

PAPER NO. CT 31

SECTION 3

CERTIFIED

INFORMATION COMMUNICATION

TECHNOLOGISTS

(CICT)

DATA BASE SYSTEMS

STUDY TEXT

1 www.masomomsingi.co.ke Contact 0728 776 317

KASNEB SYLLABUS

GENERAL OBJECTIVE

This paper is intended to equip the candidate with the knowledge, skills and attitude that will
enable him/her to administer and manage databases

LEARNING OUTCOMES

A candidate who passes this paper should be able to:

 Write structured query language (SQL) statements to manipulate data in databases

 Develop a database application

 Handle transactions and concurrency controls

 Administer databases

 Integrate databases and other applications

 Manage database integrity issues

CONTENT

1. Introduction to databases

 Files, records, files and databases
 History of database systems

 Traditional file systems versus the database approach

 Characteristics, importance and limitations of database systems

 Database components and architecture



2. File organisation techniques

 Storage structures and blocking

 Unordered files

 Sequential files

 Indexing



3. Database models

 The role of data modeling

 The hierarchical model

 The relational model

 The object-oriented model

 The object-relational model



4. Database development life cycle

 Data and user requirements specification
 Stages of database development

 Conceptual, logical and physical database design

 Writing database requirements specifications

2 www.masomomsingi.co.ke Contact 0728 776 317

5. Relational database model

 Relational database concepts and properties

 E-R database design

 Database design anomalies

 Normalisation

 Relational algebra

 Creating database design

 implementing database design in mysql /oracle /DB2



6. Structured query language (SQL)

 Data definition language
 Data manipulation language

 Structure of SQL statements

 Data control

 in-built functions

 Writing SQL statements

 Using SQL functions



7. Transaction management and concurrency control

 Transaction management

 Properties of a transaction

 Serialisability and concurrency control

 Lock-based and timestamp-based protocols

 Types of failures

 Database recovery concepts and mechanisms



8. Database administration

 Database users

 Data administration

 Functions and roles of database administrators

 Monitoring database performance



9. Database security and integrity

 Security and integrity concepts
 Social, ethical and legal database issues

 Threats to database security and integrity

 Managing threats

 Establishing data backup procedure



10. Distributed database systems

 Introduction of concepts
 Distribution methods - fragmentation and replication

 Concurrency control mechanisms in distributed systems

 Two-tier database architecture

 Three-tier database architecture

3 www.masomomsingi.co.ke Contact 0728 776 317

11. Data warehousing and data mining

 Overview of data warehousing

 Characteristics of a data warehouse

 Components of a data warehouse

 Types of data warehouses

 Elements of a data warehouse

 Over view of data mining

 Techniques of data mining



12. Integrating databases to other applications

 Importance of integrating databases to other applications
 Integrating databases to other applications (visual basic.net, C++, Java, C# among others)

 Developing web enabled database applications



13. Emerging issues and trends

CONTENT PAGE

Chapter 1: Introduction to databases………………………………………………………………...5

Chapter 2: File organisation techniques………………………………………………….…………14

Chapter 3: Database models ……………………………………………………………..…………20

Chapter 4: Database development life cycle………………………………………..………………31

Chapter 5: Relational database model………………………………………………………….…...41

Chapter 6: Structured query language (SQL)…………………………………………….…………66

Chapter 7: Transaction management and concurrency control……………………….……..………76

Chapter 8: Database administration……………………………………………….…………...…….93

Chapter 9: Database security and integrity…………………………………………………………..97

Chapter 10: Distributed database systems……………………………………………….…………103

Chapter 11: Data warehousing and data mining……………………………………….……………113

Chapter 12: Integrating databases to other applications……………………………….……………121

Chapter 13: Emerging issues and trends……………………………………………….……………132

4 www.masomomsingi.co.ke Contact 0728 776 317

CHAPTER 1

INTRODUCTIONS TO DATABASES

Data hierarchy

Data Hierarchy refers to the systematic organization of data, often in a hierarchical form.

Data organization involves fields, records, files and so on.

A data field holds a single fact or attribute of an entity. Consider a date field, e.g. "September
19, 2004". This can be treated as a single date field (e.g. birthdate), or 3 fields, namely, month,

day of month and year.

A record is a collection of related fields. An Employee record may contain a name
field(s), address fields, birthdate field and so on.

A file is a collection of related records. If there are 100 employees, then each employee
would have a record (e.g. called Employee Personal Details record) and the collection of 100

such records would constitute a file (in this case, called Employee Personal Details file).

Files are integrated into a database. This is done using a Database Management System. If
there are other facets of employee data that we wish to capture, then other files such as

Employee Training History file and Employee Work History file could be created as well.

History of Database Systems

Early Manual System
 Before-1950s




 Data was stored as paper records.




 Lot of man power involved.




 Lot of time was wasted e.g. when searching


Therefore inefficient

Revolution began
 1950s and early 1960s:




 Data processing using magnetic tapes for storage




 Tapes provide only sequential access




 Punched cards for input




 Late 1960s and 1970s:




 Hard disks allow direct access to data




 Data stored in files




 Known as File Processing System


5 www.masomomsingi.co.ke Contact 0728 776 317

File based systems
 Adequate for small applications



Drawbacks
 Separation and isolation of data




 Each program maintains its own set of data.




 Users of one program may be unaware of potentially useful data held by other programs




 Duplication of data




 Same data is held by different locations.




 Wasted space and potentially different values and/or different formats for the same item.




 Data dependence




 File structure is defined in the program code.




 Incompatible file formats




 Programs are written in different languages, and so cannot easily access each other‘s files.




 Fixed Queries/Proliferation of application programs




 Programs are written to satisfy particular functions.




 Any new requirement needs a new program.


Database Approach

Arose because:
Definition of data was embedded in application programs, rather than being stored separately and
independently.
No control over access and manipulation of data beyond that imposed by application programs.

Result:

The database and Database Management System (DBMS).

