
 

 

PAPER NO. CT 33 

 

SECTION 3 

 
 
 
 

 

CERTIFIED 

 

INFORMATION COMMUNICATION 
 

TECHNOLOGISTS 

 

(CICT) 

 
 
 
 
 
 
 
 
 
 
 
 

 

STRUCTURED PROGRAMMING 

 
 
 
 
 
 
 
 

 

STUDY TEXT 

 
 
 
 
 
 
 

 

1 www.masomomsingi.co.ke Contact 0728 776 317 
 



 

 

KASNEB SYLLABUS 

 

STRUCTURED PROGRAMMING 

 

GENERAL OBJECTIVE  
This paper is intended to equip the candidate with the knowledge, skills and attitude that will enable 
him/her to apply the structured programming approach to develop programs 

 

LEARNING OUTCOMES 

 

A candidate who passes this paper should be able to; 

 

 Analyse a problem and design an appropriate solution

 Write codes using C programming language

 Test and debug a structured program code

 Produce documentation, both user and technical, to support programs.

 

CONTENT 

 

1. Introduction to structured programming 

 Introduction to programming languages
 Types of programming languages

 Generations of programming languages

 Programming approaches

 Language translators

 Basic concepts of structured programming

 Problem definition, structure and design

 Integrated development environment (IDE)



2. Programming basics 

 Variables and data types
 Input/output statements

 Assignments

 Namespaces

 Comments

 Pre-processor directives

 Expressions and operators

 Control structures

 Writing and running a simple program



3. Functions/sub-programs 

 Functions verses procedures

 Parameter passing

 Recursion

 Calling procedures

 Argument naming

 Event procedures

 Testing and debugging errors

 Writing and running a program using functions and procedures
 

2 www.masomomsingi.co.ke Contact 0728 776 317 
 



 

 

4. Data structures 

 Arrays

 Pointers

 Linked lists

 Unions

 Writing a program using data structures



5. File handling (Input/output) 

 Opening files
 Writing to files

 Closing files



6. Application development 

 Mobile application development
 Collaborative application development



7. Documentation 

 User manuals

 Technical manuals



8. Emerging issues and trends 
 

 

CONTENT PAGE 

 

Chapter 1: Introduction to structured programming…………………………………………………4 

 

Chapter 2: Programming basics…………………………………………………………………….46 

 

Chapter 3: Functions/sub-programs…………………………………………………………..…….92 

 

Chapter 4: Data structures…………………………………………………………………………125 

 

Chapter 5: File handling (Input/output)……………………………………………………………142 

 

Chapter 6: Application development………………………………………………………………149 

 

Chapter 7: Documentation…………………………………………………………………………158 

 

Chapter 8: Emerging issues and trends……………………………………………….……………161 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 www.masomomsingi.co.ke Contact 0728 776 317 
 



 

 

CHAPTER 1 

 

INTRODUCTION TO STRUCTURED PROGRAMMING 

 

 

INTRODUCTION TO PROGRAMMING LANGUAGES 

 

Structured programing is a programming paradigm aimed on improving the clarity, quality, and 

development time of a computer program by making extensive use of subroutines, block 

structures and while loops—in contrast to using simple tests and jumps such as the goto 
statement which could lead to "spaghetti code" which is both difficult to follow and to maintain. 

 

It emerged in the 1960s—particularly from work by Böhm and Jacopini, and a famous letter, Go 
To Statement Considered Harmful, from Edsger Dijkstra in 1968—and was bolstered 

theoretically by the structured program theorem, and practically by the emergence of languages 
such as ALGOL with suitably rich control structures. 
 
 
 

 

TYPES OF PROGRAMMING LANGUAGE 

 

There is no exact system for the classification of programming languages. Usually, classification 
is determined by programming paradigm. Another mode of classification is by the intended 
domain of use. 

 

A language is a medium for communication. The languages we speak are called natural 

languages. A programming language is a subset of the set of natural languages. It contains all the 

symbols, characters, and usage rules that permit a human being to communicate with computers. 

A variety of programming languages have been invented over the years of computer history. 

However, every programming language must accept certain types of written instructions that 

enable a computer system to perform a number of familiar operations. In other words, every 

programming language must have instructions that fall under the following categories: 

 

 Input/output Instructions: A program needs input data from the external world (or 
sometimes given implicitly) with which it performs operations on the input data, and 

generates output (compare with algorithm). Input/output instructions.Provide details on 

the type of input or output operations to be performed, and the storage locations to be 
used during the operations, hence they are provided with purpose.

 Arithmetic Instructions: A program might be required to perform arithmetic operations on the 

data in the program. Arithmetic instructions are provided for the requirement. These perform 

the arithmetic operations of addition, subtraction, multiplication, division, etc.
 Logical/Comparison Instructions: They are used to compare two values to check 

whether the values satisfy a given condition or state.
 
 

 

4 www.masomomsingi.co.ke Contact 0728 776 317 
 

http://en.wikipedia.org/wiki/Goto
http://en.wikipedia.org/wiki/Goto
http://en.wikipedia.org/wiki/Spaghetti_code
http://en.wikipedia.org/wiki/Edsger_Dijkstra


 

 

 
 Storage/Retrieval and Movement Instructions: These are used to store, retrieve, and move 

data during processing. Data may be copied from one storage location to another and 

retrieved as required.
 Control Instructions: These are selection and loop constructs which aid in out-of-

sequence program flow.

 

Although all programming languages have an instruction set that permits these familiar 
operations to be performed, a marked difference is found between the symbols and syntax used 

in machine languages, assembly languages, and high-level languages. 

 

1.8.1. Assembly Language 

 

Some applications are developed by coding in assembly language – a language closest to the 
machine language. This type of application software is most efficient for processing data. 
However, since a particular flavor of the assembly language is designed for a particular 
architecture, the type of assembly language understood by a computer depends upon the 

underlying architecture of the microprocessor used. For example, if a Zilog
®

 microprocessor 
is used, then the machine language understood is Z-80. On the other hand, a flavour of the 

Intel
®

 assembly language is used for a Pentium
®

 microprocessor which differs from the Z-80. 
Thus, assembly languages are architecture-dependent. 

 

1.8.2. High-level Languages 

 

Given the inability of assembly language to adapt across different architectural platforms and 

given the varied nature of real-world problems, a variety of computer languages, called high-

level languages, were developed, each suited best to a model in a particular class of problems. 

High-level language programs are architecture-independent, easier to write, and provide 

easier maintenance and readability than their assembly-language counterparts. However, 

they require longer execution time compared to assembly-language programs. 

 

Different high-level programming languages were introduced in the 1950s to reduce the 

problems that arose in writing code in assembly and machine language. When the first high-level 

languages were developed, the longer translation and execution time were considered as serious 

limitations of the technique. Nonetheless, the following factors contributed to the popularity of 

high-level languages for application development: 

 

 Savings in Programming Time and Training: High-level languages were easier to learn 
and understand. Thus, it took less time and effort to write an error-free program or to 
make corrections and code-revisions.

 Increased Speed and Capacity of Hardware: The third and fourth generations of computer 

hardware brought about a revolution in access time, memory and disk capacities. This caused 

the time overhead incurred by the use of high-level languages to be tolerable.
 Increasing Complexities of Software: With time, software systems grew more complex. 

This necessitated use of complex constructs each of which could represent several lines 
of assembly code and was provided by high-level languages.

 

 

5 www.masomomsingi.co.ke Contact 0728 776 317 
 



 

 

Some popular high-level languages include FORTRAN (FORmula TRANslation), COBOL  
(COmmon Business Oriented Language), Pascal (after Blaise Pascal), C,and Ada (after Ada 
Byron, Countess of Lovelace – the world‘s first computer programmer). 

 

Additional note 

 

Computer programming language can be classified into two major categories: 

 

•Low Level 

•High Level 

 

Low Level Languages 

 

The languages which use only primitive operations of the computer are known as low language. 
In these languages, programs are written by means of the memory and registers available on the 
computer. As we all know that the architecture of computer differs from one machine to another,  
so far each type of computer there is a separate low level programming language. In the other 

words, Programs written in one low level language of one, architectural can‘t be ported on any 

other machine dependent languages. Examples are Machine Language and Assembly Language. 

