

Software Engineering Manual i

DEPARTMENT OF PURE AND APPLIED

SCIENCES

BBIT 3101

UNIT: SOFTWARE ENGINEERING

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual ii

CHAPTER 1: FUNDAMENTALS OF SOFTWARE ENGINEERING 1-1

1.1 The Evolution of Software ... 1-2

1.2 Software Crisis ... 1-3

1.3 Software Engineering Paradigms ... 1-3

1.4 The Changing Nature of Software Development 1-3

CHAPTER 2: REQUIREMENTS ANALYSIS FUNDAMENTALS 2-1

2.1 Requirements Analysis ... 2-2

2.2 Analysis Tasks .. 2-2

2.3 The Analyst .. 2-4

2.4 Problems in Requirements Analysis ... 2-5

2.5 Communication Techniques ... 2-5

2.6 Analysis Principles ... 2-6

2.7 Partitioning ... 2-7

CHAPTER 3: REQUIREMENTS ANALYSIS METHODS 3-1

3.1 Requirements Analysis Methods .. 3-2

3.2 Data Structure-Oriented Methods .. 3-3

3.3 Formal Specification Techniques ... 3-5

3.4 Automated Techniques for Requirement Analysis 3-6

CHAPTER 4: FUNCTION PROGRAMMING 4-1

4.1 Software Design ... 4-2

4.2 Data Design .. 4-2

4.3 Architectural Design ... 4-3

4.4 Procedural Design .. 4-3

4.5 Software Design Fundamentals .. 4-5

4.6 Information Hiding ... 4-11

4.7 Functional Independence .. 4-11

4.8 Criteria for Good Design .. 4-13

CHAPTER 5: DATA STUCTURE (1) 5-1

5.1 Programming Languages .. 5-2

5.2 Programming Language Characteristics... 5-2

5.3 Choosing a Language ... 5-4

5.4 Programming Languages and Software Engineering 5-4

5.5 Programming Languages Fundamentals .. 5-6

5.6 Language Classes ... 5-6

CHAPTER 6: DATA FLOW-ORIENTED DESIGN 6-1

6.1 Design Process Considerations .. 6-2

6.2 Transform Flow and Transaction Flow .. 6-2

6.3 Transform Analysis .. 6-3

6.4 Transaction Analysis .. 6-15

6.5 Design Heuristics ... 6-21

6.6 Design Post processing ... 6-21

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual iii

CHAPTER 7: DATA STRUCTURE PROGRAMMING 7-1

7.1 Data Oriented Design Methods .. 7-2

7.2 Areas of Application .. 7-2

7.3 Jackson Structured Programming (JSP)/Jackson System Development

 (JSD)..7-3

7.4 Characteristics of JSP ... 7-3

7.5 Advantages of JSP .. 7-3

7.6 Steps in JSP .. 7-3

7.7 Correspondence Between Data Structures ... 7-4

7.8 Listing the Elementary Program Operations .. 7-4

CHAPTER8: SOFTWARE QUALITY ASSURANCE 8-1

8.1 Software Quality Assurance ... 8-2

8.2 Software Quality Factors .. 8-2

8.3 Software Quality Assurance Major Activities .. 8-4

8.4 Formal Technical Reviews ... 8-5

8.5 Software Reliability .. 8-7

8.6 Software Quality Assurance Approach .. 8-7

CHAPTER 9: SOFTWARE TESTING TECHNIQUES 9-1

9.1 Testing Objectives .. 9-2

9.2 Information Flow in Testing ... 9-2

9.3 Test Case Design .. 9-3

9.4 White Box Testing .. 9-3

9.5 Black Box Testing .. 9-12

9.6 Automated Testing Tools ... 9-13

CHAPTER 10: SOFTWARE TESTING 10-1

10.1 Overview of Software Testing Strategies ... 10-2

10.2 Verification and Validation .. 10-2

10.3 Organization for Software Testing ... 10-2

10.4 A Software Testing Strategy .. 10-3

10.5 Unit Testing .. 10-4

10.6 Integration Testing ... 10-5

10.7 Validation Testing .. 10-6

10.8 System Testing ... 10-7

10.9 Debugging .. 10-7

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 1

CHAPTER 1: FUNDAMENTALS OF SOFTWARE

ENGINEERING

Chapter Objectives

At the end of this chapter, student should understand:

1. The Evolution of Software and the Software Crisis

2. Concepts of Software Engineering

3. Skills necessary for Software Engineering

4. Software Engineering Components:

o Methods,

o Tools and Procedures

5. Software Engineering Paradigms

o The Classical Life Cycle

o Prototyping

o Fourth Generation Techniques

o Combination of Paradigms

6. Changing Nature of Software Development

1.1 The Evolution of Software

The Early Years (50's - mid 60's)

 This generation was characterized by Batch orientation, limited distribution, and customization of software.

 In Batch Processing, the system handles an entire sequence of jobs together, often with little or no human

intervention.

 Also, as computers were not widely used at that time, only in scientific and military institutions, software

could be highly customized since distribution was limited. Job mobility was low, and the software was

basically designed this way:

You wrote it, you got it working, and if it failed, you'll be the one to get it working again.

Second Era (60's - mid 70's)

 This era saw the growth of software houses and the use of multiprogramming and multi-user systems,

introducing with it new concepts of human-machine interaction.

 Software started to be distributed in a multidisciplinary market. At this point of time, the software crisis

began.

Third Era (70's - mid 80's)

 This period was characterized by widespread growth and the use of personal computers.

 Similarly, the use of microprocessors saw its way into use of intelligent products.

 This led to the greatly increased usage of software and subsequent mushrooming of software companies.

Fourth Era (80's and beyond)

 This period saw the use of increasingly powerful desktop systems, object-oriented technologies, Expert

Systems, Artificial neural networks, and Parallel Computing.

 The software crisis intensifies!

w
w
w
.m

as
om

om
si
ng

i.c
om

2 Software Engineering Manual

 As we move into the fourth era, the problems associated with computer software continue to intensify:

 Hardware sophistication has outpaced our ability to build software to tap the hardwares

potential.

 Our ability to build new programs cannot keep pace with the demand for new programs.

 Our ability to maintain existing programs is threatened by poor design and inadequate resources.

 In addition, the quick pace in which consumers demand new software have resulted in impossible deadlines

and tough schedules that software designers have to deal with. This has also resulted in other problems:

 Project overruns: i.e. the project takes far longer than expected.

 Poor quality products

1.2 Software Crisis

 The problems faced in these periods of software evolution have been described as a crisis in software

development. Managers responsible for software development have actually summarized these problems into

several core issues:

 Schedule and cost estimates are often grossly inaccurate

 The productivity of software development people has not kept pace with the demand for their

services.

 The quality of software is sometimes less than adequate.

 Other related problems are that there is little data on the software development process, forestalling

improvements that can be made by looking at past experiences. Similarly, poorly defined customer

requirements at the start of a software development cycle has resulted in customer dissatisfaction with the

completed software at the end of the cycle. Lastly, existing software itself can be very difficult to maintain.

 These questions and problems faced in the history of software development have thus been instrumental to

the creation and adoption of modern software engineering practices.

1.3 Software Engineering Paradigms

 The definition of Software Engineering can thus be said to be the following:

 Software Engineering is the establishment and use of sound engineering principles in order to obtain

economically software that is reliable and works efficiently on real machines.

 The skills necessary for software engineers to adequately perform the roles in software development can be

said to be of two kinds:

 Software Skills: this is the nuts and bolts of actually writing the software.

 Project Management Skills: This refers to the how-to control the development and subsequent

maintenance of software.

In Software Engineering concepts, there are three key elements (also known components): methods, tools

and procedures.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 3

Software

Engineering

Procedures

Tools

Methods

 Methods: these are the how-to for building the software. Examples of these are (I) Project Planning; (2)

System and Software requirement analysis; (3) Coding, testing and maintenance.

 Tools: these are the automated or semi-automated support for methods. Examples of these are CASE, or

Computer-Aided-Software-Engineering, the software equivalent of hardware design.

 Procedures: this is the glue that holds the methods and tools together. It defines the sequence in which

methods are applied, and makes sure that the development of software is logical (i.e. flows in correct order)

and is on time too.

 Software Engineering thus comprises of a set of steps that encompass each of the three elements above. These

steps are often referred to as Software Engineering Paradigms. Four such paradigms are of interest to us:

 Classical Life Cycle

 Prototyping

 Fourth Generation Techniques

 A combination of all three techniques

1.3.1 The Classic Life Cycle

Also known as the Waterfall model, this life-cycle paradigm demands a systematic and sequential

approach to software development. It presents a highly structured method of software development that

starts at the system level, and progresses through analysis, design, coding, testing and finally

maintenance.

w
w
w
.m

as
om

om
si
ng

i.c
om

4 Software Engineering Manual

Systems

Engineering

Analysis

Testing

Maintenance

Design

Coding

 Systems engineering: establish requirements for all system elements and then allocating some subset of

these requirements to software. Essential for interfacing correctly with external components, e.g. databases,

hardware

 Analysis: analysis of requirements is now focused on software alone. Requirements for both system and the

software are documented and reviewed with the customer.

 Design: the multi-step process that focuses on four distinctive attributes of the program: (a) data structures;

(b) software architecture; (3) Procedural detail; (4) Interface characteristics.

 Coding: design is translated to machine readable form

 Testing: focuses on the logical internals of the software.

 Maintenance: errors/changes will invariably occur because software must accommodate changes in the real

and external environment.

 Common problems faced with the Classic Life-Cycle

 Real projects rarely follow sequential flow of the "waterfall" model, i.e. they jump to-and-fro. And

iterations by itself always produces problems.

 It is difficult to determine requirements so explicitly and so early in the development. There is always a

lot of uncertainty at the start of the project.

 The customer has to wait for a really long time before he even gets a feel of the real project, i.e. working

version of prototype is not available early in the cycle.

 Despite these problems, the Classic Life-Cycle still remains the most widely used procedural model for

software engineering.

1.3.2 Prototyping Paradigm

 It often happens in a typical software development cycle that the customer has defined a set of general

objectives for software, when much more detailed input, processing, or output requirements are needed by the

software developer. Or that the developer could be unsure of the efficiency of an algorithm, the adaptability

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 5

of an operating system, or the form that human-machine interaction should take. In these cases, a prototyping

approach could be considered.

 A prototype can be defined as the first or original type or model in which anything is copied. The prototyping

process thus is a series of steps that enables the developer to create a model of software that must be built.

The model can take one of three forms:

 Paper/PC model that depicts how human interactions will occur

 A working prototype that implements some subset of the functions required for the desired software

 An existing program that performs part of or all of the functions desired but has other features that will

be improved later.

Requirements

Gathering

"Quick Design"

Build Prototype

Evaluate & Refine

Requirements

Engineer Product

 Requirements gathering: developer and customer meet to define overall objectives of

software.

 Quick Design: quick implementation of these aspects of the software that will be visible to

user.

 Build prototype: leads to design of prototype.

 Evaluate and Refine Requirements: analysis of prototype; refinement.

 Engineer product

1.3.3 Problems in Prototyping

 Prototype is often rushed, and long term aspects of overall software quality and

maintainability not considered.

 Developer often makes implementation promises in order to get prototype working quickly.

w
w
w
.m

as
om

om
si
ng

i.c
om

6 Software Engineering Manual

A possible solution to this problem then is that the software developer and customer must both

agree that the prototype is only meant to define requirements. It is then discarded and actual

software is engineered with an eye towards quality and maintainability.

1.3.4 Fourth Generation Techniques

 4th Generation Techniques actually encompasses a broad array of software tools which

have one thing in common: each of them enables the software developer to specify some

characteristic of software at a high level. The tool then automatically generates source code

based on the developer specification. One of the special characteristics about this technique

is that the high level language used is often very close to our natural language.

 Features of 4L Tools:

 Database Query

 Report Generation

 Data Manipulation

 Screen Interaction

 Code Generation

 Graphics/Spreadsheets

 Requirements Gathering. Ideally, the customer could actually describe the requirements

and these would be directly translated into an operational prototype. However, this is

generally unworkable, since the customer may be unsure of what exactly is required, or

introduce a degree of ambiguity in these requirements.

 Design Strategy. Often, for smaller scale software applications, it is possible to move

directly from the requirements gathering step to implementation using a non-procedural 4th

Generation Language. However, for large projects, the design phase is crucial to avoid poor

quality, poor maintainability, and poor customer acceptance problems later.

 Implementation Using 4GL.

 Product

 Possible Problems faced in 4GT

 Current Application domain for 4GT is limited to business information systems, for

example information analysis and reporting that is keyed to large databases.

 Rapid system development is true only for small systems

Requirements

Gathering

Design

Strategy

Implementation

Product/

software

deliverable

Changeover/

maintenance/Revie

w

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 7

 4GTs are not substitutes for good design planning necessary particularly for large

software development efforts.

1.3.5 Combining Paradigms

 In many cases, paradigms can be combined and the strengths of each can be utilized in a

single project. By looking at the diagram, requirements gathering is still essential, and

interaction between the developer and customer must still occur. To create the prototype,

4GL can be applied to develop the prototype quickly. Once the prototype has been

evaluated and refined, the design and implementation steps of the classic life cycle can be

applied to engineer the software formally.

Engineer

Prototyping

Requirements

Gathering

Classic Life

Cycle

Apply 4GL Prototype

1.4 The Changing Nature of Software Development

 In the graph, a number of observations can be seen:

 The overall demand for software will continue to rise in the future.

 However, the ratio of software products developed using conventional methods and 4th

generation methods will change.

Chapter Review Questions

w
w
w
.m

as
om

om
si
ng

i.c
om

8 Software Engineering Manual

 References for Further Reading

1. Explain the concept of software engineering

2. What is the difference between a software process model and a software process? Suggest two

ways in which a software process might be helpful in identifying possible process

improvements.

1) Peters, J.F and Pedrycz (2000) Software Engineering: An Engineering Approach, John Wiley

and sons.

