
 132

Chapter 20

Creating and Managing Graphics

� Learning how to create and manage graphics

20.1 Introduction

Creating and managing graphics is easy in earlier versions of Visual Basic as they have

built-in drawing tools. For example, In Visual Basic 6, the drawing tools are included in

the toolbox where the programmer just need to drag the shape controls into the form to

create rectangle, square, ellipse, circle and more. However, its simplicity has the

shortcomings; you do not have many choices in creating customized drawings.

Since Visual Basic evolved into a fully OOP language under the VB.net

framework, shape controls are no longer available. Now the programmer needs to write

code to create various shapes and drawings. Even though the learning curve is steeper,

the programmer can write powerful code to create all kinds of graphics. You can even

design your own controls

VB2010 offers various graphics capabilities that enable programmers to write code that

can draw all kinds of shapes and even fonts. In this Chapter, you will learn how to write

code to draw lines and shapes on the VB interface.

20.2 Creating the Graphics Object

Before you can draw anything on a form, you need to create the Graphics object in

vb2008. A graphics object is created using a CreateGraphics() method. You can create

a graphics object that draw to the form itself or a control. For example, if you wish to

draw to the form, you can use the following statement:

Dim myGraphics As Graphics =me.CreateGraphics

.

ww
w.
kn
ec
no
tes
.co
.ke

 133

If you want the graphics object to draw to a picturebox, you can write the following

statement:

Dim myGraphics As Graphics = PictureBox1.CreateGraphics

You can also use the textbox as a drawing surface, the statement is:

 Dim myGraphics As Graphics = TextBox1.CreateGraphics

The Graphics object that is created does not draw anything on the screen until you call

the methods of the Graphics object. In addition, you need to create the Pen object

as the drawing tool. We will examine the code that can create a pen in the following

section.

 20.3 Creating the Pen object

The Pen object can be created using the following code:

myPen = New Pen(Brushes.DarkMagenta, 10)

In the code, myPen is a Pen variable. You can use any variable name instead of myPen.

The first argument of the pen object defines the color of the drawing line and the

second argument defines the width of the drawing line.

You can also create a Pen using the following statement:

Dim myPen As Pen

myPen = New Pen(Drawing.Color.Blue, 5)

Where the first argument defines the color (here is blue, you can change that to red or

whatever color you want) and the second argument defines the width of the drawing

line.

Having created the Graphics and the Pen object, you are now ready to draw graphics

on the screen, which we will show you in the following section.

ww
w.
kn
ec
no
tes
.co
.ke

 134

20.4 Drawing a Line

In this section, we will show you how to draw a straight line on the Form. First, launch

Visual basic 2008 Express. In the startup page, drag a button into the form. Double click

on the button and key in the following code.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Dim myGraphics As Graphics = me.CreateGraphics

Dim myPen As Pen

myPen = New Pen(Brushes.DarkMagenta, 10)

myGraphics.DrawLine(myPen, 10, 10, 100, 10)

End Sub

The second line created the Graphics object and the third and fourth line create the Pen

object. The fifth line draws a line on the Form using the DrawLine method. The first

argument uses the Pen object created by you, the second argument and the third

arguments define the coordinate of the starting point of the line, the fourth and the last

arguments define the ending coordinate of the line. The general syntax to draw line is

object.DrawLine(Pen, x1, y1, x2, y2)

Run the program and you can a see purple line appear on the screen, as shown in

Figure 20.1.

Figure 20.1

ww
w.
kn
ec
no
tes
.co
.ke

 135

20.5 Creating a Rectangle

To draw a rectangle on the screen in VB2010, there are two ways:

(i)The first way is to draw a rectangle directly using the DrawRectangle method by

specifying its upper-left corner's coordinates and its width and height. You also need to

create a Graphics and a Pen object to handle the actual drawing. The method to draw

the rectangle is DrawRectangle.

The syntax is:

 myGrapphics.DrawRectangle (myPen, X, Y, width, height)

Where myGraphics is the variable name of the Graphics object and myPen is the

variable name of the Pen object created by you. You can use any valid and meaningful

variable names. X, Y is the coordinate of the upper left corner of the rectangle while

width and height are self-explanatory, i.e., the width and height of the rectangle.

