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1. Term structure of interest rates 

1.1 Yield curves and shapes 

The economics of interest rates deals with the pure price of time (time value of money). 
Awareness and appreciation of the interest rate-maturity relationship is essential in bond 
management. 

The simplest way to compare the yields between bonds of the same credit is to draw a graph 
depicting the various yields of the similar bonds against the maturity of each bond. Such a 
simplistic view is called a market yield curve. 

A more accurate relationship between the yields on otherwise comparable bonds with 
different maturities is called the term structure of interest rates; its graphical depiction is 
also known as a yield curve. 
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Figure 1-1: The term structure of interest rates 

The problems in building the term structure of interest rates are that 

• to avoid coupon effects and reinvestment risk, the term structure of interest rates 
should be built using only zero-coupon bonds. 

• some rates are not available: one usually knows the 1, 2, 3, 5, and 10 year rates, but 
how about a 7.5 year rate? 

• there are very few spot rates published for non-government bonds, as there are very 
few corporate zero-coupon bonds. 

Thus, most people will instead use the market yield curve, which plots the yield to maturity 
of various bonds against their respective maturity, assuming all other factors to be equal. 
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Figure 1-2: The yield curve 

Formally, the term structure deals with the relationship between spot rates and time to 
maturity, whereas the yield curve deals with yield to maturity and time to maturity. 
Generally, both are similar. But in the analysis of maturity-return relationship, it is better to 
work with spot rates rather than yields to maturity, as they are (among other things) not 
contaminated by the coupon effect. 

A nominal interest rate can be decomposed into three basic components: 

nominal rate  real interest rate  inflation premium  risk premium= + +  

The real interest rate is the compensation for the investor for deferring consumption to a 
future period (time value of money). 

The inflation premium is intended to preserve the investor’s purchasing power over time, 
and reflects the expected future inflation level over the life span of the investment. 

The risk premium compensates the investor against all other potential negatives, including 
default risk, redemption risk, market risk, etc.1 

The yield level of all bonds will reflect these three components. Consequently, different issuer 
sectors will be plotted on different yield curves. Low quality sectors (lower ratings) will be 
traded at higher yields. 

                                                           
1  Note that some of these risks can be diversified. 
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Figure 1-3: The yield/time to maturity relationship of various ratings 

Because of this, the liquidity risk, credit risk, call risk, coupon rate, and degree of 
premium/discount as well as any other risk should be sufficiently similar between the issues 
in order to build a useful yield curve. 

The term structure of interest rates can exhibit four basic shapes: positively sloped (a gently 
upward slope is the term structure’s usual form), negatively sloped, flat, and humped. The 
following figures show these four configurations for illustrative purposes only. 

 

Figure 1-4: Basic shapes of the term structure: positively and negatively sloped 

Spot rates 

Time to maturity 

positively sloped 
term structure 

negatively sloped 
term structure 

Yield to maturity 

Time to maturity 

B 

BBB 
A 

AAA 

Government bonds 



                                                Solomon Ngahu - Reg No. 49000007Fixed Income 

 page 4 © 2017 AZEK 

 Spot rates 

Time to maturity 

flat term structure 

humped term structure 

 

Figure 1-5: Basic shapes of the term structure: flat and humped 

The short maturity section is mainly influenced by monetary policy, while the long maturity 
segment is more sensitive to inflationary expectations. 

1.2 Theories of term structures 

There are three primary theories that try to explain the shape of the term structure of interest 
rates: the expectations hypothesis, the liquidity preference, and the market segmentation 
theory. 

Before moving ahead with these theories, we need to define a number of related concepts. 

Spot rate is the current interest rate for a given maturity. For example, the one-year spot rate 
is the yield to maturity of a one-year zero-coupon bond issued today. 

Forward rate is the interest rate for a given maturity that begins in the future. For example, 
the one-year forward rate starting in one year is the yield to maturity of a one-year zero-
coupon bond that will be issued in one year. 

Forward rates can be calculated using spot rates. A rate calculated this way is called the 
implicit forward rate. 

Example: 
The one-year spot rate is 4% and the two-year spot rate is 5%. What is the one-year implicit 
forward rate starting at the end of year 1? 
 
We denote the forward rate as 1,1F . 
To solve this problem, we need to compare two strategies: 
Strategy 1: Invest $1 for two years. 
Strategy 2: Invest $1 for one year and then reinvest it for another year. 
The implicit one-year forward rate will be the one that equates the values of both strategies, so 
that: 

2
1,1(1 0.05) (1 0.04)·(1 )F+ = + +   

2

1,1
(1 0.05) 1 6%
1 0.04

F +
= − =

+
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Expected future spot rate is the spot rate that is expected by the market to be in effect on 
some specified date in the future. The main difference between a forward rate and a future 
spot rate is that a forward rate can be calculated with the information observable in the market 
today. In contrast, a future spot rate is only observable in the future. 

1.2.1 Expectations hypothesis2 

The expectations theory contends that the shape of the term structure only reflects the market 
consensus forecast on future interest rates levels. Therefore, the implicit forward rate is an 
unbiased estimate of the expected future spot rate. 

( )t ,t 1 t ,t 1F E R (for t 0)+ += >  

A good way to understand this theory is to assume that investors are risk neutral, and that they 
will select the securities that give them the highest expected return, whatever their time 
horizon is. 

Example: 
The yield to maturity on a one-year pure zero-coupon bond is 10%, and 12% for a two-year pure 
zero-coupon bond. New information makes investors expect the one-year spot rate to be 16% in 
one year. What should investors do if they consider a one or two-year investment horizon? How 
would the yield to maturity of the two-year zero-coupon bond evolve? 
 
The investor with a two-year investment horizon can invest 1 EUR in a two-year bond, with a final 
value of 

( ) ( )1 1.12 1.12   1.254 EUR⋅ ⋅ =  

or hold two one-year bonds, with an expected final value of 

( ) ( )1 1.10 1.16   1.276 EUR.⋅ ⋅ =  

All investors with a two-year investment horizon will want to hold two one-year bonds.  
The investor with a one-year investment horizon can invest 1 EUR in a one-year bond, with a final 
value of 

( )1 1.10   1.10 EUR⋅ =  

or hold a two-year bond, that he will sell in one year, with an expected final value of 

(1.12)1 (1.12) 1.081 EUR
(1.16)

⋅ ⋅ =  

So, all investors with a one-year investment horizon will also want to hold the one-year bonds. 

Given this universal preference, all investors will choose a rollover strategy and hold only the 
one-year bonds; thus, prices (i.e. interest rates) of the two-year bonds should adjust until the 
expected return from holding a two-years bond is exactly the same as the expected return from 
holding two consecutive one-year bonds. 

So, 
2

0,21 (1 R ) 1 (1.10) (1.16)⋅ + = ⋅ ⋅
 

                                                           
2  There are several different interpretations of the expectation theory. For more information see Fabozzi 

(2012), chapter 8. 
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0,2R 12.96%=  

After this adjustment of the yield, all investors will be indifferent between the two bonds. 
 
The statement that implicit forward rates are unbiased estimates of future spot rates is also 
based on the following assumptions: 

• investors have homogenous expectations. 
• investors choose between short or long-term bonds in order to maximise their final 

expected wealth for a given investment period. 
• there are no transaction costs. 
• bond markets are efficient, and new information is instantaneously reflected in bond 

prices. 
• future spot rates are statistically independent 

In reality, all of these assumptions are subject to criticism. If we assume that the implicit 
forward rates are an unbiased estimate of the future spot rates, then future spot rates can be 
derived from spot rates, which implies that, if there are no transaction costs, each bond is a 
perfect substitute for any other bond, whatever its maturity because the expected return 
will be the same, whatever the bond combination selected by the investor. Indeed, an investor 
who has a determined investment horizon could do any of the following strategies and obtain 
the same return: 

• buy a pure zero-coupon bond that matures at the end of the investment period, and 
hold it to maturity (“buy and hold strategy”). 

• buy a short-term maturity bond, and reinvest regularly the proceeds (“rollover 
strategy”). 

• buy a long-term bond, and sell it with a loss or a gain prior to maturity. The loss or the 
gain is predictable, using the forward rates. 

The explanation of the expectations theory for the four different shapes of the term structure 
of interest rates is as follows. A positively sloped (respectively negatively sloped) term 
structure implies that interest rates are expected to rise (respectively to decrease) in the future, 
while a flat term structure represents a market consensus for stable yields. Finally, a humped 
term structure shows that market participants expect a rising rate environment for the 
intermediate times to maturity, followed by a long-term decline in yield levels. This theory, 
though, does not explain why the term structure of interest rates is generally positively sloped, 
because the reason is that interest rates are as likely to rise as to fall, thus the yield curve 
should usually be flat. 
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1.2.2 Liquidity preferences 

As opposed to the expectations theory, the liquidity preference theory asserts that investors 
prefer to hold liquid securities, liquidity being defined as the ability to convert a bond rapidly 
into cash. As the duration risk in long-term securities is higher than for short-term ones, 
investors will prefer short-term securities.3 Thus, there is a shortage of longer term investors. 

Example: 
Bond A is a one year bond with a 6% coupon. Bond B is a two-year bond with a 6% coupon. The 
one year and two-year spot rates are equal to 6%. What happens if there is a sudden unexpected 
rise of all spot rates to 7%? 
 
Both bonds were priced at par (= 100.00). After the rise, the two-year security will drop to 98.19 in 
price, while the one year bond will drop to 99.07. So, for one percentage point increase in yield, 
the two-year security has a more important price decrease than the one-year security. Hence, for a 
risk-averse investor, the two-year security seems riskier. 

On the other hand, the borrowers (governments, firms, ...) prefer to issue long-term securities, 
to avoid the consequences of interest rates fluctuations on their expenses. In order to induce 
investors to invest in long-term securities, they will offer them a risk premium (a liquidity 
premium or term premium). 

So, in the liquidity preference theory the implicit forward rate incorporates a risk premium,
1,ttL − , in the way that the expected future spot rate is equal to: 

( )t ,t 1 t ,t 1 t ,t 1E R F L+ + += −   (for t > 0) 

t,t 1L 0+ >  

Therefore we should have a positive difference between implicit forward rates and expected 
future spot rates: 
 

 

Figure 1-6: The liquidity premium concept 

                                                           
3  Another simple reason to justify this is the unexpected inflation risk: if there is an unexpected rise in the 

inflation rate, the nominal interest rates should also rise; investors holding short term bonds will be able to 
reinvest their money at a higher rate, while investors holding long term bonds will have to wait for the final 
reimbursement before taking advantage of the higher interest rates. 
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As this theory suggests a higher yield for longer maturity issues caused by their lower degree 
of “liquidity”, the expected return on a buy and hold strategy has to be higher than the 
expected return on a rollover strategy. In other words, the return of the roll over strategy is 
only composed of expectations without risk premium whereas the return of the buy and hold 
strategy fully incorporates this liquidity premium. So, 

( ) ( ) ( ) ( )0, 0,1 1,2 2,3 1,1 1 1 ( ) 1 ..... 1
t

t t tR R E R E R E R −
    + > + + + +     

    

Furthermore, as risk increases with time, we should observe: 

1,2 2,3 3,4 n 1,nL    L    L    ...  L −< < < <  

Hence, the term structure of interest rates should be (mainly) upward sloping because of the 
preference of investors for liquidity. Therefore, this theory correctly explains the usual shape 
of the term structure. Following this theory, the term structure is flat or downward sloping, if 
the market expects the interest rates to decrease in the future. 