Database Management Systems (DBMS)

Relational
Object-oriented Object-relational

XML

IMDB

Java

1960‘s Hierarchical Network

1970‘s

1990‘s
CMDB Mobile

Embedded

1995+

Hierarchical Model
Well suited for data which are in someway related Hierarchically begin with a strictly defined
tree of data nodes Each node can contain some identifying data, plus a set of subnodes of a

specific child type

6 www.masomomsingi.co.ke Contact 0728 776 317

Network Model

 Supported more complex relations

 Physical file pointers were used tomodel the relations between files

 Relations had to be decide in advance

 Most suitable for large databases with well-defined queries and well-defined applications.

Relational Model (1970’s)
 E.F. Codd introduced the relational model in 1970




 Provides a conceptually simple model for data as relations (Typically considered




―tables‖) withal data visible.

 DB2 from IBM is the first DBMS product based on the relational model




 Other DBMS based on the relational model were developed in the late 1980s




 today, DB2, Oracle, and SQL Serve rare the most prominent commercial




 DBMS products based on the relational model


Object Oriented Data Model (1990’s)
 Goal of OODBMS is to store object-oriented programming objects in a database without having

to transform them into relational format.


 Extend the entity-relationship data model by including encapsulation, methods and object
identity



Object-relational models
 Extend the relational data model by including object orientation and constructs to deal with

added data types.


 Allow attributes of tuples to have complex types, including non-atomic values such as nested
relations.



 Preserve relational foundations, in particular the declarative access to data, while
extending modeling power.



Modern Database Management Systems
 DBMS are large complex pieces of software designed specifically for the efficient

management of data.


 Examples:




 Oracle (Oracle Corporation)




 Ingres (Computer Associates)




 SQL Server (Microsoft Corporation)




 Access (Microsoft Corporation)




 IMS, DB2 (IBM)




 And many more…s


7 www.masomomsingi.co.ke Contact 0728 776 317

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

CHAPTER 2

FILE ORGANISATION TECHNIQUES

DATA STRUCTURES AND BLOCKING

In computing (specifically data transmission and data storage), a block, sometimes called a

physical record, is a sequence of bytes or bits, usually containing some whole number of

records, having a maximum length, a block size. Data thus structured are said to be blocked. The

process of putting data into blocks is called blocking, while deblocking is the process of

extracting data from blocks. Blocked data is normally stored in a data buffer and read or written

a whole block at a time. Blocking reduces the overhead and speeds up the handling of the data-

stream. For some devices such as magnetic tape and CKD disk devices blocking reduces the

amount of external storage required for the data. Blocking is almost universally employed when

storing data to 9-track magnetic tape, to NAND flash memory, and to rotating media such as

floppy disks, hard disks, and optical discs.

Most file systems are based on a block device, which is a level of abstraction for the hardware

responsible for storing and retrieving specified blocks of data, though the block size in file

systems may be a multiple of the physical block size. This leads to space inefficiency due to

internal fragmentation, since file lengths are often not integer multiples of block size, and thus

the last block of a file may remain partially empty. This will create slack space, which

averages half a block per file. Some newer file systems attempt to solve this through

techniques called block suballocation and tail merging.

Block storage is normally abstracted by a file system or database management system (DBMS)

for use by applications and end users. The physical or logical volumes accessed via block I/O

may be devices internal to a server, directly attached via SCSI or Fibre Channel, or distant

devices accessed via a storage area network (SAN) using a protocol such as iSCSI, or AoE.

DBMSes often use their own block I/O for improved performance and recoverability as

compared to layering the DBMS on top of a file system.

Data processing from a computer science perspective:

 Storage of data

 Organization of data

 Access to data

This will be built on your knowledge of Data Structures

Data Structure VS. File Structure

Both involve:

Representation of Data

+

Operations for accessing data

Difference:

 Data Structures deal with data in main memory

 File Structures deal with data in secondary storage device (File).

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

CHAPTER 3

DATABASE MODELS

Introduction

A database model is a type of data model that determines the logical structure of a

database and fundamentally determines in which manner data can be stored, organized,

and manipulated. The most popular example of a database model is the relational model

(or the SQL approximation of relational), which uses a table-based format. Common

logical data models for databases include:

 Hierarchical database model


 Network model


 Relational model


 Entity–relationship model


 Enhanced entity–relationship model


 Object model


 Document model


 Entity–attribute–value model


 Star schema

An object-relational database combines the two related structures.

Physical data models include:

 Inverted index


 Flat file

Other models include:

 Associative model


 Multidimensional model


 Multivalue model


 Semantic model


 XML database


 Named graph

THE ROLE OF DATA MODELING

FLAT MODEL

Simple database design consisting of one large table instead of several interconnected tables of a

relational database. Called 'flat' because of its only two dimensional (data fields and records)

structure, these databases cannot represent complex data relationships. Also called flat file

database or flatform database

A flat file database describes any of various means to encode a database model (most commonly

a table) as a single file.A flat file can be a plain text file or a binary file. There are usually no

structural relationships between the records.

A flat file database is a database that stores data in a plain text file. Each line of the text file holds

one record, with fields separated by delimiters, such as commas or tabs. While it uses a simple
structure, a flat file database cannot contain multiple tables like a relational database can.

Fortunately, most database programs such as Microsoft Access and FileMaker Pro can import
flat file databases and use them in a larger relational database.

