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Subject CM2 
2019 Study Guide 

Introduction 

This Study Guide has been created to help guide you through Subject CM2.  It contains all the 
information that you will need before starting to study Subject CM2 for the 2019 exams and you 
may also find it useful to refer to throughout your Subject CM2 journey. 

The guide is split into two parts: 

 Part 1 contains general information about the Core Principles subjects 

 Part 2 contains specific information about Subject CM2. 

Please read this Study Guide carefully before reading the Course Notes, even if you have studied 
for some actuarial exams before.   
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1.1 Before you start 

When studying for the UK actuarial exams, you will need: 

 a copy of the Formulae and Tables for Examinations of the Faculty of Actuaries and the 
Institute of Actuaries, 2nd Edition (2002) – these are referred to as simply the Tables. 

 a ‘permitted’ scientific calculator – you will find the list of permitted calculators on the 
profession’s website.  Please check the list carefully, since it is reviewed each year.   

These are both available from the Institute and Faculty of Actuaries’ eShop.  Please visit 
www.actuaries.org.uk. 
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1.2 Core study material 

This section explains the role of the Syllabus, Core Reading and supplementary ActEd text.  It also 
gives guidance on how to use these materials most effectively in order to pass the exam. 

Some of the information below is also contained in the introduction to the Core Reading 
produced by the Institute and Faculty of Actuaries. 

Syllabus 

The Syllabus for Subject CM2 has been produced by the Institute and Faculty of Actuaries.  The 
relevant individual Syllabus Objectives are included at the start of each course chapter and a 
complete copy of the Syllabus is included in Section 2.2 of this Study Guide.  We recommend that 
you use the Syllabus as an important part of your study.   

Core Reading 

The Core Reading has been produced by the Institute and Faculty of Actuaries.  The purpose of 
the Core Reading is to assist in ensuring that tutors, students and examiners have clear shared 
appreciation of the requirements of the syllabus for the qualification examinations for Fellowship 
of the Institute and Faculty of Actuaries.   

The Core Reading supports coverage of the syllabus in helping to ensure that both depth and 
breadth are re-enforced.  It is therefore important that students have a good understanding of 
the concepts covered by the Core Reading. 

The examinations require students to demonstrate their understanding of the concepts given in 
the syllabus and described in the Core Reading; this will be based on the legislation, professional 
guidance etc that are in force when the Core Reading is published, ie on 31 May in the year 
preceding the examinations.   

Therefore the exams in April and September 2019 will be based on the Syllabus and Core Reading 
as at 31 May 2018.  We recommend that you always use the up-to-date Core Reading to prepare 
for the exams.   

Examiners will have this Core Reading when setting the papers.  In preparing for examinations, 
students are advised to work through past examination questions and will find additional tuition 
helpful.  The Core Reading will be updated each year to reflect changes in the syllabus, to reflect 
current practice, and in the interest of clarity. 

Accreditation 

The Institute and Faculty of Actuaries would like to thank the numerous people who have helped 
in the development of the material contained in this Core Reading. 
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ActEd text 

Core Reading deals with each syllabus objective and covers what is needed to pass the exam.  
However, the tuition material that has been written by ActEd enhances it by giving examples and 
further explanation of key points.  Here is an excerpt from some ActEd Course Notes to show you 
how to identify Core Reading and the ActEd material.  Core Reading is shown in this bold font.   

Note that in the example given above, the index will fall if the actual share price goes below the 
theoretical ex-rights share price.  Again, this is consistent with what would happen to an 
underlying portfolio. 

After allowing for chain-linking, the formula for the investment index then becomes: 

 
, ,
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( )
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where ,i tN  is the number of shares issued for the ith constituent at time t; 

 ( )B t  is the base value, or divisor, at time t.   

Copyright 

All study material produced by ActEd is copyright and is sold for the exclusive use of the 
purchaser.  The copyright is owned by Institute and Faculty Education Limited, a subsidiary of the 
Institute and Faculty of Actuaries.  Unless prior authority is granted by ActEd, you may not hire 
out, lend, give out, sell, store or transmit electronically or photocopy any part of the study 
material.  You must take care of your study material to ensure that it is not used or copied by 
anybody else. 

Legal action will be taken if these terms are infringed.  In addition, we may seek to take 
disciplinary action through the Institute and Faculty of Actuaries or through your employer. 

These conditions remain in force after you have finished using the course. 

This is Core 
Reading 

This is 
ActEd 
text 
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1.3 ActEd study support 

This section gives a description of the products offered by ActEd.   

Successful students tend to undertake three main study activities: 

1. Learning – initial study and understanding of subject material 

2. Revision – learning subject material and preparing to tackle exam-style questions 

3. Rehearsal – answering exam-style questions, culminating in answering questions at exam 
speed without notes. 

Different approaches suit different people.  For example, you may like to learn material gradually 
over the months running up to the exams or you may do your revision in a shorter period just 
before the exams.  Also, these three activities will almost certainly overlap.   

We offer a flexible range of products to suit you and let you control your own learning and exam 
preparation.  The following table shows the products that we produce.  Note that not all products 
are available for all subjects. 

LEARNING 

 

Course Notes 

 

LEARNING & 

REVISION 

Assignments 

Combined 
Materials Pack 

(CMP) 

Assignment 
Marking 

Tutorials 

Online 
Classroom 

REVISION 

 

Flashcards 

REVISION & 

REHEARSAL 

Revision Notes 

ASET 

REHEARSAL 

 

Mock Exam 

Mock Marking 

 
The products and services are described in more detail below. 
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‘Learning’ products 

Course Notes 

The Course Notes will help you develop the basic knowledge and understanding of principles 
needed to pass the exam.  They incorporate the complete Core Reading and include full 
explanation of the syllabus objectives, with worked examples and questions (including some past 
exam questions) to test your understanding. 

Each chapter includes: 

 the relevant syllabus objectives 

 a chapter summary  

 practice questions with full solutions.   

Paper B Online Resources (PBOR) 

The Paper B Online Resources (PBOR) will help you prepare for the computer-based paper.  
Delivered through a virtual learning environment (VLE), you will have access to worked examples 
and practice questions.  PBOR will also include the Y Assignments, which are two exam-style 
assessments. 

‘Learning & revision’ products 

X Assignments 

The Series X Assignments are written assessments that cover the material in each part of the 
course in turn.  They can be used to both develop and test your understanding of the material. 

Combined Materials Pack (CMP) 

The Combined Materials Pack (CMP) comprises the Course Notes, PBOR and the Series X 
Assignments. 

The CMP is available in eBook format for viewing on a range of electronic devices.  eBooks can be 
ordered separately or as an addition to paper products.  Visit www.ActEd.co.uk for full details 
about the eBooks that are available, compatibility with different devices, software requirements 
and printing restrictions.   

X / Y Assignment Marking 

We are happy to mark your attempts at the X and/or Y assignments.  Marking is not included with 
the Assignments or the CMP and you need to order both Series X and Series Y Marking separately.  
You should submit your script as an attachment to an email, in the format detailed in your 
assignment instructions. You will be able to download your marker’s feedback via a secure link on 
the internet. 
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Don’t underestimate the benefits of doing and submitting assignments: 

 Question practice during this phase of your study gives an early focus on the end goal of 
answering exam-style questions. 

 You’re incentivised to keep up with your study plan and get a regular, realistic assessment 
of your progress. 

 Objective, personalised feedback from a high quality marker will highlight areas on which 
to work and help with exam technique. 

In a recent study, we found that students who attempt more than half the assignments have 
significantly higher pass rates. 

There are two different types of marking product: Series Marking and Marking Vouchers. 

Series Marking 

Series Marking applies to a specified subject, session and student.  If you purchase Series Marking, 
you will not be able to defer the marking to a future exam sitting or transfer it to a different subject 
or student. 

We typically provide full solutions with the Series Assignments.  However, if you order Series 
Marking at the same time as you order the Series Assignments, you can choose whether or not to 
receive a copy of the solutions in advance.  If you choose not to receive them with the study 
material, you will be able to download the solutions via a secure link on the internet when your 
marked script is returned (or following the final deadline date if you do not submit a script).   

If you are having your attempts at the assignments marked by ActEd, you should submit your scripts 
regularly throughout the session, in accordance with the schedule of recommended dates set out in 
information provided with the assignments.  This will help you to pace your study throughout the 
session and leave an adequate amount of time for revision and question practice.   

The recommended submission dates are realistic targets for the majority of students.  Your scripts 
will be returned more quickly if you submit them well before the final deadline dates. 

Any script submitted after the relevant final deadline date will not be marked.  It is your 
responsibility to ensure that we receive scripts in good time. 

Marking Vouchers 

Marking Vouchers give the holder the right to submit a script for marking at any time, irrespective of 
the individual assignment deadlines, study session, subject or person.   

Marking Vouchers can be used for any assignment.  They are valid for four years from the date of 
purchase and can be refunded at any time up to the expiry date.   

Although you may submit your script with a Marking Voucher at any time, you will need to adhere 
to the explicit Marking Voucher deadline dates to ensure that your script is returned before the date 
of the exam.  The deadline dates are provided with the assignments. 
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Tutorials  

Our tutorials are specifically designed to develop the knowledge that you will acquire from the 
course material into the higher-level understanding that is needed to pass the exam.   

We run a range of different tutorials including face-to-face tutorials at various locations, and Live 
Online tutorials.  Full details are set out in our Tuition Bulletin, which is available on our website at 
www.ActEd.co.uk. 

Regular and Block Tutorials 

In preparation for these tutorials, we expect you to have read the relevant part(s) of the Course 
Notes before attending the tutorial so that the group can spend time on exam questions and 
discussion to develop understanding rather than basic bookwork. 

You can choose one of the following types of tutorial: 

 Regular Tutorials spread over the session. 

 A Block Tutorial held two to eight weeks before the exam. 

The tutorials outlined above will focus on and develop the skills required for the written Paper A 
examination.  Students wishing for some additional tutor support working through exam-style 
questions for Paper B may wish to attend a Preparation Day.  These will be available Live Online or 
face-to-face, where students will need to provide their own device capable of running Excel. 

Online Classroom 

The Online Classroom acts as either a valuable add-on or a great alternative to a face-to-face or 
Live Online tutorial, focussing on the written Paper A examination.   

At the heart of the Online Classroom in each subject is a comprehensive, easily-searched collection 
of tutorial units.  These are a mix of: 

 teaching units, helping you to really get to grips with the course material, and  

 guided questions, enabling you to learn the most efficient ways to answer questions and 
avoid common exam pitfalls.   

The best way to discover the Online Classroom is to see it in action.  You can watch a sample of 
the Online Classroom tutorial units on our website at www.ActEd.co.uk. 

‘Revision’ products 

Flashcards 

For most subjects, there is a lot of material to revise.  Finding a way to fit revision into your 
routine as painlessly as possible has got to be a good strategy.  Flashcards are a relatively 
inexpensive option that can provide a massive boost.  They can also provide a variation in 
activities during a study day, and so help you to maintain concentration and effectiveness. 
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Flashcards are a set of A6-sized cards that cover the key points of the subject that most students 
want to commit to memory.  Each flashcard has questions on one side and the answers on the 
reverse.  We recommend that you use the cards actively and test yourself as you go. 

Flashcards are available in eBook format for viewing on a range of electronic devices.  eBooks can 
be ordered separately or as an addition to paper products.  Visit www.ActEd.co.uk for full details 
about the eBooks that are available, compatibility with different devices, software requirements 
and printing restrictions.   

The following questions and comments might help you to decide if flashcards are suitable for you: 

 Do you have a regular train or bus journey? 

Flashcards are ideal for regular bursts of revision on the move. 

 Do you want to fit more study into your routine? 

Flashcards are a good option for ‘dead time’, eg using flashcards on your phone or sticking 
them on the wall in your study. 

 Do you find yourself cramming for exams (even if that’s not your original plan)? 

Flashcards are an extremely efficient way to do your pre-exam memorising. 

If you are retaking a subject, then you might consider using flashcards if you didn’t use them on a 
previous attempt. 

‘Revision & rehearsal’ products 

Revision Notes 

Our Revision Notes have been designed with input from students to help you revise efficiently.  
They are suitable for first-time sitters who have worked through the ActEd Course Notes or for 
retakers (who should find them much more useful and challenging than simply reading through 
the course again).   

The Revision Notes are a set of A5 booklets – perfect for revising on the train or tube to work.  
Each booklet covers one main theme or a set of related topics from the course and includes: 

 Core Reading to develop your bookwork knowledge 

 relevant past exam questions with concise solutions from the last ten years 

 other useful revision aids. 

ActEd Solutions with Exam Technique (ASET) 

The ActEd Solutions with Exam Technique (ASET) contains our solutions to eight past exam 
papers, plus comment and explanation.  In particular, it highlights how questions might have been 
analysed and interpreted so as to produce a good solution with a wide range of relevant points.  
This will be valuable in approaching questions in subsequent examinations. 
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‘Rehearsal’ products 

Mock Exam 

The Mock Exam consists of two papers.  There is a 100-mark mock exam for the written Paper A 
examination and a separate mock exam for the computer-based Paper B exam.  These provide a 
realistic test of your exam readiness.     

Mock Marking 

We are happy to mark your attempts at the mock exams.  The same general principles apply as for 
the Assignment Marking.  In particular: 

 Mock Exam Marking applies to a specified subject, session and student.  In this subject it 
covers the marking of both papers. 

 Marking Vouchers can be used for each mock exam paper.  Note that you will need two 
marking vouchers in order to have the two mock papers marked. 

Recall that: 

 marking is not included with the products themselves and you need to order it separately 

 you should submit your script via email in the format detailed in the mock exam 
instructions 

 you will be able to download the feedback on your marked script via a secure link on the 
internet. 
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1.4 Skills 

Technical skills 

The Core Reading and exam papers for these subjects tend to be very technical.  The exams 
themselves have many calculation and manipulation questions.  The emphasis in the exam will 
therefore be on understanding the mathematical techniques and applying them to various, 
frequently unfamiliar, situations.  It is important to have a feel for what the numerical answer 
should be by having a deep understanding of the material and by doing reasonableness checks. 

As a high level of pure mathematics and statistics is generally required for the Core Principles 
subjects, it is important that your mathematical skills are extremely good.  If you are a little rusty 
you may wish to consider purchasing additional material to help you get up to speed.  The course 
‘Pure Maths and Statistics for Actuarial Studies’ is available from ActEd and it covers the 
mathematical techniques that are required for the Core Principles subjects, some of which are 
beyond A-Level (or Higher) standard.  You do not need to work through the whole course in order 
– you can just refer to it when you need help on a particular topic.  An initial assessment to test 
your mathematical skills and further details regarding the course can be found on our website at 
www.ActEd.co.uk. 

Study skills 

Overall study plan  

We suggest that you develop a realistic study plan, building in time for relaxation and allowing 
some time for contingencies.  Be aware of busy times at work, when you may not be able to take 
as much study leave as you would like.  Once you have set your plan, be determined to stick to it.  
You don’t have to be too prescriptive at this stage about what precisely you do on each study day.  
The main thing is to be clear that you will cover all the important activities in an appropriate 
manner and leave plenty of time for revision and question practice. 

Aim to manage your study so as to allow plenty of time for the concepts you meet in these 
courses to ‘bed down’ in your mind.  Most successful students will probably aim to complete the 
courses at least a month before the exam, thereby leaving a sufficient amount of time for 
revision.  By finishing the courses as quickly as possible, you will have a much clearer view of the 
big picture.  It will also allow you to structure your revision so that you can concentrate on the 
important and difficult areas. 

You can also try looking at our discussion forum on the internet, which can be accessed at 
www.ActEd.co.uk/forums (or use the link from our home page at www.ActEd.co.uk).  There are 
some good suggestions from students on how to study. 

Study sessions 

Only do activities that will increase your chance of passing.  Try to avoid including activities for the 
sake of it and don’t spend time reviewing material that you already understand.  You will only 
improve your chances of passing the exam by getting on top of the material that you currently 
find difficult. 
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Ideally, each study session should have a specific purpose and be based on a specific task, 
eg ’Finish reading Chapter 3 and attempt Practice Questions 1.4, 1.7 and 1.12 ’, as opposed to a 
specific amount of time, eg ‘Three hours studying the material in Chapter 3’. 

Try to study somewhere quiet and free from distractions (eg a library or a desk at home dedicated 
to study).  Find out when you operate at your peak, and endeavour to study at those times of the 
day.  This might be between 8am and 10am or could be in the evening.  Take short breaks during 
your study to remain focused – it’s definitely time for a short break if you find that your brain is 
tired and that your concentration has started to drift from the information in front of you. 

Order of study 

We suggest that you work through each of the chapters in turn.  To get the maximum benefit from 
each chapter you should proceed in the following order: 

1. Read the Syllabus Objectives.  These are set out in the box at the start of each chapter. 

2. Read the Chapter Summary at the end of each chapter.  This will give you a useful overview 
of the material that you are about to study and help you to appreciate the context of the 
ideas that you meet. 

3. Study the Course Notes in detail, annotating them and possibly making your own notes.  Try 
the self-assessment questions as you come to them.  As you study, pay particular attention 
to the listing of the Syllabus Objectives and to the Core Reading. 

4. Read the Chapter Summary again carefully.  If there are any ideas that you can’t 
remember covering in the Course Notes, read the relevant section of the notes again to 
refresh your memory. 

5. Attempt (at least some of) the Practice Questions that appear at the end of the chapter. 

6. Where relevant, work through the Paper B Online Resources for the chapter.  You will need 
to have a good understanding of the relevant section of the paper-based course before you 
attempt the corresponding section of PBOR. 

It’s a fact that people are more likely to remember something if they review it several times.  So, 
do look over the chapters you have studied so far from time to time.  It is useful to re-read the 
Chapter Summaries or to try the Practice Questions again a few days after reading the chapter 
itself.  It’s a good idea to annotate the questions with details of when you attempted each one.  This 
makes it easier to ensure that you try all of the questions as part of your revision without repeating 
any that you got right first time. 

Once you’ve read the relevant part of the notes and tried a selection of questions from the 
Practice Questions (and attended a tutorial, if appropriate) you should attempt the corresponding 
assignment.  If you submit your assignment for marking, spend some time looking through it 
carefully when it is returned.  It can seem a bit depressing to analyse the errors you made, but 
you will increase your chances of passing the exam by learning from your mistakes.  The markers 
will try their best to provide practical comments to help you to improve. 
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To be really prepared for the exam, you should not only know and understand the Core Reading but 
also be aware of what the examiners will expect.  Your revision programme should include plenty of 
question practice so that you are aware of the typical style, content and marking structure of exam 
questions.  You should attempt as many past exam questions as you can. 

Active study 

Here are some techniques that may help you to study actively. 

1. Don’t believe everything you read.  Good students tend to question everything that they 
read.  They will ask ‘why, how, what for, when?’ when confronted with a new concept, 
and they will apply their own judgement.  This contrasts with those who unquestioningly 
believe what they are told, learn it thoroughly, and reproduce it (unquestioningly?) in 
response to exam questions. 

2. Another useful technique as you read the Course Notes is to think of possible questions 
that the examiners could ask.  This will help you to understand the examiners’ point of 
view and should mean that there are fewer nasty surprises in the exam room.  Use the 
Syllabus to help you make up questions. 

3. Annotate your notes with your own ideas and questions.  This will make you study more 
actively and will help when you come to review and revise the material.  Do not simply 
copy out the notes without thinking about the issues. 

4. Attempt the questions in the notes as you work through the course.  Write down your 
answer before you refer to the solution.   

5. Attempt other questions and assignments on a similar basis, ie write down your answer 
before looking at the solution provided.  Attempting the assignments under exam 
conditions has some particular benefits: 

 It forces you to think and act in a way that is similar to how you will behave in the 
exam. 

 When you have your assignments marked it is much more useful if the marker’s 
comments can show you how to improve your performance under exam conditions 
than your performance when you have access to the notes and are under no time 
pressure. 

 The knowledge that you are going to do an assignment under exam conditions and 
then submit it (however good or bad) for marking can act as a powerful incentive to 
make you study each part as well as possible. 

 It is also quicker than trying to write perfect answers. 

6. Sit a mock exam four to six weeks before the real exam to identify your weaknesses and 
work to improve them.  You could use a mock exam written by ActEd or a past exam 
paper. 

You can find further information on how to study in the profession’s Student Handbook, which 
you can download from their website at: 

www.actuaries.org.uk/studying 
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Revision and exam skills 

Revision skills 

You will have sat many exams before and will have mastered the exam and revision techniques 
that suit you.  However it is important to note that due to the high volume of work involved in the 
Core Principles subjects it is not possible to leave all your revision to the last minute.  Students 
who prepare well in advance have a better chance of passing their exams on the first sitting. 

Unprepared students find that they are under time pressure in the exam.  Therefore it is 
important to find ways of maximising your score in the shortest possible time.  Part of your 
preparation should be to practise a large number of exam-style questions under timed exam 
conditions as soon as possible.  This will: 

 help you to develop the necessary understanding of the techniques required 

 highlight the key topics, which crop up regularly in many different contexts and questions 

 help you to practise the specific skills that you will need to pass the exam. 

There are many sources of exam-style questions.  You can use past exam papers, the Practice 
Questions at the end of each chapter (which include many past exam questions), assignments, 
mock exams, the Revision Notes and ASET. 

Exam question skill levels 

Exam questions are not designed to be of similar difficulty.  The Institute and Faculty of Actuaries 
specifies different skill levels that questions may be set with reference to.  

Questions may be set at any skill level:  

 Knowledge – demonstration of a detailed knowledge and understanding of the topic 

 Application – demonstration of an ability to apply the principles underlying the topic 
within a given context 

 Higher Order – demonstration of an ability to perform deeper analysis and assessment of 
situations, including forming judgements, taking into account different points of view, 
comparing and contrasting situations, suggesting possible solutions and actions, and 
making recommendations. 

Command verbs 

The Institute and Faculty of Actuaries use command verbs (such as ‘Define’, ‘Discuss’ and 
‘Explain’) to help students to identify what the question requires.  The profession has produced a 
document, ‘Command verbs used in the Associate and Fellowship written examinations’, to help 
students to understand what each command verb is asking them to do. 
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It also gives the following advice: 

 The use of a specific command verb within a syllabus objective does not indicate that this 
is the only form of question which can be asked on the topic covered by that objective.   

 The Examiners may ask a question on any syllabus topic using any of the agreed command 
verbs, as are defined in the document. 

You can find the relevant document on the profession’s website at: 

https://www.actuaries.org.uk/studying/prepare-your-exams 
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1.5 The examination 

What to take to the exam 

IMPORTANT NOTE: The following information was correct at the time of printing, however it is 
important to keep up-to-date with any changes.  See the profession’s website for the latest 
guidance. 

For the written exams the examination room will be equipped with: 

 the question paper 

 an answer booklet 

 rough paper 

 a copy of the Tables. 

Remember to take with you: 

 black pens 

 a permitted scientific calculator – please refer to www.actuaries.org.uk for the latest 
advice. 

Please also refer to the profession’s website and your examination instructions for details about 
what you will need for the computer-based Paper B exam. 

Past exam papers 

You can download some past exam papers and Examiners’ Reports from the profession’s website 
at www.actuaries.org.uk.  However, please be aware that these exam papers are for the 
pre-2019 syllabus and not all questions will be relevant. 
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1.6 Queries and feedback 

Questions and queries 

From time to time you may come across something in the study material that is unclear to you.  
The easiest way to solve such problems is often through discussion with friends, colleagues and 
peers – they will probably have had similar experiences whilst studying.  If there’s no-one at work 
to talk to then use our discussion forum at www.ActEd.co.uk/forums (or use the link from our 
home page at www.ActEd.co.uk). 

Our online forum is dedicated to actuarial students so that you can get help from fellow students 
on any aspect of your studies from technical issues to study advice.  You could also use it to get 
ideas for revision or for further reading around the subject that you are studying.  ActEd tutors 
will visit the site from time to time to ensure that you are not being led astray and we also post 
other frequently asked questions from students on the forum as they arise. 

If you are still stuck, then you can send queries by email to the relevant subject email address (see 
Section 2.6), but we recommend that you try the forum first.  We will endeavour to contact you as 
soon as possible after receiving your query but you should be aware that it may take some time to 
reply to queries, particularly when tutors are away from the office running tutorials.  At the 
busiest teaching times of year, it may take us more than a week to get back to you. 

If you have many queries on the course material, you should raise them at a tutorial or book a 
personal tuition session with an ActEd tutor.  Information about personal tuition is set out in our 
current brochure.  Please email ActEd@bpp.com for more details. 

Feedback 

If you find an error in the course, please check the corrections page of our website 
(www.ActEd.co.uk/paper_corrections.html) to see if the correction has already been dealt with.  
Otherwise please send details via email to the relevant subject email address (see Section 2.6). 

Each year our tutors work hard to improve the quality of the study material and to ensure that 
the courses are as clear as possible and free from errors.  We are always happy to receive 
feedback from students, particularly details concerning any errors, contradictions or unclear 
statements in the courses.  If you have any comments on this course please email them to the 
relevant subject email address (see Section 2.6). 

Our tutors also work with the profession to suggest developments and improvements to the 
Syllabus and Core Reading.  If you have any comments or concerns about the Syllabus or Core 
Reading, these can be passed on via ActEd.  Alternatively, you can send them directly to the 
Institute and Faculty of Actuaries’ Examination Team by email to 
education.services@actuaries.org.uk. 
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2.1 Subject CM2 – background 

History 

The Actuarial Mathematics subjects (Subjects CM1 and CM2) are new subjects in the Institute and 
Faculty of Actuaries 2019 Curriculum.   

Subject CM2 is Financial Engineering and Loss Reserving. 

Predecessors 

The topics covered in the Actuarial Mathematics subjects (Subjects CM1 and CM2) cover content 
previously in Subjects CT1, CT5, CT8 and a small amount from Subjects CT4, CT6 and CT7:  

 Subject CM1 contains material from Subjects CT1, CT4 and CT5. 

 Subject CM2 contains material from Subjects CT8, CT6, CT1 and CT7. 

Exemptions 

You will need to have passed or been granted an exemption from Subject CT8 to be eligible for a 
pass in Subject CM2 during the transition process.   

Links to other subjects 

Concepts introduced in the following subjects are used in Subject CM2: 

 CS1 – Actuarial Statistics 1 

 CS2 – Risk Modelling and Survival Analysis 

 CM1 – Actuarial Mathematics 1 

 CB2 – Business Economics. 

Topics in Subject CM2 are further built upon in the following subjects: 

 Subject CP1 – Actuarial Practice 

 CP2 – Modelling Practice 

 SP5 – Investment and Finance Principles 

 SP6 – Financial Derivatives Principles 

 SP9 – Enterprise Risk Management Principles. 
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2.2 Subject CM2 – Syllabus and Core Reading 

Syllabus 

The Syllabus for Subject CM2 is given here.  To the right of each objective are the chapter numbers 
in which the objective is covered in the ActEd course. 

Aim 

The aim of the Financial Engineering and Loss Reserving subject is to provide a grounding in the 
principles of modelling as applied to actuarial work – focusing particularly on stochastic asset 
liability models and the valuation of financial derivatives. These skills are also required to 
communicate with other financial professionals and to critically evaluate modern financial 
theories. 

Competences  

On successful completion of this subject, a student will be able to: 

1. describe, interpret and discuss the theories on the behaviour of financial markets. 

2. discuss the advantages and disadvantages of different measures of investment risk. 

3. describe, construct, interpret and discuss the models underlying asset valuations. 

4. describe, construct, interpret and discuss the models underlying liability valuations. 

5. describe, construct, interpret and discuss the models underlying option pricing. 

Syllabus topics 

1. Theories of financial market behaviour   (15%) 

2. Measures of investment risk   (15%) 

3. Stochastic investment return models   (10%) 

4. Asset valuations  (20%) 

5. Liability valuations  (20%) 

6. Option theory  (20%) 

The weightings are indicative of the approximate balance of the assessment of this subject 
between the main syllabus topics, averaged over a number of examination sessions. 
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The weightings also have a correspondence with the amount of learning material underlying each 
syllabus topic.  However, this will also reflect aspects such as: 

 the relative complexity of each topic, and hence the amount of explanation and support 
required for it 

 the need to provide thorough foundation understanding on which to build the other 
objectives 

 the extent of prior knowledge which is expected 

 the degree to which each topic area is more knowledge or application based. 

Detailed syllabus objectives  

1. Theories of financial market behaviour  (15%) 

1.1 Rational expectations theory  (Chapter 1) 

1.1.1 Discuss the three forms of the Efficient Markets Hypothesis and their 
consequences for investment management. 

1.1.2 Describe briefly the evidence for or against each form of the Efficient Markets 
Hypothesis. 

1.2 Rational choice theory  (Chapters 2 and 3) 

1.2.1 Explain the meaning of the term “utility function”. 

1.2.2 Explain the axioms underlying utility theory and the expected utility theorem. 

1.2.3 Explain how the following economic characteristics of investors can be expressed 
mathematically in a utility function: 

 non-satiation 
 risk aversion, risk neutrality and risk seeking 
 declining or increasing absolute and relative risk aversion 

 1.2.4 Discuss the economic properties of commonly used utility functions. 

1.2.5 Discuss how a utility function may depend on current wealth and discuss state 
dependent utility functions. 

1.2.6 Perform calculations using commonly used utility functions to compare 
investment opportunities. 

1.2.7 State conditions for absolute dominance and for first and second-order 
dominance. 

1.2.8 Analyse simple insurance problems in terms of utility theory 
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1.3 Behavioural economics (Chapter 3) 

1.3.1 Describe the main features of Kahneman and Tversky’s prospect theory critique of 
expected utility theory. 

 
1.3.2 Explain what is meant by “framing”, “heuristics” and “bias” in the context of 

financial markets and describe the following features of behaviour in such 
markets: 

 the herd instinct 
 anchoring and adjustment 
 self-serving bias 
 loss aversion 
 confirmation bias 
 availability bias 
 familiarity bias 

1.3.3 Describe the Bernartzi and Thaler solution to the equity premium puzzle. 
 
2 Measures of investment risk  (15%) 

2.1 Properties of risk measures (Chapter 4) 

2.1.1 Define the following measures of investment risk: 

 variance of return 
 downside semi-variance of return 
 shortfall probabilities 
 Value at Risk (VaR) / Tail VaR 

2.1.2 Describe how the risk measures listed in 2.1.1 above are related to the form of an 
investor’s utility function. 

2.1.3 Perform calculations using the risk measures listed in.2.1.1 above to compare 
investment opportunities. 

2.1.4 Explain how the distribution of returns and the thickness of tails will influence the 
assessment of risk. 

2.2 Risk and insurance companies (Chapter 4) 

2.2.1 Describe how insurance companies help to reduce or remove risk. 

2.2.2 Explain what is meant by the terms “moral hazard” and “adverse selection”. 

3 Stochastic investment return models  (10%) 

3.1 Show an understanding of simple stochastic models for investment returns. 
  (Chapter 5) 

3.1.1 Describe the concept of a stochastic investment return model and the 
fundamental distinction between this and a deterministic model. 
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3.1.2 Derive algebraically, for the model in which the annual rates of return are 
independently and identically distributed and for other simple models, 
expressions for the mean value and the variance of the accumulated amount of a 
single premium. 