1.2.3  Market segmentation and preferred habitat theories 

Both, the market segmentation theory and the preferred habitat theory view the bond 
market as a series of distinct markets that differ by their maturity. In the market segmentation 
theory, each issuer or investor will have a preferred maturity, and he will have complete risk-
aversion so that he operates only in his desired maturity spectrum. Within a given maturity 
range, the relative supply and demand for funds determines the appropriate clearing price (i.e. 
the appropriate interest rate). 

 

Figure 1-7: Supply and demand of money for a given maturity 

The major criticism of the market segmentation theory is that even if investors have a strong 
maturity preference, the effect of segmentation on interest rates should be offset as soon as 
some investors start considering relative yields and allocate their funds to another segment 
which offers a (sufficiently) higher yield. To address this issue, the preferred habitat theory 
was developed, where any investor will try to reduce risks by staying in its preferred habitat; 
but he will leave it as soon as he is given a risk premium high enough to cover the assumed 
risks and the cost of leaving its preferred habitat. 

Thus, contrary to the liquidity preference theory, the preferred habitat theory leads to the 
result that the risk premium attached to bonds can be either positive, negative, or zero. 

( )t ,t 1 t ,t 1 t ,t 1F E R+ + += +Π  
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and nothing can be said ex ante about the sign of t,t 1+Π . 

In the preferred habitat theory, the money is considered as a commodity, its market clearing 
price is the interest rate, and the supply and demand of each individual segment connect to 
create the overall composite term structure of interest rates. By examining flows of funds into 
the market segments, one could - in theory - predict changes in the term structure of interest 
rates. 

Following this theory, the four basic shapes of the term structure are due to: 

• In the case of a positively sloped term structure of interest rates, the investors (buyers) 
have a preference for the short-term segments of the market, thus prices of bonds with 
small maturities are high and their yields are low; the reverse is true for the long-term 
segment. 

• In the case of a negatively sloped term structure of interest rates, we have the reverse 
case of the above scenario. 

• If the term structure of interest rates is flat, investors have similar preferences for all 
segments of the market. 

• Finally, the humped term structure of interest rates is due to different preferences, 
which depend on the maturity segments. 

1.2.4 Other theories 

The expectation hypothesis, liquidity preference and market segmentation theory are three 
non-exclusive ways of thinking about interest rates. 

But as far as bond pricing is concerned, the most promising theories are the stochastic 
process no-arbitrage approaches. They rely on the following assumptions: 

• the term structure and the bond prices are related to some stochastic factors 
• these factors evolve over time according to a particular hypothesised stochastic process 

(i.e. a process with some uncertainty) 
• there should be no arbitrage opportunity 

Various models have been developed, using single or multiple factors. For example, the 
Ogden model (1987) assumes that the term structure of interest rates is driven only by the 
short term interest rate fluctuations, and uses the following process to describe the short term 
interest rate variations: 

 
where dr is the instantaneous change in the rate r, β is a speed-of-adjustment component, u is 
the average level of the rate, dt is the passage of time, dZ(t) is a stochastic process, and σ ⋅ r is 
the standard deviation of the process. 

In other words, such an equation says that the change in the short term rate has two 
components: one is predictable (the extent to which the current rate differs from its long-term 
value, multiplied by a coefficient that measures its rate of adjustment to its long-term value), 
and one unpredictable (the product of the standard deviation of the rate, of the initial level, 
and of some stochastic process, that acts as a random generator). 



component bleunpredictacomponent epredictabl

)t(dZrdt)ru(dr ⋅⋅σ+⋅−⋅β=
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Using this specification of the short-term rate, and by solving a partial differential equation, it 
is possible to find an analytical solution (or a numerical solution) for the bond prices, and 
therefore for the term structure of interest rates. 

Of course, other specifications of the process followed by the short-term rates would lead to 
another term structure of interest rates. It is also possible to use other factors (such as the 
long-term rate, the spread between short-term and long-term interest rates, ...), or more than 
one factors. But each factor stochastic process has to be carefully specified, and the addition 
of factors complicates the solving of the partial differential equation.4 

                                                           
4  For some interesting specifications, see: Brennan and Schwartz (1982). 
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2. Risk measurement 

The return from holding a bond for a given period can be decomposed in two components: the 
change in the market value of the security (selling price minus purchase price), and the cash 
flows received from the security plus any additional income from reinvesting those cash 
flows. Several market factors impact one or both of these parts of the return. 

Hence, we will define the risk of a bond as a measure of the impact of the market factors 
on the return characteristics of the bond. 

Hereafter, we will examine the external factors that can affect bond prices. 

We have seen that using the yield to maturity concept (denoted YTM), a bond price can be 
defined as: 

( ) ( ) ( ) ( )
T

t 1 2 T
t 1 2 T

t 1

CF CF CF CFP ...
1 YTM 1 YTM 1 YTM 1 YTM=

= = + + +
+ + + +

∑  

where CFt is the cash flow received at the end of period t (coupons or repayment), and T is the 
remaining life of the bond (time to maturity). 

Hence, it should be clear that the price of a typical fixed income security moves in the 
opposite direction of the change in interest rates: as interest rates rise (fall), the price of a 
fixed income security will fall (rise).5 A bond’s systematic risk is defined as the volatility in 
the total return, where the total return takes into account not only price changes, but also 
coupon payments, due to an instantaneous interest rate fluctuation. 

In the past, bonds were considered as safe investments. Interest rates were stable, and 
investing in bonds was a rather conservative strategy. But increasing interest rates volatility 
has transformed bonds into an exciting as well as risky investment vehicle. 

• Price risk: 
For an investor who plans to hold a bond to maturity, the change in the price prior 
to maturity is of no concern. But if the investor plans to sell the bond prior to the 
maturity date, an increase in the interest rate will result in a capital loss. This is referred 
to as the price risk, which is by far the major risk faced by an investor in the fixed 
income market. 

• Reinvestment risk: 
The reinvestment risk is defined as the variability of the reinvestment income from a 
given strategy due to changes in interest rates. For example, if interest rates fall, 
interim cash flows will be reinvested at a lower rate. 

It should be noted that price risk and reinvestment risk act in opposite directions. If 
interest rates rise, the market price of a bond decreases. But, at the same time, the income 
received by reinvesting the coupons increases. A strategy based on equalising and thereby 
nullifying these two offsetting risks is called “immunisation” and will be examined later. 
                                                           
5  There are some exceptions, with price changes in the same direction as interest rates, like some putable 

bonds under certain circumstances. 
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What happens if there is an instantaneous change in the bond’s yield? Empirical 
investigations show that: 

• Long maturity bonds are more price sensitive than short maturity bonds. 

Example: 
The following table lists various bonds differing only by maturity. All bonds have the same face 
value of EUR 1,000. If the market yield changes from 5% to 5.5%, the bond prices adjust to reflect 
the new yield. Long-term bonds are clearly more volatile than short-term bonds, and have a larger 
depreciation. 
 

 Bond 1 Bond 2 Bond 3 Bond 4 Bond 5 
Maturity (in years) 20 10 5 3 1 
Market yield 5.00% 5.00% 5.00% 5.00% 5.00% 
Coupon 7.00% 7.00% 7.00% 7.00% 7.00% 
Market price (EUR) 1,249.24 1,154.43 1,086.59 1,054.46 1,019.05 
New market yield 5.50% 5.50% 5.50% 5.50% 5.50% 
New market price (EUR) 1,179.26 1,113.06 1,064.05 1,040.47 1,014.22 
∆P (EUR) –69.99 –41.37 –22.54 –14.00 –4.83 
∆P / P –5.60% –3.58% –2.07% –1.33% –0.47% 

We should note that the relationship is the same in the case of an interest rate decrease. In the 
case of a decrease in the interest rate, long-term bonds will have the largest price appreciation. 

Example: 
The following table lists various bonds differing only by maturity. All bonds have the same face 
value of EUR 1,000. If the market yield changes from 5% to 4.5%, the bond prices adjust to reflect 
the new yield. Long-term bonds are clearly more volatile than short-term bonds, and have a larger 
appreciation. 
 

 Bond 1 Bond 2 Bond 3 Bond 4 Bond 5 
Maturity (in years) 20 10 5 3 1 
Market yield 5.00% 5.00% 5.00% 5.00% 5.00% 
Coupon 7.00% 7.00% 7.00% 7.00% 7.00% 
Market price (EUR) 1,249.24 1,154.43 1,086.59 1,054.46 1,019.05 
New market yield 4.50% 4.50% 4.50% 4.50% 4.50% 
New market price (EUR) 1,325.20 1,197.82 1,109.75 1,068.72 1,023.92 
∆P (EUR) +75.95 +43.38 +23.16 +14.26 +4.88 
∆P /P +6.08% +3.76% +2.13% +1.35% +0.48% 

Thus, the price/yield curve is steeper for longer maturity issues than for shorter maturity 
issues. Therefore, a small change in the yield will have a greater impact on the price of a long 
term bond compared to a short term bond. 
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Figure 2-1: Price/yield relationship for various maturities 

• Price volatility is not a symmetric phenomenon; as shown in previous examples, at a 
given price, a decrease in the market yield does not have the same effect on the bond 
price as an identical increase in the market yield. 
 

• For a given maturity, low coupon bonds are more volatile than high coupon bonds. 
Clearly, zero-coupon bonds have the greatest volatility. 

Example: 
The following table lists various bonds differing only by coupon. All bonds have the same face 
value of EUR 1,000. If the market yield changes from 5% to 5.5%, the bond prices adjust to reflect 
the new yield. Low coupons bonds have a greater volatility. 
 

 Bond 1 Bond 2 Bond 3 Bond 4 Bond 5 
Maturity (in years) 10 10 10 10 10 
Market yield 5.00% 5.00% 5.00% 5.00% 5.00% 
Coupon 10.00% 7.00% 5.00% 3.00% 0.00% 
Market price (EUR) 1,386.09 1,154.43 1,000.00 845.57 613.91 
New market yield 5.50% 5.50% 5.50% 5.50% 5.50% 
New market price (EUR) 1,339.19 1,113.06 962.31 811.56 585.43 
∆P (EUR) –46.89 –41.37 –37.69 –34.01 –28.48 
∆P / P –3.38% –3.58% –3.77% –4.02% –4.64% 

 
• For a given maturity, low yield bonds are more price volatile than high yield bonds. 

Thus, the price volatility should be greater in a low interest rate environment. 

