in C either one by @neising a single statement as
follows:

double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0},

The number of values between braces { } can ndatger than the number of
elements that we declare for the array betweenreduackets []. Following is an
example to assign a single element of the array:

If you omit the size of the array, an array jugt enough to hold the initialization is
created. Therefore, if you write:

doublebalance[] = {1000.0, 2.0, 3.4, 17.0, 50.0};
You will create exactly the same array as you dithe previous example.

balance[4] = 50.0; ol
O
The above statement assigns element numbg,rgﬁule iartay a value of 50.0. Array

with 4th index will be 5th ie. last element Qﬁzaaﬂarrays have 0 as the index of

their first element which is also called inden{lowing is the pictorial
representation of the same array we discussed above
Y
0 1 w\"‘f' 2 3 a
balance 1000.0 2. Gk N 34 7.0 50.0
s\«

ACCESSING ARRAY ELEMENTS

An element is accessed by indexing the array naims.is done by placing the index
of the element within square brackets after theenahthe array. For example:

double salary = balance[9];

The above statement will take 10th element fromatinay and assign the value to
salary variable. Following is an example which wide all the above mentioned three
concepts viz. declaration, assignment and acceasiaygs:

#include <stdio.h>

int main ()

{

int n[10]; /* n is an array of 10 integers */
inti,j;

58

KEVOH
Highlight

/* initialize elements of array nto 0 */
for (1=0;i<10;i++)
{

n[i] =i+ 100; /* set element at location itoi
+ 100 */

}

/* output each array element's value */
for j =0;] <10; j++)

printf(“Element[%d] = %d\n", j, n[j]);

returnO;

}

When the above code is compiled and executedodymes the following result:

Element[0] = 100
Element[1] = 101

Element[2] = 102 A g
Element[3] = 103 O
Element[4] = 104 L
Element[5] = 105 \‘:"?
Element[6] = 106 \1\
Element[7] = 107 (:§
Element[8] = 108 /\:'\'*;“’
Element[9] = 109 &\Ql\
SORT TECHNIQUES:

Bubble Sort

In thebubble sort, as elements are sorted they gradually "bubbletige) to their

proper location in the array, like bubbles risingaiglass of soda. The bubble sort

repeatedly comparesijacent elementf an array. The first and second elements

are compared and swapped if out of order. Theséhend and third elements are

compared and swapped if out of order. This somagess continues until the last
two elements of the array are compared and swappet of order.

94 | 91 |

84 | 69 | 76 | 86 |
WAVAVAVAV

When this first pass through the array is complite bubble sort returns to elements
one and two and starts the process all over again.

The table below follows an array of numbers befdtging, and after a bubble sort

59

KEVOH
Highlight

fordescendingrder. A "pass" is defined as one full trip thgbuhe array comparing
and if necessary, swappirggjacentelements. Several passes have to be made
through the array before it is finally sorted

Array at beginning: 84 69 76 86 94 91
After Pass #1: 84 76 86 94 91 69
After Pass #2: 84 86 94 91 76 69
After Pass #3: 86 94 91 84 76 69
After Pass #4: 94] 86 84 76 69

After Pass #5 (done): 94 91 86 84 76 69

The bubble sort is an easy algorithm to prograrhjths slower than many other
sorts. With a bubble sort, it is always necessamake one final "pass” through the
array to check to see that no swaps are made tweetisat the process is finished. In

actuality, the process is finished before this s is made.

// Bubble Sort Function for Descending Order
#include<stdio.h>

main() 7,
{ Ny
int control , control2, marks, total=0, temp;flomgérimark;
int allmarks|[5]; RN
<2
for (control = 0; control <= 4; control++)."0

{ e
printf("Please enter studep(éf‘narks:");
scanf("%d", & marks);
allmarks[control]=marks;

total = total + marks;+"

} -

meanmark = (float) total/control,

for (control = 0; control < 4; control++) {
for (control2 = 0; control2 < 4; control2++) {
if (allmarks[control2] > allmarks[control2+1])

{
temp = allmarks[control2];
allmarks[control2]= allmarks[control2+1];
allmarks[control2+1] = temp;

}

}

printf("\nThe sorted list of marks is:\n");

for (control=0; control<=4;control++)

{

printf("%d\n", allmarks[control]);

}

60

KEVOH
Highlight

printf("\nThe total marks is %d\n", total);
printf("Mean marks is %f\n", meanmark);

}
Exchange Sort

Theexchange soriis similar to its cousin, the bubble sort, in thatompares
elements of the array and swaps those that are timir proper positions. (Some
people refer to the "exchange sort" as a "bubbté.sorhe difference between these
two sorts is the manner in which they compare tements.The exchange sort
compares the first element with each following eleent of the array, making any
necessary swaps.