2) Pressman R.S (1997)software engineering: a practitioner’s Approach, McGraw Hill

3) Somerville Ian (2002) software engineering ,Pearson’s education

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 9

CHAPTER 2: REQUIREMENTS ANALYSIS

FUNDAMENTALS

Chapter Objectives

At the end of this chapter, student should understand: to :

 Requirement Analysis

 Analysis Tasks

 Problem Recognition

 Evaluation and Synthesis

 Modeling

 Specification

 Review

 The Analyst

 Problems in Requirement Analysis

 Communication Techniques

 Preliminary Meeting or interview

 Facilitated Application Specification Technique (FAST)

 Analysis Principles

 Information Domain

 Partitioning

 Essential and Implementation Views

2.1 Requirements Analysis

A formal definition for Requirements Analysis would be:

 Requirements Analysis the process of discovering, refinement, modeling and specification in a software

project.

 Such a process will always involve both the customer and system engineer, allowing the system engineer to:

 Specify software function and performance;

 Indicate softwares interface with other system elements;

 Establish design constraints that the software must meet.The three points above can also be

thought of as the objectives of Requirements Analysis

 Requirement Analysis provides the software designer with a representation of information and function that

can be translated to data, architectural and procedural design.

 Finally, Requirement Analysis is also concerned with the preparation of the Software Specification, a formal

document that specifies clearly the functional and performance requirements of the software. This

Specification document in turn will allow the developer and customer to assess quality once the software

itself has been built.

w
w
w
.m

as
om

om
si
ng

i.c
om

10 Software Engineering Manual

 The software developer performing Requirement analysis would often be known as the analyst.

2.2 Analysis Tasks

 Software requirement analysis can be divided into an ordered sequence of five main areas of effort, namely:

 Problem Recognition

 Evaluation and Synthesis

 Modeling

 Specification

 Review

 Problem Recognition

 Goal of analyst here is recognition of the basic problem elements as perceived by user and

customer

 Understand software in the system context

 Define software scope

 Analyst will also need to establish contact with management and technical staff of the customer

and software development organization

 Evaluation and Synthesis

 The analyst must now evaluate the flow and content of information

 Define and elaborate all software functions

 Understand software behavior in the context of events that affect the system;

 Establish system interface characteristics;

 and uncover design constraints.

 Throughout this step, the emphasis is on what must be done, not how it will be done.

 This step will continue until both the analyst and customer feels confident that software can be

adequately specified for subsequent development steps.

 Modeling

 The analyst will then create models of the system that will enable better understanding of data

and control flow.

 These models describe the data and control flow, functional processing, behavioral operation,

and information content.

 Models serve a number of important roles:

- Aids in understanding the information, function and behavior of a system.

- Makes requirement analysis task easier and more systematic

- It serves as a basis for creating specification for the software.

- Becomes the focal point for review.

- Becomes the foundation for design.

 Specification

 The Specification document is now developed.

 The specification is a representation of software that can be reviewed and approved by the

customer.

 Usually developed as a joint effort between the developer and the customer.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 11

2.2.1 Specification Principles

 Requirements need to be represented in a manner that ultimately leads to successful

software implementation. Eight principles have been developed by Balzer and Goldman in

order to help in such development of specifications.

1. Separate functionality from implementation

 A specification is a description of what you want (i.e. you specify), as opposed to how

it is realized (implementation).

2. A process-oriented systems specification language is required

 In a dynamic environment, the behavior of the entity cannot be expressed as a

mathematical function of its input.

 Rather, a process-oriented description must be employed, in which the "what"

specification is achieved by specifying a model of the desired behavior in terms of

functional responses to various stimuli from the environment.

3. A specification must encompass the system of which the software is component

 System is made up of interacting components

 Specifications must be made in context of entire system and interaction between its

parts

4. A specification must encompass the environment in which the system operates

 i.e., the environment in which the system operates and how it interacts with must be

specified

5. A specification must be a cognitive model

 Basically, it means that the specification must describe a system as perceived by its

user community.

6. A specification must be operational

 i.e., the specification must be complete and formal enough such that it can be satisfy an

implementation of some arbitrary test cases.

7. A specification must be tolerant of incompleteness and augmentable

 i.e., the specification must be robust enough to undergo changes, expansion.

8. A specification must be localized and loosely coupled

 Localized means to affect one piece only

 Loosely coupled means that parts can be removed or added easily

 i.e., the specification must be such that its content and structure should be able to

accommodate dynamic changes, and that whatever information changes there are, it

should affect one component only.

2.2.2 Review

 Review of analysis documents like specification.

 Review should first be conducted at a macroscopic level.

 Conducted by customer and developer.

 Results in modifications to

 Functions;

 Performance;

 Information representation;

 Constraints; and

 Validation criteria

w
w
w
.m

as
om

om
si
ng

i.c
om

12 Software Engineering Manual

2.3 The Analyst

 The basic responsibility of the analyst can be said to be the following:

 To analyse and define systems of optimum performance, i.e. an output that fully meets

management objectives

 The analyst must also exhibit the ability to:

 Grasp abstract concept, partition them and generate solutions based on each division

 Understand implicit information, separate them and treat them individually

 Absorb pertinent facts from conflicting sources

 Understand the customer environment

 Apply hardware and/or software system elements to the customer environment

 Communicate well in written and verbal form

2.4 Problems in Requirements Analysis

 Requirements analysis is a communication-intensive activity. i.e. where communication is concerned, noise,

i.e. miscommunication, will always occur.

 Thus problems like miscommunication and omission often occur between analyst and customer. This is often

because of different levels of communication between an analyst and customer.

 Successful acquisition of information cannot be guaranteed. This is because when communication fails,

information can be wrongly put forward, and misinformation then occurs. And we know that accurate

requirements analysis is highly dependent on getting the correct information.

 Analyst have difficulties:

 In getting pertinent (appropriate) information

 Handling large and complex problems, i.e. as complexity increases, effort increases

 Accommodating changes that occur during and after analysis

2.4.1 Causes for the Problems

 Poor communication that makes information acquisition difficult

 Inadequate techniques and tools for developing specification

 Tendency to take short-cuts during requirements analysis tasks, leading to unstable design

 Failure to consider alternative solutions before software is specified on both parts of analyst

and customer. i.e. are there better ways to do this?

2.5 Communication Techniques

 Because of these problems, Requirements Analyze must be concerned with how to address these problems.

There are two techniques that are available to tackle these problems:

 Preliminary meeting or interview

 Facilitated Application Specification Technique (FAST)

2.5.1 Preliminary Meeting or Interview

 Proposed by Gause and Weinberg

 The most commonly used analysis technique to bridge the communication gap between the

customer and developer. Though effective for a first meeting, it should not be used for

subsequent meetings between the customer and software developer.

 The technique comprises of 3 different sets of questions

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 13

First Set

 These questions should lead to a basic understanding of the problem

 Focuses on the customer and overall goals and benefits.

Second Set

 These questions should enable the analyst to gain a better picture of the problem.

 Allow the customer to voice his/her perceptions about a solution.

Third Set

 Focuses on the effectiveness of the meeting itself.

2.5.2 FAST (Facilitated Application Specification Techniques)

 This can be thought of a technique that is used after the first meeting is completed and basic

understanding has been achieved. It proposes a meeting format that combines elements of

problem solving, negotiation, and specification.

 The FAST mentality encourages the working together mentality rather than working

individually. Hence, the technique is always a team-oriented approach, the team jointly

made up of customers and developers.

 The basic goals of the FAST meeting are:

 Identify the problem

 Propose elements of the solution

 Negotiate different approaches

 Specify a preliminary set of solution requirements.

 There are different approaches to FAST, but all of them have the following basic

guidelines:

 Meeting is conducted at a neutral site;

 Rules for preparation and participation are established;

 An agenda is suggested to cover all the important points. Agenda must be formal

enough to cover all important points, but informal enough to encourage the free flow of

ideas.

 A "facilitator" is appointed to control the meeting. A facilitator is the controller, overall

chairman of the meeting.

2.6 Analysis Principles

 Over the years of software development, a number of analysis and specification methods have been

developed. But analysis methods are related by a set of fundamental principles:

 The information domain of a problem must be represented and understood;

 Models that depict system information, function, and behavior should be developed;

 The models (and the problem) must be partitioned in a manner that uncovers detail in a layered

(or hierarchical fashion);

 The analysis process should move from essential information toward implementation detail.

 The Information Domain

 The information domain contains three different views of the data and control as a processed by

a computer system, namely: (1) Information Flow; (2) Information Content; (3) Information

Structure.

Information Flow

 Represents the manner in which data and control change as each moves through a system

w
w
w
.m

as
om

om
si
ng

i.c
om

14 Software Engineering Manual

Information Control

 Represents the individual data and control items that comprise some larger item of information.

Information Structure

 Represents the internal organization of various data and control items

 Ask ourselves questions like are data and control items to be organized as an n-th dimension

table or as a hierarchical structure?

2.7 Partitioning

 Problems are often too large and complex to be understood as a whole, so we partition them. The word

partition means to divide into parts.

 Interfaces between these divided parts must be established so that the overall function can be accomplished.

 Information, functional, and behavioral domains can be partitioned.

 A hierarchical representation of the function or information can then be established.

Configure Monitor Interact

System Sensor with User

Safehome

Software

Poll for Sensor

Event

Activate Alarm

Function

Read

Sensor

Status

Identify

Event

Type

Activate/

Deactivate

Sensor

Activate

Audible

Number

Dial

Phone

Number

Vertical

Partitioning

Configure Monitor Interact

System Sensor with User

Safehome

Software

Horizontal Partitioning

2.7.1 Partitioning Types

 Two types:

 Horizontal partitioning: greater detail as we move from left to right

 Vertical partitioning: greater detail as we move from top to down

2.7.2 Essential and Implementation Views

 Essential view presents the functions to be accomplished and information to be processed

without regard to implementation details.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 15

 Implementation view presents the real world manifestation of processing functions and

information structures.

 Concerned with the physical how-is-it-going-to-be-done aspect.

Chapter Review Questions

1. outline the qualities of a good system analyst

2. Describe the various different types of non functional requirements which may be paced on a system. Give

examples of these requirements.

3. write a set of non functional requirements for a an examination management system

4. Suggest how a software engineer responsible for drawing up a system requirements specification might keep

track of the relationships between functional and non functional requirements of a system.

References for Further Reading

1. Kotonya.G and Somerville, I (1998), Requirements engineering: Processes and Techniques, Wiley.

2. Somerville Ian (2002) software engineering ,Pearson’s education

CHAPTER 3: REQUIREMENTS ANALYSIS METHODS

Chapter Objectives

w
w
w
.m

as
om

om
si
ng

i.c
om

16 Software Engineering Manual

At the end of this chapter, stdent should understand::

Requirement Analysis Methods

 Definition

 Common characteristics in Requirement Analysis Methods

 Differences in Requirement Analysis Methods

Data Structure-Oriented Methods

 Data Structured Systems Development (DSSD)

 Jackson Systems Development (JSD)

Formal Methods

 Current status of Formal Methods

 Attributes of Formal Specification Languages

 Case Study: A Formal Specification in Z

 The Road Ahead of Formal Specification

Automated Techniques for Requirement Analysis

3.1 Requirements Analysis Methods

 Definition of Requirement Analysis Methods:

 Requirement analysis methods enable an analyst to apply fundamental analysis principles in a

systematic fashion.

 Requirement analysis methods enable an analyst to apply fundamental analysis principles in a systematic

fashion. But all methods share a number of fundamental and common characteristics. They:

 each supports the fundamental requirements analysis principles

 each creates a hierarchical representation of a system

 each demands a careful consideration of external and internal interfaces

 each provides a foundation for the design and implementation steps that follow

3.1.1 Common Characteristics of Requirement Analysis Methods

Although each method introduces new notation and analysis heuristics, all methods can be

evaluated in the context of the following common characteristics:

 Mechanism for information domain analysis, i.e. all analysis methods addresses (either

directly or indirectly) information flow, information content, and information structure.

 Approach for functional and/or behavioral representations

 All functions/behaviors are typically represented by specific notation.

 Definition of interfaces

 Interfaces are derived from an examination of information flow.

 Mechanisms for problem partitioning

 Problem partitioning is accomplished by a layering process that allows for

representation of information and function domain at different levels of abstraction.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 17

 Support for abstraction: abstraction permits one to concentrate on a problem at some level

of generalization without regard to irrelevant low level details.

 All methods provide mechanisms for partitioning a function into a set of sub-functions.

 Representation of essential and implementation views.

3.1.2 Differences in Requirement Analysis Methods

 Each method for the analysis of computer-based systems has its own point of view, its own

notation, and its own approach to modeling. Also, each method has its own jargon and

terminology.

 The degree to which the method establishes a firm foundation for design differs greatly too.

In some cases, the analysis model can be mapped directly into a working program. In other

cases, the analysis method establishes a starting point only and the designer is left to derive

the design with little help from the analysis model.

 In this chapter, three broad categories of Requirement Analysis methods will be discussed:

 Data Structure-Oriented Methods

 Formal Methods

 Automated Techniques for Requirement Analysis

3.2 Data Structure-Oriented Methods

Data Structure-oriented methods represent software requirements by focusing on data structures rather

than data flow.

 Although each data structure-oriented methods has a distinct approach and notation, all have some

characteristics in common:

 Each assist the analyst in identifying key information objects (also called entities or items) and

operations (also called actions or processes).

 Each assumes that the structure of information is hierarchical;

 Each requires that the data structure be represented using the sequence, selection, and repetition

constructs for composite data;

 Each provides a set of steps for mapping a hierarchical data structure in to a program structure.

 Data structured-oriented analysis methods are:

 Data Structured Systems Development

 Jackson System Development

3.2.1 Data Structured Systems Development (DSSD)

 Also known as the Warnier-Orr Methodology: J.D.Warnier developed a notation for

representing an information hierarchy using the three constructs for sequence, selection,

and repetition and demonstrated that the software structure could be derived directly from

the data structure. Ken Orr extended Warnier work to encompass a broader view of the

information domain that eventually evolved into a data structured systems development.

DSSD considers information flow and functional characteristics as well as data hierarchy.

3.2.2 The DSSD Approach

 Rather than examining the information hierarchy, DSSD first examines the application

context, that is, how data moves between producers and consumers of information from the

perspective of one of the producers or consumers.

 Next, application functions are assessed with a Warnier-like representation that depicts

information items and the processing that must be performed on them.

w
w
w
.m

as
om

om
si
ng

i.c
om

18 Software Engineering Manual

 Finally, application results are modeled using the Warnier diagram.