Example: 
The following table lists the effect of a market yield increase on a bond price, with different initial 
yield levels. All bonds have the same face value of 1,000 EUR. The higher the initial yield, the 
lower the price decrease. Hence, the bond price is much more volatile when the yield is low, for a 
same variation of the market yield. 
 

 Bond 1 Bond 2 Bond 3 Bond 4 Bond 5 
Maturity (in years) 10 10 10 10 10 
Market yield 10.00% 7.00% 6.00% 5.00% 3.00% 
Coupon 6.00% 6.00% 6.00% 6.00% 6.00% 
Market price (EUR) 754.22 929.76 1,000.00 1,077.22 1,255.91 
New market yield 10.50% 7.50% 6.50% 5.50% 3.50% 
New market price (EUR) 729.34 897.04 964.06 1,037.69 1,207.92 
∆P (EUR) –24.88 –32.73 –35.94 –39.53 –47.99 
∆P / P –3.30% –3.52% –3.59% –3.67% –3.82% 
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A bond with a sinking fund provision is less volatile than a similar maturity bullet bond. 
The existence of a sinking fund provision reduces the effective time to maturity of the bond 
issue and therefore such bonds are less volatile. 
 
But all these observations are not sufficient for us to derive an adequate bond risk 
measure. In particular, we cannot compare the risk of two bonds differing in coupon as well 
as maturity. 

Example: 
Bonds A and B are described in the following table.  
 

 Bond A Bond B 
Coupon 10% 2% 
Time to maturity 12 years 8 years 
Market rate 8% 8% 
Actual market price 115.07 65.52 

What happens if the new market rate is 8.5%? Which bond will be more volatile? 
 
Without any calculation, it is impossible to say anything: bond A has a longer maturity and should 
have a greater volatility. But bond B’s coupon is lower, which should give her the larger volatility. 
 
A quick calculation would lead to the following results: 
 

 Bond A Bond B 
New market rate 8.5% 8.5% 
New market price 111.02 63.34 
∆P –4.06 –2.18 
∆P / P –3.52% –3.32% 

Bond A is more volatile. But the results are very close. 

Given the various factors affecting bond price volatility, one wonders whether it is possible to 
derive an adequate bond risk measure to capture the volatility characteristics of a particular 
bond. 

2.1 Risk measurement tools 

The most basic bond risk proxies are time to maturity, weighted average maturity, and 
weighted average cash flow. 

The time to maturity is the number of years remaining until the bond’s final maturity date. It 
assesses a bond’s risk from a final maturity date perspective. Long maturity bonds are riskier 
than short maturity issues, as the investors have to wait longer to recover the principal, and 
also because long term bonds are more sensitive to interest rate fluctuations. 

But it is a weak proxy for a bond’s inherent risk, because: 

• it does not consider the cash flows received prior to final maturity, which leads to 
errors in the risk assessment process. 

Example: 
Consider a 10% bond and a zero-coupon bond maturing in 10 years. Both should have the same 
risk, because they have the same maturity. 
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But after 5 years, supposing the purchase price was equal to the face value, the owner of the 
coupon bond will have recovered half of its initial investment (which can be reinvested at a higher 
rate in the case of an interest rate increase), while the owner of the zero-coupon bond will have 
cashed nothing (all of its proceeds are in terms of principal appreciation). 

 
• There is no linear relationship between time to maturity and price volatility. A 30-year 

bond is not three times as risky as a 10-year bond. 

Example: 
The following table lists the effect of a market yield increase on bonds with different maturities. 
All bonds have a face value of 1,000 EUR. 
 

 Bond 1 Bond 2 Bond 3 Bond 4 
Maturity (in years) 5 10 20 40 
Market yield 6.00% 6.00% 6.00% 6.00% 
Coupon 6.00% 6.00% 6.00% 6.00% 
Market price (EUR) 1,000.00 1,000.00 1,000.00 1,000.00 
New market yield 6.50% 6.50% 6.50% 6.50% 
New market price (EUR) 979.22 964.06 944.91 929.27 
∆P (EUR) –20.78 –35.94 –55.09 –70.73 
∆P / P –2.08% –3.59% –5.51% –7.07% 

It is clear that doubling the time to maturity does not result in twice the initial volatility. 

The weighted average maturity, or average life, is the weighted average maturity of the 
principal repayment (note that the coupon rate plays no role in the average life, as it only 
considers principal repayments): 

T

t 1

Principal paid at time tWeighted average maturity t
Total principal to be repaid=

= ⋅∑  

It is identical to the time to maturity for bullet bonds, but for sinking fund bonds and 
mortgage backed securities, it offers some improvements. 

Example: 
What is the weighted average maturity of a 6% coupon, 10 year sinking fund debenture priced at 
par (1,000 USD) to yield 6% (discounted cash flow)? The sinking fund retires 20% of the bonds 
annually, commencing at the end of the sixth year. The interest are paid semi-annual. 
 
The principal cash flows are the following (we are not concerned with the interest payments): 
 

Time Principal 
Cash Flows 

6 200 USD 
7 200 USD 
8 200 USD 
9 200 USD 

10 200 USD 

Thus, the weighted average maturity of our bond is: 

200 6 200 7 200 8 200 9 200 10Weighted average maturity 8 years
1000 1000 1000 1000 1000

⋅ ⋅ ⋅ ⋅ ⋅
= + + + + =  

to be compared with the 10 years time to maturity. 
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But weighted average maturity is still a weak proxy for a bond’s inherent risk. It is better than 
the term to maturity, as it considers the principal repayment cash flows. But it does not 
consider the full impact of the distribution of cash flows on the bond’s risk, as it ignores the 
coupons. Thus, the weighted average maturity is insensitive to the coupon differentials. For 
example, an 8% and a 2% sinking-fund debentures could have the same average life, and 
hence, the same risk. 

The weighted average cash flow is calculated similar to the weighted average maturity, 
except that it considers all the cash flows from a bond: 

T

t 1

Cash flow paid at time tWeighted average cash flow t
Total cash flows to be repaid=

= ⋅∑  

It assesses a bond’s risk by finding the average maturity of a bond’s cash flows, considering 
coupons as well as principal repayments. 

Example: 
A bond has a face value of EUR 1,000, expires in 4 years, and offers a 6% coupon rate. What is its 
weighted average cash flow? 
 
The bond’s weighted average cash flow is 

60 1 60 2 60 3 60 4Weighted average cash flow = 3.71 years
1240 1240 1240 1240

⋅ ⋅ ⋅ ⋅
+ + + =  

to be compared with the 4 years time to maturity. 

The main drawback of the weighted average cash flow is that repayments are considered on a 
nominal basis rather than on a present value basis; and we all know that a EUR tomorrow 
does not have the same value as a EUR today. 

Hence, these three average maturities do not provide an adequate bond price volatility 
measure.6 

                                                           
6  Note that the relationships between the three basis measures are the following: 

Bond type Relationship 

Coupon bearing bullet bond WACF < WAM = TTM 

Sinking fund bond WACF < WAM < TTM 

Zero-coupon bond WACF = WAM = TTM 
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2.2 Duration and modified duration 

The duration as a measure of bond risk was initially proposed by Frederick R. Macaulay in 
1938. 

2.2.1 Definition 

The concept of duration can be interpreted as an advanced version of the weighted average 
cash flow. The duration of a series of cash flows is equal to the average time at which the cash 
flows occur; the weight of each cash flow is calculated using the present value of the cash 
flow (instead of using the nominal value). The formula for duration is: 

T T
t

t
t 1 t 1

PV(CF )Duration D t w t
P= =

= = ⋅ = ⋅∑ ∑  

If we discount all cash flows at the bond’s yield to maturity k (as we did to calculate the 

price), the weight of each cash flow is 
t

t
t

CF / (1 k)w
P
+

=  and the complete formula for 

duration is: 
T

t

t 1
T

t
t

t 1

31 2 T
1 2 3 T

PV(CF )Duration D t
P

CF1 t
P (1 k)

CFCF CF CF1 1 2 3 ... T
P (1 k) (1 k) (1 k) (1 k)

=

=

= = ⋅

= ⋅ ⋅
+

 
= ⋅ ⋅ + ⋅ + ⋅ + + ⋅ + + + + 

∑

∑

 

 
where: 
 CFt amount of the cash flow (coupon or principal) received at date t 
 P the market price of the bond7 (or present value of all future payments) 
 T time to maturity 
 k discount rate (market yield) 

Similar to the weighted average cash flows, duration is measured in years. This formulation 
of duration is often called Macaulay duration. 

 

                                                           
7  Note that if the price of the bond is not known, we can use the following formula. 

T T
t t
t t

t 1 t 1
T

t
t

t 1

t CF t CF
(1 k) (1 k)

Duration
P CF

(1 k)

= =

=

⋅ ⋅
+ +

= =

+

∑ ∑

∑
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Example: 
A bond with a 10-year maturity pays a 8% annual coupon. Its yield to maturity is k=10%. What is 
its Macaulay duration? 
 

T 
(Years) 

Cash flow 
CF 

PV (CF) CF weight Time  
weighted by 
CF weight 

[1] [2] [3]=[2]/(1+k)t [4] = [3] / Price [5] = [1] ⋅ [4] 
1 8 7.27 0.0829 0.083 
2 8 6.61 0.0754 0.151 
3 8 6.01 0.0685 0.206 
4 8 5.46 0.0623 0.249 
5 8 4.97 0.0566 0.283 
6 8 4.52 0.0515 0.309 
7 8 4.11 0.0468 0.328 
8 8 3.73 0.0425 0.340 
9 8 3.39 0.0387 0.348 

10 108 41.64 0.4747 4.747 
 Price: 87.71 Duration: 7.04 

The bond’s duration is 7.04 years.  
 
We can graphically represent the duration by plotting the cash flows as a function of time. The 
height of each bar is the cash flow received [column 2 in the above table]; the lower portion of 
each bar (in black) is the present value of the cash flow [column 3]. If we think of these values as 
physical weights placed on a horizontal bar, the duration (marked with an arrow) is the fulcrum 
point of these weights.  
 

 

In the case of a zero-coupon bond, as there are no intermediate payments, duration is simply 
the present value of the final cash flow multiplied by the maturity, divided by the price. But as 
the price is itself the present value of the final cash flow, the Macaulay duration of a zero-
coupon bond is equal to its maturity. 
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Example: 
A 10-year zero-coupon bond with a face value of 1,000 EUR is traded at 558.39 EUR. Its yield to 
maturity is 6%. What is its Macaulay duration? 
 
The bond’s Macaulay duration is: 

10
10 1000

10 558.391.06Macaulay Duration  =  =10 years
558.39 558.39

⋅
⋅

=  

which is exactly its time to maturity. 

Even if the bond has features which modify its cash flows, such as semi-annual coupon 
payments or sinking fund requirements, the methodology remains the same. 

Example: 
What is the duration of a 6% coupon, 10 year sinking fund debenture priced at par (1,000 USD) 
with a current market yield of 6%? The sinking fund retires 20% of the bonds annually, 
commencing at the end of the sixth year. The interest is paid semi-annual.  
 
The following table lists the various steps that are necessary to calculate the duration. 
 