84 | 69 | 76 | 8 | 94 | 91 |
T 1

T 1 g

©

When the first pass through the array is comp xchange sort then takes the
second element and compares it with each foll gent of the array swapping
elements that are out of order. This sortl &eamntlnues until the entire array is
ordered. \,
O\
(‘\
Let's examine our same table of el pents agaimg asirexchange sort for descending
order. Remember, a "pass" is ed as onerfplthrough the array comparing and

. - LY
if necessary, swapping elements.

1™
Array at beginning® | 84 69 | 76 | 86 | 94 | 91

After Pass #1. 94 69 76 84 86 91
After Pass #2: 94 91 69 76 84 86
After Pass #3: 94 91 86 69 76 84
After Pass #4. 94 91 86 84 69 76

After Pass #5 (done): | 94 91 86 84 76 69

The exchange sort, in some situations, is sligintbye efficient than the bubble sort.
It is not necessary for the exchange sort to miakefinal complete pass needed by
the bubble sort to determine that it is finished.

I[Exchange Sort Function for Descending Order
#include <stdio.h>
void main()

61

KEVOH
Highlight

L
inti, j;
int temp; // holding variable
int num[5];

/lintialize array
for(i =0; i<=4; i++){
printf("Enter a number:");
scanf("%d",&numli]);
}
/[sort array
for (i=0; i< (4); i++) // element to be copared

{
for(j = (i+1); j < 5; j++) [l rest of he elements
{
if (numl[i] < num[j]) /I dending order
temp= numli]; MWap
num(i] = numfjj;
num[j] = temp; .
} NAZ
) O
.
/lprint sorted array \j"’
printf("\nSorted array:\n"); \fx\
RN
for(i =0; i<=4; i++){ o~
printf("\t%d\n", numii); \é;’\\
return; \)
} B

Selection Sort

Theselection sortis a combination of searching and sorting.

During each pass, the unsorted element with the sihast (or largest) value is
moved to its proper position in the array.

The number of times the sort passes through tlag &rone less than the number of
items in the array. In the selection sort, theeimioop finds the next smallest (or
largest) value and the outer loop places that vialeits proper location.

Let's look at our same table of elements usindgexsen sort for descending order.
Remember, a "pass" is defined as one full tripughothe array comparing and if
necessary, swappirgements.

Array at beginning: 84 69 76 86 94 91
After Pass #1: 84 91 76 86 94 69

62

KEVOH
Highlight

After Pass #2: 84 91 94 86 76 69
After Pass #3: 86 91 94 84 76 69
After Pass #4. 94 91 86 84 76 69
After Pass #5 (done): | 94 91 86 84 76 69

While being an easy sort to program, the seledarhis one of the least efficient.
The algorithm offers no way to end the sort eaglyen if it begins with an already
sorted list.

/[Selection Sort Function for Descending Order
void main()

{
int i, j, first, temp;
int num([5]
for (i=4;i>0;i--)
{
first = O; I/l initialize to subscript of first element
for (j=1, j<=i; j++) // locate smallest between poSiQo“rfs landi.
O
if (num[j] < num[first]) o
first = j; \\/
} ~O
temp = numlfirst];// Swap smalles{f}&ﬁnd with element in position i.
numlfirst] = num(i]; ,\\,
num[i] = temp; YA
} R\ Y
return; &
)
Shell Sort

Theshell sortis named after its inventor D. L. Shell. Instedd@mparing adjacent
elements, like the bubble sort, the shell sortagly compares elements that are a
certain distance away from each otheergpresents this distance). The value

of d starts out as half the input size and is halvest alach pass through the array.
The elements are compared and swapped when negédedequationd= (N + 1)/ 2

is used. Notice that only integer values are tised since integer division is
occurring.

Let's look at our same list of values for descegairder with the shell sort.
Remember, a "pass" is defined as one full tripughothe array comparing and if
necessary, swappirggements.