The sample code is shown below:

Dim myPen As Pen

myPen = New Pen(Drawing.Color.Blue, 5)

Dim myGraphics As Graphics = Me.CreateGraphics

myGraphics.DrawRectangle (myPen, 0, 0, 100, 50)

(ii) The second way is to create a rectangle object first and then draw this triangle using

the DrawRectangle method. The syntax is as shown below:

myGraphics.DrawRectangle (myPen, myRectangle)

Where myRectangle is the rectangle object created by you, the user.

ww
w.
kn
ec
no
tes
.co
.ke

 136

The code to create a rectangle object is as shown below:

Dim myRectangle As New Rectangle

myRect.X = 10

myRect.Y = 10

myRect.Width = 100

myRect.Height = 50

You can also create a rectangle object using a one-line code as follows:

Dim myRectangle As New Rectangle(X, Y, width, height)

The code to draw the above rectangle is

myGraphics.DrawRectangle (myPen, myRectangle)

The sample code is shown below:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Dim myRect As New Rectangle

myRect.X = 10

myRect.Y = 10

myRect.Width = 100

myRect.Height = 50

Dim myPen As Pen

myPen = New Pen(Drawing.Color.Blue, 5)

Dim myGraphics As Graphics = Me.CreateGraphics

myGraphics.DrawRectangle(myPen, myRect)

End Sub

ww
w.
kn
ec
no
tes
.co
.ke

 137

20.6 Customizing Line Style of the Pen Object

The shapes we draw so far were drawn with solid line, we can customize the line style

of the Pen object so that we have dotted line, line consisting of dashes and more. For

example, the syntax to draw with dotted line is shown below:

myPen.DashStyle=Drawing.Drawing2D.DashStyle.Dot

The last argument, Dot, specifies a particular line DashStyle value, a line that makes up

of dots. The following code draws a rectangle with red dotted line.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Dim myPen As Pen

myPen = New Pen(Drawing.Color.Red, 5)

Dim myGraphics As Graphics = Me.CreateGraphics

myPen.DashStyle = Drawing.Drawing2D.DashStyle.Dot

myGraphics.DrawRectangle(myPen, 10, 10, 100, 50)

End Sub

Run the program and you can see a dotted-line rectangle appears on the screen, as

shown in Figure 20.2.

Figure 20.2

ww
w.
kn
ec
no
tes
.co
.ke

 138

20.7 Drawing an Ellipse

First, we need to understand the principal behind drawing an ellipse. The basic

structure of any shape is a rectangle. Ellipse is an oval shape that is bounded by a

rectangle, as shown in Figure 20.3 below:

Figure 20.3

Therefore, you need to create a Rectangle object before you can draw an ellipse. This

rectangle serves as a bounding rectangle for the ellipse. On the other hand, you can

still draw an ellipse with the DrawEllipse method without first creating a rectangle. We

will show you both ways.

In the first method, let say you have created a rectangle object known as myRectangle

and a pen object as myPen, then you can draw an ellipse using the following statement:

myGraphics.DrawEllipse (myPen, myRectangle)

* Assume you have also already created the Graphics object myGraphics.

The following is an example of the full code.

Dim myPen As Pen

myPen = New Pen(Drawing.Color.Blue, 5)

Dim myGraphics As Graphics = Me.CreateGraphics

Dim myRectangle As New Rectangle

myRectangle.X = 10

myRectangle.Y = 10

myRectangle.Width = 200

myRectangle.Height = 100

myGraphics.DrawEllipse (myPen, myRectangle)

ww
w.
kn
ec
no
tes
.co
.ke

 139

Run the program and you see the ellipse appears on the screen, as shown in Figure

20.4.

Figure 20.4

The second method is using the DrawEllipse method without creating a rectangle object.

Off course, you still have to create the Graphics and the Pen objects. The syntax is:

myGraphics.DrawEllipse(myPen, X,Y, Width, Height)

Where (X, Y) are the coordinates of the upper left corner of the bounding rectangle,

width is the width of the ellipse and height is the height of the ellipse.