 

Machine Language 

 

In machine language program, the computation is based on binary numbers. All the instructions 

including operations, registers, data and memory locations are given in there binary equivalent. 

 

The machine directly understands this language by virtue of its circuitry design so these 
programs are directly executable on the computer without any translations. This makes the 
program execution very fast. Machine languages are also known as first generation languages. 

 

A typical low level instruction consists essentially of two parts: 

 

•An Operation Part: 

Specifies operation to be performed by the computer, also known as Opcode. 

 

•An Address Part: 

Specifies location of the data on which operation is to be performed. 

 

Advantages 

 

Machine language makes most efficient use of computer system resources like storage, registers, 

etc. the instruction of a machine language program are directly executable so there is no need of 

translators. Machine language instruction can be used to manipulate the individual bits in a 

computer system with high execution speed due to direct manipulation of memory and registers. 

 

Drawbacks 
 

 

6 www.masomomsingi.co.ke Contact 0728 776 317 
 



 

 

 
Machine languages are machine dependent and, therefore, programs are not portable from 
one computer to other. Programming in machine language usually results in poor programmer  
productivity. Machine languages require programmers to control the use of each register in the 

computer‘s Arithmetic Logic Unit and computer storage locations must be addressed directly, not  
symbolically. Machine language requires a high level of programming skill which increases 

programmer training costs. Programs written in machine language are more error prone and 

difficult to debug because it is very difficult to remember all binary equivalent of register, 

opcode, memory location, etc. program size is comparatively very big due to non-use of reusable 

codes and use of very basic operations to do a complex computation. 

 

Assembly Language 

 

Assembly language are also known as second generation languages. These languages substitutes 

alphabetic or numeric symbols for the binary codes of machine language. That is, we can use 

mnemonics for all opcodes, registers and for the memory locations which provide us with a 

facility to write reusable code in the form of macros. Has two parts, one is macro name and the 

other is macro body which contains the line of instructions. A macro can be called at any point of 

the program by its name to use the instruction. A macro can be called at any point of the program 

by its name to use the instructions given in the macro repetitively. 

 

These language require a translator known as ―Assembler‖ for translating the program code 

written in assembly language to machine language. Because computer can interpret only the 

machine code instruction, once the translation is completed the program can be executed. 

 

Advantages 

 

Assembly languages provide optimal use of computer resources like registers and memory 

because of direct use of these resources within the programs. Assembly language is easier to use 

than machine language because there is no need to remember or calculate the binary equivalents 

for opcode and registers. An assembler is useful for detecting programming errors. Assembly 

language encourages modular programming which provides the facility of reusable code, using 

macro. 

 

Drawbacks 

 

Assembly language programs are not directly executable due to the need of translation. Also, 

these languages are machine dependent and, therefore, not portable from one machine to another. 
Programming in assembly language requires a high level of programming skills and knowledge 

of computer architecture of the particular machine. 
 
 
 
 
 
 
 

High Level Languages (HLL) 
 

 

7 www.masomomsingi.co.ke Contact 0728 776 317 
 



 

 

 
All high level language are procedure-oriented language and are intended to be machine 

independent. Programs are written in statements akin to English language, a great advantage over 

mnemonics of assembly languages require languages use mnemonics of assembly language. That 

is, the high level languages use natural language like structures. These languages require 

translators (compilers and interpreters) for execution. The programs written in a high level 

language can be ported on any computer that is why they are known as machine independent. 

The early high-levellanguage comes in third generation of languages, COBOL, BASIC, APL, 

etc. These languages enable the programmer to write instruction using English words and 

familiar mathematical symbols which makes it easier than technical details of the computer. It 

makes the programs more readable too. 

 

Procedures 

 

Procedures are the reusable code which can be called at any point of the program. Each procedure is 

defined by a name and set of instructions accomplishing a particular task. The procedure can be 

called by its name with the list of required parameters which should pass to that procedure. 

 

Advantages of High Level Languages 

 

These are the third generation languages. These are procedure-oriented languages and are 

machine independent. Programs are written in English like statements. As high level languages 
are not directly executable, translators (compilers and interpreters) are used to convert them in 

machine language equivalent. 

 

Advantages 

 

1) These are easier to learn than assembly language. 

2) Less time is required to write programs. 

3) Theseprovide better documentation. 

4) These are easier to maintain. 

5) These have an extensive vocabulary. 

 

Limitation of Programming language 

 

1) A long sequence statements is to be written for every program. 

2) Additional memory space is required for storing compiler or interpreter. 

3) Execution time is very high as the HLL programs are not directly executable. 

 

A language is a system of communication. A programming language consists of all the symbols, 

characters, and usage rules that permit people to communicate with computers. There are at least 

several hundred, and possibly several thousand different programming languages. Some of these 

are created to serve a special purpose (controlling a robot), while others are more flexible 

general-purpose tools that are suitable for many types of applications. 

 

Definition of Programming Language 
 

 

8 www.masomomsingi.co.ke Contact 0728 776 317 
 



 

 

 
"A programming language is a set of written symbols that instructs the computer hardware to 
perform specific tasks. Typically, a programming language consists of a vocabulary and a set of 
rules (called syntax) that the programmer must learn". 
 

1
st

 generation of programming languages 

 

Machine language is the only programming language that the computer can understand directly 

without translation. It is a language made up of entirely 1s and 0s. There is not, however, one 

universal machine language because the language must be written in accordance with the special 

characteristics of a given processor. Each type or family of processor requires its own machine 

language. For this reason, machine language is said to be machine-dependent (also called 

hardware-dependent). 

 

In the computer‘s first generation, programmers had to use machine language because no other 

option was available. Machine language programs have the advantage of very fast execution 

speeds and efficient use of primary memory. Use of machine language is very tedious, difficult 

and time consuming method of programming. Machine language is low-level language. Since the 

programmer must specify every detail of an operation, a low-level language requires that the  
programmer have detailed knowledge of how the computer works. Programmers had to know a great 

deal aobut the computer‘s design and how it functioned. As a result, programmers were few  
in numbers and lacked complexity. To make programming simpler, other easier-to-use 

programming languages have been developed. These languages, however must ultimately be 
translated into machine language before the computer can understand and use them. 
 

2
nd

 Generation of programming languages 

 

The first step in making software development easier and more efficient was the creation of 

Assembly languages. They are also classified as low-level languages because detailed 

knowledge of hardware is still required. They were developed in 1950s. Assembly languages use 

mnemonic operation codes and symbolic addresses in place of 1s and 0s to represent the 

operation codes. A mnemonic is an alphabetical abbreviation used as memory aid. This means a 

programmer can use abbreviation instead of having to remember lengthy binary instruction 

codes. For example, it is much easier to remember L for Load, A for Add, B for Branch, and C 

for Compare than the binary equivalents i-e different combinations of 0s and 1s. 

 

Assembly language uses symbolic addressing capabilities that simplify the programming process 

because the programmer does not need to know or remember the exact storage locations of 

instructions or data. Symbolic addressing is the ability to express an address in terms of symbols 

chosen by the programmer rather than in terms of the absolute numerical location. Therefore, it 

is not necessary to assign and remember a number that identifies the address of a piece of data. 

 

Although assembly languages represented an improvement, they had obvious limitations. Only 

computer specialists familiar with the architecture of the computer being used can use them. And 

because they are also machine dependent, assembly languages are not easily converted to run on 
other types of computers. 
 

 

9 www.masomomsingi.co.ke Contact 0728 776 317 
 

http://www.byte-notes.com/five-generations-computers


 

 

 
Before they can be used by the computer, assembly languages must be translated into machine 

language. A language translator program called an assembler does this conversion. Assembly 

languages provide an easier and more efficient way to program than machine languages while 

still maintaining control over the internal functions of a computer at the most basic level. The 

advantages of programming with assembly languages are that they produce programs that are 

efficient, use less storage, and execute much faster than programs designed using high-level 

languages. 
 

