
 153

Chapter 21

Arrays

� Learning how to create arrays in VB2010

21.1 Introduction to Arrays

By definition, an array is a list of variables with the same data type and name. When we

work with a single item, we only need to use one variable. However, if we have a list of

items, which are of similar type to deal with, we need to declare an array of variables

instead of using a variable for each item

For example, if we need to enter one hundred names, it is difficulty to declare 100

different names; this is a waste of time and efforts. Therefore, instead of declaring one

hundred different variables, we need to declare only one array. We differentiate each

item in the array by using subscript, the index value of each item, for example name(0),

name(1),name(2)etc. , which will make declaring variables streamline and much

systematic.

21.2 Dimension of an Array

An array can be one dimensional or multidimensional. One-dimensional array is like a

list of items or a table that consists of one row of items or one column of items. Table

21.1 shows a one-dimensional array.

Student Name Name(0) Name(1) Name(2) Name(3) Name(4) Name(5)

Table 21.1 One-dimensional Array

A two dimensional array is a table of items that make up of rows and columns. The

format for a one-dimensional array is ArrayName(x), the format for a two dimensional

array is ArrayName(x, y) and a three dimensional array is ArrayName(x, y, z). Normally

it is sufficient to use one-dimensional and two-dimensional arrays; you only need to use

higher dimensional arrays if you need to deal with problems that are more complex.

ww
w.
kn
ec
no
tes
.co
.ke

 154

21.3 Declaring an Array

We can use Public or Dim statement to declare an array just as the way we declare a

single variable. The Public statement declares an array so that it can be used

throughout the entire application while the Dim statement declares an array that can be

used only in a local procedure.

21.3.1 Declaring One Dimensional Array

The general format to declare a one-dimensional array is as follow:

Dim arrayName(subs) as dataType

The argument subs indicates the last subscript in the array.

Example 21.1

Dim CusName(9) as String

declare an array that consists of 10 elements starting from CusName(0) to CusName(9).

Example 21.2

Dim Count (100 to 500) as Integer

The statement above declares an array that consists of the first element starting from

Count (100) and ends at Count (500)

Example 21.3: Creating a Name List

In this program, we want let the user create a name list by entering name into a list box.

At runtime, the user will be prompted to enter ten student names. The names entered

will appear in a list box. First, start a new project and name it Student Data. Next, insert

a list box and a button into the form. Change properties of the controls as follows:

ww
w.
kn
ec
no
tes
.co
.ke

 155

Control Properties

Form1 Name: StudentList

Text: Student List

ListBox Name: NameList

Control1 Name: BtnAdd

Text: Add Name

Table 21.3

Next, click the button and key in the following code:

Private Sub BtnAdd_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles BtnAdd.Click

 Dim studentName(9) As String

 Dim num As Integer

 For num = 0 To 9

 studentName(num) = Microsoft.VisualBasic.InputBox("Enter a name and

 Click OK", "Names Entry Form", "Enter name here", 100, 200)

 NameList.Items.Add(studentName(num))

 Next

 End Sub

When you press F5 and run the program, you will see a popup dialog box where you

can enter a name. After you have entered the name and click Ok, the same dialog box

will appear again for you to enter the second student name. The process will repeat ten

times. The dialog box is as shown in Figure 21.1

ww
w.
kn
ec
no
tes
.co
.ke

 156

Figure 21.1

After entering ten names, you can see the ten names appear on the list box, as shown

in Figure 21.2

Figure 21.2

ww
w.
kn
ec
no
tes
.co
.ke

 157

21.3.1 Declaring Two Dimensional Array

The general format to declare a two dimensional array is as follow:

 Dim ArrayName(Sub1,Sub2) as dataType

Total number of elements will be (sub1+1)x(sub2+1). For example,

Dim Score(2,3) will produce an array that comprises 3x4=12 elements, as shown in

Table 21.2

Score(0,0) Score(0,1) Score(0,2) Score(0,3)

Score(1,0) Score(1,1) Score(1,2) Score(1,3)

Score(2,0) Score(2,1) Score(2,2) Score(2,3)

Table 21.2 Two Dimensional Array

Example 21.4: Managing Students’ Examination Scores

In this example, we want to key in the examination marks for five students and four

subjects. Since we are handling two variables here, i.e. name and subject, we need to

declare a two dimensional array, as follows:

 Dim score (4, 3) as String

The first dimension represents student names and the second dimension represents

the subjects. Combining both produces the scores for each student for each subject.

