
 178 

. Chapter 24 

Adding Menus and Toolbar 

� Learning how to Create Menus and Menu Items 

� Learning how to Create Toolbar Items 

 

Menus and toolbars remain as the standard features of all windows applications despite 

the development of more sophisticated GUI. The menu bar contains menus, which 

contain groups of menu items that the user can used to execute certain commands to 

perform certain tasks like opening a file, saving a file, printing a page, formatting a page 

and more. On the other hand, a standard toolbar displays icons that can be used to 

open a file, save a file, viewing a document, printing a document and more.  

In this chapter, we will show you how to add Menus and icons to the toolbar of your 

applications. We will use the text editor from the chapter 19 but now we shall execute 

the commands using the menus and the toolbar icons. We shall also make this program 

more powerful by enabling it to format the text as well as to print out the text from the 

text file. 

In this project, we will add MenuStrip1, ToolStrip1, SaveFileDialog1, 

OpenFileDialog1,PrintDialog1 and FontDialog1 controls to the form. 

24.1 Adding Menus 

Open the text editor file from the chapter 19, but now we will clear the buttons and add 

menus instead. First, drag the Menu Strip and position it at the top part of the form. Add 

the first top-level menu by typing it in the textbox that appears with a blurred text “Type 

Here”. The first menu you will add is File, but you type it with the ampersand sign in 

front, like this, &File. The reason is the ampersand sign will underline the letter F, File at 

runtime so that the user can use the keyboard short-cut keys to execute a command. 

The second top-level menu that we shall add is Format, which we type it as &Format. 

ww
w.
kn
ec
no
tes
.co
.ke



 179 

The next step is to add menu items to the File and the Format Menu. The three menu 

items that we are going to add to the File menu are Open, Save, Print and Exit, type 

them as &Open, &Save, &Print and E&xit. The menu items that we will add to the 

Format menu are Font (type it as Fo&nt), Font Color (type it as Font &Color) and 

Background Color (type it as &Background Color). The menu items can be moved 

upward or downward easily by dragging them. They can be deleted easily by pressing 

the right mouse button and then click deleted in the pop-up dialog. 

When we run the finished design, we shall see a window application that comprises 

menus and menu items, as shown in Figure 241. Notice the underlined characters of 

the menu items.  

 

Figure 241 

24.1.1 Writing Code for the Menu Items 

The application in the preceding section is not able to do anything yet until we write 

code for the menu items. 

The menu item Open should execute a command that will allow the user to choose a 

file from a storage source and open it via a pop-up dialog. The code is the same as the 

ww
w.
kn
ec
no
tes
.co
.ke



 180 

code to read text file in the previous chapter. It involves the use of the OpenFileDialog 

control. Now, double click on the Open menu item and enter the code as follows: 

Private Sub OpenToolStripMenuItem_Click(ByVal sender As System.Object, ByVal 

e As System.EventArgs) Handles OpenToolStripMenuItem.Click 

        Dim FileReader As StreamReader 

        Dim results As DialogResult 

        results = OpenFileDialog1.ShowDialog 

        If results = DialogResult.OK Then 

            FileReader = New StreamReader(OpenFileDialog1.FileName) 

            TxtEditor.Text = FileReader.ReadToEnd( ) 

            FileReader.Close( ) 

        End If 

    End Sub 

Remember place the statement Imports System.IO before Public Class Form1 so that 

the program is able to read the file. The open dialog is shown in Figure 24.2 

 

 

ww
w.
kn
ec
no
tes
.co
.ke



 181 

              Figure 24.2 

Menu item Save executes command that writes file to the computer storage unit. The 

code is the same as the code for writing file in the previous chapter. Click on the Save 

menu item and enter the following code: 

Private Sub SaveToolStripMenuItem_Click(ByVal sender As System.Object, ByVal 

e As System.EventArgs) Handles SaveToolStripMenuItem.Click 

        Dim FileWriter As StreamWriter 

        Dim results As DialogResult 

        results = SaveFileDialog1.ShowDialog 

        If results = DialogResult.OK Then 

            FileWriter = New StreamWriter(SaveFileDialog1.FileName, False) 

            FileWriter.Write(TxtEditor.Text) 

            FileWriter.Close() 

        End If 

    End Sub 

Writing code for the Print command requires the use of the PrintDialog control. It 

comprises two parts, the first part is to presents a print dialog for the user to set the 

options to print and second part is to print the document. Click on the print menu item 

and enter the following code: 

i) The code to presents a print dialog 

Private Sub PrintToolStripMenuItem_Click(ByVal sender As System.Object, ByVal 

e As System.EventArgs) Handles PrintToolStripMenuItem.Click 

       ‘Let the user to choose the page range to print. 

        PrintDialog1.AllowSomePages = True 

        ‘Display the help button. 

        PrintDialog1.ShowHelp = True 

        PrintDialog1.Document = docToPrint 

ww
w.
kn
ec
no
tes
.co
.ke



 182 

 

        Dim result As DialogResult = PrintDialog1.ShowDialog() 

        If (result = DialogResult.OK) Then 

            docToPrint.Print() 

        End If 

 

    End Sub 

 

   ii) The code to print the document 

  

    Private Sub document_PrintPage(ByVal sender As Object, _ 

       ByVal e As System.Drawing.Printing.PrintPageEventArgs) _ 

           Handles docToPrint.PrintPage     

        Dim mytext As String 

        mytext = TxtEditor.Text 

        Dim printFont As New System.Drawing.Font _ 

            ("Arial", 12, System.Drawing.FontStyle.Regular) 

 

        ' Format and print the text  

        e.Graphics.DrawString(mytext, printFont, _ 

            System.Drawing.Brushes.Black, 10, 10) 