T 
(Years) 

total  
cash flow 

PV  
factor 

PV (CF) CF weight PV weighted 
 by time t 

[1] [2] [3] [4] = [2] ⋅ [3] [5] = [4] / Price [6] = [1] ⋅ [5] 
0.5 30.00 0.9709 29.13 0.0291 0.01 
1 30.00 0.9426 28.28 0.0283 0.03 

1.5 30.00 0.9151 27.45 0.0275 0.04 
2 30.00 0.8885 26.65 0.0267 0.05 

2.5 30.00 0.8626 25.88 0.0259 0.06 
3 30.00 0.8375 25.12 0.0251 0.08 

3.5 30.00 0.8131 24.39 0.0244 0.09 
4 30.00 0.7894 23.68 0.0237 0.09 

4.5 30.00 0.7664 22.99 0.0230 0.10 
5 30.00 0.7441 22.32 0.0223 0.11 

5.5 30.00 0.7224 21.67 0.0217 0.12 
6 230.00 0.7014 161.32 0.1613 0.97 

6.5 24.00 0.6810 16.34 0.0163 0.11 
7 224.00 0.6611 148.09 0.1481 1.04 

7.5 18.00 0.6419 11.55 0.0116 0.09 
8 218.00 0.6232 135.85 0.1359 1.09 

8.5 12.00 0.6050 7.26 0.0073 0.06 
9 212.00 0.5874 124.53 0.1245 1.12 

9.5 6.00 0.5703 3.42 0.0034 0.03 
10 206.00 0.5537 114.06 0.1141 1.14 
  Price 1,000.00 Duration 6.43 

The Macaulay duration of our bond is 6.43 years. 

2.2.2 Interpretations and implicit assumptions 

Macaulay duration takes into account all of the following variables affecting the bond price 
volatility: 

• all the cash flows 
• the yield to maturity 
• the current market price of the bond 
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But what does Macaulay duration really mean? In fact, it is more than just a sophisticated 
average maturity, and there is one basic property that helps in understanding the concept of 
duration: 

• In interest-rate risk terms, an investor is indifferent between a coupon-bearing 
bond investment and a zero-coupon instrument maturing on the duration date of 
the coupon bearing issue. 

Using Macaulay duration, we implicitly assume that all cash flows are discounted (or 
reinvested) at the same discount rate k, equal to the bond’s yield to maturity. But in fact, each 
cash flow should be discounted at the appropriate rate R0,t, and we do not have one single 
yield, but a part of the term structure of interest rates. 

Thus, the assumption made using the Macaulay duration is that the term structure of 
interest rates is flat (that is, the yields for all maturities are equal to a single value, called 
the market yield). 

Note that if the term structure of interest rates (or the yield curve) is not flat, the implied spot 
rate curve supplies a series of discount rates (rather than a single one) applicable to the bond’s 
future cash flows, generating a duration that differs from Macaulay duration. For example, the 
Fisher and Weil’s duration is defined as: 

T T
t t

FW t
t 1 t 1 0,t

31 2 T
1 2 3 T

0,1 0,2 0,3 0,T

PV(CF ) t CF1Fisher and Weil 's Duration D t
P P (1 R )

3 CF1 CF 2 CF T CF1               ...
P (1 R ) (1 R ) (1 R ) (1 R )

= =

⋅
= = ⋅ = ⋅

+

 ⋅⋅ ⋅ ⋅
= ⋅ + + + + 

+ + + +  

∑ ∑
 

2.2.3 An example to illustrate the calculation of duration 

Consider a 10-year bond with a face value of 100 CHF and a 10% coupon. The current market 
yield (for all maturities) is 8%. 

Let us calculate the current bond 

k 8% 1 2 3 10
10 10 10 110P ... 113.42 CHF

1.08 1.08 1.08 1.08= = + + + + =  

and the Macaulay duration for the bond 

1 2 3 10
1 10 2 10 3 10 10 110...
1.08 1.08 1.08 1.08Macaulay Duration  =6.97 years

113.42

⋅ ⋅ ⋅ ⋅
+ + + +

=  

Now let us determine what happens if immediately after we bought this bond for 113.42 CHF, 
the market yield decreases from 8% to 4%. The new price of this bond is then 

k 4% 1 2 3 10
10 10 10 110P ... 148.67 CHF

1.04 1.04 1.04 1.04= = + + + + =  



                                                Solomon Ngahu - Reg No. 49000007Fixed Income 

 page 21 © 2017 AZEK 

We can see that with this (extreme) interest rate variation the bondholder has a capital gain of 
35.25 CHF. To illustrate the use of duration, we calculate the bond’s price for each year 
remaining until the bond’s maturity for a market yield of 8% (before) and a market rate of 4% 
(after). We also calculate the present value for each year and each market yield of the 
reinvested coupons C. 

( )
t

t i
i

i 1
Future value of reinvested coupons in year t C 1 k −

=

= ⋅ +∑  

The total value of this bond (calculated as the sum of the bond price and the value of the 
reinvested coupons) is also given in the following table: 

  YTM = 8%   YTM = 4%  
Year Bond 

price 
 

[1] 

Value of 
reinvested 
coupons 

[2] 

Total 
value 

 
[1] + [2] 

Bond 
price 

 
[3] 

Value of 
reinvested 
coupons 

[4] 

Total 
value 

 
[3] + [4] 

0 113.42 0.00 113.42 148.67 0.00 148.67 
1 112.49 10.00 122.49 144.61 10.00 154.61 
2 111.49 20.80 132.29 140.40 20.40 160.80 
3 110.41 32.46 142.88 136.01 31.22 167.23 
4 109.25 45.06 154.31 131.45 42.46 173.92 
5 107.99 58.67 166.65 126.71 54.16 180.87 
6 106.62 73.36 179.98 121.78 66.33 188.11 
7 105.15 89.23 194.38 116.65 78.98 195.63 
8 103.57 106.37 209.93 111.32 92.14 203.46 
9 101.85 124.88 226.73 105.77 105.83 211.60 

10 100.00 144.87 244.87 100.00 120.06 220.06 
Table 2-1: Time to maturity and value of a bond 

The following figure illustrates the results obtained in the table above: 

 

Figure 2-2: Time to maturity and value of a bond 
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It’s interesting to see that in year 7, the total value (= price + reinvested coupons) is almost 
equal for the two scenarios (194.38 CHF versus 195.63 CHF). From above we know that the 
duration of this bond is 6.97 years. This is the interpretation of the Macaulay duration. 
Macaulay duration is equal to the time (in years) at which the total value of the bond is not 
sensitive to interest rate variations. The total value is the amount we get from this investment. 

Another way to show that the total value of the bond is insensitive to interest rate variations in 
year 7 is to calculate the holding period returns. Remember that we bought the bond in year 0 
for 113.42 CHF at a market yield of 8%. What are the holding period returns if the market 
yield has decreased to 4%? The holding period return is defined as 

t
0,t

Total value in tHPR 1
Total value in 0

= −
 

 
Year Holding 

period 
return 

1 36.31% 
2 19.07% 
3 13.82% 
4 11.28% 
5 9.78% 
6 8.78% 
7 8.10% 
8 7.6% 
9 7.17% 

10 6.85% 

We see that in year 7 (=Macaulay duration), the holding period return is almost equal to 8% 
which was the current market yield at which we bought the bond. If you sell a bond at the 
time of its duration, you have a holding period return equal to the current market yield. 

In this example, we calculated the effect on the bond of an extreme interest rate variation (for 
the purpose of illustration). Now we calculate the total value of this bond in year 7 for other 
interest rate variations: 

Market 
yield 

 

Change in 
market yield 

Bond 
price 

 
[1] 

Value of 
reinvested 
coupons 

[2] 

Total 
value 

 
[1] + [2] 

12% +4% 95.20 100.89 196.09 
11% +3% 97.56 97.83 195.39 
10% +2% 100.00 94.87 194.87 
9% +1% 102.53 92.00 194.54 
8% 0% 105.15 89.23 194.38 
7% –1% 107.87 86.54 194.41 
6% –2% 110.69 83.94 194.63 
5% –3% 113.62 81.42 195.04 
4% –4% 116.65 78.98 195.63 

Table 2-2: Value of a bond in its duration year for different interest rate changes 

Again we see that the total value of the bond is in year 7 (= Macaulay duration) almost 
insensitive to interest rate variations. We also see that with bigger interest rate variations 
(positive and negative) the variation in the total value is bigger. We will come back to this 
effect in section 2.3 which discusses convexity. 
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2.2.4 Determinants of Macaulay duration 

Macaulay duration of a bond is a function of the bond’s time to maturity, coupon rate, accrued 
interest, market yield, its sinking fund and call features, if any. 
Macaulay duration is generally positively related to a bond’s time to maturity: longer 
maturity bonds have longer durations.8 But as maturity increases, duration increases at a 
decreasing rate: thus, duration cannot grow infinitely, whereas maturity can, and the 
maximum value of duration is (with an annual coupon payment9): 

1Macaulay Duration of a perpetual bond 1
Bond's yield 

= +   

We should also note that a zero-coupon bond has a Macaulay duration that exactly matches its 
time to maturity, while other bonds have durations shorter than their time to maturity (because 
of the coupon effect). 

 

Figure 2-3: Relationship between duration and time to maturity 

Macaulay duration is inversely related to the coupon rate of interest. Lower coupon bonds 
have longer Macaulay durations than higher coupon bonds of similar maturity (compare with 
a zero-coupon bond). Progressively higher coupons lead to a decline in Macaulay duration, 
but at a diminishing rate. 

                                                           
8  In fact, if the bond is sold at par or over the par duration always increases with maturity. If the bond is sold 

under par (with a discount), duration also increases with maturity, but starts decreasing at a certain level. It 
can be shown that the Macaulay duration of a bond paying an annual coupon C, with yield to maturity y and 
time to maturity T years is given by: 

[ ] y1)y1(C

)yC(T)y1(

y

)y1(
D

T +−+⋅

−⋅++
−

+
=  . We can note that, when the coupon C is 

smaller than the yield y, for large enough T the expression (1+y)+T(C-y) becomes negative. This means that 
such a bond has a duration which is higher than the one of a perpetuity! 

9  For a semi-annual payment, we have: 

  5.0
yield s'Bond

1
DurationMaximum +=

 

Time to maturity 

Duration  Zero-coupon 
bond 

Straight bond 

45° 
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Example: 
The following table lists the duration of various bonds differing only by their coupon rate. Higher 
coupons rates lead to a decline in duration. 
 

 Bond 1 Bond 2 Bond 3 Bond 4 Bond 5 
Maturity (years) 10 10 10 10 10 
Market yield 6.00% 6.00% 6.00% 6.00% 6.00% 
Coupon 0.00% 3.00% 6.00% 9.00% 12.00% 
Market price (EUR) 558.39 779.20 1,000.00 1,220.80 1,441.61 
Duration (years) 10.00 8.59 7.80 7.30 6.95 

Coupon changes have more impact on duration the lower the initial coupon rate, and the 
longer the time to maturity. 