Order no.
Customer

Name

Billing Late

Charge

(0, 1)

Amt. pd.

Order(1, n)

Deposit No

(1, dn)

Date Deposit

Total
Deposit(1, d)

Monthly

Receipts

Monthly

Report

Jackson System Development (JSD)
 Focuses on models of the "real-world" information domain

3.3.3 The JSD Approach

 Entity action step:

 Identify entities (people, objects, or organizations that a system needs to produce or use

information) and actions

 Entity structure step:

 Using Jackson diagrams, order by time the actions affecting each entity

 Initial modelling step:

 Represent entities and actions as process model; define connections between the model

and the real world

 Function step:

 Specify functions that correspond to defined actions

 System timing step:

 Assess process scheduling characteristics

 Implementation step:

 Specify hardware and software as a design

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 19

Action

Sequence
Action

Iteration
Action

Selection

*

Process-0

Process-0

Process-1

Process-1 D

SV

Data Stream

State Vector

3.3 Formal Specification Techniques

 Categorized on a "formality" spectrum

 A specification is described using a formal syntax and semantics to specify system function and behavior

3.3.1 Current Status of Formal Methods

 A formal specification is mathematical in form. For e.g. predicate calculus is used as the

basis for a formal specification

 Ambiguity, incompleteness and inconsistency can be discovered and corrected easily

through mathematical analysis

 When used during design, formal methods consider a software problem in a manner that is

analogous to an algebraic derivation or a proof in analytical geometry

3.3.2 The Attributes of Formal Specification Languages

 Consists of three components

 A syntax that defines the specific notation with which the specification is represented

 Semantics that helps to define a "universe of objects"

 A set of relations that defines the rules that indicate which objects satisfy the

specification

 Syntactic domain is based on a syntax that is derived from standard set theory notation

and predicate calculus

 For e.g. x,y,z to represent a set of objects; logic symbols like A, E V that mean for all,

there exists and, respectively

 Semantic domain indicates how the language represents system requirements

 Comparison between programming language and formal specification language

w
w
w
.m

as
om

om
si
ng

i.c
om

20 Software Engineering Manual

Programming Language Formal Specification Language
Specify algorithms that

transform input to output

Describe the syntax of the programming

language

Does not make a good

specification language because it

represent only computable forms

Must be capable of expressing ideas such as

"For all x in an infinite set A. there exists a y in

an infinite set B such that the property P holds

for x and y

 Other specification languages can also develop syntax and semantics to specify states

and state transition, events and their affect on state transition and synchronization and

timing

Case Study: A Formal Specification in Z

 The Z specification language has been used to illustrate the practical use of a specification

language

 A case study is reported to have made use of Z notation, a mathematical specification

language, to specify the kernel for a diagnostic x-ray machine

 The goal is to produce a precise specification that could be implemented on different

hardware

 This case study in specification reflected a flaw in the kernel design which is proven by the

mathematical property of its specification

 Hence, formal techniques can help to avoid error especially in embedded systems which are

very difficult to test effectively

3.3.3 The Road Ahead of Formal Specification

 Although formal techniques have advantages, there do exists problems

 Formal specification emphasizes only on function and data

 Timing, control and behavioural aspect of a problem more difficult to represent

 Other elements such as human-machine interface better specified using graphical

techniques or prototyping

 Formal specification techniques are difficult to learn

3.4 Automated Techniques for Requirement Analysis

 Automated Techniques can be categorized as follows:

 Manual method that has been completed by an automated CASE tool. These tools can produce

diagrams, aid in problem partitioning, maintain a hierarchy of information about the system, and

applies heuristics to uncover problems with the analyst.

- E.g. DEC Design (Digital Equipment Corp), DesignAid (Transform Logic Corp.)

 Another class makes use of special notation that has been explicitly designed for a processing

using an automated tool. Requirements are described with a specification language that

combines keyword indicators with a natural language. The specification language is fed to a

processor that will produce a requirements specification, and diagnostic reports indicating the

consistency and organization of the specification.

- E.g. SREM: Software Requirements Engineering Methodology, PSL/PSA: Program

Statement Language/Problem Statement Analyzer).

 Benefits of Automated Techniques:

 Improved documentation through standardization and reporting

 Easier detection of gaps, omissions, and inconsistencies.

 Easier tracing of the impact of modifications

 Reduction in maintenance costs for the specification.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 21

Chapter Review Questions

1. Explain why it is almost inevitable that requirements from different stakeholders in a system

development will conflict in some ways.

2. Discuss the concept of formal specification and outline its major weaknesses

References for Further Reading

1. Kotonya.G and Somerville, I (1998), Requirements engineering: Processes and Techniques, Wiley.

2. Somerville Ian (2002) software engineering ,Pearson’s education

w
w
w
.m

as
om

om
si
ng

i.c
om

22 Software Engineering Manual

CHAPTER 4: SOFTWARE DESIGN

Chapter Objectives

At the end of this chapter,student will explain:

Software Design

Data Design Principles

Architectural Design

Procedural Design

 Graphical Design Notation

 Tabular Design Notation

 Program Design Language

Software Design Fundamentals

 Modularity

 Abstraction

 Software Architecture

 Control Hierarchy

 Data Structure

 Software Procedure

 Information Hiding

 Functional Independence (Cohesion andCoupling)

Criteria for Good Design

4.1 Software Design

The Software Design process can be defined as a process through which requirements are translated into

a representation of software. From a project management point of view, software design can be

conducted in two main steps:

Preliminary Design

Concerned with the transformation of requirements into data and software architecture.

Detail design

Focuses on refining the architectural representation, and lead to detailed data structure and

algorithmic representations of software.

Within the preliminary and detail design, a number of different design activities occur. Besides the three

main design activities, i.e. Data design, Architectural design, and Procedural design, there is also the

Interface design, which establishes the layout and interaction mechanisms for human-machine

interaction.

The three main design activities concerned in the Design phase are: Data design, Architectural design

and Procedural design. In addition, many modern applications have a distinct interface design activity.

Interface design establishes the layout and interaction mechanisms for human-machine interaction.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 23

Data design

Architectural design

Procedural design

Interface design

Detail design

Preliminary designManagement aspect

Technical aspects

Diagram: Relationship between technical and management aspects of design

4.2 Data Design

 Data design is the first (and sometimes the most important) of the three design activities that are conducted in

software engineering. The objective of Data Design is to transform the information domain into data

structures.

 A set of principles was proposed by Wasserman that may be used to specify and design data. This set of

principles are quite similar to the set of principles studied in requirement analysis.

(1) The systematic analysis principles applied to function and behavior should also be applied to

data

 The same good principles that are followed in analysis principles should also be applied to help

us develop data flow and content, identify data objects, and consider alternative data

organization.

(2) All data structures and the operations to be performed on each should be identified.

 The design of an efficient data structure should consider the operations that will be performed

on the data structure itself.

(3) A data dictionary should be established and used to define both data and program design.

 A data dictionary explicitly represents the relationships among data objects and the limitations

on the elements of a data structure.

(4) Low-level data design decisions should be deferred until late in the design process.

 In data design, a top-down approach should be used.

(5) The representation of data structure should be known only to those modules that must make

direct use of the data contained within the structure.

 Information Hiding must be practiced.

(6) A library of useful data structures and the operations that may be applied to them should be

developed.

 Data structures should be designed for reusability.

(7) A software design and programming language should support the specification and realization of

abstract data types.

 The programming language for use should support the creation of complex data structures.

4.3 Architectural Design

 The primary objective in Architectural Design is to develop a modular program structure and represent the

control relationships between modules.

 In addition, architectural design combines program structure and data structure, thus defining interfaces that

will enable data to flow throughout the program.

w
w
w
.m

as
om

om
si
ng

i.c
om

24 Software Engineering Manual

4.4 Procedural Design

 The objective in Procedural Design is to transform structural components into a procedural description of the

software.

 This step occurs after the data and program structures have been established, i.e. after architectural design.

Procedural details can be represented in different ways:

 Graphical Design Notation

 Tabular Design Notation

 Program Design Language (PDL)

 Graphical Design Notation

 The most widely used notation is the flowchart. Some notation used in flowcharts are (I) Boxes

to indicate processing steps; (II) Diamond to indicate logical conditions; (III) Arrows to indicate

flow of control; (IV) Two boxes connected by a line of control will indicate a Sequence.

 Tabular Design Notation

 Decision tables provide a notation that translates actions and conditions (described in a

processing narrative) into a tabular form.

 The upper left-hand section contains a list of all conditions. The lower left-hand section lists all

actions that are possible based on the conditions. The right-hand sections form a matrix that

indicates condition combinations and the corresponding actions that will occur for a specific

combination.

Conditions

Fixed rate account 1 2 3 4 5

Variable rate account T T F F F

Consumption <100KWH T F T F

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 25

Consumption 100KWH F T F T

Actions

Minimum monthly charge X

Schedule A billing X X

Schedule B billing X

Other treatment X

 Program Design Language

 Program Design Language (PDL) is also called structured English, or Pseudocode.

 The main difference between PDL and its nearest neighbor, 4th Generation Languages, is that in

PDL, the use of narrative text (e.g. English) is embedded directly within PDL statements.

PDL have the following characteristics:

 A fixed syntax of keywords that provide for all structured constructs, data declaration, and modularity

characteristics

 A free syntax of natural language that describes processing features

 Data declaration facilities that should include both simple (scalar, array) and complex (linked list or tree) data

structures.

 Subprogram definition and calling techniques that support various methods of interface description.

4.5 Software Design Fundamentals

 In this part of the chapter, the following Software Design Fundamentals will be discussed.

 Modularity

 Abstraction

 Software Architecture

 Control Hierarchy

 Data Structure

 Software Procedure

 Information Hiding

 Functional Independence

4.5.1 Modularity

 Definition of Modularity:

 Software is divided into separately named an addressable components, called modules,

that are integrated to satisfy problem requirements.

w
w
w
.m

as
om

om
si
ng

i.c
om

26 Software Engineering Manual

 The graph shown refers to the question of Modularity and Software Cost, and is a

useful tool to consider when modularity is to be implemented. In this graph, the cost or

effort drops as more modules are considered, but the cost to interface modules

increases as we have more modules. Thus, we must take care to stay in the region of

minimum cost, i.e. a balance between the number of modules and the cost or effort.

4.5.2 Effective Modular Design

 Modularity is an accepted approach in all engineering disciplines

 Reduces complexity and facilitates changes in modules

 Easier implementation

4.5.3 Desirable Characteristics of Module

 The attributes of a good module are as follows:

 A small program that can be invoked by the operating system, or it could be a sub-

program invoked by another module(shareable)

 The statement are collectively referred to by a descriptive name called the module

name

 A module must return to its caller i.e. have a single entry and exit; (single entry and

exit module to ensure that modules are closed and simplify program maintenance)

 The module should be relatively small in size (small modules allow for more easily

amended programs, estimating and project control more accurate and exhaustive

testing are easier)

 It should be easy to read, modify and use

 A module should preferably have a single function

4.5.4 Advantages and Disadvantages of Modularity

 Rationale for Modularity

 Allow large program to be written by several or different people

 Encourage creation of commonly used routines to be placed in library and/or be used

by other programs

 Simplify overlay procedure of loading large program into main storage

 Provide more check point to measure progress

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 27

 Simplify design, making program easy to modify and reduce maintenance costs

 Provide a framework for more complete testing, easier to test

 Produces well-designed and more readable program

 Rational Against Modularity

 Execution time may be, but not necessarily, longer

 Storage size may be, but is not necessarily, increased

 Compilation and loading time may be longer

 Intermodule communication problems may be increased

 Demands more initial design time

 More linkage required, run-time may be longer, more source lines must be written and

more documentation has to be done

4.5.5 Abstraction

 Abstraction permits one to concentrate on a problem at some level of generalization without

regard to irrelevant low level details.

 Use of abstraction also permits one to work with concepts and terms that are familiar, in the

problem environment without having to transform them to an unfamiliar structure.

4.5.6 Software Architecture

 Software Architecture can be said to refer indirectly to two important characteristics:

 The hierarchical structure of procedural components (modules) and

 the structure of data

 Software architecture is derived through a partitioning process that relates elements of a

software solution to parts of a real-world problem implicitly defined during requirements

analysis.

 Thus, in the partitioning process, a big problem is broken up into different software

solutions, and the problem may thus be satisfied by many different candidate structures.

4.5.7 Control Hierarchy

 Control Hierarchy, also called program structure, represents the organization which is often

hierarchical, of program components (modules) and implies a hierarchy of control.

 There are many different notations used to represent control hierarchy, for example the

w
w
w
.m

as
om

om
si
ng

i.c
om

28 Software Engineering Manual

Warnier-Orr and Jackson diagrams. Some terminology used in the discussion of control

hierarchy are:

 Fan-Out, which is a measure of the number of modules that are directly controlled by

another module;

 Fan-in, which indicates how many modules directly control a given module.

 Depth: Number of levels of control

 Width: Overall span of control

 Some other terms used in Control Hierarchy are:

 Superordinate: i.e. a module that controls another module;

 Subordinate: i.e. a module that is controlled by another module.

4.5.8 Data Structure

 Data structure is a representation of the logical relationship among individual elements of

data. Data structure dictates the organization, methods of access, degree of associativity,

and processing alternatives for information.

 Examples of classic data structures:
An n - dimensional Space

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 29

 N-dimensional array: result when the sequential vector is extended into an n-

dimensional space.

 Linked list: a data structure that organizes noncontiguous scalar items, vectors, or

spaces in a manner (called nodes) that enables them to be processed as a list.

 Hierarchical data structure: implemented using multilinked lists that contain scalar

items, vectors, and possibly, n-dimensional spaces.

4.5.9 Software Procedure

 Software procedure focuses on the processing details of each module individually.

 Software procedure must provide a precise specification of processing, including sequence

of events, exact decision points, repetitive operations, and even data organization/structure.

w
w
w
.m

as
om

om
si
ng

i.c
om

30 Software Engineering Manual

Coincindental

Conhesion

Logical

High (most desirable)

Low (least desirable)

Procedural

Functional

Communication

Temporal

4.6 Information Hiding

 The principle of information hiding suggests that modules be characterized by design decisions that (each)

hides from the others.