Flat file is also a type of computer file system that stores all data in a single directory. There

are no folders or paths used to organize the data. While this is a simple way to store files, a flat

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

CHAPTER 4

DATABASE DEVELOPMENT LIFE CYCLES

Introduction: Database Development Life Cycle

A software development life cycle model (SDLC) consists of a set of processes (planning,
requirements, design, development, testing, installation and maintenance) defined to accomplish
the task of developing a software application that is functionally correct and satisfies the user’s
needs. These set of processes, when arranged in different orders, characterize different types of
life cycles. When developing a database, the order of these tasks is very important to efficiently
and correctly transform the user’s requirements into an operational database. These SDLCs are
generally defined very broadly and are not specific for a particular type of application. In this
paper the authors emphasize that there should be a SDLC that is specific to database

applications. Database applications do not have the same characteristics as other software
applications and thus a specific database development life cycle (DBDLC) is needed. A DBDLC

should accommodate properties like scope restriction, progressive enhancement, incremental
planning and pre-defined structure.
Keywords: Software Development, Database, DBMS, lifecycle model, traditional lifecycles

Introduction
Database management systems are generally categorized as transaction processing systems,

decision support systems and/or knowledge-based systems. During their development each of

these types of DBMS introduces different problems and challenges. Traditionally, SDLC models

designed for developing DBMS followed the design-first-implement-later approach because of

the DBMS were mainly of the transaction processing type [Wetzel and Kerschbergl, 1989]. The

authors believe, as we will explain later, that the design-first-implement-later approach does not

work for the databases underlying data mining or knowledge-base systems or for that matter for

any system where the requirements change very frequently.

Some of the traditional SDLCs models used for software development are: waterfall,prototypes,

spiral and rapid application development (RAD). These life cycles models are defined broadly in

terms of what each individual phase accomplish, the input and output documents it produces or

requires, and the processes that are necessary in completing each phase. In general, the output

deliverables from the previous phase serve as an input to the next phase. However, in these

models it can be observed also that usually there is no interaction between two consecutive

phases; therefore, no feedback between these phases exists. When creating a database system the

feedback between some of the life cycle phases is very critical and necessary to produce a

functionally complete database management system [Mata-Toledo, Adams and Norton, 2007].

When choosing or defining a lifecycle model for database systems we need to take into account

properties such as: scope restriction, progressive enhancement, incremental planning and

pre-defined structure [Wetzel and Kerschberg, 1989]. In addition, it is essential that the

requirements and goals should be documented using a requirements traceability matrix (RTM)

that will help in limiting the project to its envisioned scope. The database development life cycle

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

31 www.masomomsingi.co.ke Contact 0728 776 317

should allow the incorporation of new user‘s requirements at a later phase due to the interactive

nature that should exist between the user and the developers. This would make the enhancement

of a product easier and would not increase the cost significantly. For this reason incremental

planning is important for database system development. Apart from the initial planning phase,

individual planning is required for the design and the requirements revision phases as they

highly influence the overall implementation and the evaluation of the entire system. A life cycle

model lacking any of aforementioned properties (scope restriction, progressive enhancement,

incremental planning and pre-defined structure) would increase the cost, time and effort to

develop a DBMS.

Traditional Lifecycle Models
This section discusses the traditional lifecycle models and shows that, at least one of the

properties required for database system development (scope restriction, progressive

enhancement, incremental planning and pre-defined structure), is missing from each of these

lifecycles. For this reason, these life cycle models are not completely suitable for developing

database systems. In the remaining of this section we briefly describe some of the most popular

software models and point out their deficiencies for developing DBMSs.
Waterfall model: This is the most common of all software models [Pressman, 2007]. The

phases in the waterfall cycle are: project planning, requirements definition, design,

development, testing, and installation and acceptance (See Figure 1). Each of these phases

receives an input and produces an output (that serves as the input for next phase) in the form of

deliverables.

The waterfall model accommodates the scope restriction and the pre-defined structure properties

of the lifecycle. The requirements definition phase deals with scope restriction based on the

discussions with the end user. The pre-defined structure establishes a set of standard guidelines

to carry out the activities required of each phase as well as the documentation that needs to be

produced. Therefore, the waterfall model, by taking into account the pre-defined structure

property, helps the designers, developers, and other project participants to work in a familiar
environment with fewer miscommunications while allowing completion of the project in a timely
manner [Shell Method™ Process Repository, 2005].
On the other hand, the waterfall model lacks the progressive enhancement and incremental
planning property. In this model, the requirements are finalized early in the cycle. In
consequence, it is difficult to introduce new requirements or features at later phases of the
development process [Shell Method™ Process Repository, 2005]. This waterfall model, which
was derived from the ―hardware world‖, views the software development from a manufacturing
perception where items are produced once and reproduced many times [Pfleeger and Atlee,
2010]. A software development process does not work this way because the software evolves as

the details of the problem are understood and discussed with the end user.

The waterfall model has a documentation driven approach which, from the user‘s point of view,

is considered one of its main weaknesses. The system specifications, which are finalized early in

the lifecycle, may be written in a non-familiar style or in a formal language that may be difficult

for the end user to understand [Schach, 2008]. Generally, the end user agrees to these

specifications without having a clear understanding of what the final product will be like. This

leads to misunderstood or missing requirements in the software requirements specifications

32 www.masomomsingi.co.ke Contact 0728 776 317

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

CHAPTER 5

RELATIONAL DATABASE MODEL

A relational database is based on the relational model developed by E.F. Codd. A relational

database allows the definition of data structures, storage and retrieval operations and

integrity constraints. In such a database the data and relations between them are organized

into tables. A table is a collection of records and each record in a table contains the same fields.

The contents of a table can be permanently saved for future use.

RELATIONAL DATABASE CONCEPTS AND PROPERTIES

Properties of the relational database model

Properties of Relational Tables:

1. Data is presented as a collection of relations.

2. Each relation is depicted as a table.
3. Columns are attributes that belong to the entity modeled by the table (ex. In a

student table, you could have name, address, student ID, major, etc.).
4. Each row ("tuple") represents a single entity (ex. In a student table, John Smith, 14

Oak St, 9002342, Accounting, would represent one student entity).
5. Every table has a set of attributes that taken together as a "key" (technically, a

"superkey") uniquely identifies each entity (Ex. In the student table, ―student ID‖ would

uniquely identify each student – no two students would have the same student ID).

Overview

Certain fields may be designated as keys, which means that searches for specific values of that

field will use indexing to speed them up and more importantly, uniquely identify each entity.