Array at beginning: 84 69 76 86 94 91

After Pass #1: 86 94 91 84 69 76
After Pass #2: 91 94 86 84 69 76 2

63

KEVOH
Highlight

After Pass #3: 94 91 86 84 76 69 |
After Pass #4 (done)] 94 91 86 84 76 69 1

First Pass: d= (6 + 1) / 2 = 3. Compare 1st and 4th , 2nd%thdand 3rd and 6th
items since they are 3 positions away from eabbrt

Second Passvalue ford is halvedd = (3 + 1) / 2 = 2. Compare items two places
away such as 1stand 3rd

Third Pass: value ford is halvedd = (2 + 1) / 2 = 1. Compare items one place away
such as 1stand 2nd

Last Pass: sort continues until = 1 and the pass occurs without any swaps.

This sorting process, with its comparison modehnsfficient sorting algorithm.

//Shell Sort Function for Descending Order

void main()

{
int I,d , temp, length[5];
while((d > 1)) // boolean flag (true when not equal to 0)
d = (d+1)/ 2; VA
for (i=0;i<(5-d); i++) O
{ R
{if (num(i + d] > num(i) \\""f
~/~X W
/\\/
temp = numli + dJ; // S\g%p‘ positions i+d and i
numli + d] = num[i];,\"\'“;
numli] = temp;
flag = 1; Mitells swap has occurred
} ,::\?‘&
}
}
return;
}
Quick Sort

Thequicksort is considered to be very efficiemith its "divide and conquer”
algorithm. This sort starts by dividing the origirarray into two sections (partitions)
based upon the value of the first element in th@yarSince our example sorts into
descending order, the first section will contairtla elements greater than the first
element. The second section will contain elemkass than (or equal to) the first
element. It is possible for the first element td ep in either section.

Let's examine our same example

Array at beginning: 84 69 76 86 94 91
[] = 1st partition 86 94 91 84 69 76
[]=2nd partiton | 94 91 86 84 69 76

94 91 86 84 69 76

64

KEVOH
Highlight

94 91 86 84 69 76

Done: 94 91 86 84 76 69

This sort uses recursion - the process of "caltsgf". Recursion will be studied at a
later date.

//Quick Sort Functions for Descending Order
/Il (2 Functions)

void main()

// top = subscript of beginning of array
/I bottom = subscript of end of array

int middle;
if (top < bottom)
{

middle = partition(num, top, bottom);

quicksort(num, top, middle)y sort first section

quicksort(num, middle+1, bottom)// sort secor@section
} ’w*
return; O
} R-3

\,'\./’
7 Q

\

//Function to determlneéﬁ\'e partitions
/[partitions the array and return;tgb\e middle subgript
int main() &N
{ N

int x = array[top]; \:g\'

inti=top- 1,

int j = bottom + 1,

int temp;

do

{
do

{

-
Jwhile (x >array[j]);
do

{ i++;

} while (x <array[i]);
if (i <)

{

temp = array]i];
array[i] = array[j];

65

KEVOH
Highlight

array[j] = temp;
}
twhile (i <j);
return j; /Il returns middle subscript

}

Merge Sort

Themerge sortcombines twasorted arrays into one larger sorted array.
As the diagram below shows, Array A and Array B geeto form Array C.

Arrays to be mergetlUST be SORTED FIRST!!

Be sure to declare Array C in main() and esthbtssize.

Example: Ascending Order
Array A: {7. 12}
Array B: {5, 7, 8}
Array C: {5, 7, 7, 8, 12} after merge \3\“(,‘;
Here is how it works:The first element of array e}ié compared with tinstfelement
of array B. If the first element of array A is di@athan the first element of array B,
the element from array A is moved to theXaeWw a@ayThe subscript of array A is
now increased since the first elementjq\'\e%w sevega move on.

A\
If the element from array B shou[e(b‘é smallersitrioved to the new array C. The
subscript of array B is increased> This processoaiparing the elements in the two
arrays continues until either,@fray A or array Bnspty. When one array is empty,
any elements remaining igithe other (non-emptyyaare "pushed" into the end of
array C and the merge is complete.