 In other words, modules should be specified that information (procedure and data) contained within a module

are inaccessible to other modules that have no need for such information.

 The use of information hiding as a design criterion for modular systems provides the greatest benefits when

modifications are required during testing and later during software maintenance. This is because as most data

and procedures are hidden from other parts of the software, inadvertent errors introduced during

modifications are less likely to propagate to other locations within the software.

4.7 Functional Independence

 The concept of functional independence comes from a direct outgrowth of modularity and the concepts of

abstraction and information hiding. Functional independence is achieved by developing modules with single-

minded function and an aversion to excessive interaction with other modules. In other words, design software

so that each module addresses a specific subfunction of requirements and has a simple interface when viewed

from other parts of the program structure.

 Independence is measured using two qualitative criteria: cohesion and coupling.

- Cohesion: measures the relative functional strength of a module

- Coupling: measures the relative interdependence among modules.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 31

Data

Coupling

Stamp

High (least desirable)

Low (most desirable)

Common

Content

Control

4.7.1 Cohesion

 A module with high cohesion is able to perform a single task within a software procedure,

requiring little interaction with procedures being performed in other parts of the program.

 In other words, a cohesive module does just one thing and sticks with it.

 Low Levels

 Coincidental Cohesion: a module that performs a set of tasks that relate to each other

loosely, if at all.

 Logical Cohesion: a module that performs tasks that are related logically (e.g., a

module that produces all output regardless of type)

 Temporal Cohesion: a module that performs tasks that are related by the fact that all

must be executed with the same span of time.

 Moderate Levels

 Procedural Cohesion: this happens when the processing elements of a module are

related and must be executed in a specific order.

 Communication Cohesion: when all processing elements concentrate on one area of a

data structure.

 High Levels

 High cohesion is characterized by a module that performs one distinct procedural task.

4.7.2 Coupling

 Coupling is a measure of interconnection among modules in a software structure.

 Low Coupling Levels (desirable)

 Data coupling: for example passing of simple data like an argument list from one

module to another module.

 Stamp coupling: a portion of data structure, rather than a argument list, is passed via a

module interface.

w
w
w
.m

as
om

om
si
ng

i.c
om

32 Software Engineering Manual

 Moderate Coupling Levels

 Control Coupling: most common in software. Where control is passed via a flag on

which decisions are made in a subordinate or superordinate module.

 High Coupling Levels

 Common Coupling: occurs when a number of modules reference a global data area.

 Content Coupling: occurs when one module makes use of data or control information

maintained within the boundary of another module.

4.8 Criteria for Good Design

 A design should:

 Exhibit a hierarchical organization that makes intelligent use of control among components of

software

 Be modular; that is, the software should be logically partitioned into components that perform

specific functions and subfunctions

 Contain distinct and separable representation of data and procedure

 Lead to modules that exhibit independent functional characteristics

 Lead to interfaces that reduce the complexity of connections between modules and with the

external environmental

 Be derived using a repeatable method that is driven by information obtained during software

requirements analysis

Chapter Questions

1. Distinguish between coercion and cohesion

2. Explain the benefits of modular system design

3. What is user interface design? Outline any three types of user interfaces. Name any

three types of user interface errors

4. Identify major technical and non technical factors that may hinder software re-use

References for further reading

1) Pressman R.S (1997)software engineering: a practitioner’s Approach, McGraw Hill

2) Somerville Ian (2002) software engineering ,Pearson’s education

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 33

CHAPTER 5: PROGRAMMING LANGUAGES

Chapter Objectives

At the end of this chapter, stdent should understand::

 Programming Languages

 Definition

 The Translation Process

 Programming Language Characteristics

 Psychological View

 Engineering View

 Choosing a Language

 Programming Language Fundamentals

 Data Types and Data Typing

 Subprograms

 Control Structures

 Support for Object-Oriented Approaches

5.1 Programming Languages

 Definition: a form that can be "understood" by the computer.

5.1.1 The Translation Process

 The coding step translates a detail design representation of software into a programming

language realization.

 The translation process continues when a compiler accepts source code as input and

produces machine-dependent object code as output.

 Compiler output is further translated into machine code, and these are the actual

instructions that will actually be used by the central processing unit.

5.2 Programming Language Characteristics

 The coding process can be viewed firstly as communication via a programming language- i.e. it is a human

activity. Therefore, attention must be paid to the psychological characteristics of a language.

 The coding process may also be viewed as one step in the software engineering process. The engineering

characteristics of a language therefore, also have an important impact on the success of a software

development project.

5.2.1 Psychological View

 The role of the software psychologist is to focus on human concerns. Some of these

concerns are:

 Ease of use

 Simplicity in learning

 Improved reliability

w
w
w
.m

as
om

om
si
ng

i.c
om

34 Software Engineering Manual

 Reduced error frequency

 Enhanced user satisfaction

 At the same time maintaining an awareness of machine efficiency. Software capacity, and

hardware constraints. These human aspects of computer-based system development must

thus be taken into account.

5.2.2 Psychological View Characteristics

 A number of psychological characteristics occur as a result of programming language

design.

 Uniformity

 Indicates the degree to which a language uses consistent notation, applies arbitrary

restrictions.

 Ambiguity

 Refers to the situation where a programming language is perceived by the programmer

in one way, but the compiler always interprets the language in another way.

 Compactness

 Indicates the amount of code-oriented information that must be recalled from human

memory.

 Locality

 Measure of how much of a language that can be implemented as a "whole". Locality is

enhanced when statements can be combined into blocks, and when design and resultant

code are highly modular and cohesive.

 Linearity

 A psychological characteristic that is closely associated with the concept of

maintenance of functional domain, i.e. human perception is facilitated when a linear

sequence of logical operations is encountered. A programming language that does

extensive branching violates the linearity of processing.

 Tradition

 Refers to a human trait of familiarity. In other words, a programmer with experience in

one form of language will find it easy to pick up another language that has the same

sort of constructs in the former.

 The psychological characteristics of programming languages have an important bearing on

our ability to learn, apply and maintain them.

5.2.3 Engineering View

 The engineering view of programming language characteristics focuses on the needs of

specific software development project. A general set of engineering characteristics can be

said to be as follows:

 Ease of design to code translation

 Compiler efficiency

 Source code portability

 Availability of development tools

 Maintainability

 Ease of design to code translation

 Indicates how closely a programming language can represent a design representation.

 Compiler efficiency

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 35

 Many applications today still require fast, "tight" (i.e. low memory requirements)

programs. Languages with optimizing compilers may be attractive if software

performance is a critical requirement.

 Source code portability

 This generally refers to whether source code may be transported from processor to

processor and compiler to compiler with little or no modification.

 Availability of development tools

 These can shorten the time required to generate source code and can improve the

quality of code.

 Maintainability of source code

 Source code must be easy enough to understand so as to allow modifications according

to changes in design.

5.3 Choosing a Language

 The choice of a programming language for a specific project must take into account both engineering and

psychological characteristics.

 The criteria that can be applied during an evaluation of available languages can be

 General application area

 Algorithmic and computational complexity

 Environment in which software will execute

 Performance considerations

 Data structure complexity

 Knowledge of software development staff

 Availability of a good compiler or cross-compiler.

 C is often the language of choice for the development of systems software, while languages such as Ada and

Modula-2 are often used in Real-time applications. In the engineering/scientific area, FORTRAN remains the

predominant language. Widely-used object oriented programming languages are C++, Small Talk.

 Although there are many "new and better" programming languages, sometimes it could also be better to

choose a "weaker" (old) language that has solid documentation and support software, is familiar to everyone

on the software development team and has been successfully applied in the past.

5.4 Programming Languages and Software Engineering

 Regardless of the software engineering lifecycle in consideration, programming language will have an impact

on project planning, analysis, design, coding, testing and maintenance. The quality of the end result and

product is often closely tied to the software engineering activities that precede and follow coding.

 During the project planning, consideration of the technical characteristics of a programming language is

rarely undertaken. After software requirements have been established, the technical characteristics of the

candidate programming language becomes more important. If complex data structures are required, languages

with sophisticated data structure support (e.g. PASCAL) would be necessary. If high-performance, real-time

capability is paramount, ADA would be appropriate. If memory-speed efficiency is in consideration, C would

be more appropriate.

 The quality of software design is established in a manner that is often independent of programming language

characteristics. However, language attributes do play a role in the quality of an implemented design and can

affect the way that design is specified. In some instances, a complex data structure in design can only be

satisfied by specific programming languages.

5.5 Programming Languages Fundamentals

w
w
w
.m

as
om

om
si
ng

i.c
om

36 Software Engineering Manual

 The technical characteristics of programming languages span an enormous number of topics. This section

introduces a brief discussion of programming language fundamentals.

5.5.1 Data Types and Data Typing

 Data types and data typing can be described as a class of data objects together with a set of

operations for creating and manipulating them. Simple data types are often numeric types

(e.g. integer, complex, floating point numbers), enumerated types (user defined data types),

Boolean types (e.g. true or false), and string types (e.g. alphanumeric data). More complex

data types could be from simple one-dimensional arrays to list structures and multi-

dimensional arrays.

 The operations that can be performed on a particular data type and the manner in which

different types can be manipulated in the same statement is controlled by type checking.

 There are five levels of type checking.

 Level 0: typeless

 Level 1: automatic type coercion

 Level 2: mixed mode

 Level 3: Pseudostrong type checking

 Level 4: strong type checking

 Typeless:

 programming languages have no explicit means for data typing and therefore, do not

enforce type checking.

 Automatic-type coercion:

 a type checking mechanism that allows the programmer to mix different data types, but

then converts operands of incompatible types, thus allowing requested operations to

occur.

 Mixed-mode type conversion:

 similar to automatic type coercion. Different data types within the same type category

are converted to a single target type so that a specified operation can occur.

 Pseudostrong-type checking:

 similar to strong-type checking, but is implemented in a manner that provides one or

more loopholes.

 Strong-type checking:

 the programming language will only permit operations to be performed on data objects

that are of the same data type.

5.5.2 Subprograms

 A separately compatible program component that contains a data and control structure. A

subprogram exhibits a number of generic characteristics:

 a specification section that includes its name and interface characteristics

 an implementation section that includes data and control structures

 an activation mechanism that enables the subprogram to be invoked from elsewhere

in the program.

5.5.3 Control Structures

 All modern programming languages enable the programmer to represent sequence,

condition, and repetition- the structured programming logical constructs.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 37

5.5.4 Support for Object-oriented Approaches

 Support for object-oriented approaches should be built directly into the programming

language that will be used to implement an object-oriented design.

 Definition: identifies the class

 Private data: attributes whose values are private to individual instances of the class

 Shared data: attributes whose values are shared by all instances of the class

 Pool data: attributes whose values are shared across multiple classes

 Instance methods: the procedures that implement messages that can be sent to an

instance of a class

 Class methods: the procedures that implement message that can be sent to a class.

5.6 Language Classes

 First Generation

 The first language generation represents machine code and its more human-readable equivalent-

assembly language.

 MACHINE LANGUAGE: is basically the only language that the computer directly

understands. Often functions as the object language of higher-level language programs, since all

high-level languages must be translated into machine language in order for the computer to

execute them. This coding form is also often in octal or hexadecimal codes, since it is extremely

tedious to code in 0s and 1s.

- Advantage: most efficient in terms of storage area use and execution speed. Allows

programmer to utilize the computer's potential for processing data.

- Disadvantage: extremely difficult to program, remember and use.

 ASSEMBLY LANGUAGE: programmer uses symbolic names, or mnemonics, to specify

machine codes. Mnemonics are English-like abbreviations for the machine-language opcodes.

- Advantage: can be used to develop programs highly efficient in terms of storage space use

and processing time.

- Disadvantage: cumbersome to use, as one assembly-language instruction is translated into

one machine-language instruction. Also difficult to program effectively. Also machine-

dependent, i.e. programs written on one computer generally cannot work on another.

5.6.1 Second Generation Languages

 These languages were developed in the late 1950's and the early 1960's, and served as the

foundation for all third-generation languages.

 Second generation languages are characterized by:

 Broad usage

 Enormous software libraries

 Widest familiarity and acceptance.

 Some examples of these are FORTRAN (30 years old), COBOL and BASIC.

5.6.2 Third Generation Languages

 Also called modern or structured programming languages. There are three broad categories

of these languages:

 General-Purpose high order languages

 Object-Oriented high order languages

 Specialized languages

w
w
w
.m

as
om

om
si
ng

i.c
om

38 Software Engineering Manual

 General Purpose High-Order Languages

 Languages used for general programming purposes, e.g. software products, embedded

applications and systems software.

 Examples: PASCAL, ALGOL, ADA and C.

 Object Oriented Languages

 Object-oriented programming languages enable a software engineer to implement

analysis and design models created using Object-oriented analysis and object-oriented

design.

 Examples: dialects of C, i.e. C++, and Smalltalk.

 Specialized languages

 Characterized by unusual syntactic forms that have been especially designed for a

distinct applications.

 Examples: LISP, PROLOG, APL and FORTH.

5.6.3 Fourth Generation Languages

 4GL can be said to combine procedure and non-procedure languages

 In other words, the language enables the user to specify conditions and corresponding

actions (the procedural component) while at the same time encouraging the user to indicate

the desired outcome (the nonprocedural component) and then applying its domain-specific

knowledge to fill in the procedural details.

 4GL can be divided into several categories:

 Query Languages

 Program Generators

 Other Categories of 4GLs

5.6.4 Query Languages

 Vast majority of 4GLs have been developed for use in conjunction with database

applications.

5.6.5 Program Generators

 Program generators enable the user to create complete third-generation language programs.

However, most program generators today focus extensively on business information systems

applications and generate programs in COBOL.