There are many types of keys, however, quite possibly the two most important are the primary

key and the foreign key. The primary key is what uniquely identifies each entity. The foreign key

is a primary key of one table that also sits in another table. Ultimately, the use of foreign keys is

the heart of the relational database model. This linkage that the foreign key provides is what

allows tables to pull data from each other and link data together. Where fields in two different

tables take values from the same set, a join operation can be performed to select related records

in the two tables by matching values in those fields. Most often, but not always, the fields will

have the same name in both tables. For example, an "orders" table might contain (customer-ID –

primary key, product-code – foreign key) pairs and a "products" table might contain (product-

code – primary key, price) pairs so to calculate a given customer's bill you would sum the prices

of all products ordered by that customer by joining on the product-code fields of the two tables.

This can be extended to joining multiple tables on multiple fields. Because these relationships

are only specified at retrieval time, relational databases are classed as dynamic database

management system.

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

What this means is that if you know the value of attribute X, you can determine the value of

attribute Y. The relational database model is based on the Relational Algebra. Which means

that operations in the relational database model are based on Select, Project, Join, Intersect,

Union, Difference, and Product. Here is a brief description of each operation:

- Select: Shows values for all rows found a table that meet a given criteria.

- Project: Shows values for all selected attributes.

- Join: Will combine information from one or more tables.

- Intersect: Shows all rows that are found in both tables.

- Union: Combines all rows from multiple tables and removes the duplicate rows.

- Difference: Shows all rows from one table that are not contained in another table.

- Product: Combines all rows from two or more tables (does contain duplicates).

As you can see, this is a very powerful set of operations that can be used to manipulate data.

Rules

In the relational database model, there are five, very important rules. When followed, these rules
help to ensure data integrity.

1. The order of tuples and attributes is not important. (Ex. Attribute order not important…if
you have name before address, is the same as address before name).

2. Every tuple is unique. This means that for every record in a table there is something that
uniquely identifies it from any other tuple.

3. Cells contain single values. This means that each cell in a table can contain only one
value.

4. All values within an attribute are from the same domain. This means that however the
attribute is defined, the values for each tuple fall into that definition. For example, if the

attribute is labeled as Date, you would not enter a dollar amount, shirt size, or model

number in that column, only dates.
5. Table names in the database must be unique and attribute names in tables must be

unique. No two tables can have the same name in a database. Attributes (columns)

cannot have the same name in a table. You can have two different tables that have
similar attribute names.

Databases are very commonly used in everyday life. The relational model of databases
provides a very simple way of looking at data structured into tables, and there are

straightforward techniques, such as ER modeling to represent a world view from which to build
a relational database.

42 www.masomomsingi.co.ke Contact 0728 776 317

E-R data base design

An entity–relationship diagram using Chen's notation

In software engineering, an entity–relationship model (ER model) is a data model for describing

the data or information aspects of a business domain or its process requirements, in an

43 www.masomomsingi.co.ke Contact 0728 776 317

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

CHAPTER 6

STRUCTURED QUERY LANGUAGE (SQL)

Database languages are special-purpose languages, which do one or more of the following:

 Data definition language – defines data types and the relationships among them
 Data manipulation language – performs tasks such as inserting, updating, or deleting

data occurrences
 Query language – allows searching for information and computing derived information

Database languages are specific to a particular data model. Notable examples include:

 SQL combines the roles of data definition, data manipulation, and query in a single

language. It was one of the first commercial languages for the relational model, although

it departs in some respects from the relational model as described by Codd (for example,

the rows and columns of a table can be ordered). SQL became a standard of the

American National Standards Institute (ANSI) in 1986 and of the International

Organization for Standardization (ISO) in 1987. The standards have been regularly

enhanced since and is supported (with varying degrees of conformance) by all

mainstream commercial relational DBMSs.

 OQL is an object model language standard (from the Object Data Management Group). It

has influenced the design of some of the newer query languages like JDOQL and EJB

QL.

 XQuery is a standard XML query language implemented by XML database systems

such as MarkLogic and eXist, by relational databases with XML capability such as

Oracle and DB2, and also by in-memory XML processors such as Saxon.

 SQL/XML combines XQuery with SQL.



A database language may also incorporate features like:



 DBMS-specific Configuration and storage engine management

http://en.wikipedia.org/wiki/Codd%27s_12_rules
http://en.wikipedia.org/wiki/American_National_Standards_Institute
http://en.wikipedia.org/wiki/American_National_Standards_Institute
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/OQL
http://en.wikipedia.org/wiki/Object_Data_Management_Group
http://en.wikipedia.org/w/index.php?title=JDOQL&action=edit&redlink=1
http://en.wikipedia.org/wiki/EJB_QL
http://en.wikipedia.org/wiki/EJB_QL
http://en.wikipedia.org/wiki/XQuery
http://en.wikipedia.org/wiki/MarkLogic
http://en.wikipedia.org/wiki/EXist
http://en.wikipedia.org/wiki/Saxon_XSLT
http://en.wikipedia.org/wiki/SQL/XML
http://en.wikipedia.org/wiki/XQuery

 Computations to modify query results, like counting, summing, averaging,
sorting, grouping, and cross-referencing

 Constraint enforcement (e.g. in an automotive database, only allowing one engine
type per car)

 Application programming interface version of the query language, for programmer
convenience







DATA MANIPULATION LANGUAGE

A data manipulation language (DML) is a family of syntax elements similar to a computer

programming language used for inserting, deleting and updating data in a database.

Performing read-only queries of data is sometimes also considered a component of DML.

A popular data manipulation language is that of Structured Query Language (SQL), which is
used to retrieve and manipulate data in a relational database. Other forms of DML are those used

by IMS/DLI, CODASYL databases, such as IDMS and others.

Data manipulation language comprises the SQL data change statements,which modify stored

data but not the schema or database objects. Manipulation of persistent database objects, e.g.,

tables or stored procedures, via the SQL schema statements,rather than the data stored within

them, is considered to be part of a separate data definition language. In SQL these two categories

are similar in their detailed syntax, data types, expressions etc., but distinct in their overall

function.

Data manipulation languages have their functional capability organized by the initial word in a
statement, which is almost always a verb. In the case of SQL, these verbs are:

 SELECT ... FROM ... WHERE ...

 INSERT INTO ... VALUES ...