3
rd

 Generation of programming languages 

 

Third generation languages, also known as high-level languages, are very much like everyday 

text and mathematical formulas in appearance. They are designed to run on a number of different 
computers with few or no changes. 

 

Objectives of high-level languages 

 

 To relieve the programmer of the detailed and tedious task of writing programs in 
machine language and assembly languages.

 To provide programs that can be used on more than one type of machine with very few 
changes.

 To allow the programmer more time to focus on understanding the user‘s needs and 
designing the software required meeting those needs.

 

Most high level languages are considered to be procedure-oriented, or Procedural languages, 

because the program instructions comprise lists of steps, procedures, that tell the computer not 

only what to do but how to do it. High-level language statements generate, when translated, a 

comparatively greater number of assembly language instructions and even more machine 

language instructions. The programmer spends less time developing software with a high level 

language than with assembly or machine language because fewer instructions have to be created. 

 

A language translator is required to convert a high-level language program into machine language.  
Two types of language translators are used with high level languages: compilers and interpreters. 
 

4
th

 Generation of programming languages 

 

Fourth generation languages are also known as very high level languages. They are non-

procedural languages, so named because they allow programmers and users to specify what the 

computer is supposed to do without having to specify how the computer is supposed to do it. 

Consequently, fourth generation languages need approximately one tenth the number of 

statements that a high level languages needs to achieve the same results. Because they are so 

much easier to use than third generation languages, fourth generation languages allow users, or 

non-computer professionals, to develop software. 

 

Objectives of fourth generation languages 

 

 Increasing the speed of developing programs.
 

10 www.masomomsingi.co.ke Contact 0728 776 317 
 



 

 

THIS IS A SAMPLE 

SOFT HARD COPYCOMPLETE NOTES ARE IN  AND IN  

0728 776 317CALL|TEXT|WHATSAPP  

OR 

info@masomomsingi.co.ke Email: 
 
 

 

CHAPTER 2 

 

PROGRAMMING BASICS 

 

VARIABLES AND DATA TYPES 

 

Variables and Data Types  
Variables are the nouns of a programming language: they are the entities (values, data) that act or 

are acted upon. The character-counting program uses two variables--count and args. The 

program increments count each time it reads a character from the input source and ignores args.  
A variable declaration always contains two components: the type of the variable and its name. 

Also, the location of the variable declaration, that is, where the declaration appears in relation to 
other code elements, determines the scope of the variable. 

 

Variable Types  
All variables in the Java language must have a data type. A variable's type determines the values 

that the variable can have and the operations that can be performed on it. For example, the 

declaration int count declares that count is an integer (int). Integers can have only whole number 

values (both positive and negative) and you can use the standard arithmetic operators (+, -, and 

so on) on integers to perform the standard arithmetic operations (addition, subtraction, and so 

on). There are two major categories of data types in the Java language: primitive types and 

reference types. 

 

Primitive types contain a single value and include types such as integer, floating point, 

character, and Boolean. The following table lists, by keyword, all of the primitive data types 

supported by Java, their size and format, and a brief description of each. 
 

 

TypeSize/Format Description  

(whole numbers)   

byte 8-bit two's complement Byte-length integer 

short 16-bit two's complement Short integer 

int 32-bit two's complement Integer 

long 64-bit two's complement Long integer 

(real numbers)   

float 32-bit IEEE 754 Single-precision floating point 

double 64-bit IEEE 754 Double-precision floating point 

(other types)   

Char 16-bit Unicode character A single character 



 

 

Boolean true or false aBoolean value (true or false) 

Reference types are called such because the value of a reference variable is a reference (a pointer 

in other terminology) to the actual value or set of values represented by the variable. For 

example, the character-counting program declares (but never uses) one variable of reference 

  
type, args, which is declared to be an array of String objects. When used in a statement or 
expression, the name args evaluates to the address of the memory location where the array 

lives. This is in contrast to the name of a primitive variable, the count variable, which evaluates 
to the variable's actual value.  
Besides arrays, classes and interfaces are also reference types. Thus when you create a class 
or interface you are in essence defining a new data type. See Objects, Classes, and Interfaces 

for information about defining your own classes and interfaces. 

 

Note to C and C++ Programmers: There are three C Data Types Not Supported By the Java 

Language. They are pointer, struct, and union. These data types are not necessary in Java; you 

use classes and objects instead. 

 

Variable Names  
A program refers to a variable's value by its name. For example, when the character-counting 

program wants to refer to the value of the count variable, it simply uses the name count. By 

convention, variable names begin with a lower case letter (class names begin with a capital letter). 

 

In Java, a variable name: 

 

 Must be a legal Java identifier comprised of a series of Unicode characters. Unicode is a 
character coding system designed to support text written in diverse human languages. 
Unicode allows for the codification of up to 65,536 characters (currently 34,168 have 
been assigned). This allows you to use characters in your Java programs from various 
alphabets such as Japanese, Greek, Russian, Hebrew, and so on. This is important so that 
programmers can write code that is meaningful in their native languages.

 must not be the same as a keyword or a Boolean literal (true or false)  
 must not have the same name as another variable whose declaration appears in the same 

scope

 

Rule #3 implies that variables may have the same name as another variable whose declaration 
appears in a different scope. This is true. In addition, in some situations, a variable may share 

names with another variable which is declared in a nested scope.  
By convention, variables names begin with a lower case letter. If a variable name is comprised of 
more than one word, such as is Visible, the words are joined together and each word after the 

first begins with an upper case letter. 

 

Scope  
A variable's scope is the block of code within which the variable is accessible. Also, a variable's 
scope determines when the variable is created and destroyed. You establish the scope of a 

variable when you declare it. Scope places a variable into one of these four categories: 

 

 member variable

 local variable

 method parameter
 exception handler parameter 

A member variable is a member of a class or an object and is declared within a class (but not within 

http://www.karlin.mff.cuni.cz/network/prirucky/javatut/java/javaOO/index.html
http://www.karlin.mff.cuni.cz/network/prirucky/javatut/java/javaOO/index.html
http://www.karlin.mff.cuni.cz/network/prirucky/javatut/java/nutsandbolts/dataTypes.html
http://www.karlin.mff.cuni.cz/network/prirucky/javatut/java/nutsandbolts/dataTypes.html
http://www.karlin.mff.cuni.cz/network/prirucky/javatut/java/nutsandbolts/keywords.html


 

 

 
 

 

 

any of the class's methods). The character-counting program declares no member variables. 

Local variables are declared within a method or within a block of code in a method. In the 

character-counting example, count is a local variable. The scope of count, that is, the code that 

can access count, extends from the declaration of count to the end of the main() method 

(indicated by the first right curly bracket ('}') that appears in the sample code). In general, a local 

variable is accessible from its declaration to the end of the code block in which it was declared. 

 

Method parameters are formal arguments to methods and constructors and are used to pass values 

into methods and constructors. The discussion about writing methods on the Implementing Methods 

page in the next lesson talks about passing values into methods and constructors through method 

parameters. In the character-counting example, args is a method parameter to the main() method. The 

scope of a method parameter is the entire method or constructor for which it is a parameter. So, in the 

example, the scope of args is the entire main method. 

 

Exception handler parameters are similar to method parameters but are arguments to an 

exception handler rather than to a method or a constructor. The character-counting example does 

not have any exception handlers, so it doesn't have any exception handler parameters. Handling 
Errors using Exceptions talks about using Java exceptions to handle errors and shows you how to 

write an exception handler with its parameter. 

 

Variable Initialization  
Local variables and member variables can be initialized when they are declared. The 
character-counting program provides an initial value for count when declaring it: int count = 

0; The value assigned to the variable must match the variable's type.  
Method parameters and exception handler parameters cannot be initialized in this way. The 
value for a parameter is set by the caller 

 

Additional notes 

 

At the core of any program are variables. Variables are where the dynamic information is stored. 

When you type your name into a web form and send it, your name is a variable. 

 

Not all variables are the same though. In fact, there are many different types of variables that nearly 

every programming language has. Let‘s look at a small selection of them, as well as their 

short names if they have one: 

 

Character (char): This is a single character, like X, £, 4, or *. You don‘t often create single  
character variables, but they are at the core of the language so you need to know what they 

areString: This is a ―string‖ of characters (see how they‘re at the core?) of any length. In my 

previous example – your name on web form – your name would be stored as a String variable. 