    End Sub 

24.2 Adding Toolbar Icons  

Still using the same file, we shall now add some toolbar items in form of icons. You can 

lookup for some free icons sites in Google to download the icons you intend to place on 

your toolbar. In our example, we need six icons namely the Open icon, the Save icon, 

the Print icon, the Font Style and Formatting icon, the Font Color icon and the 

Background Color icon. 

ww
w.
kn
ec
no
tes
.co
.ke



 183 

To add items to the toolbar, click on the small icon on the leftmost corner of the toolbar 

and choose button from the dropdown list, as shown in Figure 25.3 

 

Figure 24.3 

Right click on the button and choose properties window from the dropdown list, then 

proceed to change the default image by clicking the three-dot button on the right of the 

image property. Choose an icon or image file from your hard drive that you wish to load, 

as shown in Figure 24.4 and Figure 24.5 

 

                                 Figure 24.4: Properties window of the ToolStrp Button 

ww
w.
kn
ec
no
tes
.co
.ke



 184 

 

                     Figure 24.5: Dialog to select image file 

Using the aforementioned method, we have added the following toolbar items and set 

their properties as shown in Table 24.1. The ToolTipText is to display text when the 

user places his or her mouse over the toolbar icon. The purpose is to provide 

information about the action that can be executed by clicking the icon. 

Toolbar  Item Name ToolTipText 

 
ToolOpen Open 

 
ToolSave Save 

 
ToolPrint Print 

 

ToolFontStyle Font Style and Formatting 

 
ToolFontColor Font Color 

 
ToolBkColor Background Color 

Table 24.1 

The finished interface is shown in Figure 24.6 

ww
w.
kn
ec
no
tes
.co
.ke



 185 

 

                     Figure 24.6 

Next, we shall write code for every item on the tool bar. The codes are the same as the 

codes we programmed for the menu items. 

Open Folder 
 

The Code: 

Private Sub ToolOpen_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles ToolOpen.Click 

        Dim FileReader As StreamReader 

        Dim results As DialogResult 

        results = OpenFileDialog1.ShowDialog 

        If results = DialogResult.OK Then 

            FileReader = New StreamReader(OpenFileDialog1.FileName) 

            TxtEditor.Text = FileReader.ReadToEnd() 

            FileReader.Close() 

        End If 

    End Sub     

ww
w.
kn
ec
no
tes
.co
.ke



 186 

Save File 
 

The Code: 

Private Sub ToolSave_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles ToolSave.Click 
        Dim FileWriter As StreamWriter 

        Dim results As DialogResult 

        results = SaveFileDialog1.ShowDialog 

        If results = DialogResult.OK Then 

            FileWriter = New StreamWriter(SaveFileDialog1.FileName, False) 

            FileWriter.Write(TxtEditor.Text) 

            FileWriter.Close() 

        End If 

    End Sub 

Print 

 
The Code 

Private Sub ToolPrint_Click(ByVal sender As System.Object, ByVal e As  
System.EventArgs) Handles ToolPrint.Click 

         
        PrintDialog1.AllowSomePages = True 
 
        PrintDialog1.ShowHelp = True 

        PrintDialog1.Document = docToPrint 

        Dim result As DialogResult = PrintDialog1.ShowDialog() 
 
        If (result = DialogResult.OK) Then 
            docToPrint.Print() 
        End If 
 

    End Sub 

ww
w.
kn
ec
no
tes
.co
.ke



 187 

Format Font Style 

 

The Code 

Private Sub ToolFontStyle_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles ToolFontStyle.Click 
        FontDialog1.ShowColor = True 

        FontDialog1.Font = TxtEditor.Font 

        FontDialog1.Color = TxtEditor.ForeColor 

        If FontDialog1.ShowDialog() <> DialogResult.Cancel Then 

            TxtEditor.Font = FontDialog1.Font 

            TxtEditor.ForeColor = FontDialog1.Color 

        End If 

End Sub 

 

Font Color 

 
The Code 

  Private Sub ToolFontColor_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles ToolFontColor.Click 

        Dim MyDialog As New ColorDialog() 

        MyDialog.AllowFullOpen = False 

        MyDialog.ShowHelp = True 

        MyDialog.Color = TxtEditor.ForeColor 

        If (MyDialog.ShowDialog() = Windows.Forms.DialogResult.OK) Then 

            TxtEditor.ForeColor = MyDialog.Color 

        End If 

End Sub 

ww
w.
kn
ec
no
tes
.co
.ke



 188 

Background Color 
 

The Code 

Private Sub ToolBkColor_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles ToolBkColor.Click 

        Dim MyDialog As New ColorDialog() 

        MyDialog.AllowFullOpen = False 

        MyDialog.ShowHelp = True 

        MyDialog.Color = TxtEditor.BackColor 

         If (MyDialog.ShowDialog() = Windows.Forms.DialogResult.OK) Then 

            TxtEditor.BackColor = MyDialog.Color 

        End If 

    End Sub 

To test the program, press F5 to run it. Enter the Text “Welcome to Visual Basic 2010 

programming” into the text editor, then use the menu items or the toolbar icons to 

change the font size to 14  ,font color to yellow and the background color to blue. Run 

the program and you will see the menus and toolbar icons appear on top of the text 

editor, as shown in Figure 24.7 

 

Figure 24.7 

ww
w.
kn
ec
no
tes
.co
.ke



 189 

Summary  

In this chapter, you learned how to add menus and toolbar to your application. 

� In section 24.1, you learned how to add menus to your application, a text editor. 

You also learned how to write code for the menus. Besides, you learned to write 

code for printing the text. 

� In section 24.2, you learned how to add toolbar icons and write code for them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ww
w.
kn
ec
no
tes
.co
.ke