//[Function to merge two pre-sorted arrays
void main()

{

int indexA = 0; // initialize variables for the subscripts
int indexB = 0;

int indexC = 0;

Int arrayCI[5];

while((indexA < 5) && (indexB < 5)
{

if (arrayAfindexA] < arrayB[indexB])
{

arrayC[indexC] = arrayAfindexA];
indexA++; /lincrease the subscript

}

else

{
arrayC[indexC] = arrayB[indexB];
indexB++; /lincrease the subscript

66

KEVOH
Highlight

indexC++; //move to the next position in the new array

}

/ Move remaining elements to end of new array wheane merging array is empty
while (indexA < 5)

arrayC[indexC] = arrayAfindexAl;
indexA++;
indexC++;

}
while (indexB < 5)

arrayCJ[indexC] = arrayB[indexB];

indexB++;
indexC++;
}
return;

SEARCHING ARRAYS

When working with arrays, it is often necessarpéoform a search or "lookup” to
determine whether an array contains a value thathQsa certain key value The
process of locating a particular element valuenim@ay is called searchinbhere are

two types of search mechanisrserial/linear sgafsbﬁandbinary search
Lyt
. 7 o
a) Serial Search X
~/~X W

The technique used here is callesbda),@\érch because the integer elements of the
array are compared one by one to ser inpaogbeoked for (userValue) until
either a match is found or all eIQ@@nts of theyaar@® examined without finding a
match. \ >

LN\

In the code below, if a ma@‘isé found, the textté€ife is a match” is printed on the
form and the execution ofithe procedure is terneid&Exit Sub). If no match is
found, the program exits the loop and prints thxé¢ ‘tdo match found”.

#include <stdio.h>

int main()

{
int array[5]={10,7,8,2,5}, searchvalue, c;

printf("\tEnter the number to search:);
scanf("%d", &searchvalue);

for (c=0; c <5; c++)

{

if (array[c] == searchvalue) /I if requir ed element
found

{

67

KEVOH
Highlight

printf("\n\t%d is present at location %d.\ n",
searchvalue, c+1);

break;

}

if (c ==5) /I if looped more than 5 times ie 6 times

printf("\n\t%d is not present in the array.\n ,
searchvalue);

return O;

}

Binary Search
Binary search uses the concept of splitting yoar@wble array in two, discarding the half
that does not have the element for which you avkiihg.

You place your items in an array and sort themnTyw simply get the middle element and
testif it is <, >, or = to the element for whicbware searching. If it is less than, you discard
the greater half, get the middle index of the remngj elements and do it again. Binary search
divides your problem in half every time you execyner |

#include <stdio.h>)
int main() RS

.) , N

int ¢, first, last, middle, n, search, arra?y/@/ 1;

printf("Enter number of elements ‘\’t‘} \'n");
scanf("%d",&n); o’
t::‘

printf("Enter %d integers \g};“ \'n", n);

for(c=0;c<n;c++)
scanf("%d",&array[c]);

printf("Enter value to find \'n");
scanf("%d",&search);

first=0;
last=n-1;
middle = (first+last)/2;
while(first <= last)
if (array[middle] < search)
first = middle + 1;
else if (‘array[middle] == search)

printf("%d found at location %d. \ n", search, middle+1);
br eak;
}

else
last = middle - 1;

middle = (first + last)/2;

68

KEVOH
Highlight

if (first > last)
printf("Not found! %d is not present in the | ist. \ n", search);

return O;

}

LINKED LISTS

A linked list is a dynamic data structure whosegtércan be increased or decreased at
run time.

How Linked lists are different from arrays? Consitte following points :

- An array is a static data structure. This meansethgth of array cannot be
altered at run time. While, a linked list is a data structure.
- In an array, all the elements are kept at ¢ mtiemory locations while in
a linked list the elements (or nodes) may be kephg location but still
connected to each other. R
A
When to prefer linked lists over arrays?\ inkedsliare preferred mostly when you
don’t know the volume of data to bestored. Fomepie, In an employee
management system, one cannqt@%’e arrays as thef/fated length while any
number of new employees can, j6in. In scenariostlikse, linked lists (or other
dynamic data structures) arg&@ed as their capeanitye increased (or decreased) at
run time (as an when req\gﬁéd).

How linked lists are arranged in memory?

Linked list basically consists of memory blockstthee located at random memory
locations. Linked lists are connected through past

POINTERS

A pointer is a variable whose value is the address of anetr@&ble, i.e., direct
address of the memory location. Like any varialtleanstant, you must declare a
pointer before you can use it to store any varialldress. The general form of a
pointer variable declaration is:

type *var-name;

Here,type is the pointer's base type; it must be a valich@ dype andar-name is
the name of the pointer variable. The asterisku ysed to declare a pointer is the

69

KEVOH
Highlight

same asterisk that you use for multiplication. Heerein this statement the asterisk
is being used to designate a variable as a poirtdowing are the valid pointer
declaration:

int *ip; /* pointer to an integer */
double *dp; /* pointer to a double */
float *fp; /* pointer to a float */

char *ch /* pointer to a character */

The actual data type of the value of all pointedsether integer, float, character, or
otherwise, is the same, a long hexadecimal nunhlagérépresents a memory address.
The only difference between pointers of differeatadtypes is the data type of the
variable or constant that the pointer points to.