 

Integer (int): A whole number – whole meaning there are no digits after a decimal point. So 65 

would be a valid integer; 65.78 would not. 

 

Floating-point number (float): A number that may have digits after the decimal place. 65.00 is 

technically a floating point number, even though it could be represented just as easily as an integer 
 

 

http://www.karlin.mff.cuni.cz/network/prirucky/javatut/java/javaOO/methods.html
http://www.karlin.mff.cuni.cz/network/prirucky/javatut/java/javaOO/methods.html
http://www.karlin.mff.cuni.cz/network/prirucky/javatut/java/javaOO/methods.html
http://www.karlin.mff.cuni.cz/network/prirucky/javatut/java/exceptions/index.html
http://www.karlin.mff.cuni.cz/network/prirucky/javatut/java/exceptions/index.html
http://www.karlin.mff.cuni.cz/network/prirucky/javatut/java/exceptions/index.html


 

 

 

 

THIS IS A SAMPLE 

SOFT HARD COPYCOMPLETE NOTES ARE IN  AND IN  

0728 776 317CALL|TEXT|WHATSAPP  

OR 

info@masomomsingi.co.ke Email:    
as 65. It takes more memory to store a float, which is why there is a distinction instead of just 
creating a ―number‖ data type. 

 

Boolean (bool): A variable to represent true or false (or it could also mean 0 or 1, on or off). The 

simplest data type and commonly used – get used to this one! 

 

Array: These are essentially lists of other variables. There are a variety of array types depending on 

the language, but basically they‘re just a collection of variables in a sequential list. For  
example: 1, 2,3,4,5 might be stored as an array (of length 5) containing integer variables. Each 

variable in the array can then be accessed using an index – but you should know the first item in the 

list has an index of 0 (yes, that can be confusing sometimes). By storing them as an array, we make it 

easy to send a collection of variables around the program and do things with them as a whole –  
such as counting how many things are in the array or doing the same thing to each item (which 
is called an iteration, and we‘ll get to that another time). You should also know that a string is  
actually just an array of characters. 

 

Strong and Weak Typed: 

 

Moving on, programming languages can be divided into those that are strongly-typed, and those 
that are weakly-typed. A strongly typed language (such as Java) requires that you explicitly  
declare what type of variable you are creating, and they get very upset if you start trying to do 

things with them that you shouldn‘t. For example, a strongly typed language would give you 
errors if you tried to add an integer and a string together. ―How on earth am I supposed to 

mathematically add together a word and a number?‖ it would cry – even though you as a human 
clearly understand a string ―5‖ is semantically the same as an integer with the value of 5. 

 

A weakly typed language on the other hand would just say ―whatever‖, and give it a shot without 

complaint – but the answer could go either way. Perhaps ―5+5‖ = 10, perhaps it‘s ―55‖ – who  
knows! It might seem at first like weakly-typed languages are easier to write, but they can often 
result in curious errors and unexpected behavior that take you a while to figure out. 

 

Assignment and Equality: 

 

Nothing to do with socialism…Instead, it‘s a concept that catches out many programming newbies 

so I wanted to address it now. There is a difference between assigning and testing for equality. 

Consider the following, both of which you would probably read as ―A is equal to 5‖: 

 

A = 5; 

A == 5; 

 

Can you tell the difference? The first is known as assignment. It means assignthe value of 5to 

variable A. You are ―setting‖ the variable value. The second statement is one of equality. It‘s a test  



 

 

– so it actually means ―is A equal to 5?‖ – The answer given back to you would be a 

Boolean value, true or false. You‘ll see how this can mess up your programs in later lessons. 
 
 

THIS IS A SAMPLE 

SOFT HARD COPYCOMPLETE NOTES ARE IN  AND IN  

0728 776 317CALL|TEXT|WHATSAPP  

OR 

info@masomomsingi.co.ke Email: 
 
 
 
 

CHAPTER 3 

 

FUNCTIONS/ SUB-PROGRAMS 

 

USER-DEFINED FUNCTIONS/SUB-PROGRAMS:  
In many programs, a task needs to be completed more than once. For example, you may need 
to calculate the factorial of a number many times in a program.  
Additionally, if a program is very long it sometimes makes sense to break the program into many 

parts. For example, in air quality modeling there are sub-programs for handling advection, 
diffusion, chemistry, emissions, deposition, etc. 

You are already familiar with the built-in functions such as cos(x), sqrt(x), and mean(x). Often 

you will want to write your own functions to accomplish tasks that your program needs to do 

often. Note: Technically, it is possible to never use functions in your Matlab/Octave code. 

However, your code may become unnecessarily complicated and lengthy if you do not use them.  
You call a function in the main program or another function. A list of arguments (input) is sent 

to the function and the function returns some output.  
With cos(x), the argument x (an array) is passed down to the function cos( ). The answer (an 

array) is returned as output  
User-defined functions are created in separate M-Files. These M-Files must have the 
following syntax:  
Function [output variables] = function name(input variables, also called arguments) 

Commands 

return 

endfunction  
(Note: If you only have 1 output variable, which often is the case, you may leave off the brackets.) 

Let‘s create a function y(x) = x2 + 2x + 1 using techniques we have learned in the past. 

In main.m:  
x = input('Enter the value of x: '); 

y = x^2 + 2*x + 1; 

fprintf('The value of y(x) is: %f \n', y) 

After execution: (assume the value of 3 is entered by the user) 

Enter the value of x: 3 

The value of y(x) is: 16.000000 2.  
We can do the same task with a function. The function M-File name must be the same as the 
name of the function (function_name). For example, 

 

In the M-File y.m: 

function [result] = y(x)  



 

 

result = x^2 + 2*x + 1; 

return 

endfunction 

There is one argument (input) called x and one output variable called output. You can call the 

function y(x) in any other M-File as long as function M-file and M-file that calls the function are 

both in the same directory. For example, in the main M-File (let‘s call it ―main.m‖),  
In main.m: 
 

x = input('Enter the value of x: '); 

fprintf('The value of y(x) is: %f \n', y(x)) 

fprintf('The value of y(x) is: %f \n', y(1)) 

At command line: 

>main 

Enter the value of x: 3 

The value of y(x) is: 16.000000 

The value of y(x) is: 4.000000 

IMPORTANT: Both main.m and y.m must be in the same directory!  
Each time you call a function, the VALUE of the argument in the calling program (main.m, in 
this case) is passed down to the argument in the function. In the above example,  
- In the first fprintf( ) the VALUE of x (which is 3) is passed down to the variable x in the 

function y. This value is used to calculate result (which is 16) in the function y, which is the 

output for the function. Once the function is completed, VALUE of the result is passed back to 

the calling program and displayed to the screen. 
- In the second fprintf( ) the VALUE of the argument (which is 1) is passed down to the variable x in 

the function y. This value is used to calculate result (which is 4) in the function y, which is the 

output for the function. Once the function is completed, VALUE of the result is passed back to the 

calling program and displayed to the screen.You can call up multiple functions within a program.  
Let‘s create another function z(x) = x-1. First, we need to create another M-file called z.m. 

In the M-File z.m: 

function [result] = z(x) 

result = x-1; 

return 

endfunction 

 

Now we can use this function whenever we want in the main program as long as z.m is in the same  
directory as main.m 

In main.m: 

x = input('Enter the value of x: '); 

fprintf('The value of y(x) is: %f \n', y(x) ) 

fprintf('The value of z(x) is: %f \n', z(x) ) 

fprintf('The value of y(x) * z(x) is: %f \n', z(x)*y(x) ) 

x = 2; % The value of x has changed 

fprintf('The value of y(x) * z(x) is: %f \n', z(x)*y(x) ) 

After execution: 

Enter the value of x: 3 

The value of y(x) is: 16.000000 

The value of z(x) is: 2.000000  
The value of y(x) * z(x) is: 32.000000 

The value of y(x) * z(x) is: 9.000000  
You can call functions as many times as you like, which is the entire point of creating functions 
in the first place. 