The following is an example of the full code:

Dim myPen As Pen

myPen = New Pen(Drawing.Color.Blue, 5)

Dim myGraphics As Graphics = Me.CreateGraphics

myGraphics.DrawEllipse (myPen, 10, 10, 200, 100)

ww
w.
kn
ec
no
tes
.co
.ke

 140

20.8 Drawing a Circle

After you have learned how to draw an ellipse, drawing a circle becomes very simple.

We use exactly the same methods used in the preceding section but modify the width

and height so that they are of the same values.

The following examples draw the same circle.

Example (a)

Dim myPen As Pen

myPen = New Pen(Drawing.Color.Blue, 5)

Dim myGraphics As Graphics = Me.CreateGraphics

Dim myRectangle As New Rectangle

myRectangle.X = 10

myRectangle.Y = 10

myRectangle.Width = 100

myRectangle.Height = 100

myGraphics.DrawEllipse(myPen, myRectangle)

Example (b)

Dim myPen As Pen

myPen = New Pen(Drawing.Color.Blue, 5)

Dim myGraphics As Graphics = Me.CreateGraphics

myGraphics.DrawEllipse(myPen, 10, 10, 100, 100)

Run the program and you can see a circle appears on the screen, as shown in Figure

20.5

ww
w.
kn
ec
no
tes
.co
.ke

 141

Figure 20.5

20.9 Drawing Text

In order to draw text on the screen, we can use the DrawString method. The format is

as follows:

myGraphics.DrawString (myText, myFont, mybrush, X , Y)

Where myGraphics is the Graphics object, myText is the text you wish to display on the

screen, myFont is the font object created by you, myBrush is the brush style created by

you and X, Y are the coordinates of upper left corner of the Text.

You can create your Font object using the following statement:

myFont = New System.Drawing.Font("Verdana", 20)

Where the first argument of the font is the font typeface and the second argument is the

font size. You can add a third argument as font style, either bold, italic, underline.

Here are some examples:

myFont = New System.Drawing.Font("Verdana", 20, FontStyle.Bold)

myFont = New System.Drawing.Font("Verdana", 20, FontStyle.Underline)

ww
w.
kn
ec
no
tes
.co
.ke

 142

myFont = New System.Drawing.Font("Verdana", 20, FontStyle.Italic)

myFont = New System.Drawing.Font("Verdana", 20, FontStyle.Regular)

To create the Brush object, you can use the following statement:

Dim myBrush As Brush

myBrush = New Drawing.SolidBrush(Color.BrushColor)

Besides the seven colors, some of the common Brush Colors are AliceBlue,

AquaMarine Beige, DarkMagenta, DrarkOliveGreen, SkyBlue and more. You do not

have to remember the names of all the colors, the intelliSense will let you browse

through the colors in a drop-down menu once you type the dot after the word Color.

Now we shall proceed to draw the font using the sample code below:

Dim myGraphics As Graphics = Me.CreateGraphics

Dim myFont As Font

Dim myBrush As Brush

myBrush = New Drawing.SolidBrush(Color.DarkOrchid)

myFont = New System.Drawing.Font("Verdana", 20, FontStyle.Underline)

myGraphics.DrawString("Visual Basic 2010", myFont, myBrush, 10, 10)

Run the program above and you can see the text “Visual Basic 2010 “appears on the

screen, as shown in Figure 20.6.

Figure 20.6

ww
w.
kn
ec
no
tes
.co
.ke

 143

You can modify the preceding code if you do not want to create the Font and the Brush

objects. You can use the font of an existing object such as the Form and the System

Colors. Replace the last line in the preceding example with this line.

myGraphics.DrawString("Visual Basic 2010", me.Font,
System.Drawing.Brushes.DarkOrchid, 10, 10)

You can also add an InputBox, which let the user enter his or her message then

displays the message on the screen.

This is the sample code is as follows:

Dim myGraphics As Graphics = Me.CreateGraphics

Dim myFont As Font

Dim myBrush As Brush

Dim userMsg As String

UserMsg = InputBox("What is your message?", "Message Entry Form",
"Enter your message here", 100, 200)

myBrush = New Drawing.SolidBrush(Color.DarkOrchid)

myFont = New System.Drawing.Font("Verdana", 20, FontStyle.Underline)

myGraphics.DrawString (userMsg, myFont, myBrush, 10, 10)

20.10 Drawing a Polygon

Polygon is a closed plane figure bounded by three or more straight sides. In order to

draw a polygon on the screen, we need to define the coordinates of all the points (also

known as vertices) that joined up to form the polygon.