HOW TO USE POINTERS?

There are few important operations, which we wallwith the help of pointers very
frequently.(a) we define a pointer variab{b) assign the address of a variable to a
pointer andc) finally access the value at the address availalilee pointer variable.
This is done by using unary operatahat returns the value of the variable located at
the address specified by its operand. FoIIowmgrm{S\@akes use of these
operations:

RS

: : L

#include <stdio.h> n
Q5

int main () . \§
{ N

int var = 20; /* actual variable declaratign-

int *ip; * pointer variable declarati

'

ip = &var; /* store address of vampomta'rrable*/
printf("Address of var varlab@%x\n &var);

/* address stored in pointer variable */
printf("Address stored in ip variable: %x\n",)ip

[* access the value using the pointer */
printf("Value of *ip variable: %d\n", *ip);

return O;

}

When the above code is compiled and executedodymes result something as
follows:

Address of var variable: bffd8b3c
Address stored in ip variable: bffd8b3c
Value of *ip variable: 20

NULL Pointers in C

70

KEVOH
Highlight

It is always a good practice to assign a NULL vdtua pointer variable in case you
do not have exact address to be assigned. Thaes at the time of variable
declaration. A pointer that is assigned NULL idedlanull pointer.

The NULL pointer is a constant with a value of zdedined in several standard
libraries. Consider the following program:

#include <stdio.h>

int main ()

{
int *ptr = NULL;

printf("The value of ptr is : %x\n", ptr);

return O;

}
When the above code is compiled and executedodymes the following result:

The value of ptris 0

On most of the operating systems, programs arpe‘lﬁﬂfted to access memory at
address 0 because that memory is reserved by.éfato system. However, the
memory address 0 has special significance; it sghat the pointer is not intended to
point to an accessible memory location. BUfby emion, if a pointer contains the
null (zero) value, it is assumed to point.toioghin

w\J)
To check for a null pointer you cag\%fse an if steget as follows:
-

if(ptr) /* succeeds if p is not null{’f{:'& ‘

if(lptr) /* succeeds if p is null */ &%
e

R

~

C STRINGS

In C, one or more characters enclosed between eauiates is called a string. C does
not have built-in string data type. Instead, C sufspstrings using one-dimensional
arrays. A string is defined asall terminatedarray i.e. \O. This means that you must
define the array that is going to hold a strindgp¢éoone byte larger than the largest
string it is going to hold, in order to make rooon the null.

To read a string from the keyboard, you must usg¢hen of C's standard library
functions,gets(), which requires thetdio.h header file. The gets () function reads
characters until you pressENTER>. The carriage return is not stored, but it is
replaced by a null, wich terminates the string. E.g

#include<stdio.h>

Main ()

Char str [80];

Int I;

Printf (ENter a string: \n”);

71

KEVOH
Highlight

gets(str);

for (I = O; strfi]; i++)
printf(“%c”, str[i]);

The following declaration and initialization creaestring consisting of the word
"Hello" . To hold the null character at the end of theyarttze size of the character
array containing the string is one more than thaler of characters in the word
"Hello" .

char greeting[6] = {'H', 'e’, 'I', 'I', '0’, \0'};
Initialization of strings

In C, string can be initialized in a different nuenlof ways.

char c[]="abcd";
OR,
char c[5]="abcd";
OR, &
char c[l={'a’,'0’,'¢’'d",\0}; e~
OR; O’
char c[S]={'a"b",’¢','d"\0%; &)

cld] r[l] cE?:tF{S] c[4]

String can also be initialized usm pomters

®

char *c="abcd"; {s‘f‘
s\«
~N

Reading Strings from user.

Reading words from user.

char c[20];
scanf("%s",c);

String variablec can only take a word. It is beacause when whigee|s
encountered, th&anf() function terminates.

Write a C program to illustrate how to read string from terminal.

#include <stdio.h>

int main(){
char name[20];
printf("Enter name: ");
scanf("%s",name);
printf("Your name is %s.",name);
return O;

72

KEVOH
Highlight

Output

Enter name: Dennis Ritchie
Your name is Dennis.

Here, program will ignore Ritchie becausesnf() function takes only string before
the white space.