 

 

 
 
 
 

 

Functions with multiple input: 

Thus far, we have only examined functions with a single input (or argument). We can pass down  
many arguments to functions. The surface area of a cylinder is a function of both the height 
and radius. Let‘s make a function to calculate the surface area of a cylinder called SAC.  
In SA_cyl.m: 

function [SA] = SAC(h,r) 

SA = 2*pi*r^2 + 2*pi*r*h; 

return 

endfunction 4 . 

In main.m: 

r1 = 2; 

h1 = 1; 

fprintf ('The surface area of cylinder 1 is: %7.2f \n‘,SAC (h1, r1) ) 

r2 = 1;  
h2 = 1; 

fprintf('The surface area of cylinder 2 is: %7.2e \n ' , SAC(h2,r2) ) 

At command line: 

>main 

The surface area of cylinder 1 is: 37.70 

The surface area of cylinder 2 is: 1.26e+001 

Notice that the arguments are labeled h1, r1, h2, and r2, not the names of the arguments in the 

function (h and r). Remember that we are only sending down the VALUE of the arguments h1, 

r1, h2, and r2 to the function. 

 

Functions with multiple output:  
Thus far, we have only made functions with a single output. But often we want functions 

to calculate multiple quantities. Here is a currency converter. In main.m: 
 

dollars = input('Enter number of dollars: '); 

yenperdollar = 90; 

eurosperdollar = 0.70;  
[Yen, euros] = convert (dollars, yenperdollar, 
eurosperdollar); fprintf('This is %6.1f yen \n', yen); 

fprintf('This is %6.1f euros \n', euros); 

In convert.m: 

function [yen, euros] = convert (dollars, yenperdollar, eurosperdollar) 

yen = dollars * yenperdollar; 

euros = dollars * europerdollar; 

return  
endfunction 

At command line: 

>main 

Enter number of dollars: 50 

This is 4500.0 yen 

This is 35.0 euro 
 

 



 

 

Functions definition 

 

Functions are used extensively in computer languages and spreadsheets. Recall that a function 

takes an input , does some calculations on the input, and then gives back a result. In computer 

programming they are a very similar idea, with a few changes to naming and properties. 

 

A function in a programming language is a program fragment that 'knows' how to perform a 

defined task. For example a function may be written that finds the average of three supplied 

numbers. Once written, this function may be used many times without having to rewrite it over 
and over. 

 

Example - the function avg 

function avg(a,b,c)  
{ var result = 
(a+b+c)/3; return result; 

 

The above, written in JavaScript, performs the average function. On the first line, the name of the 

function is 'avg', It expects three inputs called a,b and c. In computer programming these are 

called parameters; they stand for the three values sent when the function is used. The function 

has its own private variable called result which is calculated from the parameters and then the 

function 'returns' the result; 

 

Using the function 

 

In computer programming the act of using the function is "calling the function". In the 
program below there are two "calls" to the function. In each case, three particular values are 

sent as parameters and the result will be the average of the three.  
/* main program*/ 

.. 

var averageHt = avg(6, 4, 7); 

.. 

.. 

.. 

var averageAge = avg(30, 45, 21); 

.. 

 

So as you can see, functions in computer programming and spreadsheets are very similar to those in 

math, and serve to 'package' some calculations so it can be separated and used over and over. 
 
 
 
 
 
 
 
 
 
 
 
 

95 www.masomomsingi.co.ke Contact 0728 776 317 
 

http://www.mathopenref.com/function.html


 

 

THIS IS A SAMPLE 

SOFT HARD COPYCOMPLETE NOTES ARE IN  AND IN  

0728 776 317CALL|TEXT|WHATSAPP  

OR 

info@masomomsingi.co.ke Email: 
 
 
 
 
 
 
 

CHAPTER 4 

 

DATA STRUCTURES 

 

 

Introduction 

In computer science, a data structure is a particular way of storing and organizing data in a 

computer so that it can be used efficiently.  
Different kinds of data structures are suited to different kinds of applications, and some are highly 

specialized to specific tasks. For example, B-trees are particularly well-suited for implementation of 

databases, while compiler implementations usually use hash tables to look up identifiers. 

 

Data structures provide a means to manage large amounts of data efficiently, such as large 

databases and internet indexing services. Usually, efficient data structures are a key to designing 

efficient algorithms. Some formal design methods and programming languages emphasize data 

structures, rather than algorithms, as the key organizing factor in software design. Storing and 

retrieving can be carried out on data stored in both main memory and in secondary memory. 

 

Overview 

 
 An array stores a number of elements in a specific order. They are accessed using an 

integer to specify which element is required (although the elements may be of almost 

any type). Typical implementations allocate contiguous memory words for the elements 

of arrays (but this is not always a necessity). Arrays may be fixed-length or expandable. 

 Records (also called tuples or structs) are among the simplest data structures. A record 

is a value that contains other values, typically in fixed number and sequence and typically 

indexed by names. The elements of records are usually called fields or members. 

 A hash table (also called a dictionary or map) is a more flexible variation on a record, 

in which name-value pairs can be added and deleted freely.  
 A union type specifies which of a number of permitted primitive types may be stored in 

its instances, e.g. "float or long integer". Contrast with a record, which could be defined 

to contain a float and an integer; whereas, in a union, there is only one value at a time. 

Enough space is allocated to contain the widest member datatype. 

 A tagged union (also called a variant, variant record, discriminated union, or disjoint 

union) contains an additional field indicating its current type, for enhanced type safety.  
 A set is an abstract data structure that can store specific values, without any particular 

order, and with no repeated values. Values themselves are not retrieved from sets, rather 

one tests a value for membership to obtain a boolean "in" or "not in".  

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_%28computing%29
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/B-tree
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Web_indexing
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Main_memory
http://en.wikipedia.org/wiki/Secondary_memory
http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Record_%28computer_science%29
http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Map_%28computer_science%29
http://en.wikipedia.org/wiki/Name-value_pair
http://en.wikipedia.org/wiki/Union_%28computer_science%29
http://en.wikipedia.org/wiki/Record_%28computer_science%29
http://en.wikipedia.org/wiki/Tagged_union
http://en.wikipedia.org/wiki/Variant_type
http://en.wikipedia.org/wiki/Set_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Abstract_data_structure
http://en.wikipedia.org/wiki/Sequence


 

 

 Graphs and trees are linkedabstract data structures composed of nodes. Each node 

contains a value and also one or more pointers to other nodes. Graphs can be used to 

represent networks, while variants of trees can be used for sorting and searching, having 

their nodes arranged in some relative order based on their values. 

 An object contains data fields, like a record, and also contains program code fragments 

for accessing or modifying those fields. Data structures not containing code, like those 

above, are called plain old data structures. 


Many others are possible, but they tend to be further variations and compounds of the above. 

 

Basic principles 

 

Data structures are generally based on the ability of a computer to fetch and store data at any 

place in its memory, specified by an address—a bit string that can be itself stored in memory and 

manipulated by the program. Thus the record and array data structures are based on computing 

the addresses of data items with arithmetic operations; while the linked data structures are based 

on storing addresses of data items within the structure itself. Many data structures use both 

principles, sometimes combined in non-trivial ways (as in XOR linking). 

 
The implementation of a data structure usually requires writing a set of procedures that create and 

manipulate instances of that structure. The efficiency of a data structure cannot be analyzed 

separately from those operations. This observation motivates the theoretical concept of an abstract 

data type, a data structure that is defined indirectly by the operations that may be performed on it, 

and the mathematical properties of those operations (including their space and time cost). 

 

Language support 

 

Most assembly languages and some low-level languages, such as BCPL (Basic Combined 

Programming Language), lack support for data structures. On the other hand, many high-level 

programming languages and some higher-level assembly languages, such as MASM, have 

special syntax or other built-in support for certain data structures, such as records and arrays. For 

example, the C and Pascal languages support structs and records, respectively, in addition to 

vectors (one-dimensional arrays) and multi-dimensional arrays. 