 UPDATE ... SET ... WHERE ...

 DELETE FROM ... WHERE ...



The purely read-only SELECT query statement is classed with the 'SQL-data' statements and so
is considered by the standard to be outside of DML. The SELECT ... INTO form is considered

to be DML because it manipulates (i.e. modifies) data. In common practice though, this
distinction is not made and SELECT is widely considered to be part of DML.

Most SQL database implementations extend their SQL capabilities by providing imperative, i.e.

procedural languages. Examples of these are Oracle's PL/SQL and DB2's SQL PL.

Data manipulation languages tend to have many different flavors and capabilities between
database vendors. There have been a number of standards established for SQL by ANSI,

but vendors still provide their own extensions to the standard while not implementing the
entire standard.

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Structured_Query_Language
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/CODASYL
http://en.wikipedia.org/wiki/IDMS
http://en.wikipedia.org/wiki/Data_definition_language
http://en.wikipedia.org/wiki/Verb
http://en.wikipedia.org/wiki/Select_%28SQL%29
http://en.wikipedia.org/wiki/Insert_%28SQL%29
http://en.wikipedia.org/wiki/Update_%28SQL%29
http://en.wikipedia.org/wiki/Delete_%28SQL%29
http://en.wikipedia.org/wiki/Select_%28SQL%29
http://en.wikipedia.org/wiki/Select_%28SQL%29
http://en.wikipedia.org/wiki/Select_%28SQL%29
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Oracle_Database
http://en.wikipedia.org/wiki/Oracle_Database
http://en.wikipedia.org/wiki/IBM_DB2
http://en.wikipedia.org/wiki/ANSI
http://en.wikipedia.org/wiki/ANSI

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

CHAPTER 7

TRANSACTION MANAGEMENT AND CONCURRENCY

CONTROL

TRANSACTIONAL MANAGEMENT

A transaction is one or more SQL statements that make up a unit of work performed against

the database, and either all the statements in a transaction are committed as a unit or all the

statements are rolled back as a unit. This unit of work typically satisfies a user request and

ensures data integrity. For example, when you use a computer to transfer money from one bank

account to another, the request involves a transaction: updating values stored in the database for

both accounts. For a transaction to be completed and database changes to be made permanent, a

transaction must be completed in its entirety.

What is the correct transaction commit mode to use in your application? What is the right
transaction model for your database application: local or distributed? Use the guidelines in this

section to help you manage transactions more efficiently.

You should also read the chapter for the standards-based API that you work with; these
chapters provide specific examples for each API:

Managing Commits in Transactions
Committing (and rolling back) transactions is slow because of the disk I/O and potentially the

number of network round trips required. What does a commit actually involve? The database
must write to disk every modification made by a transaction to the database. This is usually a

sequential write to a journal file (or log); nevertheless, it involves expensive disk I/O.

In most standards-based APIs, the default transaction commit mode is autocommit. In auto-

commit mode, a commit is performed for every SQL statement that requires a request to the

database, such as Insert, Update, Delete, and Select statements. When auto-commit mode is used,

the application does not control when database work is committed. In fact, commits commonly

occur when there's actually no real work to commit.

Some database systems, such as DB2, do not support auto-commit mode. For these databases,

the database driver, by default, sends a commit request to the database after every successful

operation (SQL statement). This request equates to a network round trip between the driver

and the database. The round trip to the database occurs even though the application did not

request the commit and even if the operation made no changes to the database. For example,

the driver makes a network round trip even when a Select statement is executed.

Because of the significant amount of disk I/O required to commit every operation on the database

server and because of the extra network round trips that occur between the driver and

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

the database, in most cases you will want to turn off auto-commit mode in your application.

By doing this, your application can control when the database work is committed, which
provides dramatically better performance.

Performance Tip

Although turning off auto-commit mode can help application performance, do not take this tip

too far. Leaving transactions active can reduce throughput by holding locks on rows for
longer than necessary, preventing other users from accessing the rows. Typically, committing

transactions in intervals provides the best performance as well as acceptable concurrency

Consider the following real-world example. ASoft Corporation coded a standards-based database

application and experienced poor performance in testing. Its performance analysis showed that

the problem resided in the bulk five million Insert statements sent to the database. With auto-

commit mode on, this meant an additional five million Commit statements were being issued

across the network and that every inserted row was written to disk immediately following the

execution of the Insert. When auto-commit mode was turned off in the application, the number

of statements issued by the driver and executed on the database server was reduced from ten

million (five million Inserts + five million Commits) to five million and one (five million Inserts
+ one Commit). As a consequence, application processing was reduced from eight hours to ten
minutes. Why such a dramatic difference in time? There was significantly less disk I/O

required by the database server, and there were 50% fewer network round trips.

If you have turned off auto-commit mode and are using manual commits, when does it make
sense to commit work? It depends on the following factors:

 The type of transactions your application performs. For example, does your application
perform transactions that modify or read data? If your application modifies data, does

it update large amounts of data?

 How often your application performs transactions.

For most applications, it's best to commit a transaction after every logical unit of work. For

example, consider a banking application that allows users to transfer money from one account

to another. To protect the data integrity of that work, it makes sense to commit the transaction
after both accounts are updated with the new amounts.

However, what if an application allows users to generate reports of account balances for each

day over a period of months? The unit of work is a series of Select statements, one executed after

the other to return a column of balances. In most cases, for every Select statement executed

against the database, a lock is placed on rows to prevent another user from updating that data. By

holding locks on rows for longer than necessary, active transactions can prevent other users from

updating data, which ultimately can reduce throughput and cause concurrency issues. In this

case, you may want to commit the Select statements in intervals (after every five Select

statements, for example) so that locks are released in a timely manner.

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

CHAPTER 8

DATABASE ADMINISTRATION

Database users

Types of Database Users:

Users are differentiated by the way they expect to interact with the system:

1. · Application programmers - interact with system through DML calls.

2. · Sophisticated users - form requests in a database query language.