5.6.6 Other Categories of 4GLs

 Some of these other categories are Prototyping languages have been developed to assist in

the creation of prototypes and a means for data modeling. Formal specification languages

can also be considered as a 4GL when such languages produce machine-executable

software.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 39

Chapter review questions

References for Further Reading

1) highlight the benefits of using 4GLs for implementation

2) what are the factors to consider when selecting a good programming language for use

1. Pressman R.S (1997)software engineering: a practitioner’s Approach, McGraw Hill

2. Somerville Ian (2002) software engineering ,Pearson’s education

w
w
w
.m

as
om

om
si
ng

i.c
om

40 Software Engineering Manual

CHAPTER 6: DATA FLOW ORIENTED DESIGN

Chapter Objectives

At the end of this chapter, student learn :

 Design Process Considerations

 Transform Flow and Transaction Flow

 Transform Flow

 Transaction Flow

 Process Abstract

 Transaction Analysis

 Design Heuristics

 Design Post processing

 Data Flow-oriented Design

 The design phase in software development is the multi-step process in which representations of
data structure, program structure, and procedure are synthesized from information requirements.

 The objective of Data Flow-Oriented methods is then to provide a systematic approach for the
derivation of program structure.

6.1 Design Process Considerations

 Data Flow-Oriented design allows a convenient translation from information requirements (e.g. the data flow

diagram) contained in a Software Requirements Specification to a design description of program structure.

 Five-Step Process

 Step 1: The type of information flow is established

 Step 2: Flow boundaries are indicated.

 Step 3: The DFD is mapped into program structure

 Step 4: The control hierarchy is defined by factoring

 Step 5: The resultant structure is refined using design measures and heuristics.

6.2 Transform Flow and Transaction Flow

 Transform Flow

 Data coming from external forms must be converted into an internal form for processing.

 Information entering the system along paths that transform external data into an internal form

are identified as incoming flow.

 At the kernel of the software, a transition occurs: Incoming data are passed through a transform

centre and begin to move along paths that lead out of the software.

 Data moving along these paths are called outgoing flow.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 41

 Transaction Flow

 Information flow is characterized by a single data item, called a transaction, that triggers other

data flow along one of many paths.

 The transaction is evaluated and, based on its value, flow along one of many action paths is

initiated.

 The hub of information flow from which many action paths flow from is called a transaction

centre.

6.2.1 A Process Abstract

 Design begins with an evaluation of the level 2 or level 3 DFD

 The information flow category is established

 Flow boundaries that delineate the transform or transaction centre are defined

w
w
w
.m

as
om

om
si
ng

i.c
om

42 Software Engineering Manual

 Based on the location of boundaries, transforms are mapped into program structure as

modules

 The precise mapping and definition of modules is accomplished by distributing control top-

down in the structure

6.3 Transform Analysis

 Transform analysis refers to a set of design steps that will allow a DFD with transform flow characteristics to

be mapped into a predefined template for program structure.

Design Steps:

 Step 1: Review the fundamental system model (refer to Figure 6.0 and 6.1)

 Step 2: Review and refine DFD for the software (refer to Figure 6.1 and 6.2)

 Step 3: Determine whether the DFD has transform or transaction flow characteristics (refer to

Figure 6-4)

 Step 4: Isolated the transform centre by specifying incoming and outgoing flow boundaries

(refer to Figure 6.4)

 Step 5: Perform "First-Level Factoring" (refer to Figure 6.5 and 6.6"

 Step 6: Perform "Second-Level Factoring" (refer to Figure 6.7, 6.8 and 6.9)

 Step 7: Refine the "First-Cut" program structure using design heuristics for improved software

quality (refer to Figure 6.10)

 Review the Fundamental System model

 The Context diagram, also known as the level 0 DFD, the Systems Specification, and the

Software Requirements Specification are reviewed.

Control Panel

Sensor

Telephone

Line

Alarm

Control Panel

Display

SafeHome

Software

User

Commands

and Data

Display

Information

Alarm

Type

Telephone

Number

Tones

Sensor

Status

Figure 6-0 : Context Level DFD for SafeHome

 Review and Refine Data Flow Diagrams for the Software

 From the Systems Specification and the Software Requirements Specification, information is

obtained from the analysis models, and refined to greater detail.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 43

Control

Panel

Configure

System

Activate/

Deactivate

System

Interact

with User

Display

Messages

and Status

Process

Password

Monitor

Sensor

Control Panel

Display

Alarm

Telephone

Line

Sensors

User commands and data

Configuration data

Configure information

Configuration data

Display

information

Sensor

information

Sensor status

Configure

request

Start/

Stop

password

Valid password

Configuration data

Alarm

type

Telephone

number tones Figure 6-1 : Level 1 DFD for Safehome

w
w
w
.m

as
om

om
si
ng

i.c
om

44 Software Engineering Manual

Format

for

display

Dial

PhoneRead

Sensors

Assess

Against

Setup

Generate

Alarm

Signal

Sensor

Status

Sensor ID

Type

Sensor

Information

Alarm

Type

Alarm

Data

Sensor

ID Type,

Location

Telephone

number

Telephone

Number

Tones

Configuration Information

Configuration Data

Figure 6-2 : Level 2 DFD That Refines the Monitors Sensors Process

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 45

 Determine whether the DFD has transform or transaction flow characteristics

Configuration Information

Read

Sensors

Acquire
Alarm

condition

Acquire

response

info

Format

display

Generate

display

Sensor

Information

Formatted ID type,

location

Sensor ID type,

location

Configuration data

Select

phone

number

Assess

Against

Setup

Generate

alarm

signal

Generate

pulses

to line

Alarm data Alarm

type

Alarm condition code,

sensor ID, timing

information

List

of numbers

Telephone

number

Tone ready,

telephone number

Telephone

number

tones

Sensor

Status

Sensor ID

setting

Figure 6-3 : Level 3 DFD that REFines the Monitor Sensor Process

w
w
w
.m

as
om

om
si
ng

i.c
om

46 Software Engineering Manual

 Isolate the transform centre by specifying incoming and outgoing flow boundaries

Configuration Information

Read

Sensors

Acquire
Alarm

condition

Acquire

response

info

Format

display

Generate

display

Sensor

Information

Formatted ID type,

location

Sensor ID type,

location

Configuration data

Select

phone

number

Assess

Against

Setup

Generate

alarm

signal

Generate

pulses

to line

Alarm data Alarm

type

Alarm condition code,

sensor ID, timing

information

List

of numbers

Telephone

number

Tone ready,

telephone number

Telephone

number

tones

Sensor

Status

Sensor ID

setting

Figure 6-4 : Specifying Flow Boundaries

Flow

Boundary

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 47

 Perform "First-Level factoring"

 First level factoring: mapping of transform flow to a specific structure that provides control for

incoming transform, and outgoing information processing

Incoming flow

controller

Outgoing flow

controller
Transform flow

controller

Incoming flow

controller

Figure 6-5 : First-level Factoring

 Incoming Information Flow Controller: co-ordinates the receipt of all incoming data

 Transform Flow Controller: supervises all operations on data in ternalised form

 Outgoing Information Flow Controller: co-ordinates the production of output information

w
w
w
.m

as
om

om
si
ng

i.c
om

48 Software Engineering Manual

Monitor

Sensor

Executive

Alarm

Output

Controller

Sensor

Input

Controller

Alarm

Conditions

Controller

Figure 6-6 : First-level Factoring for Monitor Sensors

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 49

 Perform "Second-Level factoring"

 Accomplished by mapping individual transform (bubbles) of a DFD into appropriate modules

within the program structure

A

C

B

D

A

BD

Incoming flow

controller

C

Main

Controller

Figure 6-7 : Second-level Factoring

w
w
w
.m

as
om

om
si
ng

i.c
om

50 Software Engineering Manual

Monitor

Sensor

Executive

Alarm

Output

Controller

Sensor
Input

Controller

Alarm
Conditions

Controller

Set-up

connection to

phone net

Format

display

Generate

alarm signal

Generate

pulses to line
Generate

display

Figure 6-8 : Second-level Factoring for Monitor Sensors

(See Figure 4 for DFD

detail)

Transform

flow boundary

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 51

 Refine the "First-Cut" program structure using design heuristics for improved software quality

Alarm

Conditions

controller

Acquire

response

info

Format

display

Alarm

output

controller

Monitor

sensors

executive

Select

phone

number

Establish

alarm

condition

s

Sensor

input

controller

Generate

pulses to

lines

Generate

alaram

signal

Set-up

connection

to phone net

Read

sensors
Generate

display

Figure 6-9 : "First cut" Program Structure (Structure Chart)

w
w
w
.m

as
om

om
si
ng

i.c
om

52 Software Engineering Manual

 Apply the concepts of modules of modules independence by expanding or contracting modules to produce

sensible factoring, good cohesion, minimal coupling,.i.e.. we want a structure that can be implemented within

practical limits, tested and maintained without too much difficulty.

Establish
alarm

conditions

Acquire

response

info

Produce

display

Alarm

output

controller

Monitor

Sensor

executive

Generate

pulses to lines

Generate

alaram

signal

Set-up

connection to phone

net

Figure 6-10 : Refined Program Structure for Monitor Sensors

Read

sensors

6.4 Transaction Analysis

 Transaction analysis refers to a set of design steps that will allow a DFD with transaction flow characteristics

to be mapped into a predefined template for program structure.

Design Steps:

 Step 1: Review the fundamental system model

 Step 2: Review and refine DFD for the software

 Step 3: Determine whether the DFD has transform or transaction flow characteristics (refer to Figure 6.11)

 Step 4: Identify the Transaction center and the flow of characteristics along each of the action paths (refer to

Figure 6.12)

 Step 5: Map the DFD in a program structure amendable to transaction processing (refer to Figure 6.13)

 Step 6: Factor and refine the transaction structure of each action path (refer to Figure 6.15)

 Step 7: Refine the "First-Cut" program structure using design heuristic for improved software quality

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 53

 Review the Fundamental System Model

 Review and Refine Data Flow Diagrams for the software

 Determine whether the DFD has transform or transaction flow characteristics.

Build

configuration

file

Raw configuration data

Read system

data

System parameters and data

Read user

command

User

commands

and data

Invoke

command

processing

Configure

Command

type

Activate/

Deactivate

message

Start/Stop

Read

password

Password

Compare

password

and file

Display

messages

and status

Configuration information

Formatted

configuration data

Configuration

data

Activate/Deactivate

messages

Configuration

data

Display

information

Valid

password

Produce

invalid

message

Invalid

password

Four digits

"Try again"

message
Figure 6-10 : Refined Program Structure for Monitor Sensors

Validation

w
w
w
.m

as
om

om
si
ng

i.c
om

54 Software Engineering Manual

 Identify the transaction centre and the flow characteristics along each of the action paths.

 Transaction centre: the ©bubbleª from where all the action paths flow from

Build

configuratio

n file

Raw configuration data

Read system

data

System parameters and data

Read user

command

User

commands

and data

Invoke

command

processing

Configure

Command

type

Activate/

Deactivate

message

Start/Stop

Read

password

Password

Compare

password

and file

Display

messages

and status

Configuration information

Formatted

configuration data

Configuration

data

Activate/Deactivate

messages

Configuration

data

Display

information

Valid

password

Produce

invalid

message

Invalid

password

Four digits

"Try again"

message
Figure 6-11 : Level 2 DFD for user interaction subsystem

Validation

 The structure of the dispatch branch contains a dispatcher module that controls all subordinate action path

controllers

 Each action path of the DFD is mapped to a structure that corresponds to its specific flow characteristics

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 55

a

b

p
d

q

r

s

b d

a c

srq

p

Dispatcher

Transaction

control

Reception

path

Flow 1

Figure 6-12 : Transaction Mapping

 Factor and refine the transaction structure and the structure of each action path.

User interaction

executive

Read user command

Password processing

controller

Activate/Deactivate

system

System configuration

controller

Invoke command

processing

Figure 6-13 : First-level Factoring for User Interaction Subsystem

w
w
w
.m

as
om

om
si
ng

i.c
om

56 Software Engineering Manual

 Refine the ©First-Cutª program structure using design heuristics for improved software quality.

 The last two steps are similar to transform analysis. In this design approach, criteria such as

module independence, practicality, and maintainability must again be considered.

User

interaction

executive

Read user

command
Invoke

command

processing

Password

processing

controller

System

configuration

controller

Activate/

Deactivate

system

Read system

data

Build

configuration

file

Password

output

controller

Read

password

Compare

password with

file

Display

messages and

status

Produce

invalid

message

Figure 6-14 : "First-cut" Program Structure for User Interaction Subsystem

6.5 Design Heuristics

 Guidelines

 Evaluate the "First-Cut" program structure to reduce coupling and improve cohesion

 Attempt to minimize structures with high fan-out; strive for fan-in as depth increase

 Keep scope of effect of a module within the scope of control of that module

 Evaluate module interfaces to reduce complexity and redundancy and improve consistency

 Define modules whose function is predictable, but avoid modules that are overly restrictive

 Strive for single-entry-single-exit modules, avoiding "pathological connections"

 Package software based on design constraints and probability requirements

6.6 Design Post processing

 Approach for Time-critical Software

 Develop and refine the program structure without concern for time-critical optimization

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 57

 Use CASE tools that simulate run-time performance to isolate areas of inefficiency

 During detail design, select modules that are suspected "time hogs" and carefully develop procedures

(algorithms) for time efficiency

 Code in high-order programming language

 Instrument the software to isolate modules that account for heavy processor utilization

 If necessary, redesign or recode in machine dependent language to improve efficiency

Effect of

decision

Decision

Avoid this structure

Effect

Decision

Figure 6-16 : Scope of Effect and Control

Modification to satisfy heuristic

w
w
w
.m

as
om

om
si
ng

i.c
om

58 Software Engineering Manual

Avoid this structure

Strive for this structure

Figure 6-15 : Fan-in and Fan-out

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 59

Chapter Review Questions

References for Further Reading

1. Clearly distinguish between process oriented design and data oriented design, giving valid

examples

2. Draw a context model for a patient management information system in a hospital

3. Draw a data flow diagram for a customer withdrawing cash from an ATM in a bank.

1. Pressman R.S (1997) Software engineering: a practitioner’s Approach, McGraw Hill

1) Somerville Ian (2002) software engineering ,Pearson’s education

w
w
w
.m

as
om

om
si
ng

i.c
om

60 Software Engineering Manual

CHAPTER 7: DATA-ORIENTED DESIGN METHODS

Chapter Objectives

At the end of this chapter, stdent should understand::

 Data Oriented Design Methods

 Introduction

 Examples

 Areas of Application

 Jackson Structured Programming (JSP)/Jackson System Development (JSD)

 Correspondence between Data Structures

 Listing the Elementary Program Operations

7.1 Data Oriented Design Methods

 Focuses on the information domain.