 

Most programming languages feature some sort of library mechanism that allows data 

structure implementations to be reused by different programs. Modern languages usually come 

with standard libraries that implement the most common data structures. Examples are the 

C++Standard Template Library, the Java Collections Framework, and Microsoft's .NET 

Framework. 

 

Modern languages also generally support modular programming, the separation between the 
interface of a library module and its implementation. Some provide opaque data types that allow 

clients to hide implementation details. Object-oriented programming languages, such as C++, 
Java and Smalltalk may use classes for this purpose. 

 
Many known data structures have concurrent versions that allow multiple computing threads 
to access the data structure simultaneously 
 
 
 
 
 
 

http://en.wikipedia.org/wiki/Graph_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Tree_%28data_structure%29
http://en.wikipedia.org/wiki/Linked_data_structure
http://en.wikipedia.org/wiki/Node_%28computer_science%29
http://en.wikipedia.org/wiki/Pointer_%28computer_programming%29
http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Plain_old_data_structure
http://en.wikipedia.org/wiki/Record_%28computer_science%29
http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Arithmetic_operations
http://en.wikipedia.org/wiki/Linked_data_structure
http://en.wikipedia.org/wiki/XOR_linked_list
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/BCPL
http://en.wikipedia.org/wiki/High-level_programming_languages
http://en.wikipedia.org/wiki/High-level_programming_languages
http://en.wikipedia.org/wiki/MASM
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Pascal_%28programming_language%29
http://en.wikipedia.org/wiki/Struct
http://en.wikipedia.org/wiki/Array_data_type
http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Java_Collections_Framework
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Interface_%28computing%29
http://en.wikipedia.org/wiki/Opaque_data_type
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/Classes_%28computer_science%29
http://en.wikipedia.org/wiki/Concurrent_data_structure


 

 

 
 
 
ARRAYS 

 

The simplest type of data structure is a linear array. This is also called one-dimensional array. In 

computer science, an array data structure or simply an array is a data structure consisting of a 

collection of elements (values or variables), each identified by at least one array index or key. An 

array is stored so that the position of each element can be computed from its index tuple by a 

mathematical formula. 

 
For example, an array of 10 integer variables, with indices 0 through 9, may be stored as 10 words at 

memory addresses 2000, 2004, 2008, … 2036, so that the element with index i has the address 

2000 + 4 × i. 

 

Because the mathematical concept of a matrix can be represented as a two-dimensional grid, 

two-dimensional arrays are also sometimes called matrices. In some cases the term "vector" is 

used in computing to refer to an array, although tuples rather than vectors are more correctly the 

mathematical equivalent. Arrays are often used to implement tables, especially lookup tables; the 

word table is sometimes used as a synonym of array. 

 
Arrays are among the oldest and most important data structures, and are used by almost every 

program. They are also used to implement many other data structures, such as lists and strings. They 

effectively exploit the addressing logic of computers. In most modern computers and many external 

storage devices, the memory is a one-dimensional array of words, whose indices are their addresses. 

Processors, especially vector processors, are often optimized for array operations. 

 

Arrays are useful mostly because the element indices can be computed at run time. Among other 

things, this feature allows a single iterative statement to process arbitrarily many elements of an 

array. For that reason, the elements of an array data structure are required to have the same size 

and should use the same data representation. The set of valid index tuples and the addresses of 

the elements (and hence the element addressing formula) are usually, but not always, fixed while 

the array is in use. 

 

The term array is often used to mean array data type, a kind of data type provided by most high-

level programming languages that consists of a collection of values or variables that can be 

selected by one or more indices computed at run-time. Array types are often implemented by 

array structures; however, in some languages they may be implemented by hash tables, linked 

lists, search trees, or other data structures. 

 

The term is also used, especially in the description of algorithms, to mean associative array or 
"abstract array", a theoretical computer science model (an abstract data type or ADT) intended to 
capture the essential properties of arrays. 

 

Additional notes  
1. Array solves the problem of storing a large number of values and manipulating them is a data 
structure designed to store a fixed-size sequential collection of elements of the same type, i.e., it 

is a collection of variables of the same type 

2. Array Declarations. creates a storage location for a Reference to an Array, i.e., creating a 
 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Value_%28computer_science%29
http://en.wikipedia.org/wiki/Variable_%28programming%29
http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Word_%28data_type%29
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Table_%28information%29
http://en.wikipedia.org/wiki/Lookup_table
http://en.wikipedia.org/wiki/List_%28computing%29
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/External_storage
http://en.wikipedia.org/wiki/External_storage
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Vector_processor
http://en.wikipedia.org/wiki/Run_time_%28program_lifecycle_phase%29
http://en.wikipedia.org/wiki/Statement_%28programming%29
http://en.wikipedia.org/wiki/Array_data_type
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Search_tree
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Theoretical_computer_science
http://en.wikipedia.org/wiki/Abstract_data_type


 

 

 
Reference Variable for an Array double[ ] temperature; -- preferred notation 
double temperature[ ]; -- inherited from the C programming language  
3. Array Creation. Specify the Array Size, i.e., Determine the Array Length ,Allocate Memory 
for the Array & Assign a Reference to that Memory Location 

 

temperature = new double[24]; 

which allocates sufficient memory to store 24 different temperature readings 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
 

 

POINTERS 

 

In computer science, a pointer is a programming language object whose value refers directly to 

(or "points to") another value stored elsewhere in the computer memory using its address. For 

high-level programming languages, pointers effectively take the place of general purpose 

registers in low-level languages such as assembly language or machine code, but may be in 

available memory. A pointer references a location in memory, and obtaining the value stored at 

that location is known as dereferencing the pointer. A pointer is a simple, more concrete 

implementation of the more abstract reference data type. Several languages support some type of 

pointer, although some have more restrictions on their use than others. As an analogy, a page 

number in a book's index could be considered a pointer to the corresponding page; dereferencing 

such a pointer would be done by flipping to the page with the given page number. 

 

Pointers to data significantly improve performance for repetitive operations such as traversing 

strings, lookup tables, control tables and tree structures. In particular, it is often much cheaper in 
time and space to copy and dereference pointers than it is to copy and access the data to which 

the pointers point. 

 
Pointers are also used to hold the addresses of entry points for called subroutines in 

procedural programming and for run-time linking to dynamic link libraries (DLLs). In object-

oriented programming, pointers to functions are used for bindingmethods, often using what 
are called virtual method tables. 

 

While "pointer" has been used to refer to references in general, it more properly applies to data 

structures whose interface explicitly allows the pointer to be manipulated (arithmetically via 

pointer arithmetic) as a memory address, as opposed to a magic cookie or capability where this 

is not possible. Because pointers allow both protected and unprotected access to memory 

addresses, there are risks associated with using them particularly in the latter case. Primitive 

pointers are often stored in a format similar to an integer; however, attempting to dereference or 

"look up" a pointer whose value was never a valid memory address would cause a program to 

crash. To alleviate this potential problem, as a matter of type safety, pointers are considered a 

separate type parameterized by the type of data they point to, even if the underlying 

representation is an integer. Other measures may also be taken. 
 
 

 

128 www.masomomsingi.co.ke Contact 0728 776 317 
 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Memory_address
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/General_purpose_register
http://en.wikipedia.org/wiki/General_purpose_register
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Dereferencing
http://en.wikipedia.org/wiki/Reference_%28computer_science%29
http://en.wikipedia.org/wiki/String_%28computer_science%29#String_processing_algorithms
http://en.wikipedia.org/wiki/String_%28computer_science%29#String_processing_algorithms
http://en.wikipedia.org/wiki/Control_table
http://en.wikipedia.org/wiki/Tree_%28data_structure%29
http://en.wikipedia.org/wiki/System_call
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Dynamic_link_library#Explicit_run-time_linking
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Name_binding
http://en.wikipedia.org/wiki/Virtual_method_table
http://en.wikipedia.org/wiki/Magic_cookie
http://en.wikipedia.org/wiki/Capability-based_security
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Type_safety


 

 

Formal description 

 

In computer science, a pointer is a kind of reference. 

 

A data primitive (or just primitive) is any datum that can be read from or written to computer 
memory using one memory access (for instance, both a byte and a word are primitives). 