3.1.3 Derive algebraically, for the model in which the annual rates of return are 
independently and identically distributed, recursive relationships which permit 
the evaluation of the mean value and the variance of the accumulated amount of 
an annual premium. 

3.1.4 Derive analytically, for the model in which each year the random variable (1 + r) 
has an independent log-normal distribution, the distribution functions for the 
accumulated amount of a single premium and for the present value of a sum due 
at a given specified future time. 

3.1.5 Apply the above results to the calculation of the probability that a simple 
sequence of payments will accumulate to a given amount at a specific future time. 

4 Asset valuations  (20%) 

4.1 Mean-variance portfolio theory (Chapter 6) 

4.1.1 Describe and discuss the assumptions of mean-variance portfolio theory. 

4.1.2 Discuss the conditions under which application of mean-variance portfolio theory 
leads to the selection of an optimum portfolio. 

4.1.3 Calculate the expected return and risk of a portfolio of many risky assets, given 
the expected return, variance and covariance of returns of the individual assets, 
using mean-variance portfolio theory. 

4.1.4 Explain the benefits of diversification using mean-variance portfolio theory. 

4.2 Asset pricing models (Chapter 8) 

4.2.1 Describe the assumptions, principal results and uses of the Sharpe-Lintner-Mossin 
Capital Asset Pricing Model (CAPM). 

4.2.2 Discuss the limitations of the basic CAPM and some of the attempts that have 
been made to develop the theory to overcome these limitations. 

4.2.3 Perform calculations using the CAPM. 

4.2.4 Discuss the main issues involved in estimating parameters for asset pricing 
models. 

4.3 Single and multifactor models for investment returns (Chapter 7) 

4.3.1 Describe the three types of multifactor models of asset returns: 

 macroeconomic models 
 fundamental factor models 
 statistical factor models 

4.3.2 Discuss the single index model of asset returns. 
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4.3.3 Discuss the concepts of diversifiable and non-diversifiable risk. 

4.3.4 Discuss the construction of the different types of multifactor models. 

4.3.5 Perform calculations using both single and multi-factor models. 

4.4 Stochastic models for security prices (Chapters 9, 10 and 11) 

4.4.1 Discuss the continuous time log-normal model of security prices and the empirical 
evidence for or against the model. 

4.4.2 Explain the definition and basic properties of standard Brownian motion or 
Wiener process. 

4.4.3 Demonstrate a basic understanding of stochastic differential equations, the Ito 
integral, diffusion and mean-reverting processes. 

4.4.4 State Ito’s Lemma and be able to apply it to simple problems. 

4.4.5 Write down the stochastic differential equation for geometric Brownian motion 
and show how to find its solution. 

4.4.6 Write down the stochastic differential equation for the Ornstein-Uhlenbeck 
process and show how to find its solution. 

4.5 Models of the term structures of interest rates (Chapter 18) 

4.5.1 Explain the principal concepts and terms underlying the theory of a term structure 
of interest rates. 

4.5.2 Describe the desirable characteristics of models for the term-structure of interest 
rates. 

4.5.3 Apply the term structure of interest rates to modelling various cash flows, 
including calculating the sensitivity of the value to changes in the term structure. 

4.5.4 Describe, as a computational tool, the risk-neutral approach to the pricing of zero-
coupon bonds and interest-rate derivatives for a general one-factor diffusion 
model for the risk-free rate of interest. 

4.5.5 Describe, as a computational tool, the approach using state-price deflators to the 
pricing of zero-coupon bonds and interest-rate derivatives for a general one-
factor diffusion model for the risk-free rate of interest. 

4.5.6 Demonstrate an awareness of the Vasicek, Cox-Ingersoll-Ross and Hull-White 
models for the term-structure of interest rates. 

4.5.7 Discuss the limitations of these one-factor models and show an awareness of how 
these issues can be addressed. 

4.6 Simple models for credit risk (Chapter 19) 

4.6.1 Define the terms credit event and recovery rate. 

4.6.2 Describe the different approaches to modelling credit risk: structural models, 
reduced form models, intensity-based models. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 24  CM2: Study Guide 

© IFE: 2019 Examinations The Actuarial Education Company 

4.6.3 Demonstrate a knowledge and understanding of the Merton model. 

4.6.4 Demonstrate a knowledge and understanding of a two-state model for credit 
ratings with a constant transition intensity. 

4.6.5 Describe how the two-state model can be generalised to the Jarrow-Lando-
Turnbull model for credit ratings. 

4.6.6 Describe how the two-state model can be generalised to incorporate a stochastic 
transition intensity. 

5 Liability valuations  (20%) 

5.1 Ruin theory (Chapter 20) 

5.1.1 Explain what is meant by the aggregate claim process and the cash-flow process 
for a risk. 

5.1.2 Use the Poisson process and the distribution of inter-event times to calculate 
probabilities of the number of events in a given time interval and waiting times. 

5.1.3 Define a compound Poisson process and calculate probabilities using simulation. 

5.1.4 Define the probability of ruin in infinite/finite and continuous/discrete time and 
state and explain relationships between the different probabilities of ruin. 

5.1.5 Describe the effect on the probability of ruin, in both finite and infinite time, of 
changing parameter values by reasoning or simulation. 

5.1.6 Calculate probabilities of ruin by simulation. 

5.2 Run-off triangles (Chapter 21) 

5.2.1 Define a development factor and show how a set of assumed development 
factors can be used to project the future development of a delay triangle. 

5.2.2 Describe and apply a basic chain ladder method for completing the delay triangle 
using development factors. 

5.2.3 Show how the basic chain ladder method can be adjusted to make explicit 
allowance for inflation. 

5.2.4 Describe and apply the average cost per claim method for estimating outstanding 
claim amounts. 

5.2.5 Describe and apply the Bornhuetter-Ferguson method for estimating outstanding 
claim amounts. 

5.2.6 Describe how a statistical model can be used to underpin a run off triangles 
approach. 

5.2.7 Discuss the assumptions underlying the application of the methods in 5.2.1 to 
5.2.6 above. 

5.3 Value basic benefit guarantees using simulation techniques. 
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6 Option theory  (20%) 

6.1 Option pricing and valuations (Chapters 12 – 17) 

6.1.1 State what is meant by arbitrage and a complete market. 

6.1.2 Outline the factors that affect option prices. 

6.1.3 Derive specific results for options which are not model dependent: 

 show how to value a forward contract.  
 develop upper and lower bounds for European and American call and put 

options. 
 explain what is meant by put-call parity. 

6.1.4 Show how to use binomial trees and lattices in valuing options and solve simple 
examples. 

6.1.5 Derive the risk-neutral pricing measure for a binomial lattice and describe the risk-
neutral pricing approach to the pricing of equity options. 

6.1.6 Explain the difference between the real-world measure and the risk-neutral 
measure. Explain why the risk-neutral pricing approach is seen as a computational 
tool (rather than a realistic representation of price dynamics in the real world). 

6.1.7 State the alternative names for the risk-neutral and state-price deflator 
approaches to pricing. 

6.1.8 Demonstrate an understanding of the Black-Scholes derivative-pricing model: 

 explain what is meant by a complete market. 
 explain what is meant by risk-neutral pricing and the equivalent 

martingale measure. 
 derive the Black-Scholes partial differential equation both in its basic and 

Garman-Kohlhagen forms. 
 demonstrate how to price and hedge a simple derivative contract using 

the martingale approach. 

6.1.9 Show how to use the Black-Scholes model in valuing options and solve simple 
examples. 

6.1.10 Discuss the validity of the assumptions underlying the Black-Scholes model. 

6.1.11 Describe and apply in simple models, including the binomial model and the Black-
Scholes model, the approach to pricing using deflators and demonstrate its 
equivalence to the risk-neutral pricing approach. 

6.1.12 Demonstrate an awareness of the commonly used terminology for the first, and 
where appropriate second, partial derivatives (the Greeks) of an option price. 
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Core Reading 

The Subject CM2 Course Notes include the Core Reading in full, integrated throughout the course. 

Further reading 

The exam will be based on the relevant Syllabus and Core Reading and the ActEd course material 
will be the main source of tuition for students. 
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2.3 Subject CM2 – the course structure 

There are four parts to the Subject CM2 course.  The parts cover related topics and have broadly 
equal marks in the paper-based exam.  The parts are broken down into chapters.  

The following table shows how the parts, the chapters and the syllabus items relate to each other.  
The end columns show how the chapters relate to the days of the regular tutorials.  We have also 
given you a broad indication of the length of each chapter.  This table should help you plan your 
progress across the study session. 

Part Chapter Title 
No of 
pages 

Syllabus 
objectives 

4 full 
days 

1 

1 The Efficient Markets Hypothesis 23 1.1 

1 

2 Utility theory 48 1.2 
3 Stochastic dominance and behavioural finance 28 1.2, 1.3 
4 Measures of investment risk 33 2.1, 2.2 
5 Stochastic models of investment returns 33 3.1 
6 Portfolio theory 40 4.1 

2 

7 Models of asset returns 30 4.3 

2 

8 Asset pricing models 30 4.2 
9 Brownian motion and martingales 29 4.4 

10 Stochastic calculus and Ito processes 55 4.4 
11 Stochastic models of security prices 17 4.4 
12 Characteristics of derivative securities 48 6.1 

3 

13 The Greeks 18 6.1 

3 
14 The binomial model 66 6.1 
15 The Black-Scholes option pricing formula 42 6.1 
16 The 5-step method in discrete time 37 6.1 
17 The 5-step method in continuous time 51 6.1 

4 

18 The term structure of interest rates 49 4.5 

4 
19 Credit risk 44 4.6 
20 Ruin theory 82 5.1 
21 Run-off triangles 72 5.2 
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2.4 Subject CM2 – summary of ActEd products 

The following products are available for Subject CM2: 

 Course Notes 

 PBOR (including the Y Assignments) 

 X Assignments – four assignments: 

– X1, X2: 80-mark tests (you are allowed 2¾ hours to complete these)  

– X3, X4: 100-mark tests (you are allowed 3¼ hours to complete these)  

 Series X Marking 

 Series Y Marking 

 Online Classroom – over 150 tutorial units 

 Flashcards 

 Revision Notes  

 ASET – four years’ exam papers, ie eight papers, covering the period April 2014 to 
September 2017 

 Mock Exam 

 Mock Exam Marking 

 Marking Vouchers. 

We will endeavour to release as much material as possible but unfortunately some revision 
products may not be available until the September 2019 or even April 2020 exam sessions.  
Please check the ActEd website or email ActEd@bpp.com for more information. 

The following tutorials are typically available for Subject CM2: 

 Regular Tutorials (four days) 

 Block Tutorials (four days) 

 a Preparation Day for the computer-based exam. 

Full details are set out in our Tuition Bulletin, which is available on our website at 
www.ActEd.co.uk. 
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2.5 Subject CM2 – skills and assessment 

Technical skills 

The Actuarial Mathematics subjects (Subjects CM1 and CM2) are very mathematical and have 
relatively few questions requiring wordy answers. 

Exam skills 

Exam question skill levels 

In the CM subjects, the approximate split of assessment across the three skill types is: 

 Knowledge – 20% 

 Application – 65% 

 Higher Order skills – 15%. 

Assessment 

Combination of a computer-based modelling assignment and a three-hour written examination. 
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2.6 Subject CM2 – frequently asked questions 

Q:   What knowledge of earlier subjects should I have? 

A: The Course Notes are written on the assumption that students have studied Subjects 
CM1, CS1 and CS2.  Most students find CM2 quite a tough course and so a good grasp of 
the material in the earlier subjects is essential.  Some of the material in CB2 is also 
relevant. 

Q: What level of mathematics is required? 

A: Some of the maths required for this subject is quite advanced – up to degree standard. 
The techniques covered in Subjects CM1 and CS1 will be treated as assumed knowledge 
and the theory will build on these. You will find the course much easier if you feel 
comfortable with the mathematical techniques used in these earlier subjects and you can 
apply them confidently. 

Q:  What should I do if I discover an error in the course? 

A: If you find an error in the course, please check our website at: 

www.ActEd.co.uk/paper_corrections.html 

to see if the correction has already been dealt with.  Otherwise please send details via 
email to CM2@bpp.com. 

Q: Who should I send feedback to? 

A: We are always happy to receive feedback from students, particularly details concerning 
any errors, contradictions or unclear statements in the courses.   

If you have any comments on this course in general, please email to CM2@bpp.com. 

If you have any comments or concerns about the Syllabus or Core Reading, these can be 
passed on to the profession via ActEd.  Alternatively, you can send them directly to the 
Institute and Faculty of Actuaries’ Examination Team by email to 
education.services@actuaries.org.uk. 
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The Efficient Markets 

Hypothesis 
 

 

 

  

  

Syllabus objectives 

1.1 Rational expectations theory 

1.1.1 Discuss the three forms of the Efficient Markets Hypothesis and their 
consequences for investment management. 

1.1.2  Describe briefly the evidence for or against each form of the Efficient 
Markets Hypothesis. 
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0 Introduction 

In simple terms, an efficient security market is one in which the price of every security fully 
reflects all available information and hence is equal to its ‘true’ investment value.  According to 
the Efficient Markets Hypothesis security markets are efficient. 

This basic idea has been extended to allow for different forms of market efficiency corresponding 
to different levels of information.  These are: 

 weak form – market prices reflect all of the information contained in historical price data 

 semi-strong form – market prices reflect all publicly available information 

 strong form – market prices reflect all information, whether or not it is publicly available. 

The importance of market efficiency derives from the fact that if markets are inefficient then 
investors with better information may be able to obtain higher investment returns.  If, however, 
markets are efficient, then it is not possible to identify under- or over-priced securities, which can 
then be traded to generate excess risk-adjusted returns.  Hence, it is not worth trying to do so. 

This chapter therefore: 

 describes the three different definitions of market efficiency 

 discusses the evidence for and against the different forms of the Efficient Markets 
Hypothesis – which turns out to be largely inconclusive. 
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1 Rational expectations theory 

1.1 Background 

From the 1930s until the early 1960s, there was a widespread folklore about how to make 
money on the stock market.  The dominant theory, going back to Adam Smith in the 1700s, 
was that markets are essentially fickle, and that prices tend to oscillate around some true or 
fundamental value. 

Starting with the seminal work by Benjamin Graham, traditional investment analysis 
involved detailed scrutiny of company accounts, to calculate fundamental values, and thus 
ascertain when a given investment is cheap or expensive.  The objective would be to buy 
cheap stocks and sell expensive ones.  Any excess performance thus obtained would be at 
the expense of irrational traders, who bought and sold on emotional grounds (a ‘gut 
feeling’, for example) and without the benefit of detailed analysis. 

This detailed analysis is known as fundamental analysis. 

By the 1960s, it had become clear that these supposedly foolproof methods of investment 
were not working.  Strategies based on detailed analysis did not seem to perform any better 
than simple buy-and-hold strategies.  Attempts to explain this phenomenon gave rise to the 
Efficient Markets Hypothesis (EMH), which claims that market prices already incorporate the 
relevant information.  The market price mechanism is such that the active trading patterns 
of a small number of informed analysts can lead to accurate market prices.  Uninformed (or 
‘cost-conscious’, since actively trading incurs potentially unnecessary costs) investors can 
then take a free ride, in the knowledge that the research of others is keeping the market 
efficient. 

This provides a strong argument in favour of the passive investment management style that we 
discuss below. 
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1.2 The three forms of the Efficient Markets Hypothesis 

The academic literature has distinguished between different forms of the Efficient Markets 
Hypothesis, based on a finer dissection of exactly what constitutes relevant information.  In 
particular, the following three forms of EMH are commonly distinguished: 

Weak form EMH 

The market price of an investment incorporates all information contained in the price 
history of that investment.  Knowledge of a stock’s price history cannot produce excess 
performance as this information is already incorporated in the market price.  This form, if 
true, means that technical analysis (or chartism) techniques (ie analysing charts of prices 
and spotting patterns) will not produce excess performance.  

Semi-strong form EMH 

The market price of an investment incorporates all publicly available information.  
Knowledge of any public information cannot produce excess performance, as this 
information is already incorporated in the market price. 

This form, if true, means that fundamental analysis techniques (ie analysing accounting 
statements and other pieces of financial information) will not produce excess performance.  

Fundamental analysis uses information concerning the issuer of the security (eg turnover, 
profitability, liquidity, level of gearing) and general economic and investment conditions (eg real 
interest rates and inflation) in order to determine the ‘true’ or ‘fundamental’ value of a security 
and hence whether or not it is cheap or expensive. 

Different stock exchanges have different levels of required disclosure of information. Hence 
it would be reasonable to expect different markets to have different levels of efficiency.  For 
example, the New York Stock Exchange (NYSE), which requires a high level of disclosure, 
should be more efficient than a market with limited disclosure requirements. 

There is also no commonly accepted definition of what constitutes publicly available 
information. 

This can lead to problems when testing whether a particular market is actually efficient or not. 

For example, unlike professional fund managers, private investors are unable to gain 
access to the senior management of companies. 

Clearly, fund managers have an advantage in terms of being able to form an opinion on the 
competence of the management team and the strategy of the company.  Fund managers are 
also increasingly utilising ‘alternative data’ (eg satellite images, web searches, social media 
etc) to generate excess performance. 

Even if information is publicly available, there is a cost involved in obtaining the information 
quickly and accurately.  Any advantage achieved by acting on price relevant information 
could well be eroded by the cost of obtaining and analysing that information. 
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In other words, the cost of obtaining additional information could outweigh the additional returns 
that it might generate.  Note that a necessary requirement for efficiency as it has been defined 
above is that the costs of both acquiring the relevant information and trading on the basis of it 
should be equal to zero.  This must be the case if investors are to trade until security prices do 
reflect all available information. 

Note that just because information is publicly available, it does not mean that everybody has read 
and understood it, eg the contents of the Subject CM2 course.  This could be because: 

 for many people – who do not wish to be actuaries or investment specialists – the costs of 
buying a Subject CM2 course outweigh the benefits that it confers 

 most of the population is unaware of either the existence or the benefits to be derived 
from studying Subject CM2, or both! 

Strong form EMH 

The market price of an investment incorporates all information, both publicly available and 
also that available only to insiders.  Knowledge available only to insiders cannot produce 
excess performance as this information is already incorporated in market prices. 

Stock markets around the world are subject to regulation.  Often rules exist to prevent 
individuals with access to price sensitive information, which is not yet public, from using 
this information for personal gain.  For example, senior management involved in merger and 
acquisition talks are often banned from trading in the stock of their company.  Such rules 
would be unnecessary if strong form efficiency held. 

Question 

Explain why such rules would be unnecessary. 

Solution 

Such rules would be unnecessary because it would not be possible for senior management to use 
this information to obtain higher investment returns by trading in the stock of their own 
company.  Thus, senior management would not be at an advantage compared to other investors, 
who would correspondingly not be disadvantaged by such trades. 

 
However, one can argue that if senior management were allowed to trade their own 
company’s stock, then strong form EMH would be possible.  Hence the existence of these 
rules prevents strong EMH from occurring. 

Trading on the basis of privileged information that is not publicly available is sometimes known as 
insider trading or insider dealing.  If insider trading does not occur, then the strong form Efficient 
Markets Hypothesis cannot hold, as there is then no mechanism by which security prices can 
incorporate inside information. 

Question 

What is the relationship between the three forms of market efficiency? 
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Solution 

Publicly available information is a subset of all information, whether publicly available or not.  
Consequently strong form efficiency implies semi-strong form efficiency, in the sense that if a 
market is strong form efficient, then it must also be semi-strong form efficient. 

Similarly as historical price data is a subset of all publicly available information, so a market that is 
semi-strong form efficient must also be weak form efficient. 

 
Active versus passive investment management 

The question of whether or not markets are efficient has important implications for 
investment management.  Active fund managers attempt to detect exploitable mispricings, 
since they believe that markets are not universally efficient.  Passive fund managers simply 
aim to diversify across a whole market, perhaps because they do not believe they have the 
ability to spot mispricings. 

According to the Efficient Markets Hypothesis, active investment management, with its active 
trading policy and consequent higher level of management fees, cannot be justified. 

Question 

Why can active management not be justified according to the EMH? 

Solution 

According to the Efficient Markets Hypothesis, active investment management cannot be justified 
because it is impossible to exploit the mispricing of securities in order to generate higher 
expected returns.  Even if price anomalies exist, then the costs of identifying them and then 
trading will outweigh the benefits arising from the additional investment returns. 

 
If active investment management cannot be justified, then a more appropriate investment 
strategy might be simply to match or ‘track’ the market by holding a portfolio whose performance 
will closely replicate that of the market as a whole.  In this way the fund should yield 
approximately the same level of investment returns as the market, whilst also enjoying the 
benefits arising from both diversification and lower dealing costs.  In practice this is often 
achieved by matching or tracking an index that is representative of the investment market in 
question.  Such index tracking is a very important example of a passive investment management 
style. 

If markets are inefficient, we would expect active managers with above average skill to 
perform better than passive managers.  However, performance should be considered net of 
various fees and transaction costs (eg brokerage, market impact).  To demonstrate an 
exploitable opportunity in the market, the opportunity should be sufficiently large to remain 
intact even after all these costs are taken into account. 
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An alternative definition of efficiency sometimes used is therefore that prices reflect all available 
information up to the point at which the marginal costs and benefits of that information are 
equal.  If these marginal costs and benefits differ between investors, some investors may enjoy an 
advantage over their peers. 

A further consequence is that those investment markets with the most freely available 
information and the lowest transaction costs are likely to be the most efficient.  Thus, government 
bond markets tend to be more efficient than property markets. 

The question of market efficiency therefore has a crucial bearing upon the choice of investment 
management style. 

Question 

Comment on the advantages that could be derived from ‘insider trading’ in a market that is strong 
form efficient. 

Solution 

If the market is strong form efficient, then there will be no advantage from insider trading 
because all the insider knowledge should be reflected in the current share price. 
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2 The evidence for or against each form of the Efficient Markets 
Hypothesis 

2.1 Difficulties with testing the Efficient Markets Hypothesis 

Tests of EMH are fraught with difficulty.  There is a substantial body of literature proving the 
existence of mispricings, in contravention of EMH.  Unfortunately, there is also a substantial 
body of literature providing evidence for various forms of EMH.  Both schools of thought 
can cite a great deal of empirical evidence and an impressive wealth of statistical tests.  It is 
reasonable to ask, from a philosophical point of view, how it could come about that we have 
categorical proof of mutually contradictory statements.  One possible explanation is that 
many published tests make implicit and explicit, but possibly invalid, assumptions (for 
example, normality of returns, or stationarity of time series). 

Consequently, a test that appears to disprove the Efficient Markets Hypothesis may actually be 
disproving something else. 

We can note that whilst an apparent proof based upon historical data over one period of time 
might be valid for that particular period, it might not be valid for a subsequent time period, 
perhaps because the nature of the market or the available information has changed.  We can also 
note that the parties involved in providing proof will have vested interests and may therefore be 
biased, publishing only those results that support their position. 

Some of the differences are purely differences of terminology.  For example, do we regard 
anomalies as disproving EMH, if transaction costs prevent their exploitation? 

Thus, although it may in principle be possible to exploit temporary mispricings, it may not be 
possible in practice after appropriate allowance has been made for both transaction costs and the 
costs of obtaining information.  Whether or not such a finding contradicts the EMH depends upon 
exactly how we define the EMH. 

More subtle is the need to make an appropriate allowance for risk.  The EMH is not 
contradicted by a strategy which produces higher profits than the market portfolio by taking 
higher risks.  The market rewards investors for taking risks, so we expect, on average, a 
high-risk strategy to result in higher returns. 

What would contradict the EMH is an investment strategy that provided returns over and 
above those necessary to compensate an investor for the risk they faced.  Unfortunately, 
there is no universally agreed definition of risk, and no perfectly accurate way of measuring 
it.   

We will consider a number of different measures of investment risk later in the course. 

With these caveats in mind, we can now consider some empirical work. 
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Testing the weak form EMH 

Using price history to try and forecast future prices, often using charts of historical data, is 
called technical or chartist analysis.  Studies have failed to identify a difference between the 
returns on stocks using technical analysis and those from purely random stock selection 
after allowing for transaction costs.  Credible challenges to Weak Form EMH took a long 
time to emerge, but recent econometric evidence suggests that stocks tend to exhibit 
short-run momentum (trending in the same direction) and medium-run mean-reversion 
(trending in opposite directions). 

Question 

Country X runs a national lottery in which the purchaser of a ticket selects six different numbers 
from 1 to 50 inclusive.  If those same six numbers are then drawn randomly from a hat on live TV, 
the holder of the ticket wins a share of a large cash sum equal in value to the total ticket sales. 
Is the market for lottery tickets weak form efficient? 

Solution 

If the numbers drawn are truly random, then the market for lottery tickets is weak form efficient.  
This is because knowledge of the numbers that have been drawn in the past will not help you to 
predict the numbers that are likely to be drawn in the future, and thereby generate excess 
returns.  It will also be semi-strong and strong form efficient, unless it is operated fraudulently. 

 
Testing the semi-strong form EMH 

The semi-strong form of the EMH has been where research has concentrated and where the 
debate is most fierce.  We will consider tests of the EMH in two categories below: tests of 
informational efficiency and volatility tests. 

Testing the strong form EMH 

This is problematic as it requires the researcher to have access to information that is not in 
the public domain. 

In order to decide if security prices do reflect all available information we ourselves need to have 
access to all available information – including information that is not publicly available. 

However, studies of directors’ share dealings suggest that, even with inside information, it 
is difficult to out-perform. 

2.2 Informational efficiency 

The EMH (in its various forms) states that asset prices reflect information.  However, it does 
not explicitly tell us how new information affects prices. 

For example, the speed and extent to which it does so. 

It is also empirically difficult to establish precisely when information arrives.  For example, 
many events are widely rumoured prior to official announcements. 
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An example here is a merger.  Should tests of efficiency be based upon the official announcement 
date of the merger or the date at which rumours concerning the likelihood of the merger first 
started – or possibly some date in between? 

Many studies show that the market over-reacts to certain events and under-reacts to other 
events.  The over/under-reaction is corrected over a long time period.  If this is true then 
traders could take advantage of the slow correction of the market, and efficiency would not 
hold. 

Over-reaction to events 

Some of the effects found by studies can be classified as over-reaction to events, for 
example: 

1. Past performance: past winners tend to be future losers and vice versa.  The market 
appears to over-react to past performance. 

 Hence it might be possible to make excess profits by selling shares in firms that have 
performed well recently and buying those that have performed badly.  This is sometimes 
referred to as a contra-cyclical investment policy. 

2. Certain accounting ratios appear to have predictive powers: eg companies with high 
earnings to price, cashflow to price and book value to market value (generally poor 
past performers) tend to have high future returns.  Again, this is an example of the 
market apparently over-reacting to past growth. 

3. Firms coming to the market: evidence from a number of major financial markets 
including the UK and the US appears to support the idea that stocks coming to the 
market by Initial Public Offerings and Seasoned Equity Offerings have poor 
subsequent long-term performance. 

Under-reaction to events 

There are also well-documented examples of under-reaction to events: 

1. Stock prices continuing to respond to earnings announcements up to a year after 
their announcement.  This is an example of under-reaction to information which is 
slowly corrected. 

2. Abnormal excess returns for both the parent and subsidiary firms following a 
de-merger.  This is another example of the market being slow to recognise the 
benefits of an event. 

3. Abnormal negative returns following mergers (agreed takeovers leading to the 
poorest subsequent returns).  The market appears to over-estimate the benefits from 
mergers and the stock price slowly reacts as the optimistic view is proved to be 
wrong. 
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Anomalies 

All these effects are often referred to as ‘anomalies’ in the EMH framework. 

A fast-growing area of research in finance is Behavioural Finance, which investigates 
whether such anomalies arise due to behaviour of individual investors which departs from 
that predicted by models based on rational expectations.  However, this approach is still 
controversial in some circles, with some academics unconvinced that ‘irrational’ behaviour 
is an important determinant of aggregate asset pricing. 

Even if the market is efficient, pure chance is going to throw up some apparent examples of 
mispricings.  We would expect to see as many examples of over-reaction as under-reaction.  
This is broadly consistent with the literature to date. 

The 2007/09 financial crisis has led to many professors asking whether EMH (and other 
techniques discussed in CM2) should even form part of the syllabus.  We should be critical 
of the theories and treat them as a structuring tool, a theoretical base rather than a dogma. 

Even more important is the finding that the reported effects do not appear to persist over 
prolonged time periods and so may not represent exploitable opportunities to make excess 
profits.  For example, the ‘small companies effect’ received attention in the early 1980s.  
This work showed the out-performance of small companies in the period 1960-80.  However, 
if a strategy based on this evidence were to be implemented throughout the 1980s and early 
1990s, the investor would have experienced abnormally low returns. 

Other examples of anomalies, for example the ability of accounting ratios to indicate 
out-performance, are arguably proxies for risk (strategies exploiting these strategies are 
higher-risk than average).  Once these risks have been taken into account, many studies, 
which claim to show evidence of inefficiency, turn out to be compatible with the EMH. 

Question 

Over the last five years, the shares of Company A have yielded an average investment return 
equal to twice that of Company B.  Does this contradict the Efficient Markets Hypothesis? 

Solution 

Although Company A’s shares have recently yielded more than Company B’s shares, this does not 
contradict the Efficient Markets Hypothesis.  This is because the EMH implies that it is not 
possible to identify shares that offer excess risk-adjusted expected returns.  This is different from 
the situation described, which refers to actual past returns with no allowance being made for the 
relative riskiness of the two shares involved.  Thus Company A may be inherently more risky than 
Company B. 

 
2.3 Volatility tests 

Several observers have commented that stock prices are ‘excessively volatile’.  By this they 
mean that the change in market value of stocks (observed volatility), could not be justified 
by the presence of news.  This was claimed to be evidence of market over-reaction which 
was not compatible with efficiency. 
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Excessive volatility therefore arises when security prices are more volatile than the underlying 
fundamental variables that should be driving them. 