The syntax to define the points of a polygon with vertices A1, A2 ...An as follows:

Dim A1 As New Point(X1,Y1)

Dim A2 As New Point(X2,Y2)

.

.

Dim An as New Point(Xn,Yn)

ww
w.
kn
ec
no
tes
.co
.ke

 144

After declaring the points, we need to define a point structure that group all the points

together using the following syntax:

Dim myPoints As Point() = {A1, A2, A3,....,An}

Finally, create the graphics object and use the DrawPolygon method to draw the

polygon using the following syntax:

Dim myGraphics As Graphics = Me.CreateGraphics

myGraphics.DrawPolygon(myPen, myPoints)

Where myPen is the Pen object created using the following syntax:

myPen = New Pen(Drawing.Color.Blue, 5)

Example : Drawing a Triangle

A triangle is a polygon with three vertices. Here is the sample code:

Dim myPen As Pen

Dim A As New Point(10, 10)

Dim B As New Point(100, 50)

Dim C As New Point(60, 150)

Dim myPoints As Point() = {A, B, C}

myPen = New Pen(Drawing.Color.Blue, 5)

Dim myGraphics As Graphics = Me.CreateGraphics

myGraphics.DrawPolygon (myPen, myPoints)

Run the program and you should see a triangle appears on the screen, as shown in

Figure 20.7.

ww
w.
kn
ec
no
tes
.co
.ke

 145

Figure 20.7

Example: Drawing a Quadrilateral

A quadrilateral is a polygon consists of four sides, so you need to define four vertices.

The following is the code:

Dim myPen As Pen

Dim A As New Point(10, 10)

Dim B As New Point(100, 50)

Dim C As New Point(120, 150)

Dim D As New Point(60, 200)

Dim myPoints As Point() = {A, B, C, D}

myPen = New Pen(Drawing.Color.Blue, 5)

Dim myGraphics As Graphics = Me.CreateGraphics

myGraphics.DrawPolygon (myPen, myPoints)

Run the program and you can see a polygon appears on the screen, as shown in

Figure 20.8.

ww
w.
kn
ec
no
tes
.co
.ke

 146

Figure 20.8

20.11: Drawing a Pie

In order to draw a pie, you can use the DrawPie method of the graphics object. As

usual, you need to create the Graphics and the Pen objects. The syntax for drawing a

pie is:

myGraphics.DrawPie (myPen, X, Y, width, height, StartAngle, SweepAngle)

Where X and Y are the coordinates of the bounding rectangle, other arguments are

self-explanatory. Both StartAngle and SweepAngle are measured in degree.

SweepAngle can take possible or negative values. If the value is positive, it sweep

through clockwise direction while negative means it sweep through anticlockwise

direction.

Example: Draw a pie that starts with 0 degree and sweep clockwise through 60 degree.

Dim myPen As Pen

myPen = New Pen(Drawing.Color.Blue, 5)

Dim myGraphics As Graphics = Me.CreateGraphics

myGraphics.DrawPie(myPen, 50,50, 150,150,0,60)

ww
w.
kn
ec
no
tes
.co
.ke

 147

Run the program and you can see a pie appears on the screen, as shown in Figure

20.9

Figure 20.9

In previous sections, we have learned how to draw rectangle, ellipse, circle, polygon

and pie with outlines only. In this section, we will show you how to fill the shapes with

color, or simply solid shapes. You can use the following three methods to fill the

shapes , they are FillRectangle, FillEllipse, FillPolygon and FillPie.

In order to fill the above shapes with color, we need to create the Brush object using the

following syntax:

myBrush = New SolidBrush(Color.myColor)

Where myColor should be replaces by the names of the colors such as red, blue, yellow

and more. You do not have to worry about the names of the colors because the

intellisense will display the colors and enter the period after the Color key word.

