
 90

Chapter 15

Creating User-Defined Functions

� Learning how to create user-defined function

Function is a method that returns a value to the calling procedure. You can create user-

defined function to perform certain calculations and some other tasks.

The general format of a function is as follows:

Public Function functionName (param As dataType,..........) As dataType

or

Private Function functionName (param As dataType,..........) As dataType

* Public indicates that the function is applicable to the whole project and

* Private indicates that the function is only applicable to a certain module or procedure.

* param is the argument or parameter of the function that can store a value. You can

specify more than one parameter, separated by commas.

Example 15.1: Cube Root Calculator

In this example, we will create a program that calculates the cube root of a number. The

function code is

Public Function cubeRoot(ByVal myNumber As Single) As Single

 Return myNumber ^ (1 / 3)

End Function

The keyword Return is to compute the cube root and return the value to the calling

procedure.

Place the function procedure in the general section of the module.

Next, design an interface and create a procedure that call the function and display the

value to user.

ww
w.
kn
ec
no
tes
.co
.ke

 91

To create the interface, place three label controls and one textbox into the form.

Rename the label and use it to display the cube root to be LblCubeRoot.

Now click on the textbox and enter the following code:

Private Sub TextBox1_TextChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TextBox1.TextChanged

 LblCubeRoot.Text = cubeRoot(Val(TextBox1.Text))

End Sub

Press F5 to run the program and you should get the following output:

Figure 15.1: Cube Root Calculator

Example 15.2

ww
w.
kn
ec
no
tes
.co
.ke

 92

In this example, we create a function that can convert mark to grade, a handy function

to manage college examinations or tests processing. In this function, we use the Select

case control structure to convert marks of different range to different grades.

Public Function grade(ByVal mark As Single) As String

 Select Case mark

 Case Is > 100

 Return "Invalid mark"

 Case Is >= 80

 Return "A"

 Case Is >= 70

 Return "B"

 Case Is >= 60

 Return "C"

 Case Is >= 50

 Return "D"

 Case Is >= 40

 Return "E"

 Case Is >= 0

 Return "F"

 Case Is < 0

 Return "Invalid mark"

 End Select

 End Function

We need to design an interface for the user to enter the marks and we also need to

write a procedure to call the function and display the grade on a label. To achieve the

purpose, we will insert the following controls and set their properties as follows:

ww
w.
kn
ec
no
tes
.co
.ke

 93

Control Properties

Label1 Text: Mark ; font bold

Label2 Text:Grade ; font bold

TextBox1 Name: TxtMark

Lable3 LblGrade

We also need to write a procedure to call the function. Click on Textbox1 and enter the

following code:

Private Sub TxtMark_TextChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TxtMark.TextChanged

 If TxtMark.Text = "" Then
 Lbl_Grade.Text = "Enter Mark"
 Else
 Lbl_Grade.Text = grade(Val(TxtMark.Text))
 End If

End Sub

The procedure will compute the value entered in the textbox by the user by calling the

grade () function and display the result on the label Lbl_Grade.

The output is shown in Figure 15.2:

ww
w.
kn
ec
no
tes
.co
.ke

 94

Figure 15.2

Example 15.3: BMI calculator

Many people are obese now and it could affect their health seriously. If your BMI is

more than 30, you are obese. You can refer to the following range of BMI values for

your weight status.

Underweight = <18.5

Normal weight = 18.5-24.9

Overweight = 25-29.9

Obesity = BMI of 30 or greater

Now we shall create a calculator in Vb2010 that can calculate the body mass index, or

BMI of a person based on the body weight in kilogram and the body height in meter.

BMI can be calculated using the formula weight/ (height) 2, where weight is measured

in kg and height in meter. If you only know your weight and height in lb and feet, then

you need to convert them to the metric system. To build the calculator, we need to

create a function that contains two parameters, namely height and weight, as follows:

Public Function BMI (ByVal height, ByVal weight)

 Return Val ((weight) / (height ^ 2))

ww
w.
kn
ec
no
tes
.co
.ke

 95

 End Function
Next, design an interface that includes four labels, three of them is used for labeling

height, weight and BMI and the last one is to display the value of BMI. We also inserted

two text boxes to accept input of height and weight from the user. Lastly, insert a button

for the user to click on in order to start the calculation process. Set the properties as

follows:

Control Properties

Label1 Text : Height (in meter)

Font : Microsoft Sans Serif, 10 pt, style=Bold

Label2 Text : Weight (in kg)

Font : Microsoft Sans Serif, 10 pt, style=Bold

Label3 Text : BMI

Font : Microsoft Sans Serif, 10 pt, style=Bold

Label4 Name: LblBMI

Text : Blank

Font : Microsoft Sans Serif, 10 pt, style=Bold

Textbox1 Name; TxtH

Text : Blank

Font : Microsoft Sans Serif, 10 pt, style=Bold

Textbox2 Name; TxtW

Text : Blank

Font : Microsoft Sans Serif, 10 pt, style=Bold

Now, click on the button and enter the following code:

LblBMI.Text = Format (BMI(TxtH.Text, TxtW.Text), "0.00")

We use the format function to configure the output value to two decimal places. This

procedure will call the function BMI to perform calculation based on the values input by

the user using the formula defined in the function.

ww
w.
kn
ec
no
tes
.co
.ke

 96

The output is shown in Figure 15.3

Figure 15.3

Example 15.4: Future Value Calculator

In this example, the user can calculate the future value of a certain amount of money he

has today based on the interest rate and the number of years from now, supposing he

or she will invest this amount of money somewhere .The calculation is based on the

compound interest rate. This reflects the time value of money.

Future value is calculated based on the following formula:

n

100

i
1FVPV 








+=

ww
w.
kn
ec
no
tes
.co
.ke

 97

The function to calculate the future value involves three parameters namely the present

value (PV), the interest rate (i) and the length of period (n). The function code is shown

below:

Public Function FV(ByVal PV As Single, ByVal i As Single, ByVal n As Integer) As
Double

 Return PV * (1 + i / 100) ^ n

 End Function

The code to display the Future Value is

Private Sub BtnCal_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BtnCal.Click
 LblFV.Text = FV(TxtPV.Text, TxtI.Text, TxtYear.Text).ToString("C")

 End Sub

Figure 15.4: The Future Value Calculator

Summary

In this chapter, you learned how to create user-defined functions. Among them are the

cube root calculator, the examination grades calculator, the BMI calculator and the

future value calculator.

ww
w.
kn
ec
no
tes
.co
.ke