The claim of ‘excessive volatility’ was first formulated into a testable proposition by Shiller 
in 1981.  He considered a discounted cashflow model of equities going back to 1870.  By 
using the actual dividends that were paid and some terminal value for the stock, he was 
able to calculate the perfect foresight price, the ‘correct’ equity price, if market participants 
had been able to predict future dividends correctly.  The difference between the perfect 
foresight price and the actual price arises from the forecast errors of future dividends.  If 
market participants are rational, we would expect no systematic forecast errors.  Also if 
markets are efficient, broad movements in the perfect foresight price should be correlated 
with moves in the actual price as both react to the same news. 

Shiller found strong evidence that the observed level of volatility in the S&P 500 stock index 
contradicted the EMH as such volatility was not in line with the subsequent fluctuations in 
the dividends.  

In other words, Shiller found that actual security prices were more volatile than perfect foresight 
prices based upon the present value of future dividends. 

However, subsequent studies, using different formulations of the problem, found that the 
violation of the EMH only had borderline statistical significance.  Numerous criticisms were 
subsequently made of Shiller’s methodology. 

These criticisms covered: 

 the choice of terminal value for the stock price 

 the use of a constant discount rate 

 bias in estimates of the variances due to autocorrelation 

 possible non-stationarity of the series, ie the series may have stochastic trends 
which invalidate the measurements obtained for the variance of the stock price. 

Although subsequent studies by many authors have attempted to overcome the 
shortcomings in Shiller’s original work, there still remains the problem that a model for 
dividends and distributional assumptions are required.  Some equilibrium models now exist 
which calibrate both to observed price volatility and observed dividend behaviour.  
However, the vast literature on volatility tests can at best be described as inconclusive. 

2.4 Conclusion 

The literature on testing the EMH is vast, and articles can be found to support whatever view you 
wish to take.  It is possible to find research claiming incontrovertible evidence either for or against 
the EMH. 

Question 

An investment market is strong form efficient.  Describe what would happen to the price of a 
company’s shares if some positive information about the company becomes known.  (Assume 
that nobody had known about this information in advance.) 
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Solution 

1.   The share price should go up. 

2. This should happen immediately. 

3. The share price should rise without bias, ie the market does not over-react or under-react. 

 
Note that the answer to this question illustrates some of the ways that stock markets tend not to 
be fully efficient, ie information is not fed into share prices immediately and without bias. 

Question 

Is the following statement true or false? 

‘The semi-strong form of the Efficient Markets Hypothesis suggests that no investor will ‘beat’ the 
market in the long term.’ 

Solution 

The laws of probability suggest that some investors will achieve returns in excess of the market 
even over the long term purely by chance.  For example, they might happen to be holding a 
particular company’s shares when some ‘good’ news is announced.  However, the Efficient 
Markets Hypothesis suggests that no one will be able to do so systematically unless: 

 they accept a higher level of risk than exhibited by the market as a whole, or 

 they have inside information. 
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Chapter 1 Summary 

The Efficient Markets Hypothesis (EMH)  

In an efficient security market the price of every security fully reflects all available and 
relevant information.  The EMH states that security markets are efficient. 

Three forms of the EMH are commonly distinguished: 

1. Weak form – market prices incorporate all of the information contained in historical 
price data.  If markets are weak form efficient, then technical analysis cannot be 
used to generate excess risk-adjusted returns. 

2 Semi-strong form – market prices incorporate all publicly available information.  If 
markets are semi-strong form efficient, then fundamental analysis cannot be used to 
generate excess risk-adjusted returns. 

3. Strong form – market prices incorporate all information, whether or not it is publicly 
available.  If markets are strong form efficient, then insider trading cannot be used to 
generate excess risk-adjusted returns. 

In practice the level of efficiency depends on whether information is freely available, which 
in turn may depend on the level of disclosure required by regulation. 

The importance of market efficiency derives from the fact that if markets are inefficient then 
investors with better information may be able to generate higher investment returns.  If, 
however, they are efficient then active investment management is difficult to justify. 

Tests of the EMH 

Tests of the EMH are fraught with difficulty.  Consequently, the empirical evidence is 
inconclusive concerning the extent to which security markets are in fact efficient in practice.  
However: 

 studies of directors’ share dealings suggest that, even with inside information, it is 
difficult to out-perform 

 studies have failed to identify a difference between the returns on stocks selected using 
technical analysis and those from purely random stock selection 

 research has concentrated on the semi-strong form of the EMH and in particular tests of 
informational efficiency and volatility tests. 
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Informational efficiency 

Many studies show that the market over-reacts to certain events and under-reacts to other 
events.  The over/under-reaction is corrected over a long time period.  If this is true then 
traders could take advantage of the slow correction of the market, and efficiency would not 
hold. 

Over-reaction to events 

 Past winners tend to be future losers and the market appears to over-react to past 
performance. 

 Certain accounting ratios appear to have predictive powers, an example of the market 
apparently over-reacting to past growth. 

 Firms coming to the market have poor subsequent performance. 

Under-reaction to events 

 Stock prices continue to respond to earnings announcements up to a year after their 
announcement. 

 Abnormal excess returns for both the parent and subsidiary firms following a de-merger. 

 Abnormal negative returns following mergers. 

Volatility tests 

Shiller first formulated the claim of ‘excessive volatility’ into a testable proposition in 1981.  
He found strong evidence that the observed level of volatility contradicted the EMH.  
However, subsequent studies using different formulations of the problem found that the 
violation of the EMH only had borderline statistical significance.  Numerous criticisms were 
subsequently made of Shiller’s methodology.  These criticisms covered: 

 the choice of terminal value for the stock price 

 the use of a constant discount rate 

 bias in estimates of the variances due to autocorrelation 

 possible non-stationarity of the series, ie the series may have stochastic trends that 
invalidate the measurements obtained for the variance of the stock price. 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-01: The Efficient Markets Hypothesis Page 17 

The Actuarial Education Company  © IFE: 2019 Examinations 

Chapter 1 Practice Questions 

1.1 A researcher has analysed the annual returns of equity stocks in a particular country over a 
10-year period and has made the following observations: 

(a) Annual market returns in consecutive years have a negative correlation of –0.25. 

(b) The closing value of the index of the 100 stocks with the highest market capitalisation has 
been found to be 1% higher on average on Fridays than on Mondays. 

(c) Announcements of changes in companies’ dividend policies typically take three months to 
become fully reflected in the quoted share price. 

(d) The prices of a particular subset of stocks have been consistently observed to fall 
immediately following a favourable announcement and to rise immediately following an 
unfavourable announcement. 

 Discuss these observations in the light of the EMH.  [4] 

1.2 Discuss the following statement: 

The existence of fund managers who sell their services based on their alleged ability to select 
over-performing sectors and stocks and so add value to portfolios demonstrates that capital 
markets are not efficient.  [6] 

1.3 (i) Describe what is meant by an ‘efficient market’.  

(ii) Describe the three different forms of the Efficient Markets Hypothesis.  

(iii) Discuss the implications of the Efficient Markets Hypothesis.  

1.4 At the quarterly meeting of the Auger Close Investment Club, four members are making proposals 
for new equity investment for the club. 

Anna wants to buy shares in Armadillo Adventures, claiming that they have performed poorly in 
recent weeks and are due an upturn. 

Brian wants to invest in Biscuits-R-Us.  They have recruited a new head of marketing, who has had 
success at other companies.  Brian feels that this new appointment will have a positive effect on 
the firm. 

Cathy selects shares at random.  This quarter she is recommending the club buy into Cash 4 
Kidneys PLC. 

Dennis wants the club to buy shares in Diamond Dentists (‘DD’).  His brother works for a major 
health insurer and has insider information that DD’s shares will rise sharply in the near future, 
when it is announced that his company has appointed DD as its ‘dentist of choice’. 

For each club member, describe how their share selection strategy would work in strongly 
efficient, semi-strongly efficient, weakly efficient and inefficient markets.   [7] 

Exam style 

Exam style 

Exam style 
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1.5 (i) Explain what is meant by an ‘excessively volatile’ market. [2] 

(ii) Describe how you would test if a market is ‘excessively volatile’. [7] 

(iii) Explain the practical and conceptual difficulties in using a test of an excessively volatile 
market to establish whether or not a market is efficient. [4] 

    [Total 13] 

1.6 (i) Explain the implications of the Efficient Markets Hypothesis for investment trading 
strategies.   

(ii) Explain why investors will still wish to have as much information as possible concerning a 
company and its securities before investing in it even if the Efficient Markets Hypothesis 
applies.    
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Chapter 1 Solutions 

1.1 (a) Annual market returns are negatively correlated 

This observation suggests that, over annual time periods, the market tends to systematically 
overreact to new information and hence that the market may not be semi-strong form 
efficient.   [½] 

In addition, trading rules could be developed based on this information that could generate 
excess, risk-adjusted returns, which suggests that this observation is inconsistent with the weak 
form of the EMH.  [½] 

(b) The index is higher on Fridays than on Mondays 

The observation suggests that there is a consistent tendency for prices on Fridays to be ‘inflated’, 
while prices on Mondays are ‘depressed’, ie there is a systematic bias present in the prices. [½] 

Trading rules could be developed based on this information (eg buy on Monday, sell on Friday) 
that could generate excess, risk-adjusted returns, which suggests that this observation is 
inconsistent with the weak form of the EMH. [½] 

(c) Announcements take three months to be reflected 

If the semi-strong form of the EMH holds, public dividend announcements should have an 
immediate effect on the share prices as the market should respond quickly and accurately to new 
information.   [½]  

This observation suggests that the market is not semi-strong form efficient. [½] 

(d) Prices fall following a favourable announcement 

The prices are reacting when information is made public.  This suggests that the prices have 
previously been distorted by insider information. [½] 

Therefore, this observation contradicts the strong form of the EMH. [½] 
    [Total 4] 

Note that, once a particular form of the EMH is contradicted, this also contradicts any of the 
stronger forms. 
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1.2 The Efficient Markets Hypothesis (EMH) suggests that it is not possible to achieve excess 
risk adjusted investment returns using investment strategies based only on certain subsets of 
information.  The existence of fund managers who sell their services based on their alleged ability 
to select over-performing sectors and stocks does not demonstrate that capital markets are 
inefficient.   [1] 

In particular, the semi-strong form of the EMH suggests that excess risk-adjusted investment 
returns cannot be obtained using only publicly available information. [½]  

In certain investment markets, it may therefore be possible (and legal) to achieve excess returns 
using privileged or inside information, which would not contradict the semi-strong form of the 
EMH.    [½] 

More generally, the EMH does not preclude managers achieving higher investment returns by 
adopting ‘riskier’ investment strategies and receiving due reward for the risks taken. [½] 

It says precisely that it is not possible to develop investment strategies that yield excess risk-
adjusted returns – though it is difficult to determine exactly how risk should be interpreted in this 
context.   [½] 

Some fund managers must necessarily achieve higher than average returns over a given short 
time period – eg several years.  The point of the EMH is that managers cannot consistently 
achieve above excess returns.  Moreover, they cannot guarantee to achieve excess returns over 
any particular time period. [1] 

Finally, rather than reflecting any market inefficiency in contradiction of the EMH, the existence of 
such managers may instead reflect the following facts: 

 Individual investors may be unaware of the EMH or choose not believe it and hence may 
be inclined to believe the claims of such managers and so place money with them. [½] 

 Certain individual investors may choose to believe the claims of such managers, reflecting 
the fact that investment decisions are often made on the basis of subjective and 
emotional factors, in addition to, or instead of, on the basis of financial theory. [1] 

For the above reasons, the existence of such fund managers does not therefore demonstrate that 
capital markets are inefficient. [½] 
    [Total 6] 

1.3 (i) Definition of efficient market 

An efficient market is one in which every security’s price equals its investment value at all 
times.     

In an efficient market information is fully reflected in the price.  

This means that share prices adjust instantaneously and without bias to new information.  

(ii) Three forms of Efficient Markets Hypothesis 

The strong form requires that prices reflect all information that is currently known – whether or 
not it is publicly available.  
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The semi-strong form requires that prices reflect all information that is publicly available.  

The weak form requires that prices fully reflect all information contained in the past history of 
prices.     

(iii) Implications of the Efficient Markets Hypothesis 

The past history of prices is a subset of publicly available information, so a market must be weak 
form efficient if it is semi-strong form efficient.  Similarly, if it is strong form efficient it must also 
be semi-strong and weak form efficient.  

The Efficient Markets Hypothesis does not imply that beating the market is impossible, since 
investors could out-perform the market by chance, or by accepting above average levels of risk.  

However, it does imply that it is not possible consistently to achieve superior risk-adjusted 
investment performance net of costs without access to superior information.  

Weak form efficiency implies that it is impossible to achieve excess risk-adjusted investment 
returns purely by using trading rules based upon the past history of prices and trading volumes.  It 
therefore suggests that technical analysis cannot be justified.  

If only weak form efficiency applies, excess risk-adjusted returns are still possible by good 
fundamental analysis of public information.   

The semi-strong form means that prices adjust instantaneously and without bias to newly 
published information.  This implies that it is not possible to trade profitably on information 
gained from public sources.  So neither fundamental analysis (without insider information) nor 
technical analysis will yield excess risk-adjusted returns.  

Fundamental analysis may still, however, aid investors in selecting the investments that are most 
suitable for meeting their investment needs and objectives.  

If the strong form is correct then the market reflects all known knowledge about the company 
and consequently excess risk-adjusted returns are possible only by chance.  This implies that 
insiders cannot profit from dealing on inside information, ie insider trading is not profitable.  

1.4 Anna 

Anna makes her recommendation based on the past price history of the investment.  If weak form 
EMH holds, then the current share price already reflects the information contained in the past 
price history, so there would be no advantage in using this approach. [1] 

Similarly, if the semi-strong or strong form of EMH holds, there is no advantage in using this 
approach.   [½] 

If the market was inefficient, Anna’s strategy may be beneficial. [½] 

Brian 

Brian makes his recommendation based on company information that is in the public domain.  If 
semi-strong form EMH holds, then the current share price already reflects relevant public 
information, so there would be no advantage in using this approach. [1] 
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Similarly, if the strong form of EMH holds, there is no advantage in using this approach. [½] 

If the market is inefficient or only weak form efficient, Brian’s strategy may be beneficial. [½] 

Cathy 

The approach of choosing stocks at random provides no advantage, whatever the level of market 
efficiency.   [½] 

If strong form EMH holds, this strategy is no worse than any other. [½] 

Dennis 

Dennis makes his recommendation based on insider information.  If strong form EMH holds, then 
the current share price already reflects all relevant information, so there would be no advantage 
in using this approach.  [1] 

If the market is inefficient or weak or semi-strong form efficient, Dennis’s strategy may be 
beneficial (though it could be questionable on ethical grounds). [1] 
    [Total 7] 

1.5 (i) Excessively volatile markets 

An excessively volatile market is one in which the changes in the market values of stocks (the 
observed volatility) are greater than can be justified by the news arriving.  This is claimed to be 
evidence of market over-reaction, which is not compatible with efficiency. [2] 

(ii) Testing if a market is excessively volatile 

To test if a market is excessively volatile you need a long history of prices and cashflows for one of 
the securities in question – eg for the market in a particular equity, you would need many months 
or years of share prices and dividend payments. [1½] 

A discounted cashflow model based on the actual dividends that were paid and some terminal 
value for the share could then be used to calculate a perfect foresight price for the equity.  This 
would represent the ‘correct’ equity price if market participants had been able to predict future 
dividends correctly.  [1½] 

The difference between the perfect foresight price and the actual price arises from the forecast 
errors of future dividends.  If market participants are rational, there should be no systematic 
forecast errors.   [1½] 

Also if markets are efficient, then broad movements in the perfect foresight price should be 
correlated with moves in the actual price as both are reacting to the same news and hence the 
same changes in the anticipated future cashflows. [1½] 

If instead the actual price changes are greater, then this would suggest that the market in the 
particular equity is excessively volatile. [1] 
    [Total 7] 

This was the approach adopted by Shiller. 
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(iii) Practical and conceptual difficulties 

These include: 

 the difficulty of choosing an appropriate terminal value for the share price [1] 

 the difficulty of choosing an appropriate discount rate at which to discount future 
cashflows – in particular, should it be constant? [1] 

 possible biases in the estimates of the variances because of autocorrelation in the time 
series data used [1] 

 possible non-stationarity of the time series data used, ie it may have stochastic trends 
which invalidate the measurements obtained for the variance of the stock price [1] 

 the distributional assumptions underlying the statistical tests used might not be 
satisfied  [½] 

 the distributional characteristics of the share prices and dividends are unlikely to remain 
constant over a long period of time.  [½] 

    [Maximum 4] 

1.6 (i) Implications of the Efficient Markets Hypothesis 

The Efficient Markets Hypothesis implies that it is impossible, except by chance, to make 
abnormal profits using trading strategies that are based on only past share prices (weak form), 
publicly available information (semi-strong form) or any information (strong form).  

In practice, however, the definition has sometimes been refined to preclude the possibility of 
systematically higher returns after allowing for transaction costs.  

Market efficiency also implies that active investment management (which aims to enhance 
returns by identifying under- or over-priced securities) cannot be justified and consequently 
provides a rationale for passive investment management strategies, such as index tracking. 

(ii)  Information 

Even if markets are efficient, investors will still wish to have as much information as possible 
concerning a company and its securities in order to identify the characteristics of the shares, 
eg the volatility of returns, risk, income and capital growth etc.  An appreciation of these will 
enable investors to make an informed decision whether or not to hold the security as part of a 
portfolio designed to meet their investment objectives. 
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Utility theory 

 

Syllabus objectives 

1.2 Rational choice theory 

1. Explain the meaning of the term ‘utility function’. 

2. Explain the axioms underlying utility theory and the expected utility 
theorem. 

3. Explain how the following economic characteristics of investors can be 
expressed mathematically in a utility function: 

   non-satiation 

   risk aversion, risk-neutrality and risk-seeking 

 declining or increasing absolute and relative risk aversion. 

4.  Discuss the economic properties of commonly used utility functions. 

5. Discuss how a utility function may depend on current wealth and discuss 
state-dependent utility functions. 

6. Perform calculations using commonly used utility functions to compare 
investment opportunities. 

8. Analyse simple insurance problems in terms of utility theory. 
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0 Introduction  

This chapter focuses on utility theory as applied to investment choices.   

In economics, ‘utility’ is the satisfaction that an individual obtains from a particular course 
of action. 

In Section 1 we introduce utility functions and the expected utility theorem.  This provides a 
means by which to model the way individuals make investment choices. 

Section 2 describes the properties that are normally considered desirable in utility functions to 
ensure that they reflect the actual behaviour of investors.  Chief amongst these are: 

 non-satiation, a preference for more over less, and 

 risk aversion, a dislike of risk.   

These ideas underlie the rest of the course. 

Section 3 considers various methods of measuring risk aversion and the way in which risk aversion 
might vary with wealth.  The concepts of absolute risk aversion and relative risk aversion are 
discussed. 

Section 4 introduces some commonly used examples of utility functions, namely the quadratic, 
log, and power utility functions, and discusses the properties of each.   

Section 5 describes how to deal with situations in which a single utility function is inappropriate.  
In such instances, it may be necessary to vary either the parameters or the form of the utility 
function according to the particular situation to be modelled.  This leads to the idea of state-
dependent utility functions. 

In order to use the expected utility theory, we need an explicit utility function.  In Section 6 we 
look at how we might go about constructing such a utility function. 

Section 7 then uses these utility functions to solve problems involving insurance premiums.  In 
particular, determining the maximum premium a policyholder is willing to pay and the minimum 
amount an insurer should charge. 

Expected utility theory can be useful, but it is not without problems.  In Section 8, we therefore 
consider the limitations of the expected utility theory for risk management purposes – in 
particular, the need to know the precise form and shape of the individual’s utility function.   
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1  Utility theory 

1.1 Introduction  

In this section we use utility theory to consider situations that involve uncertainty, as will normally 
be the case where investment choices are concerned.   

Uncertainty 

In what follows, we assume any asset that yields uncertain outcomes or returns, ie any risky asset, 
can be characterised as a set of objectively known probabilities defined on a set of possible 
outcomes.  For example, Equity A might offer a return to Investor X of either 4 % or +8% in the 
next time period, with respective probabilities of ¼ and ¾.   

Question 

Each year, Mr A is offered the opportunity to invest £1,000 in a risk fund.  If successful, at the end 
of the year he will be given back £2,000.  If unsuccessful, he will be given back only £500.  There is 
a 50% chance of either outcome.  Calculate the expected rate of return per annum on the 
investment. 

Solution 

We can calculate the expected rate of return as follows: 

 
     

 
0.5 2,000 0.5 500

1 25%
1,000

 

 
Given the uncertainty involved, the rational investor cannot maximise utility with complete 
certainty.  We shall see that the rational investor will instead attempt to maximise expected utility 
by choosing between the available risky assets.   

Utility functions 

In the application of utility theory to finance and investment choice, it is assumed that a 
numerical value called the utility can be assigned to each possible value of the investor’s 
wealth by what is known as a ‘preference function’ or ‘utility function’. 

Utility functions show the level of utility associated with different levels of wealth.  For example, 
Investor X might have a utility function of the form: 

 U w w( ) log( )   

where w is the current or future wealth.   
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1.2 The expected utility theorem 

Introduction  

The theorem has two parts. 

1. The expected utility theorem states that a function, U(w), can be constructed as 
representing an investor’s utility of wealth, w, at some future date.   

2. Decisions are made in a manner to maximise the expected value of utility given the 
investor’s particular beliefs about the probability of different outcomes.   

In situations of uncertainty it is impossible to maximise utility with complete certainty.  For 
example, suppose that Investor X invests a proportion a of his wealth in Equity A and places the 
rest in a non-interest-bearing bank account.  Then his wealth in the next period cannot be 
predicted with complete certainty and hence neither can his utility.   

It is possible, however, to say what his expected wealth equals.  Likewise if the functional form of 
U w( )  is known, then it is possible to calculate his expected utility.  The expected utility theorem 
says that when making a choice an individual should choose the course of action that yields the 
highest expected utility – and not the course of action that yields the highest expected wealth, 
which will usually be different. 

Question 

Derive an expression for the expectation of Investor X’s next-period wealth if he invests a 
proportion a of his current wealth w in Equity A (which pays –4% or +8%, with respective 
probabilities ¼ and ¾) and the rest in a non-interest-bearing bank account. 

Solution 

   

 

E w a w aw

a w aw

a w

     

  

 

( ) 1 0.25 0.96 0.75 1.08

1 1.05

(1 0.05 )

 

The answer can also be arrived at directly by noting that the expected next-period wealth will be 
the initial wealth w, plus the expected return of 5% on the investment aw. 

 
Calculating the expected utility 

Suppose a risky asset has a set of N possible outcomes for wealth  Nw w1 , ..., , each with 

associated probabilities of occurring of  Np p1 , ..., , then the expected utility yielded by 

investment in this risky asset is given by: 

 
N

i i
i

E U p U w



1

( ) ( )  
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So the expected utility is a weighted average of the utilities associated with each possible 
individual outcome. 

Question 

State an expression for the expectation of the next-period utility of Investor X, again assuming 
that he invests a proportion a  in Equity A and the rest in a non-interest-bearing bank account.  
He has the utility function U w w( ) log( ) . 

Solution 

       E U w a w a w       0.25 log (1 0.04 ) 0.75 log (1 0.08 )  

 
Note that a risk-free asset is a special case of a risky asset that has a probability of one associated 
with the certain outcome, and zero probability associated with all other outcomes. 

By combining an investor’s beliefs about the set of available assets with a suitable utility function, 
we can determine the optimal investment portfolio for the investor, ie that which maximises 
expected utility in that period.   

Question 

Investor A has an initial wealth of $100, which is currently invested in a non-interest-bearing 
account, and a utility function of the form: 

 U w w( ) log( )  

where w is the investor’s wealth at any time.   

Investment Z offers a return of 18%  or +20% with equal probability.   

(i) What is Investor A’s expected utility if nothing is invested in Investment Z? 

(ii) What is Investor A’s expected utility if they’re entirely invested in Investment Z? 

(iii) What proportion a of wealth should be invested in Investment Z to maximise expected 
utility?  What is Investor A’s expected utility if they invest this proportion in Investment Z? 

Solution 

(i) If nothing is invested in Investment Z, the expected utility is: 

  log (100)= 4.605  

(ii) If Investor A is entirely invested in Investment Z, the expected utility is: 

  0.5   log(0.82  100)  +  0.5  log(1.2  100) = 4.597 
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(iii) If a proportion a of wealth is invested in Investment Z, the expected utility is given by: 

       
     

E U w a a

a a

      

   

0.5 log 100(1 0.18 ) 0.5 log 100(1 0.2 )

0.5 log 100 18 0.5 log 100 20
 

We differentiate with respect to a to find a maximum: 

 dE U w

da a a

a a

       
 


 

 

18 200.5 0.5
100 18 100 20

9 10
100 18 100 20

 

We then set equal to zero: 

  
a a


 
9 10

100 18 100 20
 

Solving, we find a0.2777. 

Checking to see if this gives a maximum: 

 d E U w

da a a

       
 

2

2 2 2
9( 18) 10(20)

(100 18 ) (100 20 )
 

This gives a negative value so it is a maximum. 

Finding the expected utility from investing 27.77% in Investment Z: 

  
       E U w        



0.5 log 100 18 0.2777 0.5 log 100 20 0.2777

4.6066
 

 
1.3 Derivation of the expected utility theorem 

The expected utility theorem can be derived formally from the following four axioms. 

In other words, an investor whose behaviour is consistent with these axioms will always make 
decisions in accordance with the expected utility theorem. 
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1.   Comparability 

An investor can state a preference between all available certain outcomes. 

In other words, for any two certain outcomes A and B, either: 

 A is preferred to B, 

 B is preferred to A, 

or the investor is indifferent between A and B. 

These preferences are sometimes denoted by: 

U U U U (A) (B), (B) (A)  and U U(A) (B)  

Note that A and B are examples of what we previously referred to as iw . 

2.   Transitivity 

If A is preferred to B and B is preferred to C, then A is preferred to C. 

ie U U(A) (B)  and U U(B) (C)      U U(A) (C)  

Also: 

 U U(A) (B)  and U U(B) (C)      U U(A) (C)  

This implies that investors are consistent in their rankings of outcomes.   

3.   Independence 

If an investor is indifferent between two certain outcomes, A and B, then they are also 

indifferent between the following two gambles: 

(i) A with probability p and C with probability (1  p) 

(ii) B with probability p and C with probability (1  p). 

Hence, if U(A)  =  U(B) (and of course U(C) is equal to itself), then: 

 p U(A)  +  (1–p) U(C)   = p U(B)  +  (1–p) U(C) 

Thus, the choice between any two certain outcomes is independent of all other certain outcomes. 

4.   Certainty equivalence 

Suppose that A is preferred to B and B is preferred to C.  Then there is a unique probability, 
p, such that the investor is indifferent between B and a gamble giving A with probability p 
and C with probability (1  p). 

Thus if: 

 U U U (A) (B) (C)  
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Then there exists a unique p ( p 0 1 ) such that: 

       pU A p U C U B  1 –  

B is known as the ‘certainty equivalent’ of the above gamble.   

It represents the certain outcome or level of wealth that yields the same certain utility as the 
expected utility yielded by the gamble or lottery involving outcomes A and C. 

The four axioms listed above are not the only possible set of axioms, but they are the most 
commonly used. 

Question 

Suppose that an investor is asked to choose between various pairs of strategies and responds as 
follows: 

  Choose between:  Response 

   B and D   B 
   A and D   D 
   C and D   indifferent 
   B and E   B 
   A and C   C 
   D and E   indifferent 

Assuming that the investor’s preferences satisfy the four axioms discussed above, how does the 
investor rank the five investments A to E? 

Solution 

From the responses we can note immediately that: 

B > D, D > A, C = D, B > E, C > A, D = E 

Hence, transitivity then implies that: 

B > D > A   
C = D = E 

And so we have that: B > C = D = E > A   
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2 The expression of economic characteristics in terms of utility 
functions 

In mainstream finance theory, investors’ preferences are assumed to be influenced by their 
attitude to risk.  We need to consider, therefore, how an investor’s risk-return preference 
can be described by the form of their utility function. 

The mathematical form of utility functions is normally assumed to satisfy desirable properties that 
accord with everyday observation about how individuals typically act in the face of uncertainty. 

2.1 Non-satiation 

As a basis to understanding risk attitudes, let us first assume that people prefer more 
wealth to less.  This is known as the principle of non-satiation and can be expressed as: 

  ( ) 0U w  

This is clearly analogous to individuals preferring more to less of a good or service in the standard 
choice between different bundles of goods in situations of certainty. 

The derivative of utility with respect to wealth is often referred to as the marginal utility of 
wealth.  Non-satiation is therefore equivalent to an assumption that the marginal utility of wealth 
is strictly positive. 

2.2 Risk aversion 

Attitudes to risk can now be expressed in terms of the properties of utility functions.   

In particular, we can choose the form of the utility function that we use to model an individual’s 
preferences according to whether or not the individual concerned likes, dislikes or is indifferent to 
risk. 

Risk-averse investor  

A risk-averse investor values an incremental increase in wealth less highly than an 
incremental decrease and will reject a fair gamble.   

A fair gamble is one that leaves the expected wealth of the individual unchanged.  Equivalently, it 
can be defined as a gamble that has an overall expected value of zero. 

Question 

Suppose that an unbiased coin is tossed once.  Determine the fairness of a gamble in which you 
receive $1 if it lands heads up but lose $1 if it lands tails up. 

Solution 

The gamble is fair because your expected gain from accepting the gamble is zero and your 
expected wealth remains unchanged (though your actual wealth will of course change by $1).   

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 10 CM2-02: Utility theory 

© IFE: 2019 Examinations The Actuarial Education Company 

Equivalently, the overall expected value of the gamble is equal to: 

 ½  (+$1)  +  ½  (–$1)  =  0 

 
Risk-averse investors derive less additional utility from the prospect of a possible gain than they 
lose from the prospect of an identical loss with the same probability of occurrence.  Consequently 
they will not accept a fair gamble.  They may, however, be willing to trade off lower expected 
wealth in return for a reduction in the variability of wealth.  This is the basic principle underlying 
insurance. 

It is normally assumed that investors are risk-averse and consequently that they will accept 
additional risk from an investment only if it is associated with a higher level of expected return.  
Hence, the importance of the trade-off between risk and return that is a feature of most 
investment decisions.   

For a risk-averse investor, the utility function condition is: 

  ( ) 0U w  

In other words, for a risk-averse investor, utility is a (strictly) concave function of wealth, as shown 
in Figure 2.1. 