C supports a wide range of functions that maniputail-terminated strings:

S.N. Function & Purpose
1 strcpy(sl, s2);
Copies string s2 into string s1.
2 strcat(sl, s2);
Concatenates string s2 onto the end of string S1.
3 strlen(sl);
Returns the length of string s1.
4 strcmp(sl, s2);

Returns 0 if s1 apdss2 are the same; less than|0 if
s1<s2; greatepthan O if s1>s2.

5 strchr(s1, ch)y ™
Return p’fbinter to the first occurrence of
charagcter ch in string s1.

6 strstr(s1, s2);
I%Z@urns a pointer to the first occurrence of string
“Ns2 in string s1.

‘
&
N

The C library functionnt §ﬁ%mp(const char *strl, const char *str2)compares the
string pointed to bgtrl to the string pointed to kstr2.

Following is the declaration for strcmp() function.

int strcmp(strl, str2)

PARAMETERS

« strl -- This is the first string to be compared.
« str2 -- This is the second string to be compared.

RETURN VALUE
This function returned values are as follows:
« if Return value if < 0 then it indicates strl isdehan str2

« if Return value if > 0 then it indicates str2 issghan strl
- if Return value if = 0 then it indicates strl isuafto str2

73

KEVOH
Highlight

Example

The following example shows the usage of strncrivp(gtion.

#include <stdio.h>
#include <string.h>

int main ()
char str1[15];

char str2[15];
int ret;

strcpy(strl, "abcdef");
strcpy(str2, "ABCDEF");
ret = stremp(strl, str2);
if(ret > 0)
printf("strl is less than str2");

else if(ret < 0)

il
printf("str2 is less than str1"); <<} '
} R
else 02
{ B\
printf("strl is equal to str2"); {\‘v}
} s
:,.\x\,}
\
return(0); <\
} W
&Y
N
More Examples N\

1) C Program to Find the Length of a String
#include <stdio.h>
int main()
{
char s[1000],i;
printf("Enter a string: ");
scanf("%s",s);
for(i=0; s[i]!="\0"; ++i);
printf("Length of string: %d",i);
return O;

}

Output

Enter a string: Programiz
Length of string: 9

2) Code to Concatenate Two Strings Manually
#include <stdio.h>
int main()

char s1[100], s2[100], i, j;

74

KEVOH
Highlight

printf("Enter first string: ");

scanf("%s",s1);

printf("Enter second string: ");

scanf("%s",s2);

for(i=0; s1[i]!="0"; ++i); /*i contains leng th of string
sl.*/

for(j=0; s2[j]!="0"; ++j, ++i)

s1[il=s2[j];

}

s1[i]="\0';

printf("After concatenation: %s",s1);
return O;

}
Output

Enter first string: lol
Enter second string: :)
After concatenation: lol:)

QUEUES 74

Queue is a specialized data storage structure l(aﬁﬁta type). Unlike arrays,
access of elements in a Queue is restricted. w&a ain operations enqueue and
dequeue. Insertion in a queue is done usm)g‘mq‘ueueon and removal from a
gueue is done using dequeue function. A(\’h’em eainderted at the end (‘rear’) of
the queue and removed from the frory;(‘%?@nt)lmékqueue It is therefore, also called
First-In-First-Out (FIFO) list. Queu five pesfes - capacity stands for the
maximum number of elements Quéue can hold, sinelstr the current size of the
Queue, elements is the array ements, frafieisndex of first element (the index
at which we remove the elegg‘ént) and rear is thexirad last element (the index at
which we insert the elemgghf)

Primitive operations
a) engueue (g, x): inserts itexmat the rear of the quege
b) x = dequeue (g): removes the front element fgpamd returns its value.
c) isEmpty@) :true if the queue is empty, otherwise false.

Example

enqueue(q, ‘A’);
enqueue(q, ‘B");
enqueue(q, ‘C";
X = dequeue(q);
enqueue(q, ‘D’);
enqueue(q, ‘E");

75

KEVOH
Highlight

~—— | A|B| C

f 1

fromt rear
x= dequeue (q) -> x= ‘A’

~—— | B|C|D

! !

fromt rear

STACKS

A stack is a data structure that allows addingranabving elements in a particular
order. Every time an element is added, it goesertdp of the stack; the only
element that can be removed is the element thaaiihg top of the stack.
Consequently, a stack is said to have "first it ¢ag" hehavior (or "last in, first out").
The first item added to a stack will be the lastitrémoved from a stack.

o

%

Ve X
/3
7N \o/

76

KEVOH
Highlight