Dim myPen As Pen

Dim myBrush As Brush

Dim myGraphics As Graphics = Me.CreateGraphics

myPen = New Pen(Drawing.Color.Blue, 5)

ww
w.
kn
ec
no
tes
.co
.ke

 148

myBrush = New SolidBrush(Color.Coral)

myGraphics.DrawRectangle (myPen, 0, 0, 150, 150)

myGraphics.FillRectangle (myBrush, 0, 0, 150, 150)

Run the program and you can see a coral color square appears on the screen, as

shown in Figure 20.10.

Figure 20.10

20.12 Drawing and Filling an Ellipse

The syntax to fill an ellipse with the color defined by the brush object is:

myGraphics.FillEllipse (myBrush, 0, 0, 150, 150)

The complete code is shown in the example below:

Dim myPen As Pen

Dim myBrush As Brush

Dim myGraphics As Graphics = Me.CreateGraphics

myPen = New Pen(Drawing.Color.Blue, 5)

myBrush = New SolidBrush(Color.Coral)

ww
w.
kn
ec
no
tes
.co
.ke

 149

myGraphics.DrawEllipse(myPen, 0, 0, 150, 150)

myGraphics.Ellipse(myBrush, 0, 0, 150, 150)

Run the program and you can see a coral color ellipse appears on the screen, as

shown in Figure 20.11

Figure 20.11

20.13 Drawing and Filling a Polygon

The syntax to fill a polygon with the color defined by the brush object is:

myGraphics.FillPolygon (myBrush, myPoints)

The complete code is shown in the example below:

Dim myPen As Pen

Dim myBrush As Brush

Dim A As New Point(10, 10)

Dim B As New Point(100, 50)

Dim C As New Point(120, 150)

Dim D As New Point(60, 200)

Dim myPoints As Point() = {A, B, C, D}

ww
w.
kn
ec
no
tes
.co
.ke

 150

myPen = New Pen(Drawing.Color.Blue, 5)

myBrush = New SolidBrush(Color.Coral)

Dim myGraphics As Graphics = Me.CreateGraphics

myGraphics.DrawPolygon(myPen, myPoints)

myGraphics.FillPolygon(myBrush, myPoints)

Running the code produces the image as shown in Figure 20.12.

Figure 20.12

20.14 Drawing and Filling a Pie

The syntax to fill a pie with the color defined by the brush object is:

myGraphics.FillPie(myBrush, X, Y, width, height, StartAngle, SweepAngle)

The complete code is shown in the example below:

Dim myPen As Pen

Dim myBrush As Brush

myPen = New Pen(Drawing.Color.Blue, 5)

myBrush = New SolidBrush(Color.Coral)

ww
w.
kn
ec
no
tes
.co
.ke

 151

Dim myGraphics As Graphics = Me.CreateGraphics

myGraphics.DrawPie(myPen, 30, 40, 150, 150, 0, 60)

myGraphics.FillPie(myBrush, 30, 40, 150, 150, 0, 60)

Run the program and you can see a coral color pie appears on the screen, as shown in

Figure 20.13.

Figure 20.13

Summary

In this chapter, you learned how to draw various shapes and fill them with color.

� In section 20.1, you learned the basic concepts about graphics creation in

VB2010.

� In section 20.2, you learned how to use the CreateGraphics() method to create a

graphics object.

� In section 20.3, you learned how to create the Pen object

� In section 20.4, you learned how to use the DrawLine method to draw a line.

� In section 20.5, you learned how to use the DrawRectangle method to create a

rectangle.

� In section 20.6, you learned how to customize the line style of the Pen object.

� In section 20.7, you learned how to use the DrawEllipse method to draw an

ellipse.

� In section 20.8, you learned how to use the DrawEllipse method to draw a circle

ww
w.
kn
ec
no
tes
.co
.ke

 152

� In section 20.9, you learned how to use the DrawString method to draw text on

the screen.

� In section 20.10, you learned how to use the DrawPolygon method to draw a

polygon.

� In section 20.11, you learned how to use the DrawPie method to draw a pie.

� In section 20.12, you learned how to fill an ellipse with color.

� In section 20.13, you learned how to fill a polygon with color.

� In section 20.14, you learned how to fill a pie with color.

ww
w.
kn
ec
no
tes
.co
.ke