Coupon rate

Duration

3 years bond

10 years bond

30 years bond

 

Figure 2-4: Relationship between duration and coupon rate (various maturities) 

Duration is, of course, inversely related to the accumulation of accrued interest. A bond’s 
duration naturally increases on coupon payment date, as the accrued interest drops off. These 
effects are especially pronounced for high coupon issues and for long maturity bonds 

We should also note that Macaulay duration is inversely related to the general level of 
interest rates (yield level). As the concept of duration is based on the discounting process, a 
higher discount rate will lead to lower duration. 

Example: 
The following table lists the duration of the same bond using various yields levels. Lower yields 
lead to a duration increase. 
 

 Case 1 Case 2 Case 3 Case 4 Case 5 
Maturity (years) 10 10 10 10 10 
Market yield 8.00% 7.00% 6.00% 5.00% 4.00% 
Coupon 6.00% 6.00% 6.00% 6.00% 6.00% 
Market price (EUR) 865.80 929.76 1,000.00 1,077.22 1,162.22 
Duration (years) 7.62 7.71 7.80 7.89 7.98 
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2.2.5 Using duration to approximate price changes 

From the mathematical derivation of the formula10 for Macaulay duration, we know that for 
small changes of the market yield: 

( )
P D k

P 1 k
∆

= − ⋅∆
+

 

This very important formula says that the percentage change in the price of a bond due to an 
interest rate change is, in first approximation, proportional to its Macaulay duration.11 

Note that the previous equation is often expressed as: 

modP D k
P
∆

= − ⋅∆  

where mod DD
1 k

=
+

 is called the modified duration (or sensitivity) of the bond, or as 

pP D k∆ = − ⋅∆  

where p D PD P
1 k k

∆
= ⋅ = −

+ ∆
 is called the price duration of the bond.12 

Using the modified duration or the price duration of a bond, one can approximate the 
percentage price change for a given change in the required yield. 

Example: 
A bond has a face value of EUR 1,000, expires in 4 years and offers a 6% coupon rate. The market 
yield is 7%. The bond’s duration is 3.67 years. What happens if the yield changes by plus 50 basis 
points (+0.5%, and goes to 7.5%)? How about a 200 basis points change (+2%, to 9%)?  
 
Using duration, we can write: 

P k 0.005D 3.67 1.71%
P 1 k (1 0.07)
∆ ∆ +

= − ⋅ = − ⋅ = −
+ +

 

The duration approach predicts a decrease of 1.71% of the bond price. As the price at a 7% market 
rate was: 

2 3 4

EUR 60 EUR 60 EUR 60 EUR1060P EUR 966.13
(1.07) (1.07) (1.07) (1.07)

= + + + =  

the new price should be 966.13 ⋅ (1 – 0.0171) = 949.61 EUR. 
 
The effective price with a 7.5% yield is: 

2 3 4

EUR 60 EUR 60 EUR 60 EUR1060P EUR 949.76
(1.075) (1.075) (1.075) (1.075)

= + + + =  

which is very close to EUR 949.61. 

                                                           
10  For the mathematical derivation of the duration see Appendix of this chapter. 
11  This formula can be used to define duration. In fact the definition of duration as the weighted average life of 

a bond does not work with particular instruments such as some classes of CMO’s (Collateralised Mortgage 
Obligations) and Inverse Floaters. 

12  Or dollar duration of the bond in the United States. 
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The same computation for ∆k = +2% would predict a decrease of 6.85% of the price, i.e. a price of 
EUR 899.95. The effective price with a 9% yield is EUR 902.81. 

From the above example, it seems that the duration approach does a good job in estimating 
the change in the price of a bond for a small change in the yield, but not for a large change. 
We will explain the reason behind this in the next section. 

2.2.6 Using the modified duration to approximate the yield to maturity of a 
bond portfolio 

Assume that we have a portfolio containing N different bonds. The yield to maturity of the 
portfolio (YTMP) can be approximately calculated from the yields to maturity of the bonds 
contained in the portfolio using the following formula: 

j

N

1j
N

1i

mod
ii

mod
jj

P YTM)
DPV

DPV
(YTM ⋅

⋅

⋅
≅ ∑

∑=

=

  

where jPV  is the present value of bond j. 

Example: 
Assume our portfolio contains two different bonds: 50'000 EUR notional of bond 1 with annual 
coupon C1 = 2% maturing in 2 years, and 50'000 EUR notional of bond 2 with annual coupon C2 = 
4% maturing in 10 years. Assume that bond 1 has a yield to maturity y1 = 2%, and bond 2 has a 
yield to maturity y2 = 4%, so that the price of bond 1 is P1,cum = 100% and the price of bond 2 is 
P2,cum = 100%.  
 
The Macaulay durations can be calculated and are equal to 1.98 years for bond 1 and 8.44 years 
for bond 2. The modified durations are D1

mod = 1.94 for bond 1 and D2
mod = 8.11 for bond 2. 

 
The portfolio yield to maturity can be approximated by: 
 

%614.3%4807.0%2193.0%4
11.8000'5094.1000'50

11.8000'50%2
11.8000'5094.1000'50

94.1000'50YTM P =⋅+⋅=⋅
⋅+⋅

⋅
+⋅

⋅+⋅
⋅

≅

 
If we perform exact calculations [i.e. we list the cashflows CFt occurring at time t (t=1,…,10) as 
CF1 = 50'000 · 2% + 50'000 · 4% = 3'000, CF2 = 50'000 · 102% + 50'000 · 4% = 53'000, CF3 = 
50'000 · 4% = 2'000, …, CF10 = 50'000 · 104% = 52'000, and ask which interest rate has to be used 
to discount these cashflows in order to get the portfolio present value equal to 100'000 EUR] we 
get y = 3.627%, which is close to the 3.614% found above. 

The yield of each bond is weighted according to the bond value and the bond's modified 
duration. All other things equal, the longer the modified duration of the bond, the higher is its 
weight to calculate the portfolio yield to maturity. 

To approximate the yield to maturity of the portfolio, we should not use the 'naïve' weighted 
average of the single bonds yields to maturity, where the weight of each bond YTM is equal 
to its present value divided by the total present value: 
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Example (continued): 
Using the 'naïve' weighted average of the single bonds yields to maturity, we would obtain for the 
portfolio yield: 

%3%4
000'100
000'50%2

000'100
000'50YTM P =⋅+⋅≅  

From the above example we see that the 'naïve' calculation can give very bad approximations 
of the true portfolio yield to maturity. 

2.3 Convexity 

How accurately does duration allow us to calculate approximate bond price changes? 

Example: 
Let us start from the following situation: a 6% 10-year bond is priced at par. Therefore, the market 
yield is 6%. Its duration is 7.8 years. What are the differences between the effective market price 
and the price estimated with duration, if the market yield increases? 
 

New market  
yield 

New market  
price 

Estimated  
price 

∆P / P  Estimated  
∆P / P  

Difference 

0.0625 981.82 981.60 –1.82% –1.84% 0.02% 
0.0650 964.06 963.20 –3.59% –3.68% 0.09% 
0.0675 946.71 944.80 –5.33% –5.52% 0.19% 
0.0700 929.76 926.40 –7.02% –7.36% 0.34% 
0.0725 913.21 908.00 –8.68% –9.20% 0.52% 
0.0750 897.04 889.60 –10.30% –11.04% 0.74% 
0.0775 881.24 871.20 –11.88% –12.88% 1.00% 
0.0800 865.80 852.80 –13.42% –14.72% 1.30% 
0.0825 850.71 834.40 –14.93% –16.56% 1.63% 
0.0850 835.97 816.00 –16.40% –18.40% 2.00% 
0.0875 821.56 797.60 –17.84% –20.24% 2.40% 
0.0900 807.47 779.20 –19.25% –22.08% 2.83% 
0.0925 793.70 760.80 –20.63% –23.92% 3.29% 
0.0950 780.24 742.40 –21.98% –25.76% 3.78% 
0.0975 767.08 724.00 –23.29% –27.60% 4.31% 
0.1000 754.22 705.60 –24.58% –29.44% 4.86% 
0.1025 741.64 687.20 –25.84% –31.28% 5.44% 
0.1050 729.34 668.80 –27.07% –33.12% 6.05% 
0.1075 717.30 650.40 –28.27% –34.96% 6.69% 
0.1100 705.54 632.00 –29.45% –36.80% 7.35% 
0.1125 694.03 613.60 –30.60% –38.64% 8.04% 
0.1150 682.77 595.20 –31.72% –40.48% 8.76% 
0.1175 671.76 576.79 –32.82% –42.32% 9.50% 

The approximation is accurate for small changes in the market yield, but the error increases for 
large changes. 

The following figure represents the price/yield relationship. We can draw a tangent line at 
yield k*, which shows the rate of change of price with respect to a change in interest rate at 
that point (yield level). The slope of this line is the price duration. Mathematically speaking, 
the price duration is the first derivative of the curvilinear price/yield function. 
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Figure 2-5: Bond’s price and market yield 

Modified or price duration consider a bond’s price/yield relationship as a linear 
function. In reality, the price/yield function is a convex curve. Thus, duration attempts to 
estimate a convex relationship with a straight line. Consequently, error terms become large as 
prices and yields move away from current levels. The further away the new yield is from the 
initial yield k*, the greater the errors. 

Hence, 

• duration is an instantaneous value that is continuously modified: even time has an 
effect on duration. 

• duration will not exhibit the asymmetry in price volatility. 
• it should be clear that the approximation will always underestimate the new price. 
• the accuracy of the approximation depends on the convexity of the price/yield 

relationship for the bond. 
• we should not use duration to approximate a price change if there is a large variation 

in the market yield. 

We can better estimate (bigger) price changes if we use another approximation called 
convexity in addition to duration. The convexity is a proxy for the convexity of the price/yield 
relationship.13 The convexity is defined as: 

( ) ( )
T

t
2 t

t 1

(t) (t 1) CF1 1 1Convexity C
2 P 1 k 1 k=

⋅ + ⋅
= = ⋅ ⋅ ⋅

+ +
∑  

Note that there exist different convexity definitions. Convexity is often defined without the 
term ½ as: 

( ) ( )
T

t
2 t

t 1

(t) (t 1) CF1 1Convexity C*
P 1 k 1 k=

⋅ + ⋅
= = ⋅ ⋅

+ +
∑  

Example: 
A 10-year bond has a face value of EUR 100, pays a 6% annual coupon rate. The required market 
yield is 6.5%. What is its convexity? 
 
The following table represents the cash flows from the bond: 

                                                           
13  For a mathematical derivation of the convexity see Appendix of this chapter. 

Price 

Yield 

P
 

k* 

Bond’s price 

Estimated 
price  

DP 

1 
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Time Cash  

Flow 
Present  

Value (PV) 
PV ⋅ t ⋅ (t + 1) 

1 6 5.63 11.27 
2 6 5.29 31.74 
3 6 4.97 59.61 
4 6 4.66 93.28 
5 6 4.38 131.38 
6 6 4.11 172.70 
7 6 3.86 216.22 
8 6 3.63 261.03 
9 6 3.40 306.37 

10 106 56.47 6211.59 
Total  96.41 7495.18 

The price P of this bond is 96.41. 
 