 

Figure 2.1 – A concave utility function for a risk-averse investor 

This concavity condition means that the marginal utility of wealth (strictly) decreases with the 
level of wealth and consequently each additional dollar, say, adds less satisfaction to the investor 
than the previous one. 

Question 

Suppose that a risk-averse investor with wealth w is faced with the gamble described in the 
previous question.  Show that this investor will derive less additional utility from the possible gain 
than that lost from the possible loss and hence that risk aversion is consistent with the 
condition U w ( ) 0.  

  

U(w)

w0
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Solution 

The investor’s certain utility if the gamble is rejected is U w( ) .  The investor’s expected utility 
obtained by accepting the gamble is given by: 

      E U U w U w   ½ 1 ½ 1  

The gamble is therefore rejected if: 

 U w U w U w   ½ ( 1) ½ ( 1) ( )  

 U w U w U w   ( 1) ( 1) 2 ( )  

 U w U w U w U w    ( 1) ( ) ( ) ( 1)  

ie if the additional utility from winning the gamble is less than the loss of utility from losing the 
gamble.  This will be the case if U w ( ) 0 , which is by definition the case for a risk-averse investor. 

Figure 2.2 – Losses and gains in utility 

 
Risk-seeking investor 

A risk-seeking investor values an incremental increase in wealth more highly than an 
incremental decrease and will seek a fair gamble.  The utility function condition is: 

  ( ) 0U w  

A risk-seeking or risk-loving investor will accept any fair gamble and may even accept some unfair 
gambles (that reduce expected wealth) because the potential increase in utility resulting from the 
possible gain exceeds the potential decrease in utility associated with the corresponding loss. 

Question 

What is the shape of the utility function of a risk-seeking investor? 

  

U(w)

wealth0 w _ 1 w w + 1

gain

loss
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Solution 

A risk-seeking investor has a convex utility function, because U w ( ) 0 .  The utility function looks 
as follows: 

 

Figure 2.3 – A convex utility function 
 

 
Risk-neutral investor 

A risk-neutral investor is indifferent between a fair gamble and the status quo.  In this case: 

  ( ) 0U w  

Question 

What can we say about the marginal utility of wealth of a risk-neutral investor? 

Solution 

For a risk-neutral investor, U w ( ) 0 .  Thus, U w( )  is constant and so the marginal utility of 
wealth must itself be constant (and positive assuming non-satiation), so that each additional $1 
leads to the same change in utility, regardless of wealth. 

 
The utility function of a risk-neutral investor is a linear function of wealth.  Assuming 
non satiation, then U w( )  > 0 and so U w( )  increases with w for all w.  Thus, the maximisation of 
expected utility is equivalent to the maximisation of expected wealth, in the sense that it will 
always lead to the same choices being made. 
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Question 

(i) Ignoring any pleasure derived from gambling, a risk-averse person will: 

A never gamble                     
B accept fair gambles  
C  accept fair gambles and some gambles with an expected loss 
D none of the above 

(ii) Ignoring any pleasure derived from gambling, a risk-neutral person will: 

I always accept fair gambles 
II always accept unfair gambles 
III always accept better than fair gambles 

A I and II are true 
B II and III are true 
C I only is true 
D III only is true 

(iii) A risk-loving person will: 

I always accept a gamble 
II always accept unfair gambles 
III always accept fair gambles 

A I and II are true 
B II and III are true 
C I only is true 
D III only is true 

Solution 

(i) A risk-averse person will not accept fair gambles.  However, they might accept a gamble 
where they expected, on average, to win.  This would happen if the expected profit from 
gambling was sufficient to compensate them for taking on the risk.  Therefore the correct 
answer is D. 

(ii) A risk-neutral person will be indifferent to accepting a fair gamble, but will accept better 
than fair gambles.  Therefore statement III is always true.  Statement II is false.  Statement I 
is false (we can’t be certain that a person who is indifferent to the gamble will always accept 
it).  The answer is thus D. 

(iii) A risk-loving person will be happy to accept fair gambles.  A risk-loving person will also 
accept some unfair gambles.  However, if the odds are very unfair, even a risk-loving person 
will not accept a gamble.  Thus the correct answer is D. 

Note that this solution shows how risk aversion/neutrality/loving can be defined in terms of a 
person’s attitude towards a fair gamble. 
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3 Measuring risk aversion 

3.1 Introduction 

In practice, we normally assume that an investor is risk-averse and by looking at the sign of U w( )  
we can deduce whether or not this is in fact the case.   

The way risk aversion changes with wealth may also be of interest.  

The degree of risk aversion is likely to vary with the investor’s existing level of wealth.  For 
example, we might imagine that wealthy investors are less concerned about risk. 

3.2 Risk aversion and the certainty equivalent  

Consider the certainty equivalent of a gamble.  For a risk-averse individual this is higher 
than the actual likelihood of the outcome, ie the individual would need to receive odds 
higher than expected to accept this gamble. 

Alternative definitions of the certainty equivalent  

Note that we can distinguish between two different types of certainty equivalents depending 
upon the situation that we are considering, namely: 

 The certainty equivalent of the portfolio consisting of the combination of the existing 
wealth w and the gamble x, which we can denote wc . 

 The certainty equivalent of the gamble x alone, xc , which will also depend upon the 
existing level of wealth.   

Thus, for a fair gamble and a risk-averse investor, it must be the case that wc w   and xc  0 .   

1. ‘Additive’ or ‘absolute’ gamble 

Consider a gamble with outcomes represented by a random variable x, in which the sums won or 
lost are fixed absolute amounts.  The actual sums won or lost are therefore independent of the 
value of initial wealth w.  If the investor accepts the gamble, the resulting total wealth is w + x.   

The certainty equivalent of the combined portfolio of initial wealth plus gamble, wc , is then 
defined as the certain level of wealth that solves:  

 wU c E U w x   ( )  
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The certainty equivalent of the gamble itself is equal to: 

x wc c w   

because we require that x wU w c U c ( ) ( )  and U is a strictly increasing function.   

xc  is negative for a fair gamble and its absolute value represents the maximum sum that the 
risk-averse investor would pay to avoid the risk. 

Question 

Suppose that an unbiased coin is tossed once, and a gamble exists in which an investor receives 
$1 if it lands heads up but loses $1 if it lands tails up.  Further assume that: 

 the investor has initial wealth of $10 and 

 a utility function of the form U w w( ) . 

Determine the investor’s certainty equivalent for this gamble. 

Solution 

With an initial wealth of 10, the expected utility of total wealth is given by: 

     ½ 11 9 3.1583  

The certainty equivalent, wc , of the initial wealth plus the gamble satisfies: 

 wU c ( ) 3.1583  

  wc  3.1583       wc  =  3.15832  =  9.9749 

Hence, the certainty equivalent of the gamble itself is: 

 xc   =  wc  –  w  =  9.9749  –  10  =  –0.0251  

Note that xc  is negative.  This means we would have to pay the investor to accept the gamble.  
Equivalently, the investor would be prepared to pay 0.0251 to avoid the gamble. 

 
2. ‘Multiplicative’ or ‘proportional’ gamble 

This is a gamble, with outcomes represented by a random variable y, in which the sums won or 
lost are all expressed as proportions of the initial wealth.  If the investor accepts the gamble they 
therefore end up with a final wealth of w  y.  For example, in a fair gamble of this type, the 
investor might win 15% of their initial wealth (y = 1.15) with probability ¼ and lose 5% (y = 0.95) 
with a probability of ¾.  Note that in this case, the actual sums won or lost therefore depend 
directly upon the value of initial wealth w, ie a larger w produces larger wins or losses. 
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In this instance, the certainty equivalent of total wealth including the proceeds of the gamble can 
be defined as the level of wealth that satisfies:  

  wc E U w yU   (  )   

The certainty equivalent of the gamble alone is defined as before and is again negative for a fair 
gamble for a risk-averse investor. 

The certainty equivalent and absolute risk aversion  

If the absolute value of the certainty equivalent decreases with increasing wealth, the 
investor is said to exhibit declining absolute risk aversion.  If the absolute value of the 
certainty equivalent increases, the investor exhibits increasing absolute risk aversion. 

Here we have in mind: 

 an additive gamble 

 the certainty equivalent of the gamble alone, xc . 

If the investor’s preferences exhibit decreasing (increasing) absolute risk aversion (ARA), then the 
absolute value of xc  decreases (increases) and the investor is prepared to pay a smaller (larger) 
absolute amount in order to avoid the risk associated with the gamble. 

ie increasing / decreasing ARA   increasing / decreasing xc| | 

The certainty equivalent and relative risk aversion  

If the absolute value of the certainty equivalent decreases (increases) as a proportion of 
total wealth as wealth increases the investor is said to exhibit declining (increasing) relative 
risk aversion. 

Here we are looking at: 

 a multiplicative gamble 

 the certainty equivalent of the gamble alone as a proportion of initial wealth, ie xc
w

.   

If the investor’s preferences exhibit decreasing (increasing) relative risk aversion (RRA), then the 
absolute value of xc w  decreases (increases) with wealth w.   

ie  increasing / decreasing RRA   increasing / decreasing xc
w

 

Example 

We shall see below that the log utility function U w w( ) log( )  exhibits: 

 decreasing absolute risk aversion 

 constant relative risk aversion. 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-02: Utility theory Page 17 

The Actuarial Education Company  © IFE: 2019 Examinations 

To see these results, consider an individual with an initial wealth of $100, who faces a fair gamble 
that offers an equal chance of winning or losing $20.  In this case: 

 

   

 

wU c E U w x   

 



1 log120 log80
2

4.5848

 

   wc e 4.5848 97.980  and xc    97.980 100 2.020  

If instead the individual’s initial wealth is $200, then: 

    wU c   
1 log220 log180 5.2933
2

 

  wc e 5.2933 198.997  

and: xc    198.997 200 1.003  

The absolute value of xc , the certainty equivalent of the (fair) gamble alone, has decreased with 
wealth (for a gamble with fixed absolute proceeds), as is the case with decreasing absolute risk 
aversion. 

Let us now consider the case of a multiplicative gamble.  Suppose the individual is offered an 
equal chance of winning or losing 20% of their initial wealth.  If the initial wealth is $100, then the 
investor could win or lose $20.  This is equivalent to our first example.  We have seen that 

wc 97.980 and that xc  2.020 .  We can also find that: 

 xc
w


  

2.020 0.0202
100

  

If the initial wealth is $200, the investor could win or lose 20%, ie $40.  Then: 

   wU c   
1 log240 log160 5.2779
2

 

   wc e 5.2779 195.959  

And: xc    195.959 200 4.041  

Thus: 

xc
w


  

4.041 0.0202
200

 

ie the absolute value of xc w , the certainty equivalent of the (fair) gamble as a proportion of 
initial wealth, is invariant to wealth (for a gamble with fixed percentage proceeds), corresponding 
to constant relative risk aversion. 
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3.3 Risk aversion and the utility function 

Absolute and relative risk aversion can be expressed in terms of the utility function as 
follows. 

Absolute risk aversion is measured by the function 

 





( )
( )

( )

U wA w
U w

 

Relative risk aversion is measured by the function 

 
( )

( )
( )

U wR w w
U w


 


 

These are often referred to as the Arrow-Pratt measures of absolute risk aversion and relative risk 
aversion. 

The above results concerning the relationship between the certainty equivalent and the measures 
of risk aversion arise because it can be shown that the: 

 absolute value of the certainty equivalent of a fair gamble is proportional to 
U w
U w



( )
( )

  

 absolute value of the certainty equivalent of a fair gamble expressed as a proportion of 

the investor’s wealth is proportional to 
U ww
U w




( )
( )

. 

The following table shows the relationships between the first derivatives of the above 
functions and declining or increasing absolute and relative risk aversion. 

 Absolute risk 
aversion 

Relative risk 
aversion 

 Increasing A'(w) > 0 R'(w) > 0 

 Constant A'(w) = 0 R'(w) = 0 

 Decreasing A'(w) < 0 R'(w) < 0 

 

3.4 Risk aversion and the investment choice 

The way that risk aversion changes with wealth can be expressed in terms of the amount of 
wealth held as risky assets. 

Investors who hold an increasing absolute amount of wealth in risky assets as they get 
wealthier exhibit declining absolute risk aversion.  Investors who hold an increasing 
proportion of their wealth in risky assets as they get wealthier exhibit declining relative risk 
aversion. 

In practice, it is often assumed that as wealth increases, so the absolute amount that a typical 
investor is willing to invest in risky assets will increase, ie that absolute risk aversion decreases 
with wealth. 
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It is not so clear cut as to whether we would expect the proportion of risky assets to increase or 
decrease.  Consequently the assumption of constant relative risk aversion is sometimes made. 
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4 Some commonly used utility functions 

4.1 The quadratic utility function 

The general form of the quadratic utility function is 

    2( )U w a bw cw  

Since adding a constant to a utility function or multiplying it by a constant will not affect the 
decision-making process, we can write the general form simply as: 

   2( )U w w dw  

Thus: 

   ( ) 1 2U w dw  

and  ( ) 2U w d  

Therefore, if the quadratic utility function is to satisfy the condition of diminishing marginal 
utility of wealth (risk aversion), we must have d < 0. 

The consequence of this is that the quadratic utility function can only satisfy the condition 
of non-satiation over a limited range of w: 

 
1

2
w

d
     

This constraint on the range of possible values for w is a significant limitation of using quadratic 
utility functions.   

The absolute and relative risk aversion measures are given by: 

 
( ) 2

( )
( ) 1 2

U w dA w
U w dw
 

 
 

 

 
2

2

4
( ) 0

(1 2 )

dA w
dw

  


 

and: 

 
( ) 2

( )
'( ) 1 2

U w dwR w w
U w dw

 
 


  

 
2

2 2

2 4 2
( ) 0

1 2 (1 2 ) (1 2 )

d d w dR w
dw dw dw

     
  

 

Thus the quadratic utility function exhibits both increasing absolute and relative risk 
aversion. 
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Question 

Draw the quadratic utility function over the range w d 0 –1 / 2  and show why it is valid only for 
w d –1 / 2 , for a non-satiated risk-averse investor.   

Solution 

For non-satiation we require: 

 U w( ) > 0,  ie 1 + 2dw  >  0 

  2dw  >  –1 

 dw  >  –½ 

 w  <  –1/2d, as d 0  for a risk-averse investor. 

 

Figure 2.4 – The range of the quadratic utility function 

 
 

4.2 The log utility function 

The form of the log utility function is: 

 ( ) ln( )U w w   (w > 0) 

Thus: 

  
1

( )U w
w

  

and: 

   
2

1
( )U w

w
 

Thus the log utility function satisfies the principle of non-satiation and diminishing marginal 
utility of wealth. 

U(w)

w0 _1/2d
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This is because we have assumed that the log utility function is defined only for positive values of 

w and U w
w

  
1( ) 0, ie non-satiation and U w

w
  2

1
( ) 0, ie diminishing marginal utility of 

wealth, for w > 0.  

The absolute and relative risk aversion measures are given by: 

 
( ) 1

( )
( )

U wA w
U w w


 


 

 
2

1
( ) 0A w

w
     

and: 

 
( )

( ) 1
( )

U wR w w
U w


 


 

 ( ) 0R w   

Thus the log utility function exhibits declining absolute risk aversion and constant relative 
risk aversion.  This is consistent with an investor who keeps a constant proportion of 
wealth invested in risky assets as they get richer. 

This investor will also invest an increasing absolute amount of wealth in risky assets. 

Utility functions exhibiting constant relative risk aversion are said to be ‘iso-elastic’.   

Iso-elastic means that the elasticity of the marginal utility of wealth is constant with respect to 
wealth. 

The use of iso-elastic utility functions simplifies the determination of an optimal strategy for 
a multi-period investment decision, because it allows for a series of so-called ‘myopic’ 
decisions.  What this means is that the decision at the start of each period only considers 
the possible outcomes at the end of that period and ignores subsequent periods. 

Thus, the individual’s utility maximisation choice in each period is independent of all subsequent 
periods.  The decision is said to be ‘myopic’ because it is short-sighted, ie it does not need to look 
to future periods. 

4.3 The power utility function 

The form of the power utility function is: 

 
1

( )
wU w





  (w > 0) 
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Thus: 

 1( )U w w      

and: 

 2( ) ( 1)U w w      

Thus for the power utility function to satisfy the principle of non-satiation and diminishing 
marginal utility of wealth we require  < 1. 

The absolute and relative risk aversion measures are given by: 

 
( ) ( 1)

( )
( )

U wA w
U w w

 
  


  

 
2

( 1)
( ) 0A w

w
     

and: 

 


   


( )
( ) ( 1)

( )

U wR w w
U w

   

  ( ) 0R w  

Thus, like the log utility function, the power utility function exhibits declining absolute risk 
aversion and constant relative risk aversion. 

It is therefore also iso-elastic. 

The power utility function, in the form given above, is one of a wider class of commonly 
used functions known as HARA (hyperbolic absolute risk aversion) functions.   is the risk 

aversion coefficient. 

This is because, for such functions, the absolute risk aversion is a hyperbolic function of wealth w.  
For example, in the case of the log utility function:   

 w A w ( )  constant 

Hence, a plot of A(w) against w describes a rectangular hyperbola. 

Question 

Suppose Investor A has a power utility function with  1 , whilst Investor B has a power utility 
function with   0.5 . 

(i) Which investor is more risk-averse (assuming that w 0 )? 

(ii) Suppose that Investor B has an initial wealth of 100 and is offered the opportunity to buy 
Investment X for 100, which offers an equal chance of a payout of 110 or 92.  Will the 
Investor B choose to buy Investment X? 
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Solution 

(i) Which investor is more risk-averse? 

Investor B is more risk-averse because they have a lower risk aversion coefficient  .  We can 
show this by deriving the absolute risk aversion and relative risk aversion measures for each 
investor.   

For Investor A: 

 A w R w ( ) ( ) 0  

ie Investor A is risk-neutral. 

For Investor B: 

 A w R w
w

   
1 1( ) 0, ( ) 0

2 2
 

Hence, Investor B is strictly risk-averse for all w > 0. 

(ii) Will Investor B buy Investment X?  

If Investor B buys X, then they will enjoy an expected utility of: 

         0.5 2 110 1 2 92 1 18.08  

If, however, they do not buy X, then their expected (and certain) utility is: 

   2 100 1 18  

Thus, as buying X yields a higher expected utility, the investor ought to buy it. 

 
4.4 Other utility functions 

As evidenced from the above, many different utility functions have appeared in literature 
whose role is to describe the manner in which an investor derives utility from given choices.  
None of the utility functions described above allows much freedom in calibrating the 
function used to reflect a particular investor’s preferences. 

Question 

Consider the following utility function: 

 awU w e ( ) ,  a0  

Derive expressions for the absolute risk aversion and relative risk aversion measures.  What does 
the latter indicate about the investor’s desire to hold risky assets? 
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Solution 

The utility function awU w e ( )  is such that: 

 aw awU w ae U w a e     2( ) and ( )  

Thus: 

U wA w a
U w


  


( )
( ) 0

( )
   and   A w ( ) 0  

and: 

 
wU wR w aw
U w


  


( )

( ) 0
( )

   and   R w a  ( ) 0  

Hence, as the absolute risk aversion is constant and independent of wealth the investor must hold 
the same absolute amount of wealth in risky assets as wealth increases.  Both this, and the fact 
that the relative risk aversion increases with wealth, are consistent with a decreasing proportion 
of wealth being held in risky assets as wealth increases. 
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5 The variation of utility functions with wealth 

5.1 Introduction  

A further extension of the utility function is to consider wealth.  It may not be possible to 
model an investor’s behaviour over all possible levels of wealth with a single utility 
function.  An obvious example is the quadratic utility function described above, which only 
satisfies the non-satiation condition over a limited wealth range.  Sometimes this problem 
can be dealt with by using utility functions with the same functional form but different 
parameters over different ranges of wealth. 

For example, the power utility function could be used to model preferences over all wealth levels, 
but with the value of the risk aversion coefficient   changing with wealth.  Sometimes, however, 
it may be necessary to go even further and use different functional forms over different ranges – 
by constructing state-dependent utility functions. 

5.2 State-dependent utility functions 

State-dependent utility functions can be used to model the situation where there is a 
discontinuous change in the state of the investor at a certain level of wealth.   

They reflect the reality that the usefulness of a good or service to an individual, including wealth, 
may vary according to the circumstances of the individual.  For example, the value of an umbrella 
depends upon whether or not we believe that it is going to rain over the next few hours or days.  
In a similar way, the utility that we derive from wealth may also reflect both our existing financial 
state and our more general circumstances in a way that cannot be captured by a simple functional 
form.  We may therefore need to model preferences using a sophisticated utility function 
constructed by combining one or more of the standard functions discussed above – so that a 
different utility function effectively applies over different levels of wealth.  A utility function of 
this kind may involve discontinuities and/or kinks. 

Such a situation arises when we consider an insurance company that will become insolvent 
if the value of its assets falls below a certain level.  At asset levels just above the insolvency 
position, the company will be highly risk-averse and this can be modelled by a utility 
function that has a discontinuity at the insolvency point. 

However, the consequence of applying the same utility function when the company has just 
become insolvent would be that the company would be prepared to accept a high 
probability of losing its remaining assets for a chance of regaining solvency. 

In other words, at the point of becoming (technically) insolvent the company is very risk-averse, 
being very keen to avoid this happening.  Should it become (technically) insolvent, however, given 
that the damage (to its reputation or otherwise) has already been done, it may then be willing to 
take more risks in order to regain solvent status. 

This is unlikely to reflect reality and so a different form of utility function would be required 
to model the company’s behaviour in this state. 

Question 

Draw the utility function of the above company. 
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Solution 

 

Figure 2.5 – A state-dependent utility function 

ie the company is extremely risk-averse when just solvent, so the curve has a rapidly changing 
gradient.  At the solvency level the curve is vertical as any slight increase in wealth leads to a large 
jump in utility. 

 
Utility functions can also depend on states other than those, such as insolvency, which are 
determined by the level of wealth.  Obvious examples for an individual include the 
differences between being healthy or sick, married or single.  The state of an individual can 
also be affected by the anticipation of future events, eg if a legacy is expected. 

Thus, under some circumstances an individual’s utility might accurately be described by a function 
of the form U h w( , )  where h is an indicator of health. 

U(w)

w0 solvency level
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6 Construction of utility functions 

6.1 Introduction 

In order to use a particular utility function, we need to calibrate the function so that it is 
appropriate to the particular individual to whom it applies.  In other words, we need to find the 
values of the parameters, for example the value of  in the power utility function, that apply to 
the individual. 

One approach that has been proposed is to devise a series of questions that allow the 
shape of an individual’s utility function to be roughly determined.  A utility curve of a 
predetermined functional form can then be fitted by a least squares method to the points 
determined by the answers to the questions.  The curve fitting is constrained by the 
requirement that the function has the desired economic properties (non-satiation, risk 
aversion and, perhaps, declining absolute risk aversion). 

The student may be expected to show how a utility function can be constructed in general 
when there is a discrete set of outcomes and the axioms of this chapter apply. 

6.2 Construction of utility functions by direct questioning 

In theory, to determine an individual’s utility function we could simply ask the individual what it 
is.  However, in practice it is most unlikely that someone will be able to describe the mathematical 
form of their utility function. 

6.3 Construction of utility functions by indirect questioning 

An alternative procedure involves firstly, fixing two values of the utility function for the two 
extremes of wealth being considered.  Secondly, the individual is asked to identify a certain level 
of wealth such that he or she would be indifferent between that certain level of wealth and a 
gamble that yields either of the two extremes with particular probabilities.  The process is 
repeated for various scenarios until a sufficient number of plots is found.   

Example 

Suppose that we wish to determine the nature of an individual’s utility function over the range of 
wealth 0 < w < 4.  One possible approach is to first fix U(0) = 0 and U(4) = 1.  These are the first 
two points on the individual’s utility function. 

We could then ask the individual to identify the certain level of wealth, w such that they would 
be indifferent between w  for certain and a gamble that yields each of 0 and 4 with equal 
probability, ie w  is the certainty equivalent of the gamble.  The expected utility of the gamble is: 

     E U U U      
1 1 1[ ] 0 4 0 1
2 2 2

 

If w 1.8  say, then we know that  U 1.8 0.5  and thus have a third point on the utility function. 
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We could then repeat the exercise for a gamble involving equal probabilities of producing 1.8 and 
4, which yields an expected utility of: 

      E U U U      
1 1[ ] 1.8 4 0.5 1 0.75
2 2

 

If the certainty equivalent of this gamble is, say, 2.88, then we know that U (2.88) 0.75 , giving 
us a fourth point on the individual’s utility function.   

This process can be repeated until a sufficient number of points along the individual’s utility curve 
have been identified and a plot of those points produced.  Ordinary least squares regression or 
maximum likelihood methods can then be used to fit an appropriate functional form to the 
resulting set of values. 

Another form of indirect questioning uses information on the premiums that a person is prepared 
to pay in order to gain an idea of the certainty equivalent of a particular risk.   

Thus, we could ask a person what is the maximum that he would be prepared to pay for insurance 
with a given level of initial wealth and a given potential insurance situation.  Points can then be 
derived on the utility function, which would give rise to the answers given.  By repeating this 
questioning for different initial wealth levels, all the points on the person’s utility function could 
be found. 

Consider an example of a person with a house worth £100,000.  Suppose that the owner is 
considering insurance against a variety of perils, each of which would destroy the house completely.  
These perils have different probabilities of occurring, and the owner has assessed the amount that 
they’re prepared to pay to insure against each peril, as shown in the following table: 

Peril A B C D 

Loss (£K) 100 100 100 100 

Probability 0.05 0.15 0.3 0.5 

Premium owner is 
prepared to pay (£K) 

20 40 60 80 

 
We can use this table to find out some information about the owner’s utility function: 

 Fix two values of the utility function.  For example, let us suppose that the owner derives 
utility of zero if they have no wealth, and utility of 1 if they suffer no loss at all, ie 
U (100) 1,  U (0) 0 , working in units of £1,000.  This is legitimate, because by fixing two 
points we are just choosing a level and a scale for our measure of utility. 

 Consider Peril A.  The owner’s utility of wealth with insurance will equal the expected utility 
of wealth without insurance, if they have paid the maximum premium they’re prepared to 
pay.  With insurance, the level of wealth is certain to be 80.  Without it, it may be 100 with 
probability 0.95, or 0 with probability 0.05. 
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So: 

U U U    (80) 0.05 (0) 0.95 (100) 0.95  

and we have a point on the utility function. 

Question 

Show, using a similar argument, that U (60) 0.85 , and find two more points on the owner’s utility 
function.  Draw a rough sketch of the graph of the utility function. 

Solution 

Consider Peril B.  With insurance against this peril, the owner’s wealth will be 60.  Without it, the 
level of wealth will either be 100 with probability 0.85 or 0 with probability 0.15.  Equating the 
utilities of these two possibilities, we have 

 U U U    (60) 0.85 (100) 0.15 (0) 0.85 . 

Similarly, considering Perils C and D, we obtain U (40) 0.7  and U (20) 0.5 .  So the utility function 
will look something like this: 

 

Figure 2.6 – A concave utility function 

 
The complete utility function can be constructed by considering a large number of different 
scenarios, each of which contributes a point to the curve.  Note that this particular function does 
appear to satisfy both the usual conditions U  > (w) 0  and U  < (w) 0 . 
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7 Maximising utility through insurance 

7.1 Introduction 

Utility theory can be used to explain decisions such as purchasing insurance or buying a 
lottery ticket.  Both of these activities are more likely to diminish the expected wealth of an 
individual.  However, by purchasing insurance, one may be maximising expected utility. 

A person who is risk averse will be prepared to pay more for insurance than the long-run 
average value of claims which will be made. Thus, insurance can be worthwhile for the risk 
averse policyholder even if the insurer has to charge a premium in excess of the expected 
value of claims in order to cover expenses and to provide a profit margin. An insurance 
contract is feasible if the minimum premium that the insurer is prepared to charge is less 
than the maximum amount that a potential policyholder is prepared to pay. 

7.2 Finding the maximum premium 

The maximum premium, P, which an individual will be prepared to pay in order to insure 
themselves against a random loss X  is given by the solution of the equation: 

 [ ( )] ( )E U a X U a P    

where a  is the initial level of wealth. 

Notice the similarity between this equation and the certainty equivalent relationship in 
Section 3.2.  The individual is prepared to pay a certain amount P in order to avoid the uncertainty 
of the random loss X. 

For example, consider an individual with a utility function of ( )U x x and current wealth 

of £15,000.  Assume that this individual is at risk of suffering damages that are uniformly 
distributed up to 15,000. Then the individual’s expected utility is: 

 
15

0

1
[ ( )] 15

15
E U a X xdx    

       x    

15
3/2

0

2 (15 )
3 15

 

       2.582  

Then equating this to U a P( )  gives: 

 U a P P   ( ) 15 2.582  

  P   215 2.582 8.333  

This individual would be willing to pay up to £8,833.33 for insurance that covers any loss. 

This is well above the £7,500 expected loss. 
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7.3 Finding the minimum premium 

The minimum insurance premium Q which an insurer should be prepared to charge for 
insurance against a risk with potential loss Y is given by the solution of the equation: 

 [ ( )] ( )E U a Q Y U a    

where a  is the initial wealth of the insurer. 

Question 

An insurer with initial wealth of £2,000 and a utility of U x x( ) log( )  is designing a policy to cover 
damages of £500 that occur with probability 0.5. 

Calculate the minimum premium that the insurer can charge for the policy. 

Solution 

From the equation above we have: 

  E U Q Y U  (2,000 ) (2,000)  

and with U x x( ) log( )  the expectation becomes: 

 

   
 
 

E U Q Y Q Q

Q Q

Q Q

Q Q

      

   

   

   

0.5 0.5

0.5 0.5

(2,000 ) 0.5log(2,000 500) 0.5log(2,000 )

log (1,500 ) log (2,000 )

log (1,500 ) (2,000 )

log (1,500 ) (2,000 )

 

Equating this with U (2,000) log(2,000)  yields: 

   Q Q   log (1,500 ) (2,000 ) log 2,000  

  Q Q    2(1,500 ) (2,000 ) 2,000  

  Q Q  2 3,500 1,000,000 0  

Resulting in: 

 Q    
   

23,500 3,500 4 1,000,000 1,750 2,015.56
2

 

Taking the positive root gives a minimum premium of £265.56. 
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8 Limitations of utility theory 

The expected utility theorem is a very useful device for helping our thinking about risky 
decisions, because it focuses attention on the types of trade-offs that have to be made.  
However, the expected utility theorem has several limitations that reduce its relevance for 
risk management purposes: 

1. To calculate expected utility, we need to know the precise form and shape of the 
individual's utility function.  Typically, we do not have such information. 