 

A data aggregate (or just aggregate) is a group of primitives that are logically contiguous in 

memory and that are viewed collectively as one datum (for instance, an aggregate could be 3 

logically contiguous bytes, the values of which represent the 3 coordinates of a point in space). 

When an aggregate is entirely composed of the same type of primitive, the aggregate may be 

called an array; in a sense, a multi-byte word primitive is an array of bytes, and some programs 

use words in this way. 

 

In the context of these definitions, a byte is the smallest primitive; each memory address 
specifies a different byte. The memory address of the initial byte of a datum is considered the 

memory address (or base memory address) of the entire datum. 

 

A memory pointer (or just pointer) is a primitive, the value of which is intended to be used as a 

memory address; the pointer is said to point to a memory address, or point to a datum [in 
memory] when the pointer's value is the datum's memory address. 

 

More generally, a pointer is a kind of reference, the pointer is said to reference a datum stored 

somewhere in memory; to obtain that datum is to dereference the pointer. The feature that 
separates pointers from other kinds of reference is that a pointer's value is meant to be 

interpreted as a memory address, which is a rather low-level concept. 

 

References serve as a level of indirection: A pointer's value determines which memory address 
(that is, which datum) is to be used in a calculation. Because indirection is a fundamental aspect 

of algorithms, pointers are often expressed as a fundamental data type in programming 
languages; in statically (or strongly) typed programming languages, the type of a pointer 

determines the type of the datum to which the pointer points. 

 

Use in data structures 

 
When setting up data structures like lists, queues and trees, it is necessary to have pointers to 

help manage how the structure is implemented and controlled. Typical examples of pointers are 

start pointers, end pointers, and stack pointers. These pointers can either be absolute (the actual 

physical address or a virtual address in virtual memory) or relative (an offset from an absolute 

start address ("base") that typically uses fewer bits than a full address, but will usually require 

one additional arithmetic operation to resolve). 

 
A two-byte offset, containing a 16-bit, unsigned integer, can be used to provide relative addressing 

for up to 64 kilobytes of a data structure. This can easily be extended to 128K, 256K or 512K if the 

address pointed to is forced to be on a half-word, word or double-word boundary (but, requiring an 

additional "shift left" bitwise operation—by 1, 2 or 3 bits—in order to adjust the offset by a factor 
 

129 www.masomomsingi.co.ke Contact 0728 776 317 
 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Reference_%28computer_science%29
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Word_%28data_type%29
http://en.wikipedia.org/wiki/Logical_address
http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Memory_address
http://en.wikipedia.org/wiki/Memory_address
http://en.wikipedia.org/wiki/Reference_%28computer_science%29
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Type_system#Static_typing
http://en.wikipedia.org/wiki/Strongly_typed_programming_language
http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/List_%28computing%29
http://en.wikipedia.org/wiki/List_%28computing%29
http://en.wikipedia.org/wiki/Stack_%28data_structure%29
http://en.wikipedia.org/wiki/Physical_address
http://en.wikipedia.org/wiki/Virtual_address
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Offset_%28computer_science%29
http://en.wikipedia.org/wiki/Bitwise_operation


 

 

 

THIS IS A SAMPLE 

SOFT HARD COPYCOMPLETE NOTES ARE IN  AND IN  

0728 776 317CALL|TEXT|WHATSAPP  

OR 

info@masomomsingi.co.ke Email: 
 

 

CHAPTER 5 

 

FILE HANDLING (INPUT/OUTPUT) 

 

 

This chapter will explain following functions related to files: 

 

 Opening a file

 Reading a file

 Writing a file

 Closing a file

 

Opening a File 

 

The PHP fopen() function is used to open a file.It requires two arguments stating first the file 

name and then mode in which to operate. 

 

The first parameter of this function contains the name of the file to be opened and the 
second parameter specifies in which mode the file should be opened:  

 

<html> 

<body> 

 

<?php 

$file=fopen("welcome.txt","r"); 

?> 

 

</body> 

</html>  

 

Files modes can be specified as one of the six options in this table.  
 

 

 

 



 

 

 

Mode Description 
   

Read only. Opens the file for reading only. 
r 

Places the file pointer at the beginning of the file.   

Read/Write.Opens the file for reading and writing. 
r+ 

Places the file pointer at the beginning of the file.  
 
 
 
 
 

THIS IS A SAMPLE 

SOFT HARD COPYCOMPLETE NOTES ARE IN  AND IN  

0728 776 317CALL|TEXT|WHATSAPP  

OR 

info@masomomsingi.co.ke Email: 

 

 

 

 

 

 

CHAPTER 6 

 

APPLICATION DEVELOPMENT 

 

 

Coding- In programming, code (noun) is a term used for both the statements written in a 

particular programming language - the source code , and a term for the source code after it has 

been processed by a compiler and made ready to run in the computer - the object code . 

 

To code (verb) is to write programming statements - that is, to write the source code for a program. 

 

MOBILE APPLICATION DEVELOPMENT 

 

Mobile application development is the process by which application software is developed for 

low-power handheld devices, such as personal digital assistants, enterprise digital assistants or 

mobile phones. These applications can be pre-installed on phones during manufacturing, 

downloaded by customers from various mobile software distribution platforms, or delivered as 

web applications using server-side or client-side processing (e.g. JavaScript) to provide an 

"application-like" experience within a Web browser. Application software developers also have 

http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Mobile_device
http://en.wikipedia.org/wiki/Personal_digital_assistant
http://en.wikipedia.org/wiki/Personal_digital_assistant
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Installation_%28computer_programs%29
http://en.wikipedia.org/wiki/List_of_digital_distribution_platforms_for_mobile_devices


 

 

to consider a lengthy array of screen sizes, hardware specifications and configurations because of 

intense competition in mobile software and changes within each of the platforms.Mobile app 

development has been steadily growing, both in terms of revenues and jobs created. A 2013 

analyst report estimates there are 529,000 direct App Economy jobs within the EU 28 members, 

60% of which are mobile app developers. 

 

How To Build Your First Mobile App In 12 Steps: Part 1 

 
So you woke up in the middle of the night and had this great idea for an amazing app — you 
can picture it, you know it is useful, and you can imagine that many people would like it, too. 

 
If this is your first-ever app development attempt, here is a brief guide on how to get from A to 
Z and make the project a success! 

 

Step 1: Define Your Goal 

 
Having a great idea is the starting point into every new project. Before you go straight into 

detailing though, you must clearly define the purpose and mission of your app. What is it going 
to do? What is its core appeal? What concrete problem is it going to solve, or what part of life is 

it going to make better? 

 

Defining a clear goal for the app is also going to help you get there faster. 
 
 
 

THIS IS A SAMPLE 

SOFT HARD COPYCOMPLETE NOTES ARE IN  AND IN  

0728 776 317CALL|TEXT|WHATSAPP  

OR 

info@masomomsingi.co.ke Email: 
 
 
 

CHAPTER 7 

 

DOCUMENTATION: 

 

Software documentation, also referred to as source code documentation is a text that describes 
computer software. It explains how software works but it can also explain how to use the 

software properly. Several types of software documentation exist and can be classified into: 

 

User Documentation 

 

Also known as software manuals, user documentation is intended for end users and aims to help 

them use software properly. It is usually arranged in a book-style and typically also features 

table of contents, index and of course, the body which can be arranged in different ways, 



 

 

depending on whom the software is intended for. For example, if the software is intended for 

beginners, it usually uses a tutorial approach and guides the user step-by-step. Software manuals 

which are intended for intermediate users, on the other hand, are typically arranged thematically, 

while manuals for advanced users follow reference style. 

 

Besides printed version, user documentation can also be available in an online version or 

PDF format. Often, it is also accompanied by additional documentation such as video 

tutorials, knowledge based articles, videos, etc. 

 

Requirements Documentation 

 

Requirements documentation, also referred to simply as requirements explains what a software does 

and shall be able to do. Several types of requirements exist which may or may not be included  
in documentation, depending on purpose and complexity of the system. For example, applications 

that don‘t have any safety implications and aren‘t intended to be used for a longer period of time  
may be accompanied by little or no requirements documentation at all. Those that can affect 
human safety or/and are created to be used over a longer period of time, on the other hand, come 

with an exhausting documentation. 