 Uses information structure as the driver for derivation of design.

 Transforms a representation of data structure into a representation of software.

 Examples of Data Oriented Design Methods: Jackson's System Development, Data Structure Systems

Development.

7.2 Areas of Application

 Applied in applications with well-defined, hierarchical structure of information

 Examples are:

 Business information system applications which have distinct structure (e.g. input files, output

records)

 Systems applications. The data structure of operating system which comprised of many tables,

files and lists that have a well-defined structure

 CAD/CAE/CAM applications. Computer-aided design, engineering, and manufacturing systems

require sophisticated data structures for information storage, translation and processing

7.3 Jackson Structured Programming (JSP)/Jackson System

Development (JSD)

 Takes the view of "paralleling the structure of input data and output (report) data will ensure a quality design"

 More recent extensions to the methodology is the Jackson System Development (JSD)

 JSD focuses on the identification of information entities and the actions that applied to them

 JSD emphasizes on developing techniques to transform data program structure

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 61

7.3.1 Jackson Structured Programming

 Data driven program design method

 Produce data structure diagrams for input and output data streams

 Device independent and model as tree diagram using sequence, selection and iteration

A

B C D B

A A

B C D

Sequence
Iteration Selection

A is a sequence of B followed by C followed by D

A consists of zero or more occurences of B

A is a selection of either B or C or D

7.4 Characteristics of JSP

 It is non-inspirational. This means that it depends little or not at all, on invention or insight on the part of the

engineer.

 It is rational, i.e. the design procedure is based on reasoned principles, and each step can be proven in the

light of these principles.

 It is teachable. People can be taught to practice the method and two or more programmers using the method to

solve the same problem will arrive at substantially the same solution.

 It is practical. The method itself is simple and easy to understand, and the designs produced can be

implemented without difficulty in any ordinary programming environment.

7.5 Advantages of JSP

 Enable correct programs to be produced

 Provide a method that is "workable" within the intellectual limitations of the average programmer

 Techniques that can be taught and do not rely on inspiration or perspiration

 Facilitate the organized control of software projects

w
w
w
.m

as
om

om
si
ng

i.c
om

62 Software Engineering Manual

7.6 Steps in JSP

 Draw structure diagrams for each set of data such that the structure reflects the way in which the data is to be

processed.

 Identify points of correspondence of a one-for-one nature between components of individual data structures.

 Produce a program structure diagram using the same notation as that used in data structures, and based on the

data structures, combine them at the points of correspondence.

 For each iteration and selection appearing in the program structure diagram, construct appropriate conditions.

 Examine the specification and the conditions and from these draw up a list of basic program operations in

plain language.

 Allocate the conditions and operations to the appropriate components of the program structure.

 Produce ©schematic logicª, also known as pseudo code from the program structure.

 Implement the pseudo-code in a target high-level programming language.

7.7 Correspondence Between Data Structures

 Program structure is derived from input and output data structures by identifying correspondences between

components of individual data structures.

 If component A corresponds with component B, the data which they represent can be shown

diagrammatically as:

A1

A2

A3

B1

B2

B3

 Rules of Correspondence

 Records (input and output) must be in the same order.

 Records in the same number of each;

 Output derived from input.

 Structure Clash: occurrence where correspondences are not possible between the two data structures.

 May be resolved by Program Inversion.

7.8 Listing the Elementary Program Operations

 The elementary program operations can be listed by studying the program specification and taking note of the

program structure and conditions.

 List the program initialization and finalization operations such as open and close files.

 Identify the input records or components and hence list the input operations.

 Identify the output records or components and hence list the output operations.

 Identify any computations or transformations from input to output necessary to produce the

detailed aspects of the required results.

 List any detailed initialization operations that will be required.

 List any operations necessary to support the condition list.

Examples

 Example 1

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 63

We have a serial file of records and we wish to print them one record per line. The input file data

structure is simply an iteration of records for printing, and the output file data structure an iteration of

lines (each containing one record), and we want to print a report heading at the start and a line containing

a record count at the end.

Input

File

Record Report

Count
Report

Body

Report

Heading

Output

File

Line

Process Input

To Give

Output

Process

Record To

Line

Process

Report

Heading

Process

Record Count

Process

Report Body

w
w
w
.m

as
om

om
si
ng

i.c
om

64 Software Engineering Manual

 Example 2

 We have a sales file which is sorted into year-within-sales area code. It is required to produce a

report to show the sales details, with appropriate high-lighting for low, moderate and high sales

(that is, a single exclamation mark when the sales value is less than 100, two exclamation marks

when the sales value is between 100 and 300, and three exclamation marks for values greater

than 300). Headings are required for each area and totals are to be produced at relevant control

breaks, that is, at change of year end area code.

Sales

File

Output Report

File

Area *

Area

Heading

Area

Total

Area

Body

Area *

Record *

Year *
Year *

Year

Body
Year

Total

Line of Print

Low Sale

Line

High Sale

Line

Moderate Sale

Line

Sales Under

100
Sales Over

300

Sales 100 to

300

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 65

Operation List should include:

Sales Report

Process *

Area

Area

Body
Area

Total

Area

Head

Process *

Year

Year

Body

Year

Total

Report to Line *

Sales 100 to 300 Sales over 300Sales under 100

 Program Initialization and Finalisation operations

 Open files

w
w
w
.m

as
om

om
si
ng

i.c
om

66 Software Engineering Manual

Sales Report

P_start P_endP_body

Process Area

*

Area Head Area TotalArea Body

Process year *

Year Start Year TotalYear Body

Record to

Line *

Sales EndSales Body

Sales under

100 Sales over 300

Sales 100 to

300

1,4 2,3

C1

5,13,15 6

C2

14,16 7

C3

11,12,4

C4 C5 else8 9 10

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 67

 Close files

 Stop

 Input Operations

 Read a Sales file record

 Output Operations

 Print area headings

 Print area total

 Print year total

 Print a sales under 100

 Print a sales from 100 to 300

 Print a sales over 300

 Computation Operations

 Add to area total

 Add to year total

 Initialization Operations

 Initialize area total to zero

 Initialize year total to zero

 Operations to support condition list

 Store area code

 Store year

 The condition list should include:

 C1 - Until end of sales file

 C2 - Until end of sales file or change of area

 C3 - Until end of sales file or change of area or change of year

 C4 - If sales value <100

 C5 - If sales value >= 100 and<= 300

w
w
w
.m

as
om

om
si
ng

i.c
om

68 Software Engineering Manual

Chapter Review Questions

1. A sequential-update program is required to maintain a master file of rental records on video tape rentals. The

transaction file contains the following types of transaction:

 inserting a new video title,

 amending the rental-status of a video title,

 deleting a video title

These are represented by transaction type code 1,2 and 3 respectively. For transaction type 1 and 3, there

would be at most one transaction for each video title. But for type 2 record, there could be multiple

transactions for each video title.

The master and transaction files sorted in ascending sequence of video title code.

The program has to cater for possible matching errors between the master and the transaction files

Use Jackson's Structured Programming Design Methods to:

a) Draw the data structures for the respective files, and show the correspondences between their

components

b) List the conditions and operations

c) Produce the final program structure

State clearly any assumption(s) that you make

2. ABC company employs 8 salesmen. Records of sales by salesman for every month are stored in the master

file. The management wants sales report listing the salesman and their sales figures from January to

December in ascending order.

Program Specification

The program uses master file to generate a report.Master file contains

 salesman name

 12 monthly sales(January to December)

The master file is sorted sequentially using salesman name.The master file contains only valid data.

Given the program specification above, use Jackson's Structured Programming design method to:

a) Draw the data structures for the respective files, and show the correspondences between their

components.

b) List the conditions and operations.

c) Produce the final program structure.

References for Further Reading

1. Pressman R.S (1997) Software engineering: a practitioner’s Approach, McGraw Hill

2) Somerville Ian (2002) software engineering ,Pearson’s education

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 69

CHAPTER 8: SOFTWARE QUALITY ASSURANCE

Chapter Objectives

At the end of this chapter, stdent should understand::

Software Quality Assurance

Software Quality Factors

Software Quality Assurance Major Activities

Formal Technical Review

Software Reliability

Software Quality Assurance Approach

 Examining the need for SQA

 Benefits of SQA

 Constraints of SQA

8.1 Software Quality Assurance

 Software quality can be defined as:

 Conformance to explicitly-stated functional and performance requirements, explicitly-

documented development standards, and implicit characteristics that are expected of all

professionally developed software.

 This definition thus emphasizes on three important points:

 Quality will be measured with Software Requirements, i.e. lack of conformance to these

requirements will mean lack of quality.

 Specified standards define a set of development criteria that guide the manner in which software

is engineered. If the criteria is not followed, lack of quality will result.

 The set of implicit requirements, e.g. good maintainability, must still be followed. If these are

not met, software quality is suspect.

 Software quality is thus a mix of factors that will vary across different applications and different customers.

The sections below will thus be concerned about:

 Identification of Software Quality Factors

 Human activities required to achieve them

8.2 Software Quality Factors

 In order to help us categorize software quality factors, McCall proposes a categorisation which focuses on

three important aspects of a software product:

 Product Operations: A software product's operational characteristics;

w
w
w
.m

as
om

om
si
ng

i.c
om

70 Software Engineering Manual

 Product Reunion: Its ability to undergo change,

 Produced Transition: Its adaptability to new environments.

Product

Revision
Product

Transition

Product Operations

8.2.1 Product Operations

 Correctness

 Does it do what I want?

- The extent to which a program satisfies its specification and fulfils the mission

objectives.

 Reliability

 Does it do it accurately all the time?

- The extent to which a program can be expected to perform its intended function

with required precision.

 Efficiency

 Will it run on my hardware as well as it can?

- The amount of computing resources and code required by a program to perform a

function.

 Integrity

 Is it secure?

- The extent to which access to software or data by unauthorised persons can be

controlled.

 Usability

 Is it designed for the user?

- The effort required to learn, operate, prepare input, and interpret output of a

program.

8.2.2 Product Revision

 Maintainability

 Can I fix it?

- The effort required to locate and fix an error in a program.

 Flexibility

 Can I change it?

- The effort required to modify an operational program.

 Testability

 Can I test it?

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 71

- The effort required to test a program to ensure that it performs its intended

function.

8.2.3 Product Transition

 Portability

 Will I be able to use it on another machine?

- The effort to transfer the program from one hardware and/or software system

environment to another.

 Reusability

 Will I be able to reuse some of the software?

- The extent to which a program (or parts of a program) can be reused in other

applications-related to the packaging and scope of the functions that the program

performs.

 Interoperability

 Will I be able to interface it with another system?

- The effort required to couple one system to another.

8.3 Software Quality Assurance Major Activities

 Software Quality Assurance (SQA) is a ©planned and systematic pattern of actionsª that are required to

ensure quality in software.

 The SQA group in any company serves as the customer's in-house representative. That is, the

people who perform SQA must look at the software from the customer's point of view. Does the

software adequately meet the quality factors from the customer's point of view? Does the

software adequately meet the quality factors described earlier? Has software development been

conducted according to pre-established standards? Have technical disciplines properly

performed their roles as part of the SQA activity?

8.3.1 SQA Activities

 SQA is comprised of a variety of tasks associated with seven major activities:

 Application of Technical Methods

- SQA begins with a set of technical methods and tools that help the analyst to

achieve a high-quality specification and the designer to develop a high-quality

design.

 Conduct of Formal Technical Review

- Activity that accomplishes quality assessment for the specification and the design.

The FTR is a stylised meeting conducted by technical staff with the sole purpose

of uncovering quality problems.

 Testing of Software

- Combines a multistep strategy with a series of test case design methods that help

ensure effective error detection.

 Enforcement of standards

- Degree in which this is applied varies from company to company. In many cases,

standards are dictated by customers or regulatory mandates. In other situations,

standards are self-imposed.

 Control of Change

- Every change to software has the potential of introducing errors or creating side

effects that propagate errors. The change control process thus contributes directly

w
w
w
.m

as
om

om
si
ng

i.c
om

72 Software Engineering Manual

to software quality by formalising requests for change, evaluating the nature of

change, and controlling the impact of change.

 Measurement

- Track software quality and assess the impact of methodological and procedural

changes on improved software quality.

 Record keeping and recording

- Collection and dissemination of SQA information. The results of reviews, audits,

change control, testing, and other SQA activities must become part of a historical

record for a project and should be disseminated to the development staff on a

need-to-know basis.

8.4 Formal Technical Reviews

 Formal technical review is

 A class of reviews that include walkthroughs, inspections, round-robin reviews, and other small

group technical assessments of software

 A planned and controlled meeting attended by a group of diversified people

8.4.1 Objectives of FTR

 To uncover errors in function, logic, or implementation for any representation of the

software

 To verify that the software under review meets its requirements

 To ensure that the software has been represented according to predefined standards

 To achieve software that is developed in a uniform manner

 To make projects more manageable

8.4.2 Effects of FTR

 Early discovery of software defects so the development and maintenance phase is

substantially reduced

 Serves as a training ground, enabling junior engineers to observe different approaches to

software analysis, design, and implementation

 Serves to promote backup and continuity because a number of people become familiar with

parts of the software that they may not have otherwise seen

8.4.3 Guidelines for the Organization and Preparation of FTR

 Should involve between three and five people

 Advance preparation should occur but should not require no more than 2 hours of work for

each person

 The duration of the review meeting should be less than 2 hours

 Focus on a components of the software (eg. a portion of requirements specification, a

detailed module design, a source code listing for a module)

 Producer should report his/her progress

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 73

 A recorder should actively record all issues as

 What was reviewed?

 Who reviewed it?

 What were the findings and conclusions?

 The attenders must make a decision at the end of the session as to

 Accept the product

 Reject the product

 Accept the product provisionally, subject to further modification

8.4.4 Review Guidelines during the FTR

 Review the product, not the producer

 Tone of the meeting should be loose and constructive, and intent should not be to

embarrass or belittle.

 Set an agenda and maintain it

 One main problem in all types of meetings is the tendency to drift. The FTR must be

kept on track and on schedule.