Even using the questioning techniques described earlier in this chapter, it is still optimistic 
to assume that it will be possible to construct a utility function that accurately reflects an 
individual’s preferences.   

 Usually, the best we can hope for is to identify a general feature, such as risk 
aversion, and to use the rule to identify broad types of choices that might be 
appropriate. 

2. The theorem cannot be applied separately to each of several sets of risky choices 
facing an individual. 

3. For corporate risk management, it may not be possible to consider a utility function 
for the firm as though the firm was an individual.   

 The firm is a coalition of interest groups, each having claims on the firm.  The 
decision process must reflect the mechanisms with which these claims are resolved 
and how this resolution affects the value of the firm.  Furthermore, the risk 
management costs facing a firm may be only one of a number of risky projects 
affecting the firm’s owners (and other claimholders).  The expected utility theorem is 
not an efficient mechanism for modelling the interdependence of these sources of 
risk. 

Alternative decision rules that can be used for risky choices include those under 
mean-variance portfolio theory and stochastic dominance. 

Both of these topics are covered in later chapters. 

New theories of non-rational investment behaviour, known as behavioural finance, are also 
covered in this course. 
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Chapter 2 Summary 

The expected utility theorem 

The expected utility theorem states that: 

 a function, U(w), can be constructed representing an investor’s utility of wealth, w 

 the investor faced with uncertainty makes decisions on the basis of maximising the 
expected value of utility. 

Utility functions 

The investor’s risk-return preference is described by the form of their utility function.  It is 
usually assumed that investors both: 

 prefer more to less (non-satiation)  

 are risk-averse. 

Additionally, investors are sometimes assumed to exhibit decreasing absolute risk aversion – 
ie the absolute amount of wealth held in risky assets increases with wealth.  In contrast, 
relative risk aversion indicates how the proportion of wealth held as risky assets varies with 
wealth.   

Absolute and relative risk aversion are measured by the functions: 

 
U wA w
U w





( )
( )

( )
  

wU wR w
U w





( )

( )
( )

  

Amongst the utility functions commonly used to model investors’ preferences are the: 

 quadratic utility function 

 log utility function  

 power utility function. 

State-dependent utility functions 

Sometimes it may be inappropriate to model an investor’s behaviour over all possible levels 
of wealth with a single utility function.  This problem can be overcome either by using: 

 utility functions with the same functional form but different parameters over 
different ranges of wealth, or  

 state-dependent utility functions, which model the situation where there is a 
discontinuous change in the state of the investor at a certain level of wealth. 
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Construction of utility functions

One approach to constructing utility functions involves questioning individuals about their 
preferences. 

The questioning may be direct or indirect.  Indirect questioning may be framed in terms of 
how much an individual would be prepared to pay for insurance against various risks. 

Maximum premium 

With an initial wealth a, the maximum premium, P, that a policyholder would be willing to 
pay in order to avoid a potential loss, X, is given by: 

E U a X U a P  [ ( )] ( )  

Minimum premium 

With an initial wealth a, the minimum premium, Q, an insurer could charge to cover 
potential damages, Y, is given by: 

E U a Q Y U a  [ ( )] ( )  

Limitations of utility theory 

1. We need to know the precise form and shape of the individual's utility function. 

2. The expected utility theorem cannot be applied separately to each of several sets of 
risky choices facing an individual. 

3. For corporate risk management, it may not be possible to consider a utility function 
for the firm as though the firm was an individual. 
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Chapter 2 Practice Questions 

2.1 An investor can invest in two assets, A and B: 

  A B 

expected return 6% 8% 

variance 4%% 25%% 

 
The correlation coefficient of the rate of return of the two assets is denoted by   and is assumed 
to take the value 0.5. 

The investor is assumed to have an expected utility function of the form: 

      p pE U E r Var r     

where   is a positive constant and pr  is the rate of return on the assets held by the investor. 

(i) Determine, as a function of  , the portfolio that maximises the investor’s expected 
utility.   [8] 

(ii) Show that, as   increases, the investor selects an increasing proportion of Asset A. [1] 
    [Total 9] 

2.2 Colin’s preferences can be modelled by the utility function such that:  

 U w w w   ( ) 3 2 , ( 0).  

(i) Determine the range of values over which this utility function can be satisfactorily 
applied.   

(ii) Explain how Colin’s holdings of risky assets will change as his wealth decreases.  

(iii) Which of the following investments will he choose to maximise his expected utility?  

Investment A Investment B Investment C 

outcome probability outcome probability outcome probability 

0.1 0.3 0 0.3 0.2 0.45 

0.3 0.4 0.2 0.2 0.3 0.1 

0.5 0.3 0.9 0.5 0.4 0.45 
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2.3 By considering the relationship R w w A w ( ) ( ) , explain which of the following statements is true 
for a risk-averse individual. 

1. If an investor’s preferences display decreasing relative risk aversion then they must also 
display decreasing absolute risk aversion. 

2. If an investor’s preferences display decreasing absolute risk aversion then they must also 
display decreasing relative risk aversion.  

2.4 Explain the four axioms that are required to derive the expected utility theorem.  

2.5 Jenny has a quadratic utility function of the form U w w w  5 2( ) 10 .  She has been offered a job 
with Company X, in which her salary would depend upon the success or otherwise of the 
company.  If it is successful, which will be the case with probability ¾, then her salary will be 
$40,000, whereas if it is unsuccessful she will receive $30,000.   

(i) Assuming that Jenny has no other wealth, state the salary range over which U w( )  is an 
appropriate representation of her individual preferences. [2] 

(ii) Calculate the expected salary and the expected utility offered by the job.  [2] 

(iii) Suppose she was also to be offered a fixed salary by Company Z.  Determine the minimum 
level of fixed salary that she would accept to work for Company Z in preference to 
Company X.  [3] 

(iv) Suppose that the owners of Company X are both risk-neutral and very keen that Jenny 
should join them and not Company Z.  Determine whether the firm should agree to pay 
her a fixed wage, and, if so, how much.  Comment briefly on your answer.  [1] 

    [Total 8] 

2.6 Suppose that Lance and Allan each have a log utility function and an initial wealth of 100 and 200 
respectively.  Both are offered a gamble such that they will receive a sum equal to 30% of their 
wealth should they win, whereas they will lose 10% of their wealth should they lose.  The 
probability of winning is ¼. 

(i) State whether or not the gamble is fair.  

(ii)  Calculate Lance’s certainty equivalent for the gamble alone and comment briefly on your 
answer.    

(iii)  Repeat part (ii) in respect of Allan and compare your answer with that in part (ii).  

(iv) Confirm that your comments in part (iii) apply irrespective of the individual’s wealth. 

2.7 Jayne’s utility function can be described as  U w w  .  She faces a potential loss of £100,000 in 

the event that her should house burn down, which has a probability of 0.01. 

(i) Calculate the maximum premium that Jayne would be prepared to pay to insure herself 
against the total loss of her house if her initial level of wealth was £140,000 and comment 
on your results.  [3] 

Suppose that UN Life plc has an initial wealth of £100 million and a utility function of the 
form  U w w .   
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(ii) Calculate the minimum premium UN Life plc would require in order to offer insurance to 
Jayne and comment on whether insurance is feasible in this instance. [3] 

    [Total 6] 

2.8 An insurance company will be required to make a payout of £500 on a particular risk event, which 
is likely to occur with a probability of 0.4.  The utility for any level of wealth, w, is given by: 

 U w w ( ) 4,000 0.5  

The insurer’s initial level of wealth is £6000.  Calculate the minimum premium the insurer will 
require in order to take on the risk. [3] 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 2 Solutions 

2.1 (i) Maximising the investor's expected utility 

Assuming that all of the investor’s money is invested, and hence the portfolio weights sum to 1, 
the expected return and variance of a portfolio consisting of a proportion Ax  of wealth held in 

Asset A, and a proportion Ax1  of wealth held in Asset B are: 

 

P A A A B

A A

A

E x E x E

x x

x

  

  

 

(1 )

0.06 0.08(1 )

0.08 0.02

 [1½] 

and: 

  

P A A B B A B A B AB

A A A A

A A

V x V x V x x

x x x x

x x

    

    

  

2 2

2 2

2

2

0.0004 0.0025(1 ) 0.0010 (1 )

0.0019 0.0040 0.0025

 [1½] 

Therefore the investor's expected utility is: 

 
 

p p

A A A

E U E r Var r

x x x

 



 

    2

( ) ( ) ( )

0.08 0.02 0.0019 0.0040 0.0025
 [2] 

We can maximise this function of Ax  by differentiating and setting to zero: 

  A
A

dE x
dx

    0.02 0.0038 0.0040 0  [1] 

  Ax 




20 100

19
    [½] 

or: 

 Ax


 
20 100
19 19

  [½]  
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The second-order derivative is: 

 
A

d E
dx

  
2

2 0.0038 0  [1] 

which confirms that we have a maximum. 
    [Total 8] 

(ii) Show that the investor selects an increasing proportion of Asset A 

Differentiating the formula for the optimal value of Ax  in terms of   gives: 

 Adx
d 

 2
100

0
19

 [1] 

This confirms that as   increases, so Ax , the proportion of wealth held in Asset A, increases too. 

2.2 (i) Range of wealth applicable 

Assuming non-satiation, which requires that U w ( ) 0 , Colin’s preferences can be modelled by 

this utility function provided that w  3
20 .  

(ii) How Colin’s holdings of risky assets vary with his wealth 

Differentiating the expression given in the question yields U w( )  = –2. 

Thus, over the relevant range of w: 

 A w
w

 

2( ) 0

3 2
, A w

w
  

 2
4

( ) 0
(3 2 )

  

and wR w
w

 

2

( ) 0
3 2

, R w
w

  
 2

6( ) 0
(3 2 )

  

Hence, as Colin’s wealth decreases the: 

 absolute amount of his investment in risky assets will increase (as his absolute risk 
aversion decreases as his wealth decreases)  

 proportion of his wealth that is invested in risky assets will increase (as his relative risk 
aversion decreases as his wealth decreases).  

(iii) Colin’s choice of investments 

Integrating the expression in the question gives Colin’s utility function: 

 U w( )   =   a + 3w – w2  

As the properties of utility functions are invariant to linear transformations, we can set the 
arbitrary constant a equal to zero.   
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His expected utility from each of the investments is therefore as follows. 

 EUA  = 0.3  U(0.1)  +  0.4  U(0.3)  +  0.3  U(0.5) 

  = 0.3  0.29  +  0.4  0.81  +  0.3  1.25 

  = 0.786   

 EUB  = 0.3  U(0)  +  0.2  U(0.2)  +  0.5  U(0.9) 

  = 1.057   

 EUC  = 0.45  U(0.2)  +  0.1  U(0.3)  +  0.45  U(0.4) 

  = 0.801   

Thus, Colin will choose Investment B to maximise his expected utility.  

2.3 The relationship between absolute risk aversion A(w) and relative risk aversion R(w) is such that: 

 R w w A w ( ) ( )  

Differentiating with respect to wealth w gives: 

 R AA w
w w
 

 
 

       (1)  

Considering the first statement, Equation (1) tells us that if R
w





0  and so relative risk aversion is 

decreasing, then it must also be the case that A
w





0  (given that w and A(w) are both positive for 

a risk-averse individual), ie R
w





0   A
w





0 .  

An investor who displays decreasing relative risk aversion invests a larger proportion of wealth in 
risky assets as wealth increases.  This also implies a larger monetary amount is invested in risky 
assets, ie decreasing absolute risk aversion. 

Considering the second statement, then if A
w





0 , it does not follow that R
w



 is necessarily 

negative.  This will depend upon the relative magnitudes of  A(w), w and A
w



.  Thus, A
w





0  does 

not imply that R
w





0 .    

An investor who displays decreasing absolute risk aversion invests a larger monetary amount in 
risky assets as wealth increases.  This does not necessarily equate to a larger percentage of 
wealth. 

Hence, the first statement is true, whereas the second statement is false.  
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2.4 The expected utility theorem can be derived formally from the following four axioms:   

1.  Comparability   

An investor can state a preference between all available certain outcomes.    

2.  Transitivity   

If A is preferred to B and B is preferred to C, then A is preferred to C.  

3.  Independence   

If an investor is indifferent between two certain outcomes, A and B, then he is also indifferent 
between the following two gambles: 

(i) A with probability p and C with probability (1  p); and 

(ii) B with probability p and C with probability (1  p).  

4.  Certainty equivalence  

Suppose that A is preferred to B and B is preferred to C.  Then there is a unique probability, p, 
such that the investor is indifferent between B and a gamble giving A with probability p and C with 
probability (1  p). 

B is known as the certainty equivalent of the above gamble.    

2.5 (i) Salary range of utility function 

If:  U w w w  5 2( ) 10  

then: U w w     5( ) 1 2 10  [½] 

and: U w     5( ) 2 10  [½] 

Now in order for Jenny to: 

 prefer more to less, we require that U w ( ) 0 , which in this case will be true for all 

w   5½ 10 , ie w < 50,000  

 be risk-averse, we require that U w ( ) 0 , which in this case will be true for all w > 0.  

Thus, the appropriate salary range is w < $50,000. [1] 
    [Total 2] 

(ii) Expected salary and expected utility 

Her expected salary is given by: 

 ¾  40,000  +  ¼  30,000  =  $37,500 [1] 
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Her expected utility is given by: 

 ¾  [(40,000 – 10–5(40,000)2] + ¼  [(30,000 – 10–5(30,000)2] =  23,250 [1] 
    [Total 2] 

(iii) Minimum fixed salary 

The minimum level of salary, x say, is equal to the certainty equivalent of the job offer from 
Company X.    [½] 

This is given by: 

 

U x

x x

x x







 

   

5 2

5 2

( ) 23,250

10 23,250

10 23,250 0  [½] 

Using the formula for solving quadratic equations we find: 

 x  =  63,229 or 36,771 [1½] 

As the first of these values is greater than the maximum salary available when Company X is 
successful it can be disregarded.  Hence the minimum level of fixed salary that she would accept 
to work for Company Z is $36,771. [½] 
    [Total 3] 

(iv) Should Company X offer a fixed salary? 

Yes – if they are risk-neutral, then they should offer Jenny a fixed salary in preference to a variable 
one.  Jenny is risk-averse and therefore derives additional utility from the certainty offered by a 
fixed salary.   [½] 

Therefore, Company X will be able to entice Jenny to work for them in return for a salary of just 
(or strictly speaking slightly above) $36,771, instead of the expected salary of $37,500 in (i). [½] 
    [Total 1] 

2.6 (i) Is the gamble fair? 

For any given initial level of wealth w, the expected value of the gamble is given by: 

 ¼  1.3w  +  ¾  0.9w  –  w  =  0 

Thus, the gamble is fair.  

(ii) Lance’s certainty equivalent of the gamble alone 

Lance’s expected utility should he undertake the gamble is given by: 

 E[U] = ¼ log(130) + ¾ log(90) = 4.59174  
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Thus, his certainty equivalent for the initial wealth and the gamble is given by: 

 
w w

w

U c c

c e

 

  4.59174

( ) log( ) 4.59174

98.666
 

and the certainty equivalent for the gamble alone is given by: 

 x wc c w   1.334   

This is negative because he is risk-averse.  

The negative value of xc  means that Lance would have to be paid to accept the gamble. 

(iii) Allan’s certainty equivalent of the gamble alone 

Allan’s expected utility should he undertake the gamble is given by: 

 E[U] = ¼ log(260) + ¾ log(180) = 5.28489  

His certainty equivalent for the gamble alone is: 

 xc e   5.28489 200 2.668   

Comparing the two answers, we can see that the two certainty equivalents are equal to the same 
proportion of each individual’s initial wealth.  This is because the log utility function is consistent 
with preferences that exhibit constant relative risk aversion. 

(iv) Relative risk aversion 

The constancy of relative risk aversion with a log utility function can be confirmed by 
differentiating it, ie: 

If:  U w w( ) log( )  

then:  U w U w
w w

    2
1 1

( ) and ( )  

Thus:  
U wR w w
U w


  

( )

( ) 1
( )

   and   R w ( ) 0  

So, the log utility function exhibits constant relative risk aversion irrespective of w  – though the 
log utility function is of course defined only for w 0 .  

2.7 (i) Jayne’s maximum premium 

Let P  be the maximum insurance premium Jayne is prepared to pay and X be the loss she faces.  
Then Jayne’s utility with insurance is: 

 U P 140,000  [½] 
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Whereas her expected utility without insurance is: 

 E U X   [ (140,000 )] 0.99 140,000 0.01 40,000 372.424  [½] 

Equating these two expressions gives: 

 P 140,000 372.424  

ie P   2140,000 372.424 1,300   [1] 

The maximum premium of £1,300 exceeds the expected loss of £1,000.  This is because Jayne is 
risk-averse.   [1] 
    [Total 3] 

(ii) UN Life’s minimum premium 

Let Q  be the minimum premium required by UN Life, then its utility without insurance is 
100,000,000.   [½] 

Whereas its expected utility with insurance is: 

 

E U m Q X Q Q

Q

       

 

[ (100 )] 0.99 (100,000,000 ) 0.01 (99,900,000 )

99,999,000  [½] 

Equating these two expressions gives: 

 Q 100,000,000 99,999,000  

ie Q 1,000   [1] 

So, the minimum premium required by UN Life is less than the maximum premium Jayne is 
prepared to pay, which means that the insurance contract is feasible. [1] 

Notice that the minimum insurance premium that the insurance company will accept is equal to 
the expected value of the claim.  This is because the insurance company is risk-neutral.  
    [Total 3] 

2.8 The minimum premium Q is given by the equation: 

  E U a Q Y U a  ( ) ( )  [1] 

where a is the initial wealth and Y is the payout.  In this case we have: 

 

 E U Q Y U Q U Q

Q Q

Q

      

     

 

(6,000 ) 0.4 (6,000 500) 0.6 (6,000 )

0.4(4,000 0.5(5,500 )) 0.6(4,000 0.5(6,000 ))

0.5 6,900

 [1] 
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Equating this to U    (6,000) 4,000 0.5 6,000 7,000  leads to: 

 Q  0.5 6,900 7,000  

  Q  200   [1] 
    [Total 3] 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-03: Stochastic dominance and behavioural finance Page 1 

The Actuarial Education Company  © IFE: 2019 Examinations 

 
Stochastic dominance and  

behavioural finance 
 

Syllabus objectives 

1.2 Rational choice theory 

1.2.7 State conditions for absolute dominance and for first- and second-order 
dominance. 

1.3 Behavioural economics 

1.3.1 Describe the main features of Kahneman and Tversky’s prospect theory 
critique of expected utility theory. 

1.3.2 Explain what is meant by ‘framing’, ‘heuristics’ and ‘bias’ in the context of 
financial markets and describe the following features of behaviour in such 
markets: 

 social influence and the herd instinct 

 anchoring and adjustment 

 self-serving bias 

 loss aversion 

 confirmation bias 

 availability bias 

 familiarity bias 

1.3.3 Describe the Bernartzi and Thaler solution to the equity premium puzzle. 
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0 Introduction  

This chapter focuses on the topics of stochastic dominance and behavioural finance.  

Recall that the expected utility theorem suggests that a rational investor will aim to maximise 
their expected utility.  In practice, however, it is not always possible to model choices with utility 
functions.  Consequently, alternative approaches, such as stochastic dominance, may then be 
used to say something about an investor’s choices without knowing the exact specification of the 
investor’s utility function.   

In addition, there is much experimental and empirical evidence to suggest that in practice 
investors are often irrational, in the sense that their actions are inconsistent with the predictions 
of utility theory.  Instead, they appear to be subject to a number of biases and errors.  Behavioural 
finance analyses these biases and their implications for financial decision making. 
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1 Stochastic dominance 

1.1 Background  

Absolute dominance is said to exist when one investment portfolio provides a higher return 
than another in all possible circumstances.  Clearly, this situation will rarely occur so we 
usually need to consider the relative likelihood of out-performance, ie stochastic 
dominance. 

We consider two investment portfolios, A and B, with cumulative probability distribution 
functions of returns FA and FB respectively.   

So the probability that portfolio i yields an end-of-period wealth, X, less than or equal to L is given 
by: 

  
L L

i i i i
x

P X L F L f x dx P X L F L p x


      ( ) ( ) ( ) or ( ) ( ) ( )  

depending upon whether or not the distribution of possible outcomes is continuous or discrete.  

if x( )  or ip x( )  is therefore the corresponding probability (density) function.   

1.2 First-order stochastic dominance 

The first-order stochastic dominance theorem states that, assuming an investor prefers 
more to less, A will dominate B (ie the investor will prefer portfolio A to portfolio B) if: 

 ( ) ( ),A BF x F x  for all x, and 

 ( ) ( )A BF x F x  for some value of x. 

This means that the probability of portfolio B producing a return below a certain value is 
never less than the probability of portfolio A producing a return below the same value, and 
exceeds it for at least some value of x.   

For example, if two normal distributions have the same variance but different means, the 
one with the higher mean displays first-order stochastic dominance over the other. 

Question 

Assuming that portfolio A first-order stochastically dominates portfolio B, draw a diagram 
illustrating the relationship between AF x( )  and BF x( ) , the respective cumulative probability 
distribution functions. 
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Solution 

Cumulative 
probability

x0

1

B 

F

)x(

)x(

F 

A

 

Figure 3.1: First-order stochastic dominance 

The important points to note are that: 

 AF x( )  and BF x( )  are both monotonically increasing functions of x 

 AF x( )  is never above (to the left of) BF x( ) . 

 
Using first-order stochastic dominance to make investment decisions is similar to basing choices 
on the ‘more to less’ criterion discussed in the previous chapter.  With this in mind, consider 
Asset X and Asset Z, which offer returns as follows according to whether or not there is a ‘good’ or 
‘poor’ investment outcome. 

 Asset X Asset Z 

Good outcome  6% 10% 

Poor outcome 5% 8% 

 
In this instance, it is clear that an investor who prefers more to less should choose Asset Z, which 
produces a higher return under both possible outcomes.  Asset Z is said to absolutely dominate 
Asset X.   

Suppose instead, however, that Assets X and Z offer the following possible outcomes with 
associated probabilities: 

Asset X Asset Z 

Return Probability Return Probability 

7% ½ 8% ½ 

5% ½ 6% ½ 
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In this case the investor’s choice is not quite as clear-cut because it is possible that Asset X may 
produce a higher actual return, although we suspect that the investor who prefers more to less 
should choose Asset Z, which offers a higher expected return.  The first-order stochastic 
dominance theorem formalises the intuition behind the choice. 

Consider the table below, which shows the cumulative probabilities of obtaining a return equal to 
or less than any particular value for each of these two assets. 

 Cumulative probability 

Return Asset X Asset Z 

5% ½ 0 

6% ½ ½ 

7% 1 ½ 

8% 1 1 

 
Asset Z offers a (cumulative) probability of receiving any amount L or less that is never greater, 
and sometimes strictly less, than that offered by Asset X,  

ie P( Return  L for Asset Z)     P( Return  L for Asset X)  for L  = 5, 6, 7, 8 

with the inequality being strict for L = 5, 7. 

Equivalently: 

ZF x( )   XF x( )   for each of x = 5, 6, 7, 8, with 

ZF (5)  < XF (5)  and ZF (7)  < XF (7) . 

Hence, Asset Z (first-order stochastically) dominates Asset X.  Consequently, an investor who 
prefers ‘more to less’ should choose Asset Z. 

On the diagram below, the cumulative probability function for Asset Z, ZF x( ) , is never above that 

of Asset X, XF x( ) . 

Cumulative 
probability

Return, %0

1

F

F

)x(

)x(

5 6 7 8

X

Z

 

Figure 3.2: Assessing first-order stochastic dominance for Assets X and Z 
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A slightly different way of expressing the same idea is to say that Z (first-order stochastically) 
dominates X if Z can be obtained from X by shifting probability from lower to higher outcome 
levels.   

Question 

Consider two risky assets A and B.  A yields $1 with probability ¼ and $2 with probability ¾.  B 
yields $1 with probability ½ and $2 with probability ½.   

(i) Explain why A first-order dominates B.  

Now consider Asset C, which yields $1 with probability ¼ and $3 with probability ¾. 

(ii) Determine whether C first-order dominates A or B. 

Solution 

(i) A can be obtained from B by shifting a probability of ¼ from the $1 outcome to the higher 
$2 outcome.  Consequently A first-order dominates B. 

(ii) C can be obtained from A by shifting ¾ from $2 to $3 and so C dominates A.  C also 
dominates B because first-order stochastic dominance is transitive. 

These results (C > A > B) are confirmed by probabilities shown in the table below. 

Return 
Probability Cumulative probability 

A B C A B C 

$1 ¼ ½ ¼ ¼ ½ ¼ 

$2 ¾ ½ 0 1 1 ¼ 

$3 0 0 ¾ 1 1 1 

 
 
Often first-order stochastic dominance will not be a sufficiently strong criterion by which to 
choose between assets.  On such occasions, we need to call upon the stronger criterion of 
second-order stochastic dominance. 

1.3 Second-order stochastic dominance 

The second-order stochastic dominance theorem applies when the investor is risk-averse, 
as well as preferring more to less. 

In this case, the condition for A to dominate B is that 

 ( ) ( ) ,
x x

A Ba a
F y dy F y dy   for all x,  

with the strict inequality holding for some value of x, and where a  is the lowest return that 
the portfolios can possibly provide. 
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The condition for second-order stochastic dominance is similar to that for first-order stochastic 
dominance, except that it is expressed in terms of the sums of the cumulative probabilities, rather 
than simply the cumulative probabilities themselves.   

The interpretation of the inequality above is that a risk-averse investor will accept a lower 
probability of a given extra return at a low absolute level of return in preference to the same 
probability of extra return at a higher absolute level.  In other words, a potential gain of a 
certain amount is not valued as highly as a loss of the same amount. 

For example, if two normal distributions have the same mean but different variances, the 
one with the lower variance displays second-order stochastic dominance over the other. 

Consider Assets U and V, which offer returns according to the table below: 

 Probability 

Return Asset U   Asset V 

6% ¼ 0 

7% ¼ ¾ 

8% ¼ 0 

9% ¼ ¼ 

 

Question 

Calculate UF x( )  and VF x( )  and explain why an investor cannot choose between Assets U and V on 
the basis of first-order stochastic dominance alone. 

Solution 

The cumulative probabilities are as follows. 

Return 
Cumulative probability 

UF x( )  VF x( )  

6% ¼ 0 

7% ½ ¾ 

8% ¾ ¾ 

9% 1 1 

 
The choice between Assets U and V cannot be based upon first-order stochastic dominance alone, 
because neither asset dominates the other, ie: 

UF (6)  > VF (6) , but UF (7)  < VF (7) . 
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Alternatively, we could say that neither asset first-order stochastically dominates the other 
because we cannot obtain U from V by shifting probability from lower to higher outcome levels; 
nor can we obtain V from U by shifting probability from lower to higher outcome levels. 

 
Although we cannot choose between U and V on the basis of first-order stochastic dominance, we 
can choose between them on the basis of second-order stochastic dominance. 

Assets U and V both offer the same chance of a 9% return.  In addition, U offers a wider spread of 
returns about 7% – ie a greater chance of an 8% return, but at the risk of a greater chance of 
obtaining only 6%.  Assets U and V therefore both offer the same expected return of 7½%, but the 
variance of return is greater for Asset U.  Thus, a risk-averse investor should choose Asset V. 

An investor who bases their choices upon the second-order stochastic dominance theorem will 
make identical choices to those implied by non-satiation and risk aversion, assuming that they are 
able to make a choice.   

We shall now show that Asset V (second-order stochastically) dominates Asset U. 

Consider the following table that shows the sums of the cumulative probability functions, which is 
only a valid approach if the step sizes of the returns are all the same. 

 Sum of cumulative probabilities 

Return U V 

6% ¼ 0 

7% ¾ ¾ 

8% 1½ 1½ 

9% 2½ 2½ 

 
In this case, V (second-order stochastically) dominates U because the sum of its cumulative 
probabilities is never greater than that of U and for one outcome is strictly less,  ie : 

 
x x

V Ua a
F y dy F y dy

 
 6 6

( ) ( ) ,  for x = 6, 7, 8, 9  

with the strict inequality holding for x 6 7 . 

According to the second-order stochastic dominance theorem, the investor should therefore 
always choose Asset V – which offers the same expected return as Asset U but with a lower 
variance. 

Question 

Draw a diagram showing UF x( )  and VF x( )  and use it to explain why Asset V (second-order 
stochastically) dominates Asset U. 
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Solution 

Cumulative 
probability

Return, %0

1

F

F

)x(

)x(

6 7 8 9

A

B

U

V

 

Figure 3.3: Assessing the stochastic dominance of Assets U and V 
 
In this case, first-order stochastic dominance is insufficient to choose between the assets, because 
the cumulative probability graphs cross.   

U is second-order stochastically dominated by V because the extra possibility of obtaining 8% 
(represented by the box marked A) is of less value to the investor than the possibility of avoiding 
6% (represented by Box B).   

 
The main advantage of using stochastic dominance is that it does not require explicit formulation 
of the investor’s utility function, but can instead be used to make investment decisions for a wide 
range of utility functions.   

The main disadvantages are that it: 

 may be unable to choose between two investments, and  

 generally involves pair-wise comparisons of alternative investments, which may be 
problematic if there is a large number of investments between which to choose. 
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2 Behavioural finance 

2.1 Introduction  

Although traditional economic theory assumes that investors always act rationally, ie with the aim 
of maximising expected utility, experimental and actual evidence suggests that this may not 
always be the case.   

The field of behavioural finance looks at how a variety of mental biases and decision-making 
errors affect financial decisions.  It relates to the psychology that underlies and drives financial 
decision-making behaviour.   

2.2 Prospect Theory critique of expected utility theory 

Since its inception, the expected utility theory (EUT) has drawn criticism from various 
quarters, primarily as a result of its axiomatic characterisation of preferences.  These critics 
include Friedman and Savage (1948), who argued that an individual can have different utility 
functions (to be understood as attitudes to risk), depending on initial wealth.  This 
observation was motivated by people’s contrasting tendencies to buy insurance (risk-
averse) and gamble (risk-seeking).  In the Friedman and Savage approach, individuals are 
risk-seeking at low levels of wealth, and risk-averse at high levels of wealth.   

Wealthy individuals may wish to preserve their current position, and thus be willing to pay for 
insurance in order to protect themselves against adverse events, even though they could 
withstand the financial consequences without insurance.  This is risk-averse behaviour. 