 

Architecture Documentation 

 

Also referred to as software architecture description, architecture documentation either analyses 

software architectures or communicates the results of the latter (work product). It mainly deals 

with technical issues including online marketing and seo services but it also covers non-

technical issues in order to provide guidance to system developers, maintenance technicians and 

others involved in the development or use of architecture including end users. Architecture 

documentation is usually arranged into architectural models which in turn may be organized into 

different views, each of which deals with specific issues. 

 

Comparison document is closely related to architecture documentation. It addresses current 

situation and proposes alternative solutions with an aim to identify the best possible outcome. 
In order to be able to do that, it requires an extensive research. 

 

THIS IS A SAMPLE 

SOFT HARD COPYCOMPLETE NOTES ARE IN  AND IN  

0728 776 317CALL|TEXT|WHATSAPP  

OR 

info@masomomsingi.co.ke Email: 



 

 

CHPATER 8 

 

EMERGING ISSUES AND TRENDS 

 

Programming languages have always been heavily influenced by programming paradigms, 

which in turn have been characterized by general computing trends. The cumbersomeness of 

low-level machine code yielded imperative programming languages. These languages take 

advantage of compilers or interpreters in order to generate low-level machine code based on 

easier to handle higher-level languages. As a result of increasing complexity and scale of 

programs, there was a need for finer granularity and encapsulation of code, which led to new 

modularization concepts. This has been later complemented and extended by the object-oriented 

paradigm, which introduced new concepts like polymorphism and inheritance. The object-

oriented paradigm promotes the design and implementation of large, but manageable, software 

systems and thus addresses the requirements of large-scale applications. However, the 

prevalence of multi-core architectures and the pervasion of distributed systems and applications 

in everyday life represent other trends affecting upcoming programming languages. Some even 

believe that "the concurrency revolution is likely to be more disruptive than the OO revolution" 

[Sut05]. Although this is a controversial statement, it is remarkable that most of the new 

programming languages take concurrency seriously into account and provide advanced 

concurrency concepts aside from basic threading support [Gho11]. 

 

Apart from the object-oriented paradigm, there are several less common paradigms such as 

declarative or functional programming that focus on high expressiveness. Programming 

languages following these paradigms have been considered as esoteric and academic languages 

by the industry for a long time. Interestingly, there is an increasing popularity of these alternative 

concepts, especially in functional programming and even for web application  
programming [Vin09]; not least because these languages provide inherently different 

concurrency implications. As functional languages favor immutability and side-effect free 
programming, they are by design easier to execute concurrently. They also adapt other 

techniques for handling mutable state and explicit concurrency. 

 

The gap between imperative, object-oriented languages and purely functional languages has been 

bridged by another tendency: multi-paradigm programming languages. By incorporating multiple 

paradigms, programming languages allow the developer to pick the right concepts and 

techniques for their problems, without committing themselves to a single paradigm. Multi-

paradigm languages often provide support for objects, inheritance and imperative code, but 

incorporate higher-order functions, closures and restricted mutability at the same time. Although 

these languages are not pure in terms of original paradigms, they propose a pragmatic toolkit for 

different problems with high expressiveness and manageable complexity at the same time. 

 

The higher expressiveness is often a basic prerequisite for the design of so-called domain-specific 

languages [Gho10], another trending topic in software development. Domain-specific languages 

allow to specify and express domain objects and idioms as part of a higher-level language for 

programming. By providing a higher level of abstraction, domain-specific languages allow to focus 

on the application or business domain while concealing details of the programming language 
 

161 www.masomomsingi.co.ke Contact 0728 776 317 
 

http://berb.github.io/diploma-thesis/original/0_bibliography.html#Sutter2005
http://berb.github.io/diploma-thesis/original/0_bibliography.html#Ghosh2011
http://berb.github.io/diploma-thesis/original/0_bibliography.html#Vinoski2009
http://berb.github.io/diploma-thesis/original/0_bibliography.html#Ghosh2010


 

 

 
or platform. Several frameworks for web development can be considered as domain-specific 
languages for the domain of web applications. 

 

New Programming Languages for Web Programming  
Thanks to the web, JavaScript has not just become the lingua franca of the web, but also the most 

widespread programming language in general. Every browser, even mobile ones, act as an 

execution environment for JavaScript applications, thus JavaScript is available on virtually all 

computing devices. But JavaScript is also increasingly popular outside the web browser, thanks 

to projects like node.js. Microsoft uses JavaScript as the main programming language for Metro 

applications in the upcoming Windows 8 release. JavaScript is a multi-paradigm language that 

incorporates prototypal object inheritance combined with many functional aspects of Scheme. It 

has been designed as a general-purpose programming language, but reached attention, and 

sometimes also faced hatred, not until it became popular through the web. However, JavaScript 

is notoriously known for some of its "bad parts" [Cro08]. Deficiencies include odd scoping, 

global variables, automatic syntax correction (i.e. semicolon insertion) with misleading results, 

and problems with the type system and with value comparisons. 

 

As we are somehow locked-in to JavaScript concerning browsers, there are several approaches 
to circumvent these drawbacks, as long as they are not fixed in the language itself by upcoming 

specifications. Crock ford suggests a subset of the languages that makes only use of the "good 
parts" of the language [Cro08]. Others attempt to transcompile (i.e. executing source-to-source 

compilation) different languages to JavaScript. Popular examples therefore are  
ClojureScript [McG11] and CoffeeScript. ClojureScript translates Clojure code into JavaScript, 

though some of the Clojure features are missing. For instance, JavaScript is single-threaded, so 

the usage of concurrency concepts of Clojure is limited. Coffee Script takes a different route. It is 

a language that exclusively Trans compiles to JavaScript and has been designed as a syntactic 

replacement for JavaScript. Coffee Script not just adds syntactic sugar, but also provides some 

advanced features like array comprehension and pattern matching. 

 
When Google was dissatisfied with the progress on new JavaScript specifications and was reasoning 

about the future of web programming, they identified the need for a general-purpose web 

programming language for both clients and servers, independent of JavaScript. This need was shortly 

after addressed by Google's new Dart [Tea12] programming language. Dart is derived from 

JavaScript, but incorporates several concepts from Java and other languages. It is class-based, like 

Java, and supports interfaces, abstract classes and generics. Dart is dynamically typed, but 

annotations can be used to enforce static typing. A core library provides common data structures and 

operations, and a DOM library supports HTML5 DOM. For server applications, Dart includes an I/O 

library with an asynchronous, non-blocking programming model and an event loop. Dart also ships 

with an HTTP library as a foundation for web servers. Concerning concurrency in Dart, the 

specification disallows shared-state concurrency. However, Dart proposes actor-like structures, so-

called isolates. Each isolate represents an independent flow of control and it can thus be assumed to 

be single-threaded for the developers. Multiple isolates can communicate via message passing. There 

are different ways to execute Dart applications. Google's Chrome browser already supports Dart. 

Time will tell if other browser vendors will eventually support Dart as well. As an interim solution, 

there is a Dart-to-JavaScript trans compiler that generates pure JavaScript code out of Dart sources. 

For usage outside of the browser, Google 
 

162 www.masomomsingi.co.ke Contact 0728 776 317 
 

http://berb.github.io/diploma-thesis/original/092_progtrends.html#weblang
http://www.crockford.com/javascript/javascript.html
http://berb.github.io/diploma-thesis/original/0_bibliography.html#Crockford2008
http://berb.github.io/diploma-thesis/original/0_bibliography.html#Crockford2008
https://github.com/clojure/clojurescript
https://github.com/clojure/clojurescript
http://coffeescript.org/
http://berb.github.io/diploma-thesis/original/0_bibliography.html#Team2012


 

 

THIS IS A SAMPLE 

SOFT HARD COPYCOMPLETE NOTES ARE IN  AND IN  

0728 776 317CALL|TEXT|WHATSAPP  

OR 

info@masomomsingi.co.ke Email: 
 