 Limit debate and rebuttal

 There may not be universal agreement on some issues. Rather than spending time

debating the issue, the issue should be recorded for further discussion off-line.

 Enunciate problem areas, but don't attempt to solve every problem noted

 A review is not a problem-solving session. The solution of a problem can often be

accomplished by the producer alone. Problem solving should be postponed until after

the review meeting.

 Take written notes

 Makes notes on a wall board so that wording and prioritisation can be assessed by the

other reviewers as information is recorded.

 Limit the number of participants and insist upon advance preparation

 Keep the number of people involved to the necessary minimum.

 Develop a checklist for each product that is likely to be reviewed

 A checklist helps the review leader to structure the FTR meeting and helps each

reviewer to focus on important issues. Checklists should be developed for analysis,

design, code and even test documents.

 Allocate resources and time schedule for FTRs

 For reviews to be effective, they should be scheduled as tasks during the software

engineering process.

 Conduct meaningful training for all reviewers

 To be effective, all review participants should receive some formal training. The

training should stress both process-related issues and the human psychological side of

reviews.

 Review your early reviews

 Debriefing can be beneficial in uncovering problems with the review process itself.

w
w
w
.m

as
om

om
si
ng

i.c
om

74 Software Engineering Manual

8.5 Software Reliability

 Most hardware-related reliability models are predicated on failure due to wear rather than failure due to

design defects. In hardware, failures due to physical wear (e.g. the effects of temperature, corrosion, shock)

are more likely than a design-related failure. The opposite is true for software: in fact, all software failures

can be traced to design or implementation problems; wear does not enter into the picture.

 Software Reliability: The probability of failure free operation of a computer program in a specified

environment for a specified time.

 A simple measure of reliability is mean time between failure (MTBF), where

 MTBF = MTTF + MTTR

 In addition to this reliability measure, a measure of availability can be calculated.

 Software availability is the probability that a program is operating according to requirements at a given point

in time and is defined by:

 Availability =

8.6 Software Quality Assurance Approach

 At the low end of the scale, quality is the sole responsibility of the individual who may engineer, review, and

test at any comfort level. At the high end of the scale, an SQA group is charged with the responsibility

standards and procedures for achieving software quality and ensuring that each is followed.

 Before formal quality assurance procedures are instituted, a software development organisation should adopt

software engineering procedures, methods, and tools. This methodology, when combined with an effective

paradigm for software development, can do much to improve the quality of all the software produced by the

organisation.

 Manager/managers and practitioners are not interested in establishing formal SQA functions as:

 Managers are reluctant to incur the extra up-front cost

 Practitioners feel they are already doing everything that needs to be done

 No one knows where to put such a function organisationally

 Everyone wants to avoid the "red tape" that SQA is preceived to introduce

8.6.1 Benefits of SQA

 Software will have fewer latent defects, resulting in reduced effort and time spent during

testing and maintenance

 Higher reliability will result in greater customer satisfaction

 Maintenance costs (a substantial percentage of all software costs can be reduced)

 Overall life cycle cost of software is reduced

8.6.2 Constraints of SQA

 Difficult to institute in small organizations, where available resources to perform the

necessary activities are not available

 SQA represents cultural change - and change is never easy

 SQA required the expenditure of dollars that would not otherwise be explicitly budgeted to

software engineering or quality assurance

 MTTF

MTTF + MTTR
* 100%

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 75

References for Further Reading

1. Pressman R.S (1997) Software engineering: a practitioner’s Approach, McGraw Hill

3) Somerville Ian (2002) software engineering ,Pearson’s education

1. Explain why software design metrics only are inadequate for predicting the quality of the software

2. Elaborate how you can asses the quality of a particular application software

3. Identify various metrics that can be used to determine the reliability of software
w
w
w
.m

as
om

om
si
ng

i.c
om

76 Software Engineering Manual

CHAPTER 9: SOFTWARE TESTING TECHNIQUES

Chapter Objectives:

At the end of this chapter, stdent should understand::

 Testing Objectives

 Information Flow during Testing

 General guidelines in Test Case Design

 Testing strategies

 White Box Testing

 Black Box Testing

 Automated Testing Tools

Software Testing Techniques

 Software testing is a critical element of software quality assurance and represents the ultimate review of

specification, design and coding.

 Software testing fundamentals define the overriding objectives for software testing.

9.1 Testing Objectives

 Testing is a process of executing a program with the intent of finding an error

 A good test case is one that has a high probability of finding an as yet undiscovered error.

 A successful test is one that uncovers an as yet undiscovered error.

Testing cannot show the absence of defects, it can only show that software defects are present.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 77

9.2 Information Flow In Testing

Testing

Evaluation

Debug

Test

Configuration

Software

Configuration

Test Results

Errors

Corrections

Reliability

Model

Error Rate

Data

Predicted

Reliability

Expected

Results

 Two classes of input are provided to the test process, namely: (1) a software configuration that includes a

Software Requirements Specification, a Design Specification, and source code; (2) a test configuration that

includes a Test Plan and Procedure, any testing tools that are to be used, and test cases and their expected

results.

 Tests are conducted and all results are evaluated, i.e. test results are compared with the expected results.

When erroneous data is encountered, debugging commences. As test results are gathered and evaluated, a

qualitative indication of software quality and reliability begins to surface. Two possible situations can occur

here: if there are severe errors that require design modification are encountered regularly, software quality

and reliability are suspect, and further tests are indicated. if, on the other hand , software functions appear to

be working properly and the errors encountered are easily correctable, either (1) Software quality and

reliability are acceptable, or (2) tests are inadequate to uncover severe errors.

 The results accumulated during testing can be evaluated in a more formal manner: Software reliability models

use error-rate data to predict future occurrences of errors, and hence, reliability.

9.3 Test Case Design

 General mistakes

 Software engineers often treat testing as an afterthought

 Developing test cases that may "feel right" but have assurance of being complete

 General guidelines

 Provide a mechanism

 Provide highest likelihood for uncovering errors in software

w
w
w
.m

as
om

om
si
ng

i.c
om

78 Software Engineering Manual

 Finding the most errors within a minimum amount of time and effort

9.4 White Box Testing

 White box testing is a test case design method that uses the control structure of the procedural design to

derive test cases.

 Using white box testing methods, the software engineer can derive test cases that:

 Guarantee that all independent paths within a module have been execrised at least once;

 Exercise all logical decisions on their true or false sides;

 Execute all loops at their boundaries and within their operational bounds ; and

 Exercise internal data structures to ensure their validity.

 There are also several reasons why the logic-ness of a program should be tested.The answer lies in the nature

of software defects:

 Logic errors and incorrect assumptions are inversely propotional to the probability that a

program path will evaluated

 Misconceptions that a logical path is unlikely to be executed when, in fact, it may be executed

on a regular basis.

 Typographical errors are random. When a program is translated into programming language

source code; it is likely that some typing errors will occur. Many will be uncovered by syntax

checking mechanisms, but others will go undetected until testing begins.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 79

Flow Graph Notation

Sequence

If

Case

While

Until

w
w
w
.m

as
om

om
si
ng

i.c
om

80 Software Engineering Manual

Basis Path Testing

 This is a white box testing techniques first proposed by Tom McCabe.

 The basis path method enables that test case designer to derive a logical complexity measure of a procedural

design and use this measure as a guide for defining a basis set of execution paths.

 Test cases derived to exercise the basis set are guaranteed to execute every statement in the program at least

one time during testing.

Cyclomatic Complexity

 Cyclomatic complexity is a software metric that provides a quantitative measure of the logical complexity of

a program.

 When used in the context of the basis path testing method, the value computed for cyclomatic complexity

defines the number of independent paths in the basis set of a program and provides an upper bound for the

number of tests that must be conducted to ensure that all statements have been executed at least once.

1

2,

3

6 4,

5

10

8

9

7

11

R2

R3

R1

R4

 Complexity can be computed in one of several ways:

 The number of regions of the flow graph correspond to the cyclomatic complexity

 Cyclomatic complexity, V(G), for a flow graph G is defined as V(G) = E-N+2; where E is the

number of flow graph edges and N is the number of flow graph nodes.

 Cyclomatic complexity, V(G) for a flow graph G is also defined as V(G) =P+1 where P is the

number of predicate nodes contained in the flow graph G.

1. The flow has 4 regions

2. V(G) = E - N + 2 = 11 edges - 9 nodes + 2 = 4

3. V(G) = P + 1 = 3 Predicate Notes + 1 = 4

- Thus, the value of V(G) provides us with an upper bound for the number of independent

paths(etc...)

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 81

 Thus, the value of V(G) provides us with an upper bound for the number of independent paths that comprise

the basis set, and by implication, an upper bound on the number of tests that must be designed and executed

to guarantee coverage of all program statements.

 The basis path testing can be applied as a series of steps:

 Using the design or code as foundation , draw a corresponding flow graph.

 Determine the cyclomatic complexity of the resultant flow graph.

 Determine a basis set of linearly independent paths.

 Prepare test cases that will force execution of each path in the basis set.

Graph Matrix

 A graph matrix is a software tool that is developed that assist in basis path testing.

 The graph matrix is initially nothing more than a tabular representation of a flow graph

 To make it more useful , alink weight is added to each matrix entry. The link weight provides additional

information about control flow . In its simplest form, the link weight is 1 (a connection exists) or 0 (a

connection does not exist) . But link weights can be assigned other, more interesting properties:

 The probability that a link (edge) will be executed

 The processing time expended during traversal of a link

 The memory required during traversal of a link

 The resources required during traversal of a link

w
w
w
.m

as
om

om
si
ng

i.c
om

82 Software Engineering Manual

1

3

5

2

4

a

b

d

f

c g

e

Flow Graph

Connected to node

a

b d

c

g e

1 2 3 4 5

1

2

3

4

5

Node

Connections

1-1 = 0

2-1 = 1

2-1 = 1

2-1 = 1

Cyclomatic complexity : 3 + 1 = 4

Control Structure Testing

 The basis path testing technique described earlier is one of a number of techniques for control structure

testing.

 In this section, other variations of control structure testing are discussed.

 Basis Path testing (as covered earlier in this chapter)

 Condition testing

 Data Flow testing

 Loop testing

Condition Testing

 A simple condition is boolean variable or relational expression

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 83

 A test case design method that exercises the logical conditions contained in a program module

 Focuses on testing each condition in the program

Data flow testing

 Selects test paths of a program according to the locations of definitions and uses of variables in the program

 Useful for selecting test paths of a program containing nested if an loop statements

 Effective for error protection

 Problems of measuring test coverage and selecting test paths are more diffcult than the corresponding

problems for condition testing

Loop testing

 Focuses exclusively on the validity of loop constructs

 Four classes of loops : simple loops, concatenated loops, nested loops, and unstructured loops

Test cases for simple loops

 Where n is the maximum number of allowable passes through the loop

 Skip the loop entirely

 Only one pass through the loop

 Two passes through the loop

 m passes through the loop where m < n

 n-1, n, n+1 passes through the loop

Test cases for nested loops

 Start at the innermost loops. Set all other loops to minimum values

 Conduct simple loop tests for the innermost loop while holding the outer loops at their minimum iteration

parameter values. Add other tests for out-of -range or excluded values

 Work outward, conducting tests for the next loop but keeping all other outer loops at minimum values and

other nested loops to "typical" values

 Continue until all loops have been tested

Test cases for concatenated loops

 If esch of the loops is independent of the others, perform simple loop tests for each loop

 If the loops are dependent, apply the nested loop tests

Test cases for unstructured loops

 Whenever possible, redesign this class of loops to reflect the structured programming constructs

w
w
w
.m

as
om

om
si
ng

i.c
om

84 Software Engineering Manual

Simple Loops

Nested Loops

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 85

Concatenated Loops

Unstructured Loops

9.5 Black Box Testing

 Black box testing methods focus on the functional requirements of the software, i.e. black box testing enables

the software engineer to derive sets of input conditions that will fully exercise all functional requirements for

a program.

 This is not an alternative technique to white box testing techniques , rather it is a complimentary approach

that is likely to uncover a different class of errors than white box methods.

 Black box testing attempts to find errors in the following categories:

 Incorrect or missing functions

 Interface errors

 Errors in data structures or external databses access

 Performance errors

 Initialisationand termination errors.

 Unlike white box testing which is performed early in the testing process, black box testing tends to be applied

during later stages of testng. This is because black box testing purposely disregards control structure,

attention is focused on the information domain.

w
w
w
.m

as
om

om
si
ng

i.c
om

86 Software Engineering Manual

 By applying black box testing techniques, a set of test cases can be derived to satisfy the folllowing criteria:

 Test cases that reduce, by a count that is greater than 1, the number of additional test cases that

must be designed to achieve reasonable testing; and

 Tests cases that tell us something about the presence or absence of classes of errors, rather than

an error associated only with the specific test at hand.

 Black Box Testing techniques:

 Equivalent Partitioning.

 Boundary Value Analysis

 Cause-Effect Graphing Techniques

 Comparison Testing

Equivalence Partitioning

 Divides the input domain of a program into classes of data

 Strives to define a test case that uncovers classes of errors

 Equivalence classes may be defined according to the following guideline:

 If an input condition specifies a range or a specifies values, one valid and two invalid

equivalence classes are defined

 If an input condition specifies a member of a set or a boolean, one valid and one invalid class

are defined

Boundary Value Analysis

 Select test cases at the "edges" of the classes

 Rather than focusing solely on input conditions, it also derives test cases from the output domain

 Guidelines of designing test cases

 If an input condition specifies a range bounded by values a and b, test cases should be designed

with values a and b, just below a and b, respectively

 If an input condition specifies a number of values, test cases should be developed that exercise

the minimum and maximum numbers. Values just above and below minimum and maximum are

also tested

 Apply guidelines 1 and 2 to output conditions

 If internal data structures have prescibed boundaries (eg. an array has a defined limit of 100

entries), be certain to design test cases to exercise the data structure to its boundary

Cause-effect Graphing Techniques

 Provides a concise representation of logical condition and corresponding actions

 This techniques follows four steps:

 Causes(input conditions) and effect(output conditions) are listed for a module and an identifier

is assigned to each

 A cause-effect graph is developed

 The graph is converted to a decision table

 Decision table rules are converted to test case

Comparison testing

 A technique used when the reliability of software is absolutely critical

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 87

 In this techinique, multiple and independent versions of software is developed for critical applications, even

when only a single version will be used in the delivered computer-based system

 Each version is tested with the same test data to ensure that all provide identical output. Then all the versions

are executed in parellel with a real-time comparison of results to ensure consistency

 Also known as back-to-back testing

9.6 Automated Testing Tools

 Code auditors: These special-purpose filters are used to check the quality of software to ensure that it meets

minimum coding standards.