Less wealthy individuals, who consider that they have little to lose, may spend money on 
gambling in a bid to improve their financial position, rather than on insurance to protect the little 
they have.  This is risk-seeking behaviour. 

Similarly, Markowitz (1952) also criticised the general underpinnings of the EUT, arguing 
that utility should be measured relative to changes from a reference point rather than in 
absolute values of wealth. 

The ‘reference point’ could be the current level of wealth. 

Perhaps the most famous critique of the EUT emerged in the 1970s from a series of papers 
by two psychologists, namely Daniel Kahneman and Amos Tversky, culminating in their 
seminal 1979 paper on prospect theory.   

Prospect theory was borne out of various laboratory experiments and sought to detail how 
human decision-making differs systematically from that predicted by EUT, and how human 
beings consistently violate the rationality axioms that form its basis.  The model is 
descriptive: it tries to model real life choices, rather than optimal decisions. 

There are two phases of decision-making described in prospect theory: 

1. Editing/framing phase – where outcomes of a decision are initially appraised and 
ordered. 

2. Evaluation phase – choosing among the appraised options. 
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Editing leads to a representation of the acts, outcomes and contingencies associated with a 
particular choice problem.  It involves a number of basic operations that simplify and 
provide context for choice. The two basic operations involved in the editing process (others 
also exist) are: 

 Acceptance: people are unlikely to alter the formulation of choices presented. 

 Segregation: people tend to focus on the most ‘relevant’ factors of a decision 
problem. 

Within this process, framing effects refer to the way in which a choice can be affected by 
the order or manner in which it is presented.  Standard economic theory considers such 
transformations to be innocuous with no substantive impact on decisions. 

Question 

Identify which of the following two alternatives you would prefer: 

1.   $30 for certain plus a 50% chance of losing $20 

2.   $10 for certain plus a 50% chance of winning $20 

Solution 

The two alternatives are of course identical in that they both offer an equal chance of winning 
either $30 or $10.  So, standard economic theory would tell us that people should be indifferent 
between the two alternatives. 

However, experimental evidence based on similar choices suggests that people can and do view 
identical alternatives differently depending on how they are framed or worded.  Thus, the 
proportion of people selecting each choice typically differs greatly from 50%.   

 
As another example of the effect of framing, in the book: 

 Plous S, (1993), The psychology of judgement and decision making, McGraw-Hill Inc 

Plous describes an experiment in which people were asked the following questions about the 
length of a film (the same one) they had all recently watched: 

 Question 1: How long was the movie? 

 Question 2: How short was the movie? 

The mean answer to the first question was 2 hours and 10 minutes, whereas that to the second 
question was 1 hour and 40 minutes! 

Once prospects are edited, decision makers move on to the evaluation stage where they 
make their choice.  Kahneman and Tversky observed a number of behavioural patterns in 
people when evaluating various alternatives.  These include, most importantly: 

 Reference dependence: people derive utility from gains and losses measured 
relative to some reference point, rather than from absolute levels of wealth.  This 
emerges from the idea that people are more attuned to changes in attributes rather 
than absolute magnitudes.  This generates utility curves with a point of inflexion at 
the chosen reference point. 
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 Loss aversion: people are much more sensitive to losses (even small ones) than to 
gains of the same magnitude.  In experiments, the pain from a loss is estimated to 
be twice as strong as the pleasure from an equivalent gain.  Thus, utility curves are 
steeper in the domain of losses than they are in the domain of gains. 

 Endowment effects: the endowment effect occurs when a person’s preferences 
depend upon what they already possess.  This implies that a person’s preferences 
depend upon a certain reference point, perhaps determined by the person’s 
possessions.  Ownership itself creates satisfaction. 

In addition: 

 Changing risk attitudes: individuals tend to be risk averse in the domain of gains, 
and risk seeking when pondering losses. 

 Diminishing sensitivity: as you gain (or lose) more, the marginal impact on utility of 
additional gains (losses) falls. Thus, a utility function is concave in the region of 
gains but convex in the region of losses. 

 Probability weighting: people do not weight outcomes by their objective 
probabilities, but by transformed probabilities or decision weights.  In general, 
weights are computed using a weighting function such that low probabilities are 
overweighted while high probabilities are underweighted. 

 Certainty effect: when an outcome is certain and becomes less probable, the impact 
on your utility is greater than a similar reduction in probability for an outcome that 
was previously probable. For example, the impact on your utility of dropping the 
probability of earning $100 from 100% to 99% is more potent than dropping 
probability of earning $100 from 50% to 49%. 

 Isolation effect: when choosing between alternatives, people often disregard 
components that the alternatives share and instead focus on what sets them apart, 
in order to simplify the decision. Since different choices can be decomposed in 
different ways, this invariably leads to inconsistent choices and preferences. 

To illustrate the point made above about ‘changing risk attitudes’, in their paper: 

 Kahneman, D and Tversky, A (1979), Prospect theory: an analysis of decision under risk, 
Econometrica 47  

Kahneman and Tversky describe an experiment in which they asked people to choose between 
two alternatives: 

 Alternative 1: an 80% chance of winning $4,000 and a 20% chance of winning nothing 

 Alternative 2: a 100% chance of winning $3,000.   

Although the first alternative offers higher expected winnings ($3,200 v $3,000 for certain), 80% 
of people chose Alternative 2.  This choice is consistent with the assumption of risk aversion that 
underpins expected utility theory.  A risk-averse person may prefer a more certain outcome, even 
if the expected gains are lower (because the additional value derived from the extra certainty 
outweighs the additional value of the higher possible return).     
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The same people were then offered the following choice:     

 Alternative 3: an 80% chance of losing $4,000 and a 20% chance of losing nothing 

 Alternative 4: a 100% chance of losing $3,000.   

Here 92% of people chose Alternative 3, even though the expected losses are greater (expected 
losses of $3,200 v a certain loss of $3,000).  This evidence suggests that rather than being 
risk-averse, people may actually become risk-seeking when facing losses.   

Question 

Outline the key findings of prospect theory, and hence sketch a utility function of the form 
predicted by prospect theory. 

Solution 

Overall, prospect theory suggests that: 

 Utility is based on gains and losses relative to some reference point.   

 The reduction in utility from a loss is typically twice as much as the increase in utility from 
the same-sized monetary gain. 

 People are typically risk-averse when considering gains relative to the reference point and 
risk-seeking when considering losses relative to the reference point.   

 People experience diminishing sensitivity to gains and losses, so, for example, an initial 
gain has a greater impact on utility than a subsequent gain of the same size. 

So, prospect theory would predict a utility function of the following form: 

Utility

Losses

Reference 
point

Gains

 
Figure 3.4: Prospect theory utility function 
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2.3 Heuristics and behavioural biases 

Psychologists have long posited that the human brain consists of two separate systems of 
thinking.  System 1 is the instinctive part of the brain that takes quick and effortless 
decisions, while System 2 is slow, deliberate and calculating, akin to the ‘rational’ thinker 
assumed by EUT.  Which part of the brain is engaged depends largely on the decision 
context, including the environment and prevailing emotional state.  Nonetheless, according 
to psychologists, System 1 is crucial to daily decisions.  People essentially rely on System 1 
unless System 2 regulates it.  

Heuristics 

System 1 involves dependence on shortcuts or ‘heuristics’ in order deliver quick decisions.  
These may, however, violate the axioms of rationality underlying EUT.  Some of these 
heuristics include: 

Anchoring and adjustment 

‘Anchoring and adjustment’ is a term used to explain how people produce estimates.  
People start with an initial idea of the answer (‘the anchor’) and then adjust away from this 
initial anchor to arrive at their final judgement.   

Thus, people may use experience or ‘expert’ opinion as the anchor, which they amend to 
allow for evident differences to the current conditions.  The effects of anchoring are 
pervasive and robust and are extremely difficult to ignore, even when people are aware of 
the effect and aware that the anchor is ridiculous.   

Even patently ridiculous anchor values have been shown to influence post-anchor estimates.  For 
example, the result of the spin of a roulette wheel may be seen to influence people’s estimates of 
the average daily temperature in London. 

The anchor does not have to be related to the good.  Nor does the anchor have to be 
consciously chosen by the consumer.  If adjustments are insufficient, final judgments will 
reflect the (possibly arbitrary) anchors.   

The following example is taken from the paper: 

 Northcraft G B, and M A Neale , Experts, amateurs and real estate: an anchoring and 
adjustment perspective on property pricing decisions, Organizational behaviour and 
human decision processes, 39.   

An experiment was conducted in which a large number of estate agents were asked to value a 
property and come up with a recommended selling price.  They were each provided with an 
information booklet containing a large volume of information concerning the property.  The 
booklet was identical for all of the agents, except that four different versions were used, each 
with a different listed (ie suggested) price for the property.   
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It turned out that the average selling price recommended by the agents increased with the listed 
price as shown in the following table:   

Listed price ($) 
Average recommended selling 

price ($) 

119,900 (Version 1) 117,745 

129,900 (Version 2) 127,836 

139,900 (Version 3) 128,530 

149,900 (Version 4) 130,981 

 
In the above example, the anchor value is the listed price.  Thus, the agents’ estimates were 
influenced by the ‘anchor’ or benchmark given to them in the form of the listed price.  In addition, 
it turns out that the further the anchor value gets from the ‘true’ value, then the more it will pull 
people’s estimates away from the true value.   

Anchoring can have important implications for investment decisions, not least if individual 
investors rely on seemingly irrelevant yet salient data or statistics in order to guide their 
portfolio choices (eg expected returns from one-off investments in other unrelated 
industries, etc). 

Representativeness 

Decision-makers often use similarity as a proxy for probabilistic thinking.   

This is the idea behind ‘representativeness’ – that a familiar scenario can be used as being 
representative of other similar cases.  For example, an insurer may quote a home insurance 
premium with reference to another house on the same street. 

Representativeness occurs because it is easier and quicker for our brain to compare a 
situation to a similar one (System 1) than assess it probabilistically on its own merits 
(System 2).   

Representativeness is one of the most commonly-used heuristics and can, at times, work 
reasonably well.  Nonetheless, similarity does not always adequately predict true 
probability, leading to irrational outcomes.   

This is also related to the law of small numbers, where people assess the probability of 
something occurring based on its occurrence in a small, statistically-unrepresentative 
sample due to a desire to make sense of the uncertain situation (the name is an ironic play 
on the law of large numbers in statistics).   

Representativeness can lead individuals to base their decision on whether to invest in a 
particular stock, or not, on the basis of its price over a few recent periods, rather than its 
long-term movement or the underlying fundamentals of the company. 

Availability 

This heuristic is characterised by assessing the probability of an event occurring by the 
ease with which instances of its occurrence can be brought to mind.  Vivid outcomes are 
more easily recalled than other (perhaps more sensible) options that may require System 2 
thinking. 
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This can lead to biased judgements when examples of one event are inherently more 
difficult to imagine than examples of another.  For example, individuals living in areas that 
are prone to extreme weather events may only be compelled to take out home insurance 
after they have been directly affected by such events rather than beforehand, and may even 
cease their coverage after some time as the memory of the event subsides. 

Another example here concerns the incidences of deaths due to car crashes and cancer.  When 
asked to estimate the relative numbers of deaths due to each, people tend to overestimate the 
number of deaths due to car crashes perhaps because they receive more publicity and are easier 
to imagine.   

Familiarity 

This heuristic is closely-related to availability, and describes the process by which people 
favour situations or options that are familiar over others that are new.  This may lead to an 
undiversified portfolio of investments if people simply put their money in industries or 
companies that they are familiar with rather than others in alternative markets or sectors. 

Home-country bias refers to people’s tendency to disproportionally invest in stocks from 
their home country, rather than forming an internationally-diversified portfolio. 

Behavioural biases 

The interaction between System 1 and System 2 can lead to several behavioural quirks or 
biases that have been documented by psychologists.  These biases propose significant 
deviations from the rational outcomes proposed by standard economic thought, 
represented by EUT.  Several have been proposed in the literature.  Among these are: 

Overconfidence 

Overconfidence occurs when people systematically overestimate their own capabilities, 
judgement and abilities.   

For example, if you ask 100 people if they are better than average drivers, then you might not be 
surprised if more than 50% of them reply ‘yes’. 

Moreover, studies show that the discrepancy between accuracy and overconfidence 
increases (in all but the simplest tasks) as the respondent becomes more knowledgeable!  
Accuracy increases to a modest degree but confidence increases to a much larger degree.   

Overconfidence could therefore be a potentially serious problem in fields such as investment 
where most of the participants are likely to be highly knowledgeable.  Moreover, the available 
evidence suggests that even when people are aware that they are overconfident they remain so.   

This may, in turn, be a result of: 

 Hindsight bias – events that happen will be thought of as having been predictable 
prior to the event, events that do not happen will be thought of as having been 
unlikely prior to the event. 

A possible example of the first type of event is the credit crunch of 2007/09.   

A possible example of the second type of event is when an underdog is heavily beaten in a 
sporting event.  Although supporters may have had high hopes of an upset prior to the 
event, after the event a heavy defeat will always have seemed inevitable.   
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 Confirmation bias – people will tend to look for evidence that confirms their point of 
view (and will tend to dismiss evidence that does not justify it).  For example, 
Mauboussin (2009) shows how investors typically tend to overestimate their own 
investment results, by subconsciously focusing only on those assets in their 
portfolio whose results match their own optimistic self-perception. 

Self-serving bias 

Closely related to overconfidence, self-serving bias occurs when people credit favourable 
or positive outcomes to their own capabilities or skills, while blaming external forces or 
others for any negative outcomes.  This may be done in order to maintain a positive 
self-image and avoid what psychologists call ‘cognitive-dissonance’, which is the 
discomfort felt when there is a discrepancy between the perceived self and the actual self – 
as evidenced by outcomes.   

So for example, having passed an exam, people may put this down to their own hard work and 
natural talent, rather than luck.  However, when failing an exam, people may generate excuses 
(eg ‘I wasn’t feeling well’, ‘The room was too hot/cold/noisy…’) to shield themselves from the 
truth of having not worked hard enough. 

This type of behaviour is observed in investors when assessing their returns from 
investment.  Furthermore, Doukas and Petmezas (2007) find that managers involved in 
acquisitions tend to credit themselves for any initial success of such deals, resulting in a 
larger number of deals which ultimately yield lower long-term returns for shareholders. 

Status quo bias 

Status quo bias is the inherent tendency of people to stick with their current situation, even 
in the presence of more favourable alternatives and even when no transaction costs are 
involved.  (This was shown by Kahneman and Tversky in 1982.)  A core reason why humans 
exhibit status quo bias is ‘loss aversion’ and ‘endowment effects’ as described above. 

Herd behaviour 

Herd behaviour describes the tendency of people to follow or mimic the actions and 
decisions taken by others, as a mechanism to deal with uncertain situations.  The 
underlying rationale may be that others must know better (safety in numbers), learning or 
conformity preferences.  However such decisions may lead to mass hysteria or delusion if 
initial actions are themselves biased.   

Herd behaviour has been used to explain several issues observed in real-world financial 
markets, in particular stock market bubbles. 

A ‘bubble’ occurs when the price of a particular good or share increases to an unsustainably high 
level.   This can occur when well-publicised price rises lead to surges in demand, as investors 
‘follow the herd’, hoping to benefit from further anticipated price rises.  Those selling the good or 
share before the bubble bursts can make a lot of money, but those who fail to do so can incur 
heavy losses. 

The first recorded bubble surrounded tulip bulbs in the Netherlands in the 1630s.  A more recent 
example is the ‘dotcom’ bubble of the late 1990s. 
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2.4 A behavioural finance approach to the Equity Premium Puzzle 

One of the most famous quandaries in finance is the so-called Equity Premium Puzzle, first 
identified by Mehta and Prescott in 1985.  This puzzle is related to the gap in returns from 
risk-bearing stocks when compared to the returns earned from lower-risk government 
bonds and Treasury bills.  Mehta (2008) estimates that over the last 116 years the average 
return on US equities has been approximately 7.67%, while the return on Treasury bills has 
been only 1.31% - an equity premium of 6.36%, with similar patterns observed in other 
countries around the world. 

The standard explanation for this observed premium is that it reflects the difference in the 
level of risk associated with stocks relative to bonds and bills, with higher-risk securities 
requiring higher returns to attract investors.  However, the equity premium levels observed 
in the data are far too large to be explained solely via risk aversion using the capital asset 
pricing models that are typically used in mainstream financial economics. 

The Capital Asset Pricing Model is covered later in the course.  It provides a link between the 
expected return from a security and its inherent level of risk. 

The equity premium puzzle has led to a plethora of research papers attempting to find a 
plausible explanation for the gap in returns.   

One of the most famous explanations for the puzzle was provided by Benartzi and Thaler in 
1995, using the insights from behavioural finance.  More specifically, the authors contend 
that myopic loss aversion can be used to explain the abnormally large discrepancy in 
returns across stocks and bonds.   

Myopic loss aversion suggests that investors are less risk averse when faced with a 
multi-period series of ‘gambles’, and that the frequency of choice or length of reporting 
period will also be influential.   

As its name suggests, myopic loss aversion relates to investors’ aversion to short-term losses.  The 
basic idea is that investors have been shown to be less ‘risk-averse’ when faced with a repeated 
series of ‘gambles’ than when faced with a single gamble.   

This is because investors are generally extremely concerned by losses rather than 
equivalent gains, leading them to focus on very short-term returns and volatility rather than 
long-run earnings.  Since stock prices are typically more volatile in the short run, this may 
dissuade myopic investors from buying stocks unless the returns premium on stocks is 
sufficiently high to compensate for this loss aversion.  Thus, the substantial equity premia 
observed in the data across the world are so high since they take into account both risk 
aversion as well as this aversion to short-term losses.   

So the excess return on stocks over bonds and bills comprises: 

 extra return to compensate investors for the higher risk of equity investment (ie the 
greater uncertainty about the return that will ultimately be achieved), and 

 additional extra return to overcome investors’ loss aversion (ie the general unwillingness 
to expose themselves to potential losses of any kind). 

The past equity premium is therefore consistent in this model with loss aversion, and an 
assumption that people evaluate their portfolios based on the last 12 months of returns 
(myopic, since investment decisions should rationally be made over longer timescales). 
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Many investment decisions relate to the longer term, eg an individual saving for retirement, or a 
life insurance company investing its reserves. 

If an investor recognises that the investment strategy decision is in fact a series of repeated 
short-term gambles and consequently takes a long-term view when determining strategy, then 
they are likely to be less risk-averse than if they instead consider only the immediate short-term 
gamble and so take too short-term a view.  In this latter case, they will tend to focus more on the 
short-term risk of loss than is necessarily in their best interests, the consequence being that their 
resulting portfolio ends up being overweight in less risky assets.   

Question 

Discuss the implications for a pension scheme’s investment strategy of requiring it to report its 
financial position annually rather than triennially (assuming that assets are valued using market 
values). 

Solution 

If a pension fund has to report its financial position every year, it may be more averse to very 
short-term investment losses than if it had to report only every three years.  The consequence of 
this might be to force the fund to invest in less volatile assets in order to reduce the risk of having 
to report a poor financial position.  It might therefore result in the fund investing less heavily in 
equities, and possibly also less heavily in long-term bonds.   

   

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 20 CM2-03: Stochastic dominance and behavioural finance 

© IFE: 2019 Examinations The Actuarial Education Company 

 

 

 

 

 

 

 

 

The chapter summary starts on the next page so that you can keep 
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Chapter 3 Summary 

Stochastic dominance 

Stochastic dominance offers an approach to modelling choices under uncertainty that does 
not require the use of explicit utility functions. 

Given two investment portfolios, A and B, with cumulative probability distribution functions 
of returns FA and FB respectively: 

The first-order stochastic dominance theorem states that A will be preferred to B if: 

 the investor prefers more to less, U x ( ) 0  and 

 A B A BF x F x x F x F x ( ) ( ) for all , with ( ) ( )  for at least one x. 

The second-order stochastic dominance theorem states that A will be preferred to B if: 

 the investor prefers more to less, U x ( ) 0 , 

 the investor is risk-averse, U x ( ) 0 , and 

 
x x

A Ba a
F y dy F y dy ( ) ( ) ,  for all x, with the strict inequality holding for at least one x. 

Behavioural finance 

The field of behavioural finance relates to the psychology that underlies and drives financial 
decision-making behaviour.   

Prospect theory details how human decision-making differs systematically from that 
predicted by expected utility theory, and how human beings consistently violate the 
rationality axioms that form the basis of the theory. 

There are two phases of decision-making in prospect theory: 

1.   editing/framing – where outcomes are initially appraised and ordered 

2.   evaluation – where a choice is made from the appraised options. 

The two basic operations involved in the editing process are: 

1.   acceptance – people are unlikely to alter the formulation of the choices presented 

2.   segregation – people tend to focus on the most ‘relevant’ factors of a problem. 
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In the evaluation phase of decision-making the following behavioural patterns are observed: 

 reference dependence 

 loss aversion 

 endowment effects 

 changing risk attitudes 

 diminishing sensitivity 

 probability weighting 

 certainty effect 

 isolation effect. 

Prospect theory suggests that utility is based on gains and losses relative to some reference 
point, and people are typically risk-averse when considering gains relative to the reference 
point and risk-seeking when considering losses relative to the reference point.   

A heuristic is a shortcut used by the brain to deliver a quick decision.  Examples include: 

 anchoring and adjustment 

 representativeness 

 availability 

 familiarity. 

The following behavioural biases have also been observed: 

 overconfidence (perhaps as a result of hindsight bias or confirmation bias) 

 self-attribution bias (or self-serving bias) 

 status quo bias 

 herd behaviour. 

The equity premium puzzle (ie the fact that returns from equities exceed the returns from 
bonds and bills by more than is predicted by risk aversion alone) can be explained by myopic 
loss aversion. 

Myopic loss aversion suggests that investors are much more concerned by losses than by 
equivalent gains, and so tend to focus on very short-term returns and volatility rather than 
long-run earnings.  Investors therefore need to earn additional return on equities to 
overcome their aversion to the short-term losses typical of equity investment. 
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Chapter 3 Practice Questions 

3.1 Define first-order and second-order stochastic dominance.  Illustrate the definitions by sketching 
cumulative distribution functions of two random variables which represent the returns on two 
investments, one of which dominates the other.  

3.2 Consider the two risky assets, A and B, with cumulative probability distribution functions: 

 AF w w( )  

 BF w w ½( )  

In both cases, 0  w  1. 

(i) Show that A is preferred to B on the basis of first-order stochastic dominance. [3] 

(ii) Verify explicitly that A also dominates B on the basis of second-order stochastic 
dominance.  [3] 

    [Total 6] 

3.3 (i) Within the context of behavioural finance, explain fully what is meant by 
 overconfidence. [4] 

The board of directors of an actively managed investment trust are concerned that the decisions 
of the trust’s investment manager may be subject to overconfidence bias, which could adversely 
affect the performance of the trust. 

(ii) Discuss possible actions that the board could take in order to try to limit the impact of the 
investment manager’s overconfidence bias. [6] 

    [Total 10] 

 

  

Exam style 

Exam style 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 3 Solutions 

3.1 Assuming an investor prefers more to less, a distribution of investment returns A is said to exhibit 
first-order stochastic dominance over a distribution of investment returns B if: 

 A BF x F x( ) ( )  for all x, and 

 A BF x F x( ) ( )  for some value of x. 

In other words, the probability of B producing a return below a certain value is never less than the 
probability of A producing a return below the same value and exceeds it for at least some value 
of x.   

          F(x) 

  

 

           BF x( )   AF x( )  

       BF y( )  

       AF y( )  

 

      0       y           x 

Here AF x( )  must never be above BF x( ) .  Note, however, that the lowest possible value of x may be 
non-zero and even negative. 

Assuming an investor prefers more to less and is risk averse, a distribution of investment returns 
A is said to exhibit second-order stochastic dominance over a distribution of investment returns B 
if: 

 
x x

A Ba a
F y dy F y dy ( ) ( )  

for all x, with the strict inequality holding for some value of x, where a is the lowest return that 
the portfolios can possibly provide. 

1 
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            F x( )  

1 

     AF x( )  

          BF x( )  

                        

   

  

     0     a   x               x 

 
Here the area under BF x( )  must never be less than the area under AF x( )  for any value of x. 

3.2 (i) First-order stochastic dominance 

A is preferred to B on the basis of first-order stochastic dominance if: 

 A BF w F w( ) ( ),  for all 0  w  1, and 

 A BF w F w( ) ( )  for some value of w in this range. [1] 

This is the case if: 

 w    w½  [½] 

  w – w½    0 

  w½ (w½ – 1)   0  

This clearly holds for all 0  w  1, the equality being strict for 0 < w < 1.  Hence A first-order 
dominates B.   [1½] 
    [Total 3] 

Alternatively, we could draw the graphs of AF w( )  and BF w( )  over the range w 0 1  and note 
that the graph of AF w( )  is below that of BF w( )  for w 0 1  and equal for w  0,1 . 

(ii) Second-order stochastic dominance 

A second-order dominates B if A BG w G w( ) ( )  for all 0  w  1, with the strict inequality holding 

for some value of w, where 
w

G w F y dy 
0

( ) ( ) . [1] 
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This is the case if: 

 
w w

y dy y dy  ½

0 0
  [½] 

  
ww

y y        

3
22 2

30 0
½  

  ½w2 – w
3
22

3    0 

  w
3
22

3 ( ¾w½– 1)   0 

This is true for all 0  w  1 and strictly true for 0 < w  1.  Hence A does second-order 
dominate B.   [1½] 
    [Total 3] 

Alternatively, we note that 
w

G w F y dy 
0

( ) ( )  is the area under the graph of F y( ) .  We could plot 

graphs of AG w( )  and BG w( )  and note that the graph of AG w( )  is below that of BG w( )  for 
w 0 1  and equal for w  0 . 

3.3 (i) Explain overconfidence 

Overconfidence occurs when people systematically overestimate their own capabilities, judgment 
and abilities.     [1] 

Moreover, studies show that the discrepancy between accuracy and overconfidence increases (in 
all but the simplest tasks) as the respondent is more knowledgeable.  (Accuracy increases to a 
modest degree but confidence increases to a much larger degree.) [1]  

This may be a result of: 

 Hindsight bias – events that happen will be thought of as having been predictable prior to 
the event; events that did not happen will be thought of as having been unlikely ever to 
happen.    [1] 

 Confirmation bias – people will tend to look for evidence that confirms their point of view 
(and will tend to dismiss evidence that does not justify it).   [1] 

    [Total 4] 

(ii) Possible actions to limit the extent of overconfidence bias  

The board could require that all investment decisions made by the investment manager are 
reviewed by a second investment manager before being implemented. [1] 

Alternatively, the management of the investment trust could be split equally between two 
investment managers.  [1] 
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Either of these should reduce the impact of overconfidence bias, although the views of the 
second investment manager could be subject to similar overconfidence biases as those of the first 
manager.   [1] 

The investment manager could be sent on a training course about behavioural finance.  This 
would make the manager aware of the possibility of overconfidence bias. [1] 

However, providing training may have the opposite effect to that intended, making the 
investment manager feel more knowledgeable and aware of the issues and so even more 
confident.   [1] 

The board could place tighter constraints on the investment decisions taken by the investment 
manager, eg limits could be placed on the size of any transactions and/or on the size of holdings 
in individual companies or sectors.   [1] 

Limiting the manager’s actions should limit the scope for biases in investment decisions but will 
also reduce the manager’s scope for active investment management and possibly the returns 
achieved.   [1] 
    [Maximum 6] 
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Measures of investment risk 

 

 

Syllabus objectives 

2.1 Properties of risk measures 

2.1.1 Define the following measures of investment risk: 

 variance of return 

 downside semi-variance of return 

 shortfall probabilities 

 Value at Risk (VaR) / TailVaR. 

2.1.2 Describe how the risk measures listed in 2.1.1 above are related to the 
form of an investor’s utility function. 

2.1.3 Perform calculations using the risk measures listed in 2.1.1 above to 
compare investment opportunities. 

2.1.4 Explain how the distribution of returns and the thickness of tails will 
influence the assessment of risk. 

2.2 Risk and insurance companies 

2.2.1 Describe how insurance companies help to reduce or remove risk. 

2.2.2 Explain what is meant by the terms ‘moral hazard’ and ‘adverse selection’. 
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0 Introduction 

In financial economics, it is often assumed that the key factors influencing investment decisions 
are ‘risk’ and ‘return’.  In practice, return is almost always interpreted as the expected investment 
return.  However, there are many possible interpretations and different ways of measuring 
investment risk, of which the variance is just one, each of which corresponds to a different utility 
function. 

This chapter outlines a small number of such measures, together with their relative merits, and 
then moves on to discuss how insurance can be used to reduce the impact of risk. 
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1 Measures of risk 

1.1 Introduction 

Most mathematical investment theories of investment risk use variance of return as the 
measure of risk. 

Examples include (mean-variance) portfolio theory and the capital asset pricing model, both of 
which are discussed later in this course. 

However, it is not obvious that variance necessarily corresponds to investors’ perception of 
risk, and other measures have been proposed as being more appropriate. 

Some investors might not be concerned with the mean and variance of returns, but simpler things 
such as the maximum possible loss.  Alternatively, some investors might be concerned not only 
with the mean and variance of returns, but also more generally with other higher moments of 
returns, such as the skewness of returns.  For example, although two risky assets might yield the 
same expectation and variance of future returns, if the returns on Asset A are positively skewed, 
whilst those on Asset B are symmetrical about the mean, then Asset A might be preferred to 
Asset B by some investors. 

1.2 Variance of return 

For a continuous distribution, variance of return is defined as: 

 2( ) ( )x f x dx



  

where   is the mean return at the end of the chosen period and f(x) is the probability 

density function of the return. 

‘Return’ here means the proportionate increase in the market value of the asset, eg  0.05x  if 
the asset value has increased by 5% over the period. 

The units of variance are ‘%%’, which means ‘per 100 per 100’. 

eg     24% 16%% 0.16% 0.0016  

Question 

Investment returns (% pa), X , on a particular asset are modelled using a probability distribution 
with density function:   

     2( ) 0.00075 100 ( 5)f x x  where   5 15x  

Calculate the mean return and the variance of return. 
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Solution 

The density function is symmetrical about  5x .  Hence the mean return is 5%.  Alternatively, this 
could be found by integrating as follows: 

 

 







  

  

     

 







15 2
5

15 2 3
5

15
2 3 4

5

[ ] 0.00075 100 ( 5)

0.00075 75 10

75 10 10.00075
2 3 4

0.00075 7,031.25 364.5833

5

E X x x dx

x x x dx

x x x  

ie 5% pa. 