The convexity of this bond is: 

( ) ( )

T
t

2 t 2
t 1

(t) (t 1) CF1 1 1 1 1 1Convexity C 7,495.18 34.27
2 P 2 96.41 1.0651 k 1 k=

⋅ + ⋅
= = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ =

+ +
∑  

With convexity, we can calculate price changes as follows: 

2kP D P C P ( k)
1 k
∆

∆ = − ⋅ ⋅ + ⋅ ⋅ ∆
+

 

or in relative terms: 

2P kD C ( k)
P 1 k
∆ ∆

= − ⋅ + ⋅ ∆
+

 

If we use the other definition of convexity, we have to modify the above equations with the 
term ½. 

* 2k 1P D P C P ( k)
1 k 2
∆

∆ = − ⋅ ⋅ + ⋅ ⋅ ⋅ ∆
+

 

With the above equations one can show that an option-free bond always has a positive 
convexity for every kind of yield changes. For positive and negative changes in the market 
yield k, the effect of the convexity term for the price change ∆P is always positive. 

We also see from the above equations that the first term is the approximation based on 
duration and the second term is a proxy for the convexity of the price/yield relationship. 

We can define the price convexity14 as the convexity multiplied by the price of the bond. 
pPrice convexity =C C P= ⋅  

Using the price duration and the price convexity, one can estimate the price change of a bond 
in value in EUR rather than as a percentage: 

p p 2P D k C ( k)∆ = − ⋅∆ + ⋅ ∆  

Using both duration and convexity, we should have a more accurate approximation of the 
bond’s price changes for a small variation in the market yield. 
                                                           
14  In the United States: the dollar convexity. 
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Example: 
A 10-year bond has a face value of 1,000 EUR, pays a 6% annual coupon rate and is traded at 
102%. The market yield is 5.73%. What are its duration and convexity? What happens if the 
required yield changes by +200 basis points? 
 
The bond’s cash flows are as follows: 
 

t CF PV(CF) PV⋅t PV ⋅ t ⋅ (t + 1) 
1 60 56.75 56.75 113.50 
2 60 53.67 107.34 322.03 
3 60 50.76 152.29 609.17 
4 60 48.01 192.05 960.26 
5 60 45.41 227.05 1,362.33 
6 60 42.95 257.70 1,803.90 
7 60 40.62 284.35 2,274.84 
8 60 38.42 307.35 2,766.29 
9 60 36.34 327.05 3,270.47 

10 1,060 607.19 6,071.89 66,790.74 
  1,020.13 7,983.85 80,273.52 

The bond price P is EUR 1,020.13 EUR. 
 
The duration is: 

T
t

t 1

PV(CF ) 7,983.85Duration D t 7.83
P 1,020.13=

= = ⋅ = =∑  

and the convexity is: 

( ) ( ) ( )

T
t

2 t 2
t 1

(t) (t 1) CF1 1 1 1 1 80,273.52Convexity C 35.20
2 P 2 1,020.131 k 1 k 1.0573=

⋅ + ⋅
= = ⋅ ⋅ ⋅ = ⋅ ⋅ =

+ +
∑  

If there is a yield increase of 200 basis points, the new market yield is 7.73%. The duration 
predicts a price change of 

P k 0.02D 7.83 14.81%
P 1 k (1 0.0573)
∆ ∆ +

= − ⋅ = − ⋅ = −
+ +

 

and the new bond price should be 1,020.13 ⋅ (1 – 0.1481) = EUR 869.05.  
 
The convexity predicts an additional price change of: 

( ) ( )2 2P C k 35.20 0.02 1.41%
P
∆

= ⋅ ∆ = ⋅ = +  

Thus, the total price change should be –14.81% + 1.41%= –13.4 %, and the new price should be 
1,020.13 ⋅ (1 – 0.1340) = EUR 883.43. 
 
The actual price, using a yield of 7.73%, is EUR 882.43. 

What does convexity exactly measure? The convexity measures the rate of change of the 
slope of the price-yield curve with respect to yield changes. Just as duration, convexity 
changes with time. 
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Graphically, duration and convexity can be shown as follows: 

 
Price 

Market yield 

P* 

k* k* + ∆k 

Effective bond’s price 
Price change computed with 
duration (underestimation) 

Price change computed with 
duration and convexity 
Correction of the price 
change through convexity 

 

Figure 2-6: Estimating bond price changes using duration and convexity 

From the graph above it should be clear that convexity is beneficial to the investor: it has a 
positive price effect for both increasing and decreasing rates. Thus, all other things being 
equal, bonds with a larger convexity should be preferred to those with a smaller convexity. 
Mathematically, we can see this with the already known price change formula: 

2kP Duration P Convexity P ( k)
1 k

always positivenegative or positive

∆
∆ = − ⋅ ⋅ + ⋅ ⋅ ∆

+ 



 

In the following figure, we have two bonds A and B with the same duration. But bond B has a 
smaller convexity than bond A. 

Price

Market yield

P*

k*

Duration of
bond A and B

Price of bond A

Price of bond B

Convexity
of bond A

Convexity
of bond B

 

Figure 2-7: Two bonds with different convexities 

Now, consider the special case of a zero coupon bond maturing at time T. In this case (there is 
only one cash flow at T), its convexity simplifies to: 
 

( )
( ) ( )
( )

( )
( )

2
22T

T T
k1

1TT
k1

1TT
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CF
P
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Since 
( )

P
k1

CF
T

T =
+

 

Example: 
A 30-year zero coupon bond, with YTM = 3%.  

The exact convexity value is 
( )

.61.876
03.1

3130C
2
=

⋅
=  

The approximated value is T2 = 302 = 900. 

The convexity of a portfolio15 consisting of bonds with short and long maturities (barbell 
portfolio) is generally going to be greater than the convexity of a portfolio concentrated on a 
single middle length maturity (bullet portfolio).16 The reason is that the convexity of the 
barbell portfolio is equal to the weighted average of the convexity of the individual bonds, 
and the bonds with a long maturity have a dominating contribution. This is because the 
convexity increases with the square of the maturity.  

Example: 
Consider now a barbell portfolio with 50% each invested in a 1-year and a 30-year zero coupon 
bond. Using our approximation, the convexity of the barbell portfolio is: 

 2 250%·1 50%·30 450.5+ =   

 The bullet portfolio with the same duration; i.e., containing a zero coupon bond with a maturity of 
15.5 years, has an approximated convexity of 215.5 240.25= , which is smaller. 

2.4 Duration and convexity between coupon payment dates 

Determining the duration and convexity of a bond between two coupon payments is very 
simple. Consider the following situation 

next
coupon

last
coupon Today

f 1-f

one period  

Pex denotes the quoted price of the bond (without accrued interests) and C the coupon 
payment. Starting with the yield to maturity definition formula from “General Principles”: 

( )
T

t
cum ex t f

t 1

CFP P f C
1 k −

=

= + ⋅ =
+

∑  

                                                           
15  See section 2.7 for the formulas of the convexity and duration of a portfolio. 
16  See chapter “Fixed income portfolio management strategies” for more information about barbell and bullet 

portfolios. 
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If we differentiate the right hand side once with respect to the yield k, we get 

( )
( ) ( )

f T
cum ex t

t
t 1

1 kdP dP (t f ) CF
dk dk 1 k 1 k=

 + − ⋅
= = − ⋅  

+ +  
∑  

The second derivative with respect to the yield is: 

( )
( ) ( )

f2 T
cum t

2 t2
t 1

1 kd P (t f ) (t f 1) CF
dk 1 k 1 k=

 + − ⋅ − + ⋅
= ⋅  

+ +  
∑  

From the definition of duration, that is 

cum

cum

dP 1 kD
dk P

+
= − ⋅  

we get by replacing cumdP
dk

 by its value: 

f T
t

t
t 1cum

(t f ) CF(1 k)D
P (1 k)=

 − ⋅+
= ⋅  + 

∑  

From the definition of convexity, that is 
2

cum
2

cum

d P 1C
dk P

= − ⋅  

we get by replacing 
2

cum
2

d P
dk

 by its value: 

f T
t

2 t
t 1

(t f ) (t f 1) CF(1 k) 1C
(1 k) P (1 k)=

 − ⋅ − + ⋅+
= ⋅ ⋅  + + 

∑  

Thus, we have derived the formulas for the duration and the convexity of a bond between two 
coupon payments. 

2.5 Impact of coupon payments and time lapse on duration 

It can be proved that a coupon payment has a positive effect on duration, that is, duration 
will suddenly increase at the coupon payment. 

Just before the coupon payment, the duration of the bond is 

cum cum
cum cum cum

cum

dP dP1 kD D P (1 k)
dk P dk

+
= − ⋅ ⇔ ⋅ = − ⋅ +  

and just after the coupon payment 

ex ex
ex ex ex

ex

dP dP1 kD D P (1 k)
dk P dk

+
= − ⋅ ⇔ ⋅ = − ⋅ +  

But as 

cum exdP dP
dk dk

=  
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one may write 

cum cum ex exD P D P⋅ = ⋅  

that is 

ex
cum ex

cum

PD D
P

= ⋅  

As Pcum = Pex + Coupon, we have Pcum > Pex. Thus, Dcum < Dex, which implies that duration will 
increase just after a coupon payment by an amount of 

ex
ex cum ex ex

cum

ex cum ex ex

cum cum

PD D D D D
P

D (P P ) D Coupon 0
P P

∆ = − = − ⋅

⋅ − ⋅
= = >

 

One can also prove that duration will decrease linearly with time between two coupon 
payments. Starting from the following equation 

T
f t

cum ex t
t 1

CFP P f I (1 k)
(1 k)=

= + ⋅ = + ⋅
+∑  

which gives the yield k of a bond between two coupon payment dates (when a fraction f of a 
year is elapsed since the last coupon payment date), and replacing Pcum in the following 
formula: 

f T
t

t
t 1cum

(t f ) CF(1 k)D
P (1 k)=

− ⋅+
= ⋅

+∑  

which gives the duration of a bond between two coupon payment dates, we get: 
T

t
t

t 1
T

t
t

t 1

(t f ) CF
(1 k)D

CF
(1 k)

=

=

− ⋅
+=

+

∑

∑
 

If we derive D with respect to f, we get: 
T T T

t t t
t t t

t 1 t 1 t 1
T T

t t
t t

t 1 t 1

t CF f CF CFd d 0
dD df (1 k) df (1 k) (1 k) 1

CF CFdf
(1 k) (1 k)

= = =

= =

⋅ ⋅
− −

+ + += = = −

+ +

∑ ∑ ∑

∑ ∑
 

that is, duration decreases linearly with f between two coupon payment dates, while f itself 
increases linearly with time. 