For example, the score for the first student for the first subject will be score (0, 0). We

can design a program to let the user enter the student names, subject titles as well as

the scores. We need to use two nested loops involving the For...Next structure. The first

loop gets the students’ names and the second loop gets the students’ scores for the

four subjects. To achieve the purpose, we introduce a one dimensional array

StudentName(4) to store the names of the five students. We also introduce a one

dimensional array mark(3) to store the mark of every subject for every student .After

entering the name of the first student and his scores, we get something like this:

ww
w.
kn
ec
no
tes
.co
.ke

 158

 Adam 45 60 56 80

The scores of students in array form are shown in Table 21.3

studentName(0)=Adam Score(0,0)=45 Score(0,1)=60 Score(0,2)=56 Score(0,3)=80

Table 21.3; Scores for first students

The variable mark are assigned the values of the scores as shown in table 21.4

studentName(0)=Adam mark(0)=45 mark(1)=60 mark(2)=56 mark(3)=80

Table 21.4: Score in terms of mark

The process repeats until the user has entered all the data. The completed data appear

as a two-dimensional array, as shown in terms of scores in Table 21.5 and in terms of

marks in Table 21.6.

Table 21.5

Table 21.6

In this program, we insert a list box and name it NameList. We also introduce a button

and name it BtnAdd. Change the form title from Form1 to “Examination Scores”

studentName(0)=Adam score(0,0)=45 score(0,1)=56 score(0,2)=78 score(0,3)=68

studentName(1)=Brian score(1,0)=64 score(1,1)=76 score(1,2)=80 score(1,3)=90

studentName(2)=Florence score(2,0)=87 score(2,1)=80 score(2,2)=90 score(2,3)=100

studentName(3)=Gloria score(3,0)=45 score(3,1)=54 score(3,2)=34 score(3,3)=48

studentName(4)=Mandy score(4,0)=56 score(4,1)=87 score(4,2)=68 score(4,3)=66

studentName(0)=Adam mark(0)=45 mark(1)=56 mark(2)=78 mark(3)=68

studentName(1)=Brian mark(0)=64 mark(1)=76 mark(2)=80 mark(3)=90

studentName(2)=Florence mark(0)=87 mark(1)=80 mark(2)=90 mark(3)=100

studentName(3)=Gloria mark(0)=45 mark(1)=54 mark(2)=34 mark(3)=48

studentName(4)=Mandy mark(0)=56 mark(1)=87 mark(2)=68 mark(3)=66

ww
w.
kn
ec
no
tes
.co
.ke

 159

Now click the button and enter the code. In the code, we declare studentName (4) and

mark(3) as one-dimensional array

The code

Private Sub BtnAdd_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles BtnAdd.Click

 Dim studentName(4) As String

 Dim score(4, 3) As String

 Dim mark(3) As String

 Dim num1, num2 As Integer

 For num1 = 0 To 4

 studentName(num1) = Microsoft.VisualBasic.InputBox("Enter a name and

 Click OK", "Names Entry Form", "Enter name here", 100, 200)

 For num2 = 0 To 3

 score(num1, num2) = Microsoft.VisualBasic.InputBox("Enter score and

 Click OK", "Scores Entry Form", "Enter Score here", 100, 200)

 mark(num2) = score(num1, num2)

 Next

 NameList.Items.Add(studentName(num1) & vbTab & mark(0) & vbTab &

 mark(1) & vbTab & mark(2) & vbTab & mark(3))

 Next

End Sub

Private Sub Form1_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

 ‘To Label the the subjects’ titles at the top of the list

 NameList.Items.Add("" & vbTab & "English" & vbTab & "Sience" & vbTab &

ww
w.
kn
ec
no
tes
.co
.ke

 160

 "Math" & vbTab & "Art")

 ‘To draw a separation line between the subjects’ titles and the scores

 NameList.Items.Add("" & vbTab & "---

 -----------")

 End Sub

The output is shown in Figure 21.3

Figure 21.3

The above example has demonstrated the practical usage of arrays. If you wish to add

more features to the program, you can modify the code easily, like writing the code to

obtain the total mark and average mark.

Summary

� In this section 21.1, you learned that an array is a list of variables with the same

data type and name

� In section 21.2, you learned about arrays of different dimensions.

� In section 21.3, you learned how to declare arrays of different dimensions.

ww
w.
kn
ec
no
tes
.co
.ke