3. · Specialized users - write specialized database applications that do not fit into

the traditional data processing framework.
4. · Naive users - invoke one of the permanent application programs that have been

written previously

DATABASE ADMINISTRATION

Database administration is the function of managing and maintaining database

management systems (DBMS) software. Mainstream DBMS software such as Oracle, IBM

DB2 and Microsoft SQL Server need ongoing management. As such, corporations that use

DBMS software often hire specialized IT (Information Technology) personnel called

Database Administrators or DBAs.

FUNCTIONS AND ROLES OF DATABASE ADMINISTRATOR

Database Administrator Roles and Responsibilities: A Database Administrator, Database

Analyst or Database Developer is the person responsible for managing the information within an

organization. As most companies continue to experience inevitable growth of their databases,

these positions are probably the most solid within the IT industry. In most cases, it is not an area

that is targeted for layoffs or downsizing. On the downside, however, most database

departments are often understaffed, requiring administrators to perform a multitude of tasks.

Depending on the company and the department, this role can either be highly specialized or

incredibly diverse. The primary role of the Database Administrator is to administer, develop,
maintain and implement the policies and procedures necessary to ensure the security and

integrity of the corporate database. Sub roles within the Database Administrator classification

may include security, architecture, and warehousing and/or business analysis.

93 www.masomomsingi.co.ke Contact 0728 776 317

http://geekswithblogs.net/freetraining/archive/2005/12/07/62434.aspx

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

CHAPTER 9

DATABASE SECURITY AND INTEGRITY

Database security deals with all various aspects of protecting the database content, its owners, and

its users. It ranges from protection from intentional unauthorized database uses to unintentional

database accesses by unauthorized entities (e.g., a person or a computer program).

Database access control deals with controlling who (a person or a certain computer program) is

allowed to access what information in the database. The information may comprise specific

database objects (e.g., record types, specific records, data structures), certain computations over

certain objects (e.g., query types, or specific queries), or utilizing specific access paths to the

former (e.g., using specific indexes or other data structures to access information). Database

access controls are set by special authorized (by the database owner) personnel that use dedicated

protected security DBMS interfaces.

This may be managed directly on an individual basis, or by the assignment of individuals and

privileges to groups, or (in the most elaborate models) through the assignment of individuals and

groups to roles which are then granted entitlements. Data security prevents unauthorized users

from viewing or updating the database. Using passwords, users are allowed access to the entire

database or subsets of it called "subschemas". For example, an employee database can contain all

the data about an individual employee, but one group of users may be authorized to view only

payroll data, while others are allowed access to only work history and medical data. If the DBMS

provides a way to interactively enter and update the database, as well as interrogate it, this

capability allows for managing personal databases.

Data security in general deals with protecting specific chunks of data, both physically (i.e., from
corruption, or destruction, or removal; e.g., see physical security), or the interpretation of them,

or parts of them to meaningful information (e.g., by looking at the strings of bits that they

comprise, concluding specific valid credit-card numbers; e.g., see data encryption).

Change and access logging records that accessed which attributes, what was changed, and when

it was changed. Logging services allow for a forensic database audit later by keeping a record of

access occurrences and changes. Sometimes application-level code is used to record changes

rather than leaving this to the database. Monitoring can be set up to attempt to detect security

breaches.

97 www.masomomsingi.co.ke Contact 0728 776 317

http://en.wikipedia.org/wiki/Data_security
http://en.wikipedia.org/wiki/Physical_security
http://en.wikipedia.org/wiki/Data_encryption
http://en.wikipedia.org/wiki/Database_audit

CHAPTER 10

DISTRIBUTED DATABASE SYSTEMS

CONCEPTS OF DISTRIBUTED DATABASES

A distributed database is a database in which storage devices are not all attached to a common

processing unit such as the CPU, controlled by a distributed database management

system(together sometimes called a distributed database system). It may be stored in multiple

computers, located in the same physical location; or may be dispersed over a network of

interconnected computers. Unlike parallel systems, in which the processors are tightly coupled

and constitute a single database system, a distributed database system consists of loosely-coupled

sites that share no physical components.

System administrators can distribute collections of data (e.g. in a database) across multiple

physical locations. A distributed database can reside on network servers on the Internet, on

corporate intranets or extranets, or on other company networks. Because they store data across

multiple computers, distributed databases can improve performance at end-user worksites by

allowing transactions to be processed on many machines, instead of being limited to one.

DISTRIBUTION METHODS –FRAGMENTATION AND REPLICATION

There are two principal approaches to store a relation r in a distributed database system:

A) Replication

B) Fragmentation/Partitioning

A) Replication: In replication, the system maintains several identical replicas of the

same relation r in different sites.

 Data is more available in this scheme.

 Parallelism is increased when read request is served.
 Increases overhead on update operations as each site containing the

replica needed to be updated in order to maintain consistency.
 Multi-datacenter replication provides geographical diversity, like in

Clusterpoint or Riak.


B) Fragmentation: The relation r is fragmented into several relations r1, r2, r3....rn in such a

way that the actual relation could be reconstructed from the fragments and then the fragments
are scattered to different locations. There are basically two schemes of fragmentation:

103 www.masomomsingi.co.ke Contact 0728 776 317

 Horizontal fragmentation - splits the relation by assigning each tuple of r to one

or more fragments.
 Vertical fragmentation - splits the relation by decomposing the schema R

of relation

CONCURRENCY CONTROL MECHANISMS IN DISTRIBUTED SYSTEMS

In information technology and computer science, especially in the fields of computer

programming, operating systems, multiprocessors, and databases, concurrency control ensures
that correct results for concurrent operations are generated, while getting those results as quickly

as possible.

Computer systems, both software and hardware, consist of modules, or components. Each

component is designed to operate correctly, i.e., to obey or to meet certain consistency rules.

When components that operate concurrently interact by messaging or by sharing accessed data

(in memory or storage), a certain component's consistency may be violated by another

component. The general area of concurrency control provides rules, methods, design

methodologies, and theories to maintain the consistency of components operating concurrently

while interacting, and thus the consistency and correctness of the whole system. Introducing

concurrency control into a system means applying operation constraints which typically result in

some performance reduction. Operation consistency and correctness should be achieved with as

good as possible efficiency, without reducing performance below reasonable levels.