In conclusion, one should remember that all other things being equal, the duration of a 
portfolio will vary linearly over time with an upward adjustment every coupon payment. 
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2.6 Key rate duration 

The usefulness of the (modified) duration as a bond risk proxy is predicated on three 
assumptions: 

• a small change in the yield 
• a parallel shift in the yield, whatever the maturity 
• and instantaneous change in the yield 

Furthermore, as we have already seen, it assumes a flat yield curve. 

But in reality, the yield curve can make many types of movements, not only parallel shifts. To 
address this issue, several methods have been suggested to measure the exposure of a bond to 
a particular rate change. Partial durations measure value changes when only the yield for a 
single maturity is changed leaving the others unchanged. The most popular of these 
approaches, key rate durations, was proposed by Ho (1992). 

Following this approach, a finite number of key rates are selected to represent the yield curve. 
At each key rate, we shift its yield by x basis points, for example 100, declining this shift 
linearly on both sides of this key rate, reaching 0 at the adjacent key rates. 

Key rate durations are not a single measure as is duration; they are a set of measures, each one 
reflecting the price sensitivity of a security to changes in one key rate and its surroundings, 
showing where the bond risk concentrates. For example, the ith key rate duration, ( )KRD i , is 
the proportional change in the bond price in response to a shift of x basis points in the ith key 
rate. 

P P KRD(i) k(i)∆ = − ⋅ ⋅∆ , 

where k(i)∆  represents the shift of the ith  key rate, linearly decreasing to the ( )1i th−  key 

rate and the ( )1i th+  key rate (as shown in the example below).  

Rearranging this equation, we obtain that the ith  key rate as: 

PKRD(i)
P k(i)
∆

= −
⋅∆

. 

The idea is that any actual change can be modeled as a combination of key rate shifts, and 
therefore key rate durations define the price sensitivity of a security over the possible 
movements of the yield curve. If for example, we combine equal shifts to all the key rates, 
then its sum is the respond in the bond price to a parallel shift. Hence, key rate durations can 
be interpreted as a decomposition of the duration. 

Due to its definition, in the case of a zero-coupon bond, key rate durations are only different 
from 0 for the key rates that affect its maturity. 
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Example: 
A bond with a 10-year maturity pays an 8% annual coupon. Its yield to maturity is k=10%. 
Consider that key rates are the 2, 5, 7 and 10-year rates. What are the key rate durations and their 
total? 
 
From a previous example, we know that the price of the bond is 87.71. Then we calculate its value 
after a shift of 100 basis points in each of its key rates, with the shift being linearly declining to the 
adjacent key rates, as shown in the figure below. 
 

 
So, for example, for the shift of the 5-year key rate, the above figure shows that due to the linear 
decline to the adjacent key rates, only the yield on the 5-year rate increases by 100bp, from 10% to 
10%+1%=11%, while the adjacent rates increase by less. In particular, the yield on the 4-year rate 
increases only by 0.66%, to a new rate of 10.66%. The increase reaches 0 at the adjacent key rates 
of 2 and 7-years. Hence, the new bond price after a shift of 100 basis points in the 5-year key rate 
is obtained as: 
 

Years Cash flow  Yield PV (CF) 
T CF k CF/(1+k)t 
1 8 10% 7.27 
2 8 10% 6.61 
3 8 10.33% 5.96 
4 8 10.66% 5.33 
5 8 11% 4.75 
6 8 10.5% 4.39 
7 8 10% 4.11 
8 8 10% 3.73 
9 8 10% 3.39 

10 108 10% 41.64 
  Price: 87.19 

Substituting the price change ∆P= 87.19-87.71 in the equation for the key rate duration, we obtain 
the value of the 5th key rate duration as: 

87.19 87.71KRD(5) = - 0.60 years
87.71 0.01

−
=

⋅
. 

Following the same procedure, we obtain the remaining key rate durations, which are shown in the 
table below. 
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 Value Key Rate Duration 
Initial Curve 87.71  
2-year Shift 87.35 0.41 
5-year Shift 87.19 0.60 
7-year Shift 87.07 0.73 

10-year Shift 83.84 4.41 
 Total 6.15  

The sum of the key rate durations represents the bond’s sensitivity to a parallel shift in the yield 
curve. The above table shows that for a vanilla coupon-bearing bond, the interest rate risk 
concentrates near its maturity due to the principal payment. 

2.7 Portfolio duration, convexity and key rate duration 

The duration of a bond portfolio is simply the weighted average of the durations of the 
individual bonds. 

n

i i
i 1

Portfolio duration w D
=

= ⋅∑  

where: 
 wi weight (in market value terms) of security i in the portfolio 
 Di duration of security i 
 n number of securities in the portfolio 

The convexity of a bond portfolio is simply the weighted average of the convexities of the 
individual bonds. 

n

i i
i 1

Portfolio convexity w C
=

= ⋅∑  

where: 
 wi weight (in market value terms) of security i in the portfolio 
 Ci convexity of security i 
 n number of securities in the portfolio 

The key rate duration of a bond portfolio is simply the weighted average of the key rate 
durations of the individual bonds. 

n

i i
i 1

Portfolio key rate duration w KRD
=

= ⋅∑  

where: 
 wi weight (in market value terms) of security i in the portfolio 
 KRDi key rate duration of security i 
 n number of securities in the portfolio 
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3. Usage 

3.1 Bond Yield Curves 

3.1.1 Zero (Spot), Coupon and Par curves 

As explained in greater detail below, the relationship between par curves and spot or zero-
coupon curves is relatively straightforward, at least theoretically. It is important to realise that 
the relationship is between the whole curves and not between individual points on those 
curves: we cannot simply “convert” a par bond yield into an equivalent spot yield the way that 
we can with, for example, a yield expressed in annual terms which can simply be converted 
into the same yield expressed semi-annually, or a yield expressed in continuous time. This 
dependence on the whole curve (or at least all of the curve for all maturities shorter than the 
one being examined) is because the yield of a bond at par (or indeed at any price) is made up 
of all the yields of all the cash flows included in that bond. 

It should be noted that a par curve may have any number of different coupons: in most cases 
the par coupon will be different for each maturity observed. In fact if the yield curve is 
positive (i.e. is sloping upwards), then the longer the maturity, the higher the par coupon; and 
precisely the opposite holds when a curve is inverted: then the longer the maturity of the par 
bond, the lower the coupon. However, given the spot or zero-coupon curve, the price of any 
bond (of the same creditworthiness) can be directly constructed, and thus the yield curve that 
would apply to bonds with any particular coupon rate is relatively trivial to construct.  

Let P be the (gross) price of the bond, C be the coupon of the bond, dt be the discount factor 
applying to time t, where tn is the time of the nth coupon payment, and T is the maturity of the 
bond, at which time the nominal N of the bond is repaid. Assuming, without loss of 
generality, that N=1, then: 

1 2 m 1 T
T

t T
t 1

P Cd Cd ... Cd (C 1)d

P C d d

−

=

= + + + + +

= +∑
 

Obviously we then derive the yield of the bond from the resulting P. Repeating the exercise 
we can construct a yield curve for bonds with the coupon C, by simply changing the value of 
T. 

Calculating the yields involved in the par curve is simply a special case of the equation for P 
above: it is a case where we know P (=1) and we need to solve for C (and we will obviously 
NOT need to calculate the yield: it will be the coupon). Thus, using the same notation for the 
variables described above where P=1 (i.e. par) we have: 

T

t T
t 1

1 C d d
=

= +∑  

so for a par curve the coupon, T
T

t
t 1

1 dC
d

=

−
=

∑
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Using the formula above, we can derive a par curve from the spot or zero-coupon curve.  

Example: 
A bond with, for simplicity, a notional of 1 and a maturity of 3 years, pays an 8% annual coupon. 
The 1, 2 and 3-year spot rates are 4%, 5%, and 6%, respectively. Calculate the point of the yield 
and par curves. 
 
First, we calculate the discount factors: 
 

1 1

1 0.9616
(1 1.04)

d = =
+

 

2 2

1 0.9070
(1 1.05)

d = =
+

 

3 3

1 0.8396
(1 1.06)

d = =
+

 

 
So, the price of the bond is: 
 

0.08 0.9616 0.08 0.9070 1.08 0.8396 1.056P = ⋅ + ⋅ + ⋅ =   
 
Therefore, the yield to maturity for this bond, Y, is the one that equates: 
 

1 2 3

0.08 0.08 1.081.056
(1 ) (1 ) (1 )Y Y Y

= + +
+ + +

  

 
Using numerical procedures or by testing numbers, it can be determined that the yield is 
approximately 5.9%. 
 
To calculate the par curve point, we equalise the price of the bond with the notional and calculate 
the coupon needed, so: 
 
1 (0.9616 0.9070 0.8396) 0.8396C= ⋅ + + +   
 
Hence, 
 

1 0.8396 5.92%
0.9616 0.9070 0.8396

C −
= =

+ +
  

There are a number of stylised facts relating the shape of par yield curves to that of spot or 
zero curves. Simply stated, these are essentially that an upward sloping (or positive) yield 
curve will imply an even steeper spot or zero curve, thus:  
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and that an inverted par curve implies an even more inverted spot or zero curve, as shown 
below. 

 

A perfectly flat par curve implies a perfectly flat spot or zero curve. Thus we can imagine the 
spot or zero curve to have the same direction of slope as the par curve, but always in an 
amplified way, i.e. with a steeper gradient. 
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3.2 Bond Curves in Market Usage 

3.2.1 Structure and Smoothness 

From the earliest days of yield curve construction, researchers have recognised that there is a 
trade-off in the real world between structure and smoothness. One of the earliest papers on 
yield curve construction puts it thus: “Concern with improving the statistical fit… may, 
however, complicate and even obscure the true relationship between yield and maturity. Thus, 
the normal process of curve fitting involves a compromise between some low order curve 
which is simple and informative and a higher order, more flexible curve, which fits better”.17 
By strong implication, better fitting curves are less informative. The practical market trade-off 
between the two is explained in more detail immediately below. 

In one sense, and as illustrated in the examples below, the required granularity to identify 
aberrations likely to revert to mean depends to a large degree on the focus and reversal 
horizon of the trade (i.e. the time it is expected to take for the trade to be unwound): the 
longer the horizon, the less granularity is needed (i.e. the smaller the requirement for the 
curve ”to fit better”). 

3.2.1.1 Trade Horizon: Yield, Duration & Convexity 
One way of understanding the trade-off between structure and smoothness is to consider the 
horizon and focus of three different types of yield curve trade. The trades described assume 
that seeming aberrations revert to mean. For the purposes of these examples we will assume 
that we are trading in the US Treasury (UST) market.  

1) A straightforward yield trade would involve the sale of a UST that is overpriced relative 
to the yield curve (i.e. whose yield is below, or through, the yield curve), against the 
purchase of a similar maturity UST that is underpriced relative to the yield curve (i.e. 
whose yield lies above the yield curve). The trade will generally involve roughly equal 
amounts of each bond. The expectation is that the trade will be “reversed” when the two 
USTs fall back into line (that is when their yield spreads to the curve have narrowed). In 
an efficient market, this should not take long, so the trade will have a short horizon, but 
the granularity of the curve must be high in order to spot small aberrations. In other 
words, the focus of the trade is on yield, the horizon of the trade is short, and the fitted 
yield curve should not be overly smoothed. 