 Assertion processors: These pre-processors /postprocessors systems are employed to telll whether

programmer-supplied claimes , called assertions, about a program's behaviour are actually met during real

program executions.

 Test file generators: These processors generate, and fill with predetermined values, typical input files for

programs that are undergoing testing.

 Test data generators: These automated analysis systems assist auser in selecting test data that make a program

behave in a particular fashion.

 Test verifiers: These tools measure internal test coverage, often expressed in terms that are related to the

control structure of the test object, and report the coverage value to the quality assurance expert.

 Output comparators: This tool makes it possible to compare one set of outputs from a program with another

(previously archived) set to determine the difference between them.

Chapter Review Questions

References for Further Reading

1. Pressman R.S (1997) Software engineering: a practitioner’s Approach, McGraw Hill

2. Somerville Ian (2002) software engineering ,Pearson’s education

1. Differentiate between structural and function testing strategies

2. Distinguish between static and dynamic testing techniques

3. explain the role of Validation and verification process in ensuring software quality

w
w
w
.m

as
om

om
si
ng

i.c
om

88 Software Engineering Manual

CHAPTER 10: SOFTWARE TESTING

Chapter Objectives:

At the end of this chapter, stdent should understand::

Overview of Software Testing Strategies

Verification and Validation

Software Testing

 A Software Testing Strategy

 Types of testing

Validation and verification (V&V)

System Testing

Debugging and Debugging Tools

10.1 Overview Of Software Testing Strategies

 A strategy for software testing integrates software test case design techniques into a well-planned series of

steps that result in the successful construction of software. A testing strategy must always incorporate test

planning, test case design, text execution, and the resultant data collection and evaluation

 Generic characteristics of all software testing strategies:

 Testing beings at the module level and works "outward" toward the integration of the entire

computer-based system

 Different testing techniques are appropriate at different points in time

 Testing is conducted by the developer of the software and (for large projects) an independent

test group

 Testing and debugging are different activities, but debugging must be accommodated in any

testing strategy

 A strategy for software testing must accomodate low-level tests that are necessary to verify that a small

source code segment has been correctly implemented as well as high-level tests that validate major system

functions against customer requirements.

10.2 Verification and Validation

 Software testing is one element of a broader topic that is often referred to as vertification and validation.

 Verification refers to the set of activities that ensure that software correctly implements a specific function,

i.e.

 Verification: " Are we building the project right?"

 Validation refers to a different set of activities that ensure that the software that has been built is traceable to

customer requirements, i.e

 Validation: Are we building the right product?

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 89

 The activities required to achieve software quality may be viewed as a set of components. Software

engineering methods provide the foundation from which quality is built. Analysis, design, and

implementation (coding) methods act to enhance quality by providing uniform techniques and predictable

results. Formal technical reviews (walk-throughs) help to ensure the quality of the products produced as a

consequence of each software engineering step. Through the process, measurement and control are applied to

every element of a software configuration. Standards and procedures help to ensure uniformity and a formal

SQA process enforces a "total quality philosophy".

10.3 Organization For Software Testing

 Misconceptions in Software testing:

 That the developer of software should not do any testing at all;]

 that the software should be "tossed over the wall" to strangers who will test it mercilessly;

 That testers get involved with the project only when the testing steps are about to begin.

 The following points can refute the above misconceptions:

 The software developer is always responsible for testing the individual units (modules) of the

program, ensuring that each performs the funcction for which it was designed. In many cases ,

the developer also conducts integration testing - the testing step that leads to the construction

(and test) of the complete program structure. Only after the software architecture is complete

does an independent test group become involved.

 The role of an independent test group (ITG) is to remove the inherent problems associated with

letting the building test the thing that has been built. In other words, they will remove the

conflict of interest that will otherwise be present. After all, the personnel in the independent

group are paid to find errors.

 However, this does not mean that the software developer does not get involved: he must still be

available to correct errors that are uncovered once testing starts.

10.4 A Software Testing Strategy

w
w
w
.m

as
om

om
si
ng

i.c
om

90 Software Engineering Manual

 A strategy for software testing may also be envisioned by moving outward along the spiral

 Unit testing begins at the vortex of the spiral and concentrates on each unit of the software as implemented in

the source code.

 Testing progresses by moving outward along the spiral to integration testing, where the focus is on the design

and the construction of the software architecture.

 Taking another turn outward on the spiral , validation testing is encountered, where requirements established

as part of software requirement analysis are validated against the software that has been constructed.

 Finally, at system testing, where the software and other system elements are tested as a whole.

 Unit tests: focuses on each module and makes heavy use of white box testing

 Integration tests: focuses on the design and construction of software architecture; black box testing is most

prevalent with limited white box testing.

 High-order tests: conduct validation and system tests. Makes use of black box testing exclusively.

10.5 Unit Testing

 Unit testing focuses vertification effort on the smallest unit of software design - the module.

 Using the detail design description as a guide, important control paths are tested to uncover errors within the

boundary of the module

 The unit test is always white box-oriented

Unit Test Considerations

 The module interface is tested to ensure that information properly flows into and out of the program unit

under test

 The local data structure is examined to ensure that data stored temporarily maintains its integrity during all

steps in an algorithm's execution.

 Boundary conditions are tested to ensure that the module operates properly at boundaries established to limit

or restrict processing.

 All independent paths (basis paths) through the control structure are exercised to ensure that all statements in

a module have been executed at least once.

 And finally, all error-handling paths are tested.

Unit Test Procedures

 Because a module is not a stand-alone program, driver and/or stub software must be developed for each unit

test.

 In most applications, a driver is nothing more than a " main program" that accepts test case data, passes such

data to the module (to be tested), and prints the relevant results.

 Stubs serve to replace modules that are subordinate(called by) the module to be tested. A stub or "dummy

subprogram" uses the subordinate module's interface, may do nominal data manipulation, prints vertification

of entry, and returns.

 Drivers and stubs also represent overhead.

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 91

Driver

Module to be

Tested

Stub Stub Results

Interface

Local data structures

Boundary conditions

Independent paths

Error-handling paths

Test cases

10.6 Integration Testing

 Integration testing is a systematic technique for constructing the program structure while at the same time

conducting tests to uncover tests to uncover errors associated with interfacing

 The objective is to take unit-tested modules and build a program structure that has been dictated by design.

 Two-types: Top-Down integration; Bottom-up Integration

Top-down Integration

 An incremental approach

 Modules are integrated by moving downward through the control hierarchy, begining with main control

module

 Subordinate modules are incorporated into the structure in either a depth-first or breadth-first manner

 Integration Process

 The main control module is used as a test driver and stubs are substitued for all modules directly

subordinate to the main control module

 Subordinate stubs are replaced one at a time with actual modules

 Tests are conducted as each module is integrated

 On the completion of each set of tests, another stub is replaced with the real module

 Regression testing (ie, conducting all or some of the previous tests) may be conducted to ensure

that new errors have not been introduced

w
w
w
.m

as
om

om
si
ng

i.c
om

92 Software Engineering Manual

 Major problem

 Inadequate testing at upper levels when data flows at low levels in the hierarchy are required

 Alternatives to the above problem

 Delay many test until stubs are replaced with actual modules; but this can lead to diffculties in

determining the cause of errors and tends to violate the highly constrained nature of the top-

down approach

 Develop stubs that perform limited functions that simulate the actual module; but this can lead

to significant overhead

 Perform bottom-up integration

Bottom-up Integration

 Integration process

 Low-level modules are combined into clusters (sometimes called builds) that perform a specific

software subfunction

 A driver (a control program for testing) is written to coordinate test case input and output

 The cluster is tested

 Drivers are removed and clusters are combined moving upward in the program structure

Integration Test Documentation

 An overall plan for integration of the software and a description of specific tests are documentated in a Test

Specification. The specification is a deliverable in the software engineering process and becomes part of the

software configuration

10.7 Validation Testing

 Achieve through a series of black tests that demonstrate conformity with requirements

 Important element of this process is a configuration review, sometimes called an audit

 A series of acceptance tests (include both alpha and beta testing)are conducted with the end users

 Alpha testing

 Is conducted at the developer's site by a customer

 The developer would supervise

 Is conducted in a controlled environment

 Beta testing

 Is conducted at one or more customer sites by the end user of the software

 The developer is generally not present

 Is conducted in a "live"environment

10.8 System Testing

Recovery Testing

 A system test that forces software to fail in a variety of ways and verifies that recovery is properly performed

 If recovery is automatic, re-initialization, check pointing mechanisms, data recovery, and restart are each

evaluated for correctness

 If recovery is manual, the mean time to repair is evaluated

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 93

Stress Training

 Is designed to confront programs with abnormal situations where unusual quantity frequency, or volume of

resources are demanded

 A variation is called sensitivity testing; it attempts to uncover data combinations within valid input classes

that may cause instability or improper processing

Performance Testing

 To test the run-time performance of software

 Extra instrumentation can monitor execution intervals, log events (eg, interrupts) as they occur, and sample

machine states on a regular basis

 Use of instrumentation can uncover situations that lead to degradation and possible system failure

10.9 Debugging

Characteristics of Bugs

 The symptom and the cause may be geographically remote

 The symptom may disappear (temporarily) when another error is corrected

 The symptom may actually be caused by non-errors(eg, round-off inaccuracies)

 The symptom may be caused by a human error that is not easily traced

 The symptom may be caused by a result of timing problems, rather than processing problems

 It may be diffcult to accurately reproduce input conditions (eg a real-time application in which input ordering

is indeterminate)

 The symptom may be intermittent. This is particularly common in embedded systems that couple hardware

and software inextricably

 The symptom may be due to causes that are distributed across a number of tasks running on different

processors

Debugging Approaches

 Brute force: is probably the most common and least efficient method for isolating the cause of a software

error. The program is loaded with run-time traces, and WRITE statements, and hopefully some information

will be produced that will indicated a clue to the cause of an error.

 Backtracking: fairly common in small programs. Starting from where the sympton has been uncovered,

backtrack manually until the site of the cause is found. Unfortunately, as the number of source code lines

increases, the number of potential backward paths may become unmanageably large.

 Cause Elimination: data related to the error occurrence are organised to isolate potential causes. A "cause

hypothesis" is devised and the above data are used to prove or disapprove the hypothesis. Alternatively, a list

of all possible causes is developed and tests are conducted to eliminate each. If the initial tests indicate that a

particular cause hypothesis shows promise, the data are refined in a attempt to isolate the bug.

Debugging Tools

 Debugging compliers

 Dynamic debugging aides ("tracers")

 Automatic test case generators

 Memory dumps

 Cross reference maps

w
w
w
.m

as
om

om
si
ng

i.c
om

94 Software Engineering Manual

Chapter Review Questions

References for Further Reading

Recommended course text Books
1. Pressman R.S (1997) Software engineering: a practitioner’s Approach, McGraw Hill

2. Somerville Ian (2002) software engineering ,Pearson’s education

3. Kotonya.G and Somerville, I (1998), Requirements engineering: Processes and Techniques, Wiley

4. Peters, J.F and Pedrycz (2000) Software Engineering: An Engineering Approach, John Wiley and sons.

1. Pressman R.S (1997) Software engineering: a practitioner’s Approach, McGraw Hill

2. Somerville Ian (2002) software engineering ,Pearson’s education

1. Elaborate why user acceptance testing is important.

2. explain why bottom up and top down testing may be inappropriate testing strategies for object oriented

systems

3. differentiate between program bugs and program defects

w
w
w
.m

as
om

om
si
ng

i.c
om

Software Engineering Manual 95

SAMPLE EXAMINATION

SOFTWARE ENGINEERING

INSTRUCTIONS

SECTION A: THIS SECTION IS COMPULSORY

Question 1.

(a) Differentiate between software engineering and software re-engineering. (4marks)

(b) (i) With the context of software design explain what is meant by the terms cohesion and coupling.(4marks)

 (ii) How are the concepts of cohesion and coupling useful in arriving at good software design? (4marks)

 (c) State two factors to be considered when selecting a programming language. (4 marks)

 (d) The process of software development can be complex hence challenging. Explain how the following

techniques are applied in reducing the complexity and minimize the challenge.

 (i) Software project management. (4marks)

 (ii) Configuration management

 (iii) Software quality assurance

 (e) Define the following terms: (4marks)

 (i) Validation

 (ii) Verification

 SECTION B: ANSWER ANY TWO QUESTION

 Question 2.

(a) List and explain the major responsibilities of a software project manager. (4marks)

(b) Software maintenance has become an important activity of a large number of organizations. Explain the

different types of maintenance that a software product management need. (8marks).

(c) Explain the terms CASE tool and CASE environment. (6 marks)

Question 3.

 (a) Discuss the following terms (10marks)

 (i) Risk management

 (ii) Configuration management

 (iii) Scheduling

 (iv) Software standards.

 (v) Software

(b) Explain four major shortcomings that we might face if we use the classical waterfall model for developing all

types of software products. (4marks)

(c) Software design has two fundamental different approaches. State and give two advantages of each approach.

 (6marks).

Question 4.

 (a) A software development life cycle is a structure imposed on the development of a software product. Discuss

the six activities carried out in software development life cycle. (6marks)

(b) Explain how both the waterfall model of the software development and the prototyping model can be

accommodated in the spiral process model. (6marks).

(c) Describe four types of non-functional requirements that may be placed on a system. Give examples of each

of these types of requirements. (8marks)

Question 5.

(a) Software testing is one of major approaches in software development. Discuss the five software testing

strategies. (10marks)

(b) The goal of the requirements engineering process is to create and maintain a system requirements document.

The overall process includes four high level requirements engineering sub-processes. With the aid of a diagram

illustrate the relationship between these activities. (10marks)

w
w
w
.m

as
om

om
si
ng

i.c
om