Concurrency control can require significant additional complexity and overhead in a concurrent

algorithm compared to the simpler sequential algorithm.

For example, a failure in concurrency control can result in data corruption from torn read or
write operations.

Concurrency control in databases

Comments:

1. This section is applicable to all transactional systems, i.e., to all systems that use

database transactions (atomic transactions; e.g., transactional objects in Systems

management and in networks of smartphones which typically implement private,

dedicated database systems), not only general-purpose database management systems

(DBMSs).
2. DBMSs need to deal also with concurrency control issues not typical just to database

transactions but rather to operating systems in general. These issues (e.g., see
Concurrency control in operating systems below) are out of the scope of this section.

Concurrency control in Database management systems (DBMS; e.g., Bernstein et al. 1987,

Weikum and Vossen 2001), other transactional objects, and related distributed applications

(e.g., Grid computing and Cloud computing) ensures that database transactions are performed

concurrently without violating the data integrity of the respective databases. Thus concurrency

control is an essential element for correctness in any system where two database transactions or

104 www.masomomsingi.co.ke Contact 0728 776 317

https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Scientific_theory
https://en.wikipedia.org/wiki/Concurrent_algorithm
https://en.wikipedia.org/wiki/Concurrent_algorithm
https://en.wikipedia.org/wiki/Sequential_algorithm
https://en.wikipedia.org/wiki/Data_corruption
https://en.wikipedia.org/w/index.php?title=Torn_data-access_operation&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Torn_data-access_operation&action=edit&redlink=1
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Systems_management
https://en.wikipedia.org/wiki/Systems_management
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Concurrency_control#Concurrency_control_in_operating_systems
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Concurrency_control#Bern87
https://en.wikipedia.org/wiki/Concurrency_control#Weikum01
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Concurrency_%28computer_science%29
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Database

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

CHAPTER 11

DATA WAREHOUSING AND DATA MINING

Principles of data warehousing

Data warehouse and data mining – necessity or useless

Investment

Abstract: The organization has optimized databases which are used in current operations and

also used as a part of decision support. What is the next step? Data
Warehouses and Data Mining are indispensable and inseparable parts for modern organization.

Organizations will create data warehouses in order for them to be used by business executives

to take important decisions. And as data volume is very large, and a simple filtration of data is

not enough in taking decisions, Data Mining techniques will be called on. What must an

organization do to implement a Data Warehouse and a Data Mining? Is this investment

profitable (especially in the conditions of economic crisis)? In the followings we will try to

answer these questions.
Keywords: database, data warehouse, data mining, decision, implementing, investment.

In the last decade we assist at an explosive growth of our capacity of generating and collecting

data. The progress made in collecting data, spreading the use of bar codes for most of the
commercial products and computation of business and government transactions have flooded us
with information. It is being discussed more and more about the ocean of data, which in specialty

literature is called ―ubiquitous‖. This term doesn‘t have an exact translation or a very accurate
meaning. It refers to data that follows almost invisible the day after day life of modern man. The

origins of the data are different, and their existence is almost unnoticeable for human eye. They

come from the most diverse sources, from the simplest devices such as electronic washing

machines, microwave ovens, digital cell phones to complex databases concerned with

population, health etc.

1. DATA WAREHOUSE

The data warehouse concept has its origins in the early 60‘s when following the collaboration
between a group of companies and a university in the United States was introduced new

terms such as dimensions and facts.

The role of Data Warehouse was obviously marked by the year 2000 once with the advent of
applications accessible to all consumers.
Data Warehouse represents in fact a response to the developers of IT society dynamics.

There are two premises that led to the emergence of data warehousing:

1. Economic premises.

2. Technological advances.

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

113 www.masomomsingi.co.ke Contact 0728 776 317

The premises are in close relationship with economic and market dynamics, namely:

globalization of trade; the dramatic sharpening of competition;
Spectacular shortening ofproducts’ cycle of life due to technologic dynamics and Imposing
of extremely high qualityrequirements.

The economic premises are: the increase of computing power and low prices.
Given the above, we can draw the following conclusions: informatics systems exist; data can

be accessed from anywhere; the need for information is acute; great computing power; large

and cheap storage capacity and available software tools. So there we have all the premises for

implementing a Data Warehouse. Data Warehouse is a collection of designed data for the

fundamentals of management decision. Data Warehouse contains a great variety of data that

present a coherent image of business conditions of a company at one point in time.

A Data Warehouse like system is used to monitor the activity of organizations by generating
reports in standard formats for analyzing issues related to the work in the organization and

based on this analysis taking coordination decisions is made.
In a Data Warehouse Data Mining operations are particularly made. One can say that
Data Mining instruments use raw materials supplied by the Data Warehouse.

Basic features of a Data Warehouse are:
1. It is focused on daily operations and transactions. It focuses on the data used in

the analysis on which decisions are taken.
2. The basic operation is to add data. The data is not deleted and not at all overwritten.

A log of data is maintained.
3. The system is integrated. Data is collected from different places (operating systems,

databases, files etc.), is transformed by bringing the data to the representation format

from the Data Warehouse and centralized in the system.
4. The integration of data represents the most important issue in the construction of a

Data Warehouse.

The necessary costs for creating and maintaining a Data Warehouse are divided equally into the
following categories:

 Required hardware systems and data storage systems.

 Software needed for extraction, processing, storing and analyzing data.

 Professional services.

Building a Data Warehouse is a complex work and it is addressed particularly to
experienced professionals.
A basic Data Warehouse is made out of the following levels with their own structure and
functionality.

1. The level of data sources
The level of data sources refers to any information, usually electronic, that must be collected and
stored in the Data Warehouse. It used as data sources: mainframe databases (DB2, IBMS,Data

Warehouse and Data Mining – Necessity or Useless Investment VSAM, ISAM, Ababas etc.);

114 www.masomomsingi.co.ke Contact 0728 776 317

CHAPTER 12

INTEGRATING DATABASES TO OTHER APPLICATIONS

A web application or web app is any application software that runs in a web browser or is

created in a browser-supported programming language (such as the combination of

JavaScript, HTML and CSS) and relies on a common web browser to render the application.