                                                           
17  From Burman and White (1972), p. 467. 
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2) A straightforward duration trade is likely to involve an expectation that the yield curve 
slope will change: that is, that the curve will either “flatten” or “steepen”. If one expects 
the yield curve to steepen, one would want to sell a UST with a long maturity, in order to 
buy one with a short maturity, in the expectations that the spread between the two bonds 
(which is effectively based on the slope of the curve between the two maturities) will 
widen.18 The trade will generally be duration-weighted (i.e. more of the shorter maturity 
UST will be bought than will be sold of the longer maturity UST, in inverse proportion to 
their durations). The expectation is that the trade will be reversed when the yield curve 
steepens, in other words when the spread widens. The horizon of the duration trade is 
likely to be longer than that of the yield trade, and since we are essentially dealing with 
the slope of the yield curve, the granularity of the curve fit need not be as high as for that 
of the yield trade. In other words, the focus of the trade is on duration, the horizon of the 
trade is longer, and the fitted yield curve can be quite smooth. 

3) A straightforward convexity trade involves an expectation that the curvature of the curve 
will change. Typical convexity trades are known as “bullet-to-barbell” or vice versa. A 
bullet to barbell trade would involve selling a bond with a maturity in the middle of the 
range of those covered by the yield curve, and buying a shorter maturity UST and a 
longer maturity one.19 The expectation reflected in this trade is that the yield curve will 
increase in curvature: i.e. that the yield of the UST being sold will increase relative to that 
of the shorter and longer one being bought. If the trade is duration-weighted, then 
although the bond being sold may have a higher yield than the combination of the other 
two, the convexity of these should be higher, providing protection in parallel yield shifts. 
The expectation is that the trade will be reversed when the yield curve increases in 
curvature (i.e. when the spread has widened). The horizon of a convexity trade is likely to 
be the longest of the three types of yield curve trade examined here, and again, as in the 
case of the duration trade, the granularity of the curve need not be high. In other words, 
the focus of the trade is on convexity, and the fitted curve can be quite smooth. 

3.3 Curve Shapes and Forward Rates 

The general implications about rates in the future drawn from yield curve shapes are 
straightforward: a positive yield curve is an expectation that yields in the future will be 
higher, and an inverse yield curve implies that they will be lower. This is illustrated in the 
attached graphs: 

                                                           
18  One would, of course, do the opposite if one expected the curve to flatten: i.e. one would sell a short-

 maturity UST in order to buy a long-maturity UST, expecting the spread between them to narrow. 
19  And conversely, a barbell to bullet trade involves selling two USTs one with a short maturity and the other 

with a long one, to buy one UST with a maturity in between the two, in the expectation that the yield curve 
will become less curved: i.e. that the yield on the UST purchased will decrease in relation to that of the other 
two. 
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One of the key uses for spot or zero-coupon curves is that it is easy to extract the shape and 
level of future yield curves from them. Namely, if t,Td  is the discount factor at time t for 
maturity T, and t,Tz  is the zero-coupon yield or spot rate at time t for maturity T, then 

t,T T
t,T

1d
(1 z )

=
+

 

so that in f time (f<T) 
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( )
( )

1
T T f

t,T
t f ,T f f

t ,f

1 z
z 1

1 z

−

+ −

 +
 = −
 + 

 

or 
1

T f
t ,f

t f ,T f
t ,T

d
z 1

d

−

+ −

 
= −  
 

 

For example, the five year spot rate in two years time implied by the zero-coupon yield curve 
today, would be today’s discount price for a two-year zero-coupon bond, divided by today’s 
discount price for a seven year zero-coupon bond, taken to the fifth root. So the five year rate 
in two years time depends on the seven year spot rate and the two year spot rate. 

3.3.1 Constraints: Absolute and Relative (Slope) 

One of the other implications of the fact that we can ascertain future rates from the present 
spot curve is that the graph of the discount prices corresponding to that curve must always be 
declining monotonically. In other words the discount price for a given maturity must be 
higher than the discount price for any longer maturity. Were it smaller than the price for a 
longer maturity, the future spot rate implied would be negative, which is generally accepted to 
be impossible. Just as the discount price curve must be monotonically downward sloping, its 
instantaneous value is obviously 1 (since the immediate present value of 1 is 1!), and the 
discount price can never reach 0, let alone be negative. 

In addition there is a mathematical constraint. Using the bootstrapping derivation of the spot 
curve from the par curve where: 

 TC  is the coupon for an T-year par bond (and must be positive) 

 Td  is the discount price of the T-year zero-coupon bond (and must be positive), 

then 
T 1

T t
t 1

T
T

1 C d
d

1 C

−

=

−
=

+

∑
, and Td 0>  

Because 
T 1

T t
t 1

1 C d 0
−

=

− >∑  

therefore  
T 1

T t
t 1

C d 1
−

=

<∑   and  T T 1

t
t 1

1C
d

−

=

<

∑
 

And since forward rates cannot be negative and nor can the discount factor, then T T 10 d d −< <  
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3.4 Curves, Economic Activity and Monetary Policy 

From very early days, it has been assumed that the term structure bears at least some 
relationship to economic activity. In particular, it seems that the shape of the yield curve can 
anticipate the evolution of the economic cycle. 

So, when a yield curve slopes gently upward, what is known as a normal yield curve, the 
economy is expected to continue to grow at a normal pace. Investors do not perceive a risk of 
inflation and with a steady economic growth and no inflation pressures, no monetary 
intervention is expected. 

A steep yield curve, with long-term rates much higher than short-term rates, appears near the 
end of a recession. During a recession, short-term rates are low as the central bank has 
reduced them to stimulate the economy and inflation is lower than normal. When the 
economy recovers, rates and inflation will increase so investors expecting this recovery begin 
to demand higher rates for long-term bonds, anticipating these higher short-term rates in the 
future. 

A flat yield curve, with similar rates for all maturities, tends to appear at the end of a boom. 
Investors anticipate a slower economic growth and falling inflation, therefore monetary policy 
is expected to reduce interest rates to stimulate the economy, so investors demand lower rates 
for long-term bonds, as future short-term bonds are expected to be lower. This shape may 
change quickly back to normal or change to the next shape, the inverted yield curve, 
depending on the (expected) evolution of the economy.  

An inverted yield curve, with higher short-term rates than long-term rates, provides an early 
indication that a recession may follow. In the U.S., this has been the case since the 1970s, 
where inverted curves (defined here as periods when the 10-year UST yield is lower than the 
3-month rate) have in fact preceded a recession. This was the case for all observed recessions, 
including the most recent. The graph below shows the spread between the interest rate on the 
ten-year Treasury note and the three-month Treasury bill since 1959, where shaded areas 
indicate recessions. 

 

Source: Federal Reserve Board 
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Even if inverted curves have indeed preceded all recent U.S. recessions, their lead time is 
somewhat volatile, ranging from five to thirteen months. A good summary of the situation in 
the U.S. can be found in Ang, Piazzesi and Wei (2006).20 Furthermore, an inversion has not 
preceded all recent recessions in other countries. For example in Japan, short-term rates have 
been near 0% for the past 15 years, and no inversion could occur under these conditions. 
However, Japan has suffered five recessions in this period. 

Although the history of the Eurozone is shorter, the subject has been explored in several 
studies such as Chionis, Gogas and Pragidis (2010). Briefly, the paper concludes that the yield 
curve has forecasting power in terms of the EU15 real output according to data from 1994 to 
2008. 

As the above discussion shows, expectations on monetary policy affect the shape of the yield 
curve. However, this influence works in both ways. That is, central banks place a particular 
emphasis on the information content of the yield curve. Typically, the information is used (i) 
to predict economic activity, especially recessions and inflation, and (ii) to measure 
expectations regarding short-term interest rate movements (see above). These findings can be 
combined to estimate movements in real interest rates, and thus to permit monetary authorities 
to form a view about the relative tightness of monetary conditions. 

3.5 Portfolio Valuation and Mark-to-Market with Unobserved Prices 

Any form of portfolio valuation, including valuation on a mark-to-market basis has to follow 
the same structure. Observed prices (such as those at which an actual trade takes place) are 
seldom the basis for a valuation price, except for a minority of liquid issues, where observed 
prices are not affected by a liquidity premium. In most cases, the valuation of bonds tends to 
be valued in two stages: in the first stage, a benchmark term structure is estimated, and in the 
second stage the expected spread at which the bond is valued to reflect its default risk and any 
options embedded in it. The bond specific spread is synthesised from various factors 
involving comparisons to bonds whose prices have indeed been observed that share 
comparable characteristics with the valuated bond. 

3.6 Financial Engineering 

The use of term structures to value cash flows, together with option valuation techniques, is 
central to much of financial engineering. The ease with which future yield curves can be 
derived from present term structures greatly facilitates the construction and valuation of all 
sorts of products, from standard new issues to structured products. 

                                                           
20  The Federal Reserve Bank of New York maintains a website with information and data about the yield curve 

as an indicator for recessions, and shows results for a model that calculates the probability of a recession in 
the United States. http://www.newyorkfed.org/research/capital_markets/ycfaq.html 



                                                Solomon Ngahu - Reg No. 49000007Fixed Income 

 page 47 © 2017 AZEK 

3.6.1 Structured Product 

Structured product generally refers to synthetic investment instruments specifically created to 
meet explicit needs that cannot be met from standard financial market instruments. Structured 
products can be used as an alternative to direct investment; as part of the asset allocation 
process to reduce the risk exposure of a portfolio, or simply opportunistically to express a 
particular market projection. In addition, structured products can be used to circumvent 
constraints that may be imposed on the investor, either by regulation, investment mandate, or 
simply by local investor preferences, or even to arbitrage between different legal, regulatory 
or tax regimes. 

Since these products are essentially synthetic, they depend in large part on the valuation of 
instruments that do not actually exist, and whose price cannot therefore be directly observed 
in the market place. Therefore, term structure models are central to the creation and 
subsequent valuation of almost all structured product. 

3.7 Risk Management 

An essential part of financial risk management (in, for example a bank, or an insurance 
company) is constantly to assess the exposure of the bank’s or company’s position to various 
changes in the term structure. This process involves the evaluation of their positions to 
various scenarios of changes in the term structure. Regulators increasingly demand risk 
measurements of the exposures of financial institutions. In particular, the implementation of 
the Basel 2 agreements is accelerating the pace of risk management regulation.  

Recent events have put an important weight to stress tests. In these tests the term structure is 
changed in various relatively extreme ways, subject of course to the constraints of the term 
structure model, to determine the ability of the financial institution to deal with a series of 
worse case scenarios. 

Risk-valuation models commonly have to be approved by competent authorities, and these 
valuation models themselves incorporate models of the term-structure, which may well differ 
from institution to institution. In any case, robust term structure models are an essential part 
of compliance with regulatory reporting requirements. 
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