The variance is given by: 

 

 

 







   

   

      

  







15 2 2
5

15 2 4
5

15
3 5

5

( ) 0.00075 (5 ) 100 ( 5)

0.00075 100( 5) ( 5)

100 10.00075 ( 5) ( 5)
3 5

0.00075 13,333.33 ( 13,333.33)

20

Var X x x dx

x x dx

x x  

ie 20%% pa. 

Alternatively, we can calculate the variance using the formula:  2 2( ) [ ] ( [ ])Var X E X E X , where 
2[ ]E X  can be found by integration to be 45%%. 

 
For a discrete distribution, variance of return is defined as: 

   2( ) ( )
x

x P X x  

where   is the mean return at the end of the chosen period. 
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Question 

Investment returns (% pa), X , on a particular asset are modelled using the probability 
distribution: 

7 0.04

5.5 0.96

X Probability

  

Calculate the mean return and variance of return. 

Solution 

The mean return is given by: 

      [ ] 7 0.04 5.5 0.96 5E X  

ie 5% pa. 

The variance of return is given by: 

        2 2( ) (5 ( 7)) 0.04 (5 5.5) 0.96 6Var X  

ie 6%% pa. 

Alternatively, we can calculate the variance using the formula:  2 2( ) [ ] ( [ ])Var X E X E X , where 
2[ ]E X  is 31%%. 

 
Variance has the advantage over most other measures in that it is mathematically tractable, 
and the mean-variance framework discussed in a later chapter leads to elegant solutions for 
optimal portfolios.  Albeit easy to use, the mean-variance theory has been shown to give a 
good approximation to several other proposed methodologies. 

Mean-variance portfolio theory can be shown to lead to optimum portfolios if investors can 
be assumed to have quadratic utility functions or if returns can be assumed to be normally 
distributed. 

In an earlier chapter we discussed how the aim of investors is to maximise their expected utility.  
The mean-variance portfolio theory discussed in a later chapter assumes that investors base their 
investment decisions solely on the mean and variance of investment returns.  This assumption is 
consistent with the maximisation of expected utility provided that the investor’s expected utility 
depends only on the mean and variance of investment returns. 
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It can be shown that this is the case if: 

 the investor has a quadratic utility function, and/or 

 investment returns follow a distribution that is characterised fully by its first two 
moments, such as the normal distribution. 

If, however, neither of these conditions holds, then we cannot assume that investors make 
choices solely on the basis of the mean and variance of return.  For example, with more complex 
utility functions and non-normal return distributions investors may need to consider other 
features of the distribution of returns, such as skewness and kurtosis. 

Question 

Define both the skewness and the fourth central moment (called the kurtosis) of a continuous 
probability distribution. 

Solution 

The skewness of a continuous probability distribution is defined as the third central moment. 

It is a measure of the extent to which a distribution is asymmetric about its mean.  For example, 
the normal distribution is symmetric about its mean and therefore has zero skewness, whereas 
the lognormal distribution is positively skewed. 

The kurtosis of a continuous probability distribution is defined as the fourth central moment. 

It is a measure of how likely extreme values are to appear (ie those in the tails of the distribution). 

 
1.3 Semi-variance of return 

The main argument against the use of variance as a measure of risk is that most investors 
do not dislike uncertainty of returns as such; rather they dislike the possibility of low 
returns. 

For example, all rational investors would choose a security that offered a chance of either a 10% 
or 12% return in preference to one that offered a certain 10%, despite the greater uncertainty 
associated with the former. 

One measure that seeks to quantify this view is downside semi-variance (also referred to as 
simply semi-variance).  For a continuous random variable, this is defined as: 

 2( ) ( )x f x dx





  

Semi-variance is not easy to handle mathematically, and it takes no account of variability 
above the mean.  Furthermore, if returns on assets are symmetrically distributed, 
semi-variance is proportional to variance.   
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Question 

Investment returns (% pa), X , on a particular asset are modelled using a probability distribution 
with density function:   

     2( ) 0.00075 100 ( 5)f x x  where   5 15x  

Calculate the downside semi-variance of return.   

Solution 

We saw in an earlier question that the variance of investment returns for this asset is 20%%.  
Since the continuous distribution ( )f x  is symmetrical, the downside semi-variance is half the 
variance, ie 10%%. 

 
For a discrete random variable, the downside semi-variance is defined as: 





  2( ) ( )

x
x P X x  

Question 

Investment returns (% pa), X , on a particular asset are modelled using the probability 
distribution: 

7 0.04

5.5 0.96

X probability

  

Calculate the downside semi-variance of return.   

Solution 

We saw in an earlier question that the mean investment return for this asset is 5%.  So the 
downside semi-variance is given by: 

 


       2 2

5
(5 ) ( ) (5 ( 7)) 0.04 5.76

x
x P X x  

ie 5.76%% pa. 
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1.4 Shortfall probabilities 

A shortfall probability measures the probability of returns falling below a certain level.  For 
continuous variables, the risk measure is given by: 

 Shortfall probability ( )
L

f x dx


   

where L is a chosen benchmark level. 

For discrete random variables, the risk measure is given by: 

 Shortfall probability 


  ( )
x L

P X x  

The benchmark level, L, can be expressed as the return on a benchmark fund if this is more 
appropriate than an absolute level.  In fact, any of the risk measures discussed can be 
expressed as measures of the risk relative to a suitable benchmark which may be an index, 
a median fund or some level of inflation. 

L could alternatively relate to some pre-specified level of surplus or fund solvency. 

Question 

Investment returns (% pa), X , on a particular asset are modelled using a probability distribution 
with density function:   

     2( ) 0.00075 100 ( 5)f x x  where   5 15x  

Calculate the shortfall probability where the benchmark return is 0% pa.   

Solution 

The shortfall probability is given by: 

 





   

     

    




0 2
5

0
3

5

( 0) 0.00075 100 ( 5)

10.00075 100 ( 5)
3

0.00075 41.6667 166.6667

0.15625

P X x dx

x x
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Question 

Investment returns (% pa), X , on a particular asset are modelled using the probability 
distribution: 

7 0.04

5.5 0.96

X probability

 

Calculate the shortfall probability where the benchmark return is 0% pa. 

Solution 

The shortfall probability is given by: 

  ( 0) 0.04P X  

 
The main advantages of the shortfall probability are that it is easy to understand and calculate. 

The main drawback of the shortfall probability as a measure of investment risk is that it gives no 
indication of the magnitude of any shortfall (being independent of the extent of any shortfall). 

For example, consider two securities that offer the following combinations of returns and 
associated probabilities: 

Investment A:  10.1% with probability of 0.9 and 9.9% with probability of 0.1 

Investment B:  10.1% with probability of 0.91 and 0% with probability of 0.09 

An investor who chooses between them purely on the basis of the shortfall probability based 
upon a benchmark return of 10% would choose Investment B, despite the fact that it gives a much 
bigger shortfall than Investment A if a shortfall occurs. 

1.5 Value at Risk  

Value at Risk (VaR) generalises the likelihood of underperforming by providing a statistical 
measure of downside risk.   

For a continuous random variable, Value at Risk can be determined as:  

 ( )VaR X t     where   ( )P X t p   

VaR represents the maximum potential loss on a portfolio over a given future time period 
with a given degree of confidence, where the latter is normally expressed as 1 p .  So, for 

example, a 99% one-day VaR is the maximum loss on a portfolio over a one-day period with 
99% confidence, ie there is a 1% probability of a greater loss. 
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Note that Value at Risk is a ‘loss amount’.  Therefore: 

 a positive Value at Risk (a negative t ) indicates a loss  

 a negative Value at Risk (a positive t )  indicates a profit 

 Value at Risk should be expressed as a monetary amount and not as a percentage. 

Question 

Investment returns (% pa), X , on a particular asset are modelled using a probability distribution 
with density function:   

     2( ) 0.00075 100 ( 5)f x x  where   5 15x  

Calculate the VaR over one year with a 95% confidence limit for a portfolio consisting of £100m 
invested in the asset.   

Solution 

We start by finding t , where  ( ) 0.05P X t : 





   

      

 2
5

3

5

0.00075 100 ( 5) 0.05

10.00075 100 ( 5) 0.05
3

t

t

x dx

x x
 

Since the equation in the brackets is a cubic in t , we are going to need to solve this equation 
numerically, by trial and error. 

 




        

3
3

5

13 0.00075 100 ( 5) 0.028
3

t x x  

and 




        

2
3

5

12 0.00075 100 ( 5) 0.06075
3

t x x  

Interpolating between the two gives:  


    


0.05 0.0283 2.3
0.06075 0.028

t  

In fact, the true value is  2.293t .  Since t  is a percentage investment return per annum, the 
95% Value at Risk over one year on a £100m portfolio is  £100 2.293% £2.293m m .  This means 
that we are 95% certain that we will not lose more than £2.293m over the next year.   

 
For a discrete random variable, VaR is defined as: 

  ( )VaR X t  where    max : ( )t x P X x p  
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Question 

Investment returns (% pa), X , on a particular asset are modelled using the probability 
distribution: 

7 0.04

5.5 0.96

X Probability

 

Calculate the 95% VaR over one year with a 95% confidence limit for a portfolio consisting of 
£100m invested in the asset. 

Solution 

We start by finding t , where    max : ( ) 0.05t x P X x . 

Now   ( 7) 0P X  and  ( 5.5) 0.04P X .  Therefore  5.5t .   

Since t  is a percentage investment return per annum, the 95% Value at Risk over one year on a 

£100m portfolio is   £100 5.5% £5.5m m .  This means that we are 95% certain that we will 

not make profits of less than £5.5m over the next year.   

 
VaR can be measured either in absolute terms or relative to a benchmark.  Again, VaR is 
based on assumptions that may not be immediately apparent. 

The problem is that in practice VaR is often calculated assuming that investment returns are 
normally distributed. 

Question 

Calculate the 97.5% VaR over one year for a portfolio consisting of £200m invested in shares.  
Assume that the return on the portfolio of shares is normally distributed with mean 8% pa and 
standard deviation 8% pa. 

Solution 

We start by finding t , where: 

  ( ) 0.025P X t , where 2(8,8 )X N  

Standardising gives: 

           
   

8 8 0.025
8 8

t tP Z  
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Now   ( 1.96) 0.025  from page 162 of the Tables, so:  


    
8 1.96 7.68

8
t t . 

Since t  is a percentage investment return per annum, the 97.5% Value at Risk over one year on a 
£200m portfolio is  £200 7.68% £15.36m m .  This means that we are 97.5% certain that we will 
not lose more than £15.36m over the next year.   

 
Portfolios exposed to credit risk, systematic bias or derivatives may exhibit non-normal 
distributions.  The usefulness of VaR in these situations depends on modelling skewed or 
fat-tailed distributions of returns, either in the form of statistical distributions (such as the 
Gumbel, Frechet or Weibull distributions) or via Monte Carlo simulations.  However, the 
further one gets out into the ‘tails’ of the distributions, the more lacking the data and, hence, 
the more arbitrary the choice of the underlying probability becomes. 

Hedge funds are a good example of portfolios exposed to credit risk, systematic bias and 
derivatives.  These are private collective investment vehicles that often adopt complex and 
unusual investment positions in order to make high investment returns.  For example, they will 
often short-sell securities and use derivatives.   

If the portfolio in the previous question was a hedge fund then modelling the return using a 
normal distribution may no longer be appropriate.  A different distribution could be used to 
assess the lower tail but choosing this distribution will depend on the data available for how 
hedge funds have performed in the past.  This data may be lacking or include survivorship bias, 
ie hedge funds that do very badly may not be included. 

The Gumbel, Frechet and Weibull distributions are three examples of extreme value distributions, 
which are used to model extreme events. 

The main weakness of VaR is that it does not quantify the size of the ‘tail’.  Another useful 
measure of investment risk therefore is the Tail Value at Risk. 

1.6 Tail Value at Risk (TailVaR) and expected shortfall 

Closely related to both shortfall probabilities and VaR are the TailVaR (or TVaR) and 
expected shortfall measures of risk. 

The risk measure can be expressed as the expected shortfall below a certain level. 

For a continuous random variable, the expected shortfall is given by: 

 Expected shortfall =  max( ,0) ( ) ( )
L

E L X L x f x dx


    

where L  is the chosen benchmark level. 

If L  is chosen to be a particular percentile point on the distribution, then the risk measure is 
known as the TailVaR. 

The (1 )p  TailVaR is the expected shortfall in the p th lower tail.  So, for the 99% confidence 
limit, it represents the expected loss in excess of the 1% lower tail value. 
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Question 

Investment returns (% pa), X , on a particular asset are modelled using a probability distribution 
with density function:   

     2( ) 0.00075 100 ( 5)f x x  where   5 15x  

Calculate the 95% TailVaR over one year for a portfolio consisting of £100m invested in the asset.   

Solution 

In a previous question, we calculated the 95% VaR for this portfolio to be £2.293m based on an 
investment return of –2.293%.  

The expected shortfall in returns below –2.293% is given by: 

 
 













      

    

      







2.293 2
5

2.293 2 3
5

2.2932 3 4
5

[max( 2.293 ,0)] 0.00075 ( 2.293 ) 100 ( 5)

0.00075 171.975 97.93 7.707

0.00075 171.975 48.965 2.569 0.25

0.0462

E X x x dx

x x x dx

x x x x

 

On a portfolio of £100m, the 95% TailVaR is  £100 0.000462 £0.0462m m .  This means that the 
expected loss in excess of £2.293m is £46,200.   

 
For a discrete random variable, the expected shortfall is given by: 

 Expected shortfall =  


   max( ,0) ( ) ( )
x L

E L X L x P X x  

Question 

Investment returns (% pa), X , on a particular asset are modelled using the probability 
distribution: 

7 0.04

5.5 0.96

X Probability

 

Calculate the 95% TailVaR over one year for a portfolio consisting of £100m invested in the asset.   
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Solution 

In a previous question, we calculated the 95% VaR for this portfolio to be –£5.5m based on an 
investment return of 5.5%. 

The expected shortfall in returns below 5.5% is given by: 


   

    


5.5

[max(5.5 ,0)] (5.5 ) ( )

(5.5 ( 7)) 0.04 0.5

x
E X x P X x

 

On a portfolio of £100m, the 95% TailVaR is  £100 0.005 £0.5m m .  This means that the 
expected reduction in profits below £5.5m is £0.5m. 

 
However, TailVaR can also be expressed as the expected shortfall conditional on there 
being a shortfall.   

To do this, we would need to take the expected shortfall formula and divide by the shortfall 
probability.   

Other similar measures of risk have been called: 

 expected tail loss 

 tail conditional expectation 

 conditional VaR 

 tail conditional VaR 

 worst conditional expectation. 

They all measure the risk of underperformance against some set criteria.  It should be noted 
that the characteristics of the risk measures may vary depending on whether the variable is 
discrete or continuous in nature. 

Downside risk measures have also been proposed based on an increasing function of 

 L x , rather than  L x  itself in the integral above. 

In other words, for continuous random variables, we could use a measure of the form: 

 


 ( ) ( )
L

g L x f x dx  

Two particular cases of note are when: 

1.    2( ) ( )g L r L r  – this is the so-called shortfall variance 

2.   ( ) ( )g L r L r  – the average or expected shortfall measure defined above. 

Note also that if  2( )g x x  and L =  , then we have the semi-variance measure defined above. 
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Shortfall measures are useful for monitoring a fund’s exposure to risk because the expected 
underperformance relative to a benchmark is a concept that is apparently easy to 
understand.  As with semi-variance, however, no attention is paid to the distribution of 

outperformance of the benchmark, ie returns in excess of L are again completely ignored. 

Question 

Consider an investment whose returns follow a continuous uniform distribution over the range 
0% to 10% pa. 

(i) Write down the probability density function for the investment returns. 

(ii) Calculate the mean investment return. 

(iii) Calculate the variance and semi-variance measures of investment risk. 

(iv) Calculate the shortfall probability and the expected shortfall based on a benchmark level 
of 3% pa. 

Solution 

Useful information about the continuous uniform distribution can be found on page 13 of the 
Tables, including the form of its probability density function, and formulae for its mean and 
variance. 

(i) Probability density function 

Working in % units, the investment return follows a (0,10)U  distribution.  So the probability 

density function is 
1( )

10
f x  for 0  x  10 and 0 otherwise. 

If we work with the returns expressed in decimals instead, then ( ) 10f x  for 0  x  0.10 and 0 
otherwise. 

(ii) Mean 

The mean investment return is: 

 
1 (0 10) 5
2

  

ie 5% pa. 

(iii) Variance and semi-variance  

The variance is given by: 

  21 (10 0) 8.33
12

  

ie 8.33%% pa. 
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Alternatively, we could evaluate the variance using the integral:  

 


210

0

5
10

x
dx   

Since the uniform distribution is symmetric, the semi-variance is equal to half the variance, 
ie 4.17%% pa. 

Alternatively, we could evaluate the semi-variance using the integral: 

 


25

0

5
10

x
dx  

(iv) Shortfall probability and expected shortfall 

The shortfall probability is given by: 

      
3 3

00

1 0.3
10 10

xSP dx  

The expected shortfall is given by: 

           
3 3

2

00

3 1 3 0.5 0.45 %
10 10

x
ES dx x x  
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2 Relationship between risk measures and utility functions 

An investor using a particular risk measure will base their decisions on a consideration of 
the available combinations of risk and expected return.  Given a knowledge of how this 
trade-off is made it is possible, in principle, to construct the investor’s underlying utility 
function.  Conversely, given a particular utility function, the appropriate risk measure can be 
determined. 

For example, if an investor has a quadratic utility function, the function to be maximised in 
applying the expected utility theorem will involve a linear combination of the first two 
moments of the distribution of return.   

In other words, if an investor has a quadratic utility function then their attitude towards risk and 
return can be expressed purely in terms of the mean and variance of investment opportunities. 

Thus variance of return is an appropriate measure of risk in this case. 

Question 

(i) State the expected utility theorem. 

(ii) Draw a typical utility function for a non-satiated, risk-averse investor. 

Solution 

(i) The expected utility theorem states that: 

 a function, U(w), can be constructed representing an investor’s utility of wealth, w 

 the investor faced with uncertainty makes decisions on the basis of maximising 
the expected value of utility. 

(ii) 

           U(w) 

 

 

 

   0              w 

 
Non-satiated investors prefer more wealth to less and so the graph slopes upwards, 
ie  ( ) 0U w . 

Risk-averse investors have diminishing marginal utility of wealth and so the slope of the 
graph decreases with w, ie  ( ) 0U w . 
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If expected return and semi-variance below the expected return are used as the basis of 
investment decisions, it can be shown that this is equivalent to a utility function that is 
quadratic below the expected return and linear above. 

Thus, this is equivalent to the investor being risk-averse below the expected return and 
risk-neutral for investment return levels above the expected return.  Hence, no weighting is given 
to variability of investment returns above the expected return. 

Use of a shortfall risk measure corresponds to a utility function that has a discontinuity at 
the minimum required return.  

This therefore corresponds to the state-dependent utility functions discussed in a previous 
chapter. 

Question 

What is meant by a state-dependent utility function? 

Solution 

Sometimes it may be inappropriate to model an investor’s behaviour over all possible levels of 
wealth with a single utility function.  This problem can be overcome by using state-dependent 
utility functions, which model the situation where there is a discontinuous change in the state of 
the investor at a certain level of wealth. 
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3 Risk and insurance companies 

3.1 Introduction 

Individuals and corporations face risks resulting from unexpected events. 

Risk-averse individuals can buy insurance to remove their exposure to risks.  Being risk-averse, 
they will be willing to pay more for insurance than the expected cost of claims.  The insurance 
company is willing to offer insurance primarily because it is able to spread its risks. 

3.2 What to insure 

Two considerations must be taken into account when assessing the effect of a risk: its 
likelihood and its severity.  In a formal scenario, a risk matrix or graph is used as shown 
below. 

 

Figure 4.1 

The figure above shows the frequency-severity dynamics of four possible events. 

 Event 1 is a low-frequency-low-severity event.  Such an event does not warrant any 
worry to a corporation or individual. 

For example, a solar eclipse occurs with low frequency, but is also accompanied by a low 
level of severity! 

 Event 2 is a high-frequency-low-severity event.  Such an event would occur many 
times but at a low cost each time.  The overall cost, due to high frequency, may be 
damaging.  These types of events may need to be assessed on how they can be 
controlled. 

For example, a smashed mobile phone screen is common but is typically limited in its 
extent. 

 Event 3 is a high-frequency-high-severity. Such events are to be avoided. 

For example, car accidents involving fatalities happen relatively frequently and have a 
high severity. 
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 Event 4 is a low-frequency-high-severity event. Such events tend to be insured. 

For example, earthquake or hurricane damage. 

In general, low severity events (such as events 1 and 2) are not generally insurable as the 
cost of management per claim is too expensive.  However micro-insurance for poorer 
clients and new technologies that enable insuring small items over a short term (such as 
gadgets during a holiday) have been gaining ground. 

3.3 Pooling resources 

Insurance reduces the variability of losses due to adverse outcomes by pooling resources. 

Consider a simple scenario of a property that has one hundredth chance of suffering 
£10,000 in damages (and 99% of no damages).  The expected cost is 1% of £10,000 which is 
£100 while the VaR(99.5%) is £10,000. 

Question 

Explain why the 99.5% Value at Risk is £10,000. 

Solution 

Let X be the impact suffered by the property, so  ( 0) 0.99P X  and   ( 10,000) 0.01P X .  Then 
from the definition of Value at Risk for a discrete random variable we have: 

  ( )VaR X t  where    max : ( )t x P X x p  

But   ( 10,000) 0P X  and  ( 0) 0.01P X , therefore: 

      max : ( ) 0.005 10,000t x P X x  

This means that the Value at Risk is £10,000. 

 
If ten independent properties with similar characteristics are pooled together, the average 
cost is still £100 per property.  At the extreme, the probability of all of them suffering the 

damage is 100.01 .  The VaR(99.5%) in this case is if one property suffers damage, that is 
£100 on average (using a Binomial distribution). 

Question 

Verify that the 99.5% Value at Risk in this case is £10,000. 

Solution 

Let X be the total impact suffered by the properties, so  (10,0.01) ( 10,000)X Binomial .  Then 
from the definition of Value at Risk for a discrete random variable we have: 

  ( )VaR X t  where    max : ( )t x P X x p  
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If no properties suffer damage then  0X .  The probability of this is: 

 
 

      
 

0 10 1010
( 0) 0.01 (1 0.01) 0.99 0.9044

0
P X  

So:    ( 0) 1 0.9044 0.0956P X  

If exactly one property suffers damage then  10,000X .  The probability of this is: 

  
 

        
 

1 9 1 910 10!( 10,000) 0.01 (1 0.01) 0.01 0.99 0.0914
1 9!1!

P X  

So:      ( 10,000) 1 0.9044 0.0914 0.0042P X  

Therefore: 

      max : ( ) 0.005 10,000t x P X x  

This means that the Value at Risk is £10,000, which equates to one property suffering damage.   

 
In pooling resources, an insurer attempts to group insureds (being corporations or 
individuals) within homogeneous groups.  In the case of an individual with the ability to 
influence into which group they fall, adverse selection can occur.  If the insurer is also risk 
averse, then the insurance premium needs to include a margin to compensate the insurer 
for taking on the risk. 

3.4 Policyholder behaviour 

Adverse selection describes the fact that people who know that they are particularly bad 
risks are more inclined to take out insurance than those who know that they are good risks. 

It arises because customers typically know more about themselves than the insurance company 
knows.   

Adverse selection is sometimes called ‘self-selection’ or ‘anti-selection’. 

To try and reduce the problems of adverse selection, insurance companies try to find out 
lots of information about potential policyholders.  Policyholders can then be put in small, 
reasonably homogeneous pools and charged appropriate premiums. 

Moral hazard describes the fact that a policyholder may, because they have insurance, act 
in a way which makes the insured event more likely. 

This is because having the insurance provides less incentive to guard against the insured event 
happening.  For example, while driving to work one day you realise that you forgot to lock the front 
door of your house.  If you didn’t have any household contents insurance, you might decide to go 
back and lock it.  If you had adequate insurance, you might decide to carry on to work.  This 
difference in behaviour caused by the fact that you are insured is an example of ‘moral hazard’. 

Moral hazard makes insurance more expensive.  It may even push the price of insurance 
above the maximum premium that a person is prepared to pay. 
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The chapter summary starts on the next page so that you can keep 
all the chapter summaries together for revision purposes. 
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Chapter 4 Summary 

Measures of investment risk 

Many investment models use variance of return as the measure of investment risk. 

For a continuous random variable:  



  2( ) ( )V x f x dx  

For a discrete random variable:     2( ) ( )
x

V x P X x  

Variance has the advantage over most other measures that it: 

 is mathematically tractable  

 leads to elegant solutions for optimal portfolios, within the context of mean-variance 
portfolio theory. 

The main argument against the use of variance as a measure of risk is that most investors do 
not dislike uncertainty of returns as such; rather they dislike the downside risk of low 
investment returns.  Consequently, alternative measures of downside risk sometimes used 
include (in the continuous and then discrete cases): 

 semi-variance of return:  





 2( ) ( )x f x dx     




  2( ) ( )

x
x P X x  

 shortfall probability:    
 ( )
L

f x dx    


 ( )
x L

P X x  

each of which ignores upside risk. 

Value at Risk (VaR) represents the maximum potential loss on a portfolio over a given future 
time period with a given degree of confidence (1 )p .  It is often calculated assuming that 
investment returns follow a normal distribution, which may not be an appropriate 
assumption. 

For a continuous random variable,  ( )VaR X t ,  where  ( )P X t p . 

For a discrete random variable,  ( )VaR X t , where    max : ( )t x P X x p . 

The expected shortfall, relative to a benchmark L  is given by [max( ,0)]E L X . 

For a continuous random variable, expected shortfall = 


 ( ) ( )
L

L x f x dx . 

For a discrete random variable, expected shortfall = 


  ( ) ( )
x L

L x P X x . 
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When L  is the VaR with a particular confidence level, the expected shortfall is known as 
TailVaR.  TailVaR measures the expected loss in excess of the VaR. 

It is also possible to calculate the expected shortfall and TailVaR conditional on a shortfall 
occurring by dividing through by the shortfall probability. 

Relationship between risk measures and utility functions 

If expected return and variance are used as the basis of investment decisions, it can be 
shown that this is equivalent to a quadratic utility function. 

If expected return and semi-variance below the expected return are used as the basis of 
investment decisions, it can be shown that this is equivalent to a utility function that is 
quadratic below the expected return and linear above. 

Use of a shortfall risk measure corresponds to a utility function that has a discontinuity at the 
minimum required return. 

Using insurance to manage risk 

Insurers decide which events to offer protection for based on the frequency and severity of 
the event. 

The pooling of resources can be used to reduce an insurer’s risk. 

Adverse selection describes the fact that people who know that they are particularly bad 
risks are more inclined to take out insurance than those who know that they are good risks. 

Moral hazard is the change in a policyholder’s behaviour once insurance has been taken out, 
which makes the risk event more likely to occur. 
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Chapter 4 Practice Questions 

4.1 Define the following measures of investment risk: 

(i) variance of return [1] 

(ii) downside semi-variance of return [1] 

(iii) shortfall probability  [1] 

(iv) Value at Risk.  [1] 
    [Total 4] 

4.2 Adam, Barbara and Charlie are all offered the choice of investing their entire portfolio in either a 
risk-free asset or a risky asset.  The risk-free asset offers a return of 0% pa, whereas the returns on 
the risky asset are uniformly distributed over the range –5% to +10% pa.  Assuming that each 
individual makes their investment choice in order to minimise their expected shortfall, and that 
they have benchmark returns of –2%, 0% and +2% pa respectively, who will choose which 
investment?  Comment briefly on your answer. 

4.3 (i) Define ‘shortfall probability’ for a continuous random variable. 

(ii) An investor holds an asset that produces a random rate of return, R , over the course of a 
year.  Calculate the shortfall probability using a benchmark rate of return of 1%, assuming: 

 (a) R  follows a lognormal distribution with   5%  and  2 2(5%)  

 (b) R  follows an exponential distribution with a mean return of 5%. 

(iii) Explain with the aid of a simple numerical example the main limitation of the shortfall 
probability as a basis for making investment decisions.  

4.4 Consider a zero-coupon corporate bond that promises to pay a return of 10% next period.  
Suppose that there is a 10% chance that the issuing company will default on the bond payment, in 
which case there is an equal chance of receiving a return of either 5% or 0%. 

(i) Calculate values for the following measures of investment risk: 

 (a) downside semi-variance  

 (b) shortfall probability based on the risk-free rate of return of 6% 

(c) the expected shortfall below the risk-free return conditional on a shortfall  
occurring.  [5] 

(ii) Discuss the usefulness of downside semi-variance as a measure of investment risk for an 
investor.  [3] 

    [Total 8] 

Exam style 

Exam style 
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4.5 An investor is contemplating an investment with a return of £ R , where: 

  250,000 100,000R N  

and N  is a Normal [1,1]  random variable. 

Calculate each of the following measures of risk: 

(a) variance of return 

(b) downside semi-variance of return 

(c) shortfall probability, where the shortfall level is £50,000 

(d) Value at Risk at the 95% confidence level 

(e) Tail Value at Risk at the 95% confidence level, conditional on the VaR being exceeded.  

    [13] 

Hint: For part (e), you may wish to use the formula for the truncated first moment of a normal 
distribution given on page 18 of the Tables. 

4.6 (i) Explain the problem of adverse selection and how it might be dealt with by insurance 
companies.  [2] 

(ii) Explain the problem of moral hazard and how it affects the price of insurance. [2] 
    [Total 4]

Exam style 

Exam style 
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Chapter 4 Solutions 

4.1 In the following we assume the investment return is given by a continuous random variable X  
with density function  f x .  This is the return over a chosen time period.  Analogous formulae 

could be given for discrete or mixed cases. 

(i) Variance 

   





2x f x dx  

where   [ ]E X  is the mean return for the chosen period. [1] 

(ii) Downside semi-variance 

The downside semi-variance only takes into account returns below the mean return: 

    






2x f x dx  [1] 

(iii) Shortfall probability  

A shortfall probability measures the probability of returns falling below a certain chosen 
benchmark level L: 

    


  
L

P X L f x dx  [1] 

(iv) Value at Risk  

Value at Risk represents the maximum potential loss in value on a portfolio over a given future 
time period with a given degree of confidence. [1] 

Alternatively, for a given confidence limit (1 )p : 

  ( )VaR X t    where    ( )P X t p   
    [Total 4] 

4.2 The expected shortfall below a benchmark level L is defined as: 

 


 ( ) ( )
L

L x f x dx  

For the risky asset, we have (working in percentage units): 

 
       



1 1 if 5 10
10 ( 5) 15( )

0 otherwise

x
f x  
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Adam 

The expected shortfall of the risky asset is given by: 

 

 









 

    

   


2
5

22
5

( 2 )
15

1 2 ½
15

1 (4 2) (10 12½)
15

x dx

x x  

  0.3%   

Alternatively, note that there is a chance of 1 5  that he will earn less than the benchmark, and in 
this case, the average shortfall will be 1½%.  So the expected shortfall will be  1 5 1½% 0.3% . 

