

CPA PART II SECTION 4

CIFA PART II SECTION 4

CCP PART II SECTION 4

QUANTITATIVE ANALYSIS

FRIDAY: 21 May 2021.

Time Allowed: 3 hours.

Answer ALL questions. Marks allocated to each question are shown at the end of the question. Show ALL your workings.

QUESTION ONE

www.masc

(a) Differentiate between "correlation analysis" and "regression analysis".

(2 marks)

(b) Compu World Limited assembles and sells computers. The company estimates that if it optimally assembles computers, it could sell between 1,100 and 2,000 computers per month and the monthly revenue (in thousands of shillings) over this range of sales could be represented by the function $R = 1,000x - 200x^2$.

Where: R is the monthly revenue.

x is the number of computers sold per month (in thousands).

The company estimates that its marginal cost (in thousands of shillings) could be represented by the following function:

 $MC = 200x^2 - 200x + 400$

Where: MC is the marginal cost

x is the number of computers assembled.

The fixed cost of the company amounts to Sh.100,000 per month. If is assumed that all the computers assembled in a given month are sold within the same month.

Required:

(i)	The total cost function.	(2 marks)
(ii)	The profit function.	(2 marks)
(iii)	The optimal monthly output.	(3 marks)
(iv)	The maximum profit of the company.	(2 marks)

(c) The Registrar of Highfliers University has observed that the grade point aggregate of the University's students is normally distributed with a mean of 2.75 and a standard deviation of 0.40.

Required:

- (i) The probability that a randomly selected student from the university has a grade point aggregate of between 2.00 and 3.00. (3 marks)
- (ii) The lowest grade point aggregate that should be obtained by a student for him/her to be among the top ten per cent of the students. (3 marks)
- (iii) Assuming that the university has a total of 10,000 students, determine the number of students having a grade point aggregate of 3.70 or higher. (3 marks)

(Total: 20 marks)

CA43, CF43 & CP43 Page 1 Out of 5

QUESTION TWO

(a) Highlight two properties of each of the following probability distributions:

(i)	Binomial distribution.	(2 marks)
(ii)	Poisson distribution.	(2 marks)

- (b) Enumerate two advantages and two disadvantages of the ordinary least squares method of forecasting. (4 marks)
- (c) An investor intends to purchase shares in one of three companies, A, B and C. The three companies have varying degrees of sensitivity to the state of the economy. There are three states of the economy classified as weak, moderate or strong. The investor has constructed the following pay off table for the profits under the three states of the economy, in millions of shillings.

	State of the economy					
Company	Weak	Moderate	Strong			
A	-4.0	3.5	6.0			
В	-2.0	2.5	4.5			
C	-2.4	2.8	3.5			

The probabilities for the three states of the economy are 0.2, 0.4 and 0.4 for weak, moderate and strong respectively.

Required:

Advise the investor on the best course of action based on the:

(9)	Maxmin criterion.	(2 marks)
(ii)	Maxmax criterion.	(2 marks)
(iii)	Minimax regret criterion.	(3 marks)
(iv)	Expected value of perfect information.	(5 marks) (Total: 20 marks)

QUESTION THREE (a) A baker make

masomor

A baker makes and sells cakes to students through their cafeteria system. The distribution of cakes produced and cakes sold for the last 250 weeks is as follows:

	Number of we		
	Cakes	Cakes	
Number of cakes	Produced	Sold	
150	20 0-20	35	0-35
250	50 21-70	50	36-85
350	80 -1-100	80	25 - 155
450	80 151 -232	65	166-230
500	20 231 - 250	20	231 - 250

Each cake costs Sh.80 to make and is sold for Sh.120 if sold during the week of production, otherwise it is sold during the second week at Sh.60. If not sold during the second week, the cake's value drops to zero and the baker suffers the total loss of production. Weekly demand is satisfied from the week's production and any demand remaining unsatisfied is satisfied from the stock of the previous week. A stock out costs the baker Sh.20 per cake.

The following random numbers are applicable:

Cakes produced	33,	86,	50,	41,	31,	78,	30,	22,	26,	88
Cakes sold	79,	03,	40,	13,	58,	61,	72,	49,	82,	86

Required:

Simulate the baker's average weekly profit over an 8-week period.

(10 marks)

CA43, CF43 & CP43 Page 2 Out of 5

Kazi na Bidii Ltd. sells four types of products. The resources needed to produce one unit of each product and the (b) sales prices are given as follows:

Cost and resources requirements for Kazi na Bidii Ltd.