Web applications are popular due to the ubiquity of web browsers, and the convenience of using

a web browser as a client, sometimes called a thin client. The ability to update and maintain

web applications without distributing and installing software on potentially thousands of client

computers is a key reason for their popularity, as is the inherent support for cross-platform

compatibility. Common web applications include webmail, online retail sales, online auctions,

wikis and many other functions.

History

In earlier computing models, e.g. in client-server, the load for the application was shared

between code on the server and code installed on each client locally. In other words, an

application had its own client program which served as its user interface and had to be separately

installed on each user's personal computer. An upgrade to the server-side code of the application

would typically also require an upgrade to the client-side code installed on each user

workstation, adding to the support cost and decreasing productivity.

In contrast, web applications use web documents written in a standard format such as HTML and

JavaScript, which are supported by a variety of web browsers. Web applications can be

considered as a specific variant of client-server software where the client software is downloaded

to the client machine when visiting the relevant web page, using standard procedures such as

HTTP. Client web software updates may happen each time the web page is visited. During the

session, the web browser interprets and displays the pages, and acts as the universal client for

any web application.

In the early days of the Web each individual web page was delivered to the client as a static

document, but the sequence of pages could provide an interactive experience, as user input is
returned through web form elements embedded in the page markup.

In 1995 Netscape introduced a client-side scripting language called JavaScript allowing

programmers to add some dynamic elements to the user interface that ran on the client side. So

instead of sending data to the server in order to generate an entire web page, the embedded

scripts of the downloaded page can perform various tasks such as input validation or

showing/hiding parts of the page.

121 www.masomomsingi.co.ke Contact 0728 776 317

http://en.wikipedia.org/wiki/Client_%28computing%29
http://en.wikipedia.org/wiki/Wiki
http://en.wikipedia.org/wiki/Web_document

In 1996, Macromedia introduced Flash, a vector animation player that could be added to browsers as

a plug-in to embed animations on the web pages. It allowed the use of a scripting language to

program interactions on the client side with no need to communicate with the server.

In 1999, the "web application" concept was introduced in the Java language in the Servlet
Specification version 2.2. [2.1?]. At that time both JavaScript and XML had already been

developed, but Ajax had still not yet been coined and the XMLHttpRequest object had only
been recently introduced on Internet Explorer 5 as an ActiveX object.

In 2005, the term Ajax was coined, and applications like Gmail started to make their client sides
more and more interactive. A web page script is able to contact the server for storing/retrieving

data without downloading an entire web page.

In 2011, HTML5 was finalized, which provides graphic and multimedia capabilities without the

need of client side plugins. HTML5 also enriched the semantic content of documents. The APIs

and document object model (DOM)are no longer afterthoughts, but are fundamental parts of the

HTML5 specification. WebGL API paved the way for advanced 3D graphics based on HTML5

canvas and JavaScript language. These have significant importance in creating truly platform

and browser independent rich web applications.

Interface

Through Java, JavaScript, DHTML, Flash, Silverlight and other technologies, application-

specific methods such as drawing on the screen, playing audio, and access to the keyboard and

mouse are all possible. Many services have worked to combine all of these into a more familiar

interface that adopts the appearance of an operating system. General purpose techniques such

as drag and drop are also supported by these technologies. Web developers often use client-side

scripting to add functionality, especially to create an interactive experience that does not

require page reloading. Recently, technologies have been developed to coordinate client-side

scripting with server-side technologies such as PHP. Ajax, a web development technique using

a combination of various technologies, is an example of technology which creates a more

interactive experience.

Structure

Applications are usually broken into logical chunks called "tiers", where every tier is assigned a

role. Traditional applications consist only of 1 tier, which resides on the client machine, but web

applications lend themselves to an n-tiered approach by nature. Though many variations are

possible, the most common structure is the three-tiered application. In its most common form,

the three tiers are called presentation, application and storage, in this order. A web browser is

the first tier (presentation), an engine using some dynamic Web content technology (such as

ASP, ASP.NET, CGI, ColdFusion, JSP/Java, PHP, Perl, Python, Ruby on Rails or Struts2) is the

middle tier (application logic), and a database is the third tier (storage). The web browser sends

requests to the middle tier, which services them by making queries and updates against the

database and generates a user interface.

122 www.masomomsingi.co.ke Contact 0728 776 317

http://en.wikipedia.org/wiki/Plug-in_%28computing%29
http://en.wikipedia.org/wiki/Ajax_%28programming%29
http://en.wikipedia.org/wiki/XMLHttpRequest
http://en.wikipedia.org/wiki/HTML5
http://en.wikipedia.org/wiki/Plug-in_%28computing%29
http://en.wikipedia.org/wiki/Document_object_model
http://en.wikipedia.org/wiki/WebGL
http://en.wikipedia.org/wiki/Rich_Internet_application
http://en.wikipedia.org/wiki/Java_%28Sun%29
http://en.wikipedia.org/wiki/Java_%28Sun%29
http://en.wikipedia.org/wiki/DHTML
http://en.wikipedia.org/wiki/DHTML
http://en.wikipedia.org/wiki/Microsoft_Silverlight
http://en.wikipedia.org/wiki/Drag_and_drop
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Three-tier_%28computing%29
http://en.wikipedia.org/wiki/Active_Server_Pages
http://en.wikipedia.org/wiki/Active_Server_Pages
http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://en.wikipedia.org/wiki/Java_Servlet
http://en.wikipedia.org/wiki/Java_Servlet
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Ruby_on_Rails
http://en.wikipedia.org/wiki/Struts2

THIS IS A SAMPLE.

TO GET COMPLETE NOTES,

0728 776 317CALL|TEXT|WHATSAPP

OR

info@masomomsingi.co.keEmail:

FOLLOW US ON SOCIAL MEDIA @ Masomo Msingi