Resource	Product 1	Product 2	Product 3	Product 4
Raw materials (units)	2	3	4	7
Labour hours	3	4	5	6
Sales price (Sh.)	4	6	7	8

Additional information:

- 1. Currently, 4,600 utits of raw materials and 5,000 labour hours are available.
- 2. To meet customers' demand, exactly 950 total units must be produced and at least 400 units of Product 4 must be produced.
- 3. A computer output of the above linear programming model has been given as follows:

MAX $4x_1 + 6.5x_2 + 7x_3 + 8x_4$

SUBJECT TO:

- 2) $x_1 + x_2 + x_3 + x_4 = 950$
- 3) $x_4 > = 400$
- 4) $2x_1 + 3x_2 + 4x_3 + 7x_4 < = 4600$
- 5) $3x_1 + 4x_2 + 5x_3 + 6x_4 \le 5000$

END

LP OPTIMUM FOUND AT STEP 4

OBJECTIVE FUNCTION VALUE 1) 6650.0000

	END		
		M FOUND AT STEP 4	
www.masomor	cingi.con	OBJECTIVE FUNCTION VALUE	
5	VARIABLE	VALUE	REDUCED COST
n	X1	.000000	1.000000
S	X ₂	400.000000	.000000
na	X ₃	150.000000	.000000
NN.	X4	400.000000	.000000
w	ROW	SLACK OR SURPLUS	DUAL PRICES
	2)	0.000000	3.000000
	3)	0.000000	-2.000000
	4)	0.000000	1.000000
	5)	250.000000	.000000
	NO ITEDATION	IC /	

NO. ITERATIONS 4

RANGES IN WHICH BASIS IS UNCHANGED

		OBJECTIVE COEFFICIENT RANGES			
VARIABLE	CURRENT COEFF	ALLOWABLE INCREASE	ALLOWABLE DECREASE		
X1	4.000000	1.000000	Infinity		
X ₂	6.000000	0.66667	.500000		
X ₃	7.000000	1.000000	.500000		
X4 .	8.000000	2.000000	Infinity		

RIGHT-HAND SIDE RANGES

ROW	CURRENT RHS	ALLOWABLE INCREASE	ALLOWABLE DECREASE
2)	950.000000	50.000000	100.000000
3)	400.000000	37.000000	125.000000
4)	4600.000000	250.000000	150.000000
5)	5000.000000	Infinity	250.000000

Required:

		(i) The optimal	solution to	the problem					(2 marks
		(ii) The optimal	solution if t	the company	raises the	price of prod	uct 2 by Sh ().50 per unit.	(2 marks
								noo per unit.	(2 marks
		(iii) The optimal	Z-value if a	a total of 98() units must	be produced	ł.		(3 marks
		(iv) The optimal	Z-values w	here 4,500 ι	mits and 4,4	100 units of 1	aw materials	are available. (To	(3 marks otal: 20 marks
	QUES	STION FOUR							
	(a)	Enumerate eight appl	ications of a	quantitative	analysis in	business.			(8 marks
	(b)	The following is a pay	y-off matrix	of a zero su	im two pers	on game:			
					Player B s	trategy			
				Ι	II	III	IV	v	
· · ·			Ι	-2	0	0	5	3	
4.5		Player A strategy	II	4	2	1	3	2	
1			III	- 4	÷ 3	0	-2	6	
			IV	5	3	- 4	2	- 6	
	_	Required: The optimal plan for b	ooth players	š.					(5 marks
	co(c)	A beauty therapist ha mean service rate is 8	s observed customers	that the mea	an arrival ra e beauty pa	ate in her be rlour operate	auty parlour es a 12 hour (is 6 customers p day.	er hour and the
	nomsingi.co(c)	A more efficient mac	hine for us	e by the the	rapist is av	ailable for p	urchase. If t	he machine is pu	irchased by the
250		therapist, it would inc lost due to a customer	rease the av	verage service	ce rate at the	e parlour to	12 customers	per hour. The co	ost of each hour
N.M.		Required:							
NN		(i) The average	waiting cos	t per day.					(3 marks
		(ii) Evaluate the	effect of pu	irchasing the	more effic	ient machine	on the avera	ge daily waiting	cost.
									(4 marks)

QUESTION FIVE

Citing an example in each case, explain the difference between a continuous function and a discrete function. (a)

(b) X Ltd. is considering undertaking a project which fequires the following resources:

Activity	Preceding	Durat	ion in days	Total cost	Number of
	activity	Normal	Crash time	normal Sh.	persons per day
A		7	5	7,500	5
В		6	3	6,000	4
C		2	2	2,500	6
D	А	5	4	6,000	5
EN	В	5	4	7,000	. 5
F	E	6	2	8,000	6
G	Е	7	6	6,000	4
Н	Ċ	6	5	7,200	6
I	Н	8	5	9,800	9
J .	D	4	4	3,500	3
K	J	6	5	3,600	2
L	- F	3	2	7,000	12
M ·	G, I	8	4	9,200	6
N	K, L, M	• 4	2	7,700	15

The cost of crashing an activity per day is Sh.1,000.

(4 marks

(4 marks

(Total: 20 marks

WWW.Masomornsingi.com

Required: Using network analysis, determine:

(i) ·	The project's normal duration, normal cost and critical path.	(8 marks)
(ii)	The minimum time in which the project could be completed and the cost of the project. (Total	(8 marks) I: 20 marks)

CA43, CF43 & CP43 Page 5 Out of 5