The expected shortfall of the risk-free asset is 0%. 

So Adam chooses the risk-free asset. 

Barbara 

The expected shortfall of the risky asset is given by: 

 

 









   

  


0
5

02
5

( )
15

1 ½
15

1 (0) ( 12½)
15

x dx

x  

  0.833%   

The expected shortfall of the risk-free asset is again 0%. 

So Barbara chooses the risk-free asset. 

Charlie 

The expected shortfall of the risky asset is given by: 

 

 







   

    


2
5

22
5

(2 )
15

1 2 ½
15

1 (4 2) ( 10 12½)
15

x dx

x x  

  1.633%   
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The expected shortfall of the risk-free asset is 2%  1 = 2%. 

So Charlie chooses the risky asset. 

Thus, the expected shortfall increases with the benchmark return. 

4.3 (i) Definition 

The shortfall probability for a continuous random variable, X ,  is: 

 


  ( ) ( )
L

P X L f x dx  

where L is the chosen benchmark level. 

(ii)(a) Calculation based on lognormal distribution 

If log (5,25)R N , then the shortfall probability is: 

 
       

 

ln1 5( 1) ( 1)
25

P R P Z P Z  

where (0,1)Z N .  Therefore: 

        ( 1) ( 1) 1 (1) 1 0.84134 0.15866P R  

(ii)(b) Calculation based on exponential distribution 

Since we know that ( ) 5E R , this means that (0.2)R Exp .   

So the shortfall probability is: 

           
1 10.2 0.2 0.2

0
0

( 1) 0.2 1 0.18127x xP R e dx e e  

(iii) Main limitation 

The main limitation of the shortfall probability is that it ignores the extent of the shortfall below 
the benchmark L. 

Thus, if L = 0, then the investor will prefer a gamble that offers +$1 with probability 0.51 and 
$1,000,000  with probability 0.49 to one that that offers either $1,000,000 or –$2, each with 
probability of ½.  This is somewhat unrealistic.  

4.4 (i)(a) Downside semi-variance 

The expected return on the bond is given by: 

 0.90  10%  +  0.05  5%  + 0.05  0%  =  9.25% [1] 
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So the downside semi-variance is equal to: 

 (9.25 – 5)2  0.05  +  (9.25 – 0)2  0.05  =  5.18%% [1] 

(i)(b) Shortfall probability  

The probability of receiving less than 6% is equal to the sum of the probabilities of receiving 5% 
and 0%, ie 0.10.   [1] 

(i)(c) Expected conditional shortfall 

The expected shortfall below the risk-free rate of 6% is given by: 

 (6 – 5)  0.05  +  (6 – 0)  0.05  =  0.35% [1] 

The expected shortfall below the risk-free return conditional on a shortfall occurring is equal to: 

  
expected shortfall 0.35% 3.5%

shortfallprobability 0.10
 [1] 

    [Total 5] 

We can see this directly by noting that, given that there is a shortfall, it is equally likely to be 1% or 
6%.  So the expected conditional shortfall is 3½%. 

(ii) Usefulness of downside semi-variance 

 It gives more weight to downside risk, ie variability of investment returns below the mean, 
which is likely to be of greater concern to an investor than upside risk. [½] 

 In fact, it completely ignores risk above the mean. [½] 

 This is consistent with the investor being risk-neutral above the mean, which is unlikely to 
be the case in practice. [½] 

 The mean is an arbitrary benchmark, which might not be appropriate for the particular 
investor.  [½] 

 If investment returns are symmetrically distributed about the mean (as they would be, for 
example, with a normal distribution) then it will give equivalent results to the 
variance.  [½] 

 However, it is less mathematically tractable than the variance. [½] 
 [Total 3] 

4.5 (a) Variance of return 

N  has a Normal [1,1]  distribution, so R  has a Normal distribution with mean  150,000 and 

variance 2100,000 , ie 2(150,000, 100,000 )R N . 

So, the variance of return is 2 10100,000 10 . [2] 
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(b) Downside semi-variance of return 

Any normal distribution is symmetrical about its mean, so that the downside semi-variance of 

return is equal to half of the variance, ie  95 10 . [2] 

(c) Shortfall probability, where the shortfall level is £50,000 

The shortfall probability below £50,000 is: 

 

 

 

     
 

   
 

  

    

150,000 50,000 150,000P( 50,000) P
100,000 100,000

50,000 150,000
100,000

1

1 1 1 0.84134 0.15866

RR

 [2] 

(d) Value at Risk 

From the Tables: 

    1.6449 0.05  

So, there is a 5% chance of the investment return R having a value less than: 

 

  

  

 

5% 1.6449

150,000 1.6449 100,000

14,490

R RR

 

So, the Value at Risk at the 95% confidence level is £14,490. [2] 

(e) Tail Value at Risk 

The VaR is £14,490.  So, the formula for the conditional TVaR is: 

 




 
14,4901 ( 14,490 ) ( )

0.05
x f x dx  

where ( )f x  is the pdf of a 2(150,000, 100,000 )N  distribution. [1] 

Splitting this into two integrals: 

 
 

 


 

14,490 14,49014,490 1( ) ( )
0.05 0.05

f x dx x f x dx  [½] 
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Evaluating the first of these integrals: 

 

 




  

    
 

  




14,490

2( ) (150,000,100,000 ) 14,490

14,490 150,000
100,000

( 1.6449)

0.05

f x dx P N

P Z

P Z

 [½] 

This is as expected since 14,490  is the VaR at the 95% confidence level.  

Evaluating the second integral, using the formula for the truncated first moment of a normal 
random variable on page 18 of the Tables: 

     




       
14,490

( ) 150,000 ( ) ( ) 100,000 ( ) ( )x f x dx U L U L  [½] 

where: 

 
    

14,490 150,000 1.6449
100,000

U  [¼] 

and: 

 
   

150,000
100,000

L  [¼] 

Now ( )t  is the cumulative distribution function of the standard normal distribution, so: 

    ( ) ( 1.6449) 0.05U  [¼] 

and: 

    ( ) ( ) 0L  [¼] 

Also, ( )t  is the probability density function of the standard normal distribution, which is stated 
on page 160 of the Tables.  So: 

  


     
21

2( 1.6449)1( ) ( 1.6449) 0.10313
2

U e  [¼] 

and: 

     ( ) ( ) 0L  [¼] 
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Putting these values into the formula: 

 

   




   

 


14,490

( ) 150,000 0.05 0 100,000 0.10313 0

2,813

x f x dx

 [½] 

Putting all this together, the conditional TVaR at the 95% confidence level is: 

 


    
14,490 10.05 ( 2,813) £41,770
0.05 0.05

 [½] 

So, the overall expected loss, given that the VaR at the 95% confidence level is exceeded, is: 

  14,490 41,770 £56,260  
    [Total 13] 

4.6 (i) Adverse selection  

Adverse selection refers to the fact that people who know that they are particularly bad risks are 
more inclined to take out insurance than those who know that they are good risks. [1] 

To try to reduce the problems of adverse selection, insurance companies try to find out 
information about potential policyholders.  Policyholders can then be put into small, reasonably 
homogeneous groups and charged appropriate premiums. [1] 
    [Total 2] 

(ii) Moral hazard  

Moral hazard describes the fact that a policyholder may, because they have insurance, act in a 
way which makes the insured event more likely to occur. [1] 

Moral hazard makes insurance more expensive.  It may even push the price of insurance above 
the maximum premium that a person is prepared to pay. [1] 
    [Total 2] 
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Stochastic models of 
investment returns 

 

Syllabus objectives 

3.1 Show an understanding of simple stochastic models for investment returns. 

3.1.1 Describe the concept of a stochastic investment return model and the 
fundamental distinction between this and a deterministic model. 

3.1.2 Derive algebraically, for the model in which the annual rates of return are 
independently and identically distributed and for other simple models, 
expressions for the mean value and the variance of the accumulated 
amount of a single premium. 

3.1.3 Derive algebraically, for the model in which the annual rates of return are 
independently and identically distributed, recursive relationships which 
permit the evaluation of the mean value and the variance of the 
accumulated amount of an annual premium. 

3.1.4 Derive analytically, for the model in which each year the random variable 
i(1 )  has an independent lognormal distribution, the distribution 

functions for the accumulated amount of a single premium and for the 
present value of a sum due at a given specified future time. 

3.1.5 Apply the above results to the calculation of the probability that a simple 
sequence of payments will accumulate to a given amount at a specific 
future time. 
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0 Introduction 

Financial contracts are often of a long-term nature.  Accordingly, at the outset of many 
contracts there may be considerable uncertainty about the economic and investment 
conditions which will prevail over the duration of the contract.   

Therefore, we might choose to develop models for future investment returns to help us study 
that inherent uncertainty.  

A deterministic model is a model that provides an output based on one set of parameter and 
input variables.  However, deciding which set of input variables to use may be a challenge.  
Thus, for example, if it is desired to determine premium rates on the basis of one fixed rate 
of return, it is nearly always necessary to adopt a conservative basis for the rate to be used 
in any calculations, subject to the premium being competitive. 

The deterministic approach can provide only a single fixed answer to a problem.  This answer will 
be correct only if the assumptions made about the future turn out to be correct.   

When setting premium rates for insurance contracts, we need to make some assumption about 
future investment returns, as the premiums received will (at least, in part) be invested in order to 
meet the cost of future claims.  Adopting a conservative basis for the rate of return means that 
the rate selected is lower than we actually expect to receive in the future.  The difference 
between the assumed rate in the model and the expected rate provides a margin for uncertainty.  
However, if the assumed rate of return is too low, this will result in premiums that are too high to 
be competitive. 

An alternative approach to recognising the uncertainty that in reality exists is provided by 
the use of stochastic models.  In such models, no single rate is used and variations are 
allowed for by the application of probability theory.   

Since we cannot specify in advance precisely what investment returns will be, in a stochastic 
model, we make an assumption about the statistical distribution of future investment returns.  
This enables us to consider the expected accumulated value of an investment at a future date and 
the variance of that accumulated value.  As we have seen, considering the variance of the future 
value of a fund is one way of measuring the risk associated with our choice of investments.   

The stochastic approach can give unreliable results if the statistical distribution used is not 
appropriate. 

Possibly one of the simplest models is that in which each year the rate obtained is 
independent of the rates of return in all previous years and takes one of a finite set of 
values, each value having a constant probability of being the actual rate for the year. 

For example, the effective annual rates of return that will apply during each of the next n  years 
might be ni i i1 2, ,..., , where ki , k n1,2,...,  are random variables with the following discrete 
distribution: 

 k

 

i

 



0.06 with probability  0.2
0.08 with probability  0.7
0.10 with probability  0.1
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Question 

Calculate the mean, j, and the standard deviation, s, of ki . 

Solution 

The mean is: 

 kj E i       0.2 0.06 0.7 0.08 0.1 0.10 0.078  

We can calculate the variance using the formula  k k kVar i E i E i   
2 2( ) : 

kE i         
2 2 2 20.2 0.06 0.7 0.08 0.1 0.10 0.0062  

 k k ks Var i E i E i         
2 2 2 2 2( ) 0.0062 0.078 0.000116 0.0108  

So, the mean is 7.8% and the standard deviation is 1.08%. 

 
Alternatively, the rate may take any value within a specified range, the actual value for the 
year being determined by some given probability density function. 

For example we might assume that the annual rates of return are uniformly distributed between 
5% and 10%, or that the annual growth factor i1  follows a lognormal distribution with given 
parameter values, as we do in Section 2. 
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1 Simple models 

1.1 Fixed rate model 

At this stage we consider briefly an elementary example, which – although necessarily 
artificial – provides a simple introduction to the probabilistic ideas implicit in the use of 
stochastic rate models. 

Suppose that an investor wishes to invest a lump sum of P into a fund with compound 
investment rate growth at a constant rate for n years.  This constant investment return is 
not known now, but will be determined immediately after the investment has been made. 

This model, where the effective annual rate of return is a single unknown rate i, which will apply 
throughout the next n years, is often known as the fixed rate model. 

The accumulated value of the sum will, of course, be dependent on the investment rate.  In 
assessing this value before the investment rate is known, it could be assumed that the 
mean rate will apply.  However, the accumulated value using the mean rate will not equal the 
mean accumulated value.  In algebraic terms: 

 
1 1

1 ( ) (1 )

n
k k

n
j j j j

j j
P i p P p i

 

   
     
   
   

   

where: 

ji  is the jth of k possible investment rates of return 

 jp  is the probability of the investment rate of return ji  

The above result is easily demonstrated with the following simple numerical question. 

Question 

The returns from an investment are assumed to conform to the fixed rate model with the 
distribution of rates as specified below: 

k

 

i

 



0.06 with probability  0.2
0.08 with probability  0.7
0.10 with probability  0.1

 

(i) Calculate the expected accumulated value at the end of 5 years of an initial investment of 
£5,000. 

(ii) Calculate the accumulated value at the mean rate of return. 
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Solution 

(i) The expected accumulated value is: 

kE i      
 


5 5 5 55,000 [(1 ) ] 5,000(0.2 1.06 0.7 1.08 0.1 1.10 )
5,000 1.4572
£7,286

 

(ii) The mean rate of return is: 

   kE i       0.2 0.06 0.7 0.08 0.1 0.10 0.078  

Therefore the accumulated value at the mean rate of return is: 

   55,000 1.078 £7,279  

 
As expected, we see that the expected accumulated value is not equal to the accumulated value 
calculated at the expected rate of return. 

Question 

Calculate the variance of the accumulated value of the investment in the previous question. 

Solution 

The variance of the accumulated value, s2 , is: 

k ks E i E i   

     

     

   

2 2 10 5 2

2 10 10 10

5 5 5 2

2 2 2

5,000 ( [(1 ) ] ( [(1 ) ]) )

5,000 ((0.2 1.06 0.7 1.08 0.1 1.10 )

(0.2 1.06 0.7 1.08 0.1 1.10 ) )

5,000 (2.128791 1.457226 ) (£363)

 

It’s important to keep a few extra decimals in this last calculation to avoid losing accuracy, since 
the calculation involves subtracting two numbers of similar magnitude. 

 
For the fixed rate model, the mean and variance of the accumulated value of an investment must 
be calculated from first principles. 
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1.2 Varying rate model 

In our previous example the effective annual investment rate of return was fixed throughout 
the duration of the investment.  A more flexible model is provided by assuming that over 
each single year the annual yield on invested funds will be one of a specified set of values 
or lie within some specified range of values, the yield in any particular year being 
independent of the yields in all previous years and being determined by a given probability 
distribution. 

This model is often called the varying rate model.  The main difference between this and the fixed 
rate model is that, in the varying rate model, the rates of return can be different in each future 
year, whereas, in the fixed rate model, the same (unknown) rate of return will apply in each 
future year. 

Measure time in years.  Consider the time interval [0, ]n  subdivided into successive periods 

[0,1], [1,2], , [ 1, ]n n .  For 1,2, ,t n   let ti  be the yield obtainable over the tth year, ie the 

period [ 1, ]t t .  Assume that money is invested only at the beginning of each year.  Let tF  

denote the accumulated amount at time t of all money invested before time t and let tP  be 

the amount of money invested at time t.  Then: 

 1 1(1 )( )t t t tF i F P     , for 1,2,3,t    (1.1) 

It follows from this equation that a single investment of 1 at time 0 will accumulate at time n 
to: 

 1 2(1 )(1 ) (1 )n nS i i i     (1.2) 

Similarly, a series of annual investments, each of amount 1, at times 0,1,2, , 1n   will 

accumulate at time n to: 

1 2 3

2 3

1

(1 )(1 )(1 ) (1 )

(1 )(1 ) (1 )

(1 )(1 )

(1 )

n n

n

n n

n

A i i i i

i i i

i i

i



    

   



  

 





  (1.3) 

Note that nA  and nS  are random variables, each with its own probability distribution 

function. 

For example, if the yield each year is 0.02, 0.04, or 0.06 and each value is equally likely, the 

value of nS  will be between 1.02n  and 1.06n .  Each of these extreme values will occur with 

probability (1 3)n . 

Question 

Determine the probability that nS  will take the value n 11.02 1.04 . 
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Solution 

This value of nS  will occur if the rate of return is 2% in one year and 4% in the remaining n1  
years.  Since there are n different years in which the 2% could fall, the probability is: 

n

n
nn


    
 

11 1
3 3 3

 

 
In general, a theoretical analysis of the distribution functions for nA  and nS  is somewhat 

difficult.  It is often more useful to use simulation techniques in the study of practical 
problems.  However, it is perhaps worth noting that the moments of the random variables 

nA  and nS  can be found relatively simply in terms of the moments of the distribution for 

the yield each year.  This may be seen as follows. 

Moments of Sn 

Let’s consider the kth moment of nS , where nS  denotes the accumulated value at time n  of an 
initial investment of 1 made at time 0. 

From Equation (1.2) we obtain: 

 
1

( ) (1 )
n

k k
n t

t
S i


   

and hence: 

 
1

(1 )
n

k k
n t

t
E S E i



 
        

  

 
1

(1 )
n

k
t

t
E i



     (1.4) 

since (by hypothesis) 1 2, , , ni i i  are independent.  Using this last expression and given the 

moments of the annual yield distribution, we may easily find the moments of nS . 

For example, suppose that the yield each year has mean j and variance 2s .  Then, letting 

1k   in Equation (1.4), we have: 

 

1

1

[ ] [(1 )]

1 [ ]

(1 )

n

n t
t

n

t
t

n

E S E i

E i

j





 

 

 





  (1.5) 

since, for each value of t, [ ]tE i j . 
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With 2k   in Equation (1.4) we obtain: 

2 2

1

2

1

2 2

[ ] (1 2 )

(1 2 [ ] [ ])

(1 2 )

n

n t t
t

n

t t
t

n

E S E i i

E i E i

j j s





    

  

   





 (1.6) 

since, for each value of t: 

 2 2 2 2[ ] ( [ ]) ( )t t tE i E i Var i j s     

The variance of nS  is: 

2 2

2 2 2

( ) [ ] ( [ ])

(1 2 ) (1 )

n n n

n n

Var S E S E S

j j s j

 

       (1.7) 

from Equations (1.5) and (1.6). 

Alternatively, we can write:  

   
n n

n t t t
t t

E S E i E i Var i
 

             
22 2

1 1
[(1 ) ] 1 (1 )  

using a rearrangement of the variance formula:   Var X E X E X   
22( ) . 

Then, using the results that: 

      t tE i E i j    
2 2 21 1 (1 )      and     t tVar i Var i s   2(1 ) ( )  

for all values of t , we can write: 

   
n n

n
t

E S j s j s


         2 2 2 2 2

1
(1 ) (1 )  

This means that: 

 n n
nVar S j s j    2 2 2( ) (1 ) (1 )  

These arguments are readily extended to the derivation of the higher moments of nS  in 

terms of the higher moments of the distribution of the annual investment rates of return. 
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Question 

Calculate the mean and variance of the accumulated value at the end of 25 years of an initial 
investment of £40,000, if the annual rate of return in year k  is independent of that in any other 
year and ki Gamma  (16,200)  for all k .  

Solution 

Since ki Gamma (16,200) , using the formulae for the mean and variance of the gamma 
distribution from page 12 of the Tables: 

 kj E i 


   
16 0.08

200
 

ks Var i 


   2 2
2 2

16
( ) (0.02)

200
 

So, the mean of the accumulated amount is: 

 E S j    25 25
2540,000 40,000(1 ) 40,000 1.08 £273,939  

and the variance is: 

 
Var S Var S

j s j



    

  



2
25 25

2 2 2 25 50

2 2 2 25 50

2

(40,000 ) 40,000 ( )

40,000 [(1 ) ] (1 )

40,000 [(1.08 0.02 ) 1.08 ]

(£25,417)

 

 
Moments of An 

Recall that nA  is a random variable that represents the accumulated value at time n of a series of 
annual investments, each of amount 1, at times n0, 1,2, , 1 .  ni i i1 2, , ,  are independent 

random variables, each with a mean j and a variance s2 . 

From Equation (1.3): 

 

n n

n

n n

n

A i i i

i i

i i

i

 



 



   

  

  

 







1 1 2 1

2 1

2 1

1

(1 )(1 ) (1 )

(1 ) (1 )

(1 )(1 )

(1 )
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Also:  

n n n

n n

n n

n

A i i i i

i i i

i i

i







    

   

  

 







1 2 1

2 1

1

(1 )(1 ) (1 )(1 )

(1 ) (1 )(1 )

(1 )(1 )

(1 )

 

It follows from Equation (1.3) (or from Equation (1.1)) that, for 2n  : 

1(1 )(1 )n n nA i A      (1.8) 

Equation (1.8) can also be deduced by general reasoning.  nA 1  is the accumulated value at time 
n1  of a series of annual payments, each of amount 1, at times n0, 1, 2, , 2 .  The value, at 
time n1 , of the same series of payments together with an extra payment at time n1  is 

nA  11 .  Accumulating this value forward to time n gives n ni A   1(1 )(1 )  and this is equivalent 

to nA . 

The usefulness of Equation (1.8) lies in the fact that, since 1nA   depends only on the values 

1 2 1, , , ni i i  , the random variables ni  and 1nA   are independent.  (By assumption the yields 

each year are independent of one another.)  Accordingly, Equation (1.8) permits the 
development of a recurrence relation from which may be found the moments of nA .  We 

illustrate this approach by obtaining the mean and variance of nA . 

Let: 

 [ ]n nE A   

and let: 

 2[ ]n nm E A  

Since: 

 1 11A i   

it follows that: 

 E A E i E i j     1 1 1[ ] [1 ] 1 [ ] 1    1 1 j    

and: 

 m E A E i E i E i     2 2 2
1 1 1 1 1[ ] [(1 ) ] 1 2 [ ] [ ]     2 2

1 1 2m j j s      

where, as before, j and 2s  are the mean and variance of the yield each year. 
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Taking expectations of Equation (1.8), we obtain (since ni  and 1nA   are independent): 

 1(1 )(1 ) 2n nj n       

This equation, combined with initial value 1 , implies that, for all values of n: 

n ns    at rate j  (1.9) 

We obtain this result by applying the recursive formula for n  repeatedly for each year: 

 

n n

n

n

n

j j

j j

j j j

j j j j

 











   

    

     



        

1

2
2

2 2
2

2 3

(1 ) (1 )

(1 ) (1 ) [1 ]

(1 ) (1 ) (1 )

...

(1 ) (1 ) (1 ) (1 )

 

Thus the expected value of nA  is simply ns , calculated at the mean rate of return. 

Recall that the symbol ns  denotes the accumulated value at time n  of payments of 1 at times 

0, 1, 2,…, n1 .  At the interest rate j , it is equal to: 

  
n

n
n

js j j j j
d

 
          2 3 (1 ) 1(1 ) (1 ) (1 ) (1 )  

where 
jd

j


1
.  

Next, we consider the variance of nA . 

Since: 

 2 2 2
1 1(1 2 )(1 2 )n n n n nA i i A A       

by taking expectations we obtain, for 2n  : 

2 2
1 1(1 2 )(1 2 )n n nm j j s m         (1.10) 

As the value of 1n   is known (by Equation (1.9)), Equation (1.10) provides a recurrence 

relation for the calculation successively of 2 3 4, , ,m m m  .  The variance of nA  may be 

obtained as: 

2 2 2( ) [ ] ( [ ])n n n n nVar A E A E A m      (1.11) 

In principle the above arguments are fairly readily extended to provide recurrence relations 
for the higher moments of nA . 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 12  CM2-05: Stochastic models of investment returns 

© IFE: 2019 Examinations The Actuarial Education Company 

Question 

A company considers that on average it will earn interest on its funds at the rate of 4% pa.  
However, the investment policy is such that in any one year the yield on the company’s 
funds is equally likely to take any value between 2% and 6%. 

For both single and annual premium accumulations with terms of 5, 10, 15, 20, and 25 years 
and single (or annual) investment of £1, find the mean accumulation and the standard 
deviation of the accumulation at the maturity date.  (Ignore expenses.) 

Solution 

The annual rate of return is uniformly distributed on the interval [0.02,0.06] .  The 

corresponding probability density function is constant and equal to 25 (ie 1 (0.06 0.02) ).  

The mean annual rate of interest is clearly: 

 0.04j   

and the variance of the annual rate of return is: 

 2 2 44
3

1
(0.06 0.02) 10

12
s       

The formulae for the PDF, mean and variance of a uniform random variable are given on page 13 
of the Tables. 

We are required to find [ ]nE A ,  
1
2( )nVar A , [ ]nE S , and  

1
2( )nVar S  for 5, 10, 15, 20n  and 

25. 

Substituting the above values of j  and 2s  in Equations (1.5) and (1.7), we immediately 

obtain the results for the single premiums. 

For example: 

 E S  5
5[ ] 1.04 1.21665  

 
Var S

S

     

  

2 4 5 104
5 3

5

( ) (1 0.08 0.04 10 ) 1.04 0.000913

standard deviation [ ] 0.000913 0.03021
 

For the annual premiums we must use the recurrence relation (1.10) (with 1 1n ns     at 

4%) together with Equation (1.11). 

Equation (1.9) is used to calculate nE A[ ] .  For example: 

E A s 
  

5

5 5 @4%
1.04 1[ ] 5.63298
0.04 1.04
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To calculate the standard deviation of A5 , we first need to calculate m5  from the recursive 
formula: 

 n n nm j j s m       2 2
1 1(1 2 )(1 2 )  

starting with j  1 1  and m j j s   2 2
1 1 2 . 

The values required are tabulated below: 

n nm  n  

1 1.08173 1.04 

2 4.50189 2.1216 

3 10.54158 3.24646 

4 19.50853 4.41632 

5 31.73933018 5.6329755 

 
Therefore, using Equation (1.11): 

Var A m     2 2
5 5 5( ) ( ) 31.73933018 5.6329755 0.0089172  

So the standard deviation is: 

½0.0089172 0.09443  

This answer is very sensitive to rounding. 

The results are summarised in Table 1.  It should be noted that, for both annual and single 
premiums, the standard deviation of the accumulation increases rapidly with the term. 

Term 
(years) 

Single investment £1 Annual investment  £1 

Mean 
accumulation (£) 

Standard 
deviation (£) 

Mean 
accumulation (£) 

Standard 
deviation (£) 

5 

10 

15 

20 

25 

1.21665 

1.48024 

1.80094 

2.19112 

2.66584 

0.03021 

0.05198 

0.07748 

0.10886 

0.14810 

5.63298 

12.48635 

20.82453 

30.96920 

43.31174 

0.09443 

0.28353 

0.57899 

1.00476 

1.59392 

 
Table 1 
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This approach is also easily extended to provide recurrence relations for other series of 
investments.  Let tF  again represent the accumulated amount at time t of all money invested 

before time t and let tP  be the amount of money invested at time t.  We stated in Equation (1.1) 
that: 

 t t t tF i F P   1 1(1 )( )  

Therefore the mean of tF can be found from the recursive relationship: 

 
t t t

E F

E F j E F P 



  

0

1 1

[ ] 0

[ ] (1 )( [ ] )
 

Question 

An investor invests 1 unit at time t  0  and a further 2 units at time t 2 .  The expected rate of 
return in each year is 10%.  Calculate the accumulated value of the fund at time t  5 : 

(i) using recursive formulae, and assuming the varying rate model applies 

(ii) using the corresponding deterministic model. 

Comment on your answers. 

Solution 

(i) Using a recursive approach, where tF  represents the accumulated amount at time t of all 
money invested before time t, we obtain: 

  E F 0[ ] 0  

  E F E F P      1 0 0[ ] 1.1 [ [ ] ] 1.1 (0 1) 1.1  

  E F E F P      2 1 1[ ] 1.1 [ [ ] ] 1.1 (1.1 0) 1.21  

  E F E F P      3 2 2[ ] 1.1 [ [ ] ] 1.1 (1.21 2) 3.531  

  E F E F P      4 3 3[ ] 1.1 [ [ ] ] 1.1 (3.531 0) 3.8841  

  E F E F P      5 4 4[ ] 1.1 [ [ ] ] 1.1 (3.8841 0) 4.27251  

(ii) Using the corresponding deterministic model, with an annual rate of return of 10%, gives: 

    5 31.1 2 1.1 4.27251  

So the corresponding deterministic model gives the same answer. 
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2 The lognormal distribution 

In general a theoretical analysis of the distribution functions for nA  and nS  is somewhat 

difficult, even in the relatively simple situation when the yields each year are independent 
and identically distributed.  There is, however, one special case for which an exact analysis 
of the distribution function for nS  is particularly simple. 

Due to the compounding effect of investment returns, the accumulated value of an investment 
bond grows multiplicatively.  This makes the lognormal distribution a natural choice for modelling 
the annual growth factors i1 , since a lognormal random variable can take any positive value 
and has the following multiplicative property: 

If X N  2
1 11log ( , )  and X N  2

2 22log ( , )  are independent random variables, then: 

 X X N     2 2
1 2 1 21 2log ( , )  

The graph below illustrates the shape of the PDF of a typical lognormal distribution used to model 
annual growth factors, i1 . 

        N 2log (0.075,0.1 )  

  

Question 

Given that i N  21 log (0.075,0.1 ) , calculate the mean and standard deviation of the annual 
growth rate, i . 

Solution 

Using the formulae on page 14 of the Tables: 

 E i e e      
22 0.075 ½ 0.1½[1 ] 1.0833  

and: Var i e e e e         
22 2 22 0.075 0.12 0.1 2(1 ) ( 1) ( 1) 0.1086  
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So, the annual growth rate will have a mean value of: 

E i [ ] 8.33%   

and a standard deviation of: 

sd i sd i  ( ) (1 ) 10.86%  

 
Suppose that the random variable log(1 )ti  is normally distributed with mean   and 

variance 2 .  In this case, the variable (1 )ti  is said to have a lognormal distribution with 

parameters   and 2 .   

So, if ti N    2log(1 ) ( , ) , then ti N    21 log ( , ) . 

Equation (1.2) is equivalent to: 

 
1

log log(1 )
n

n t
t

S i


   

The sum of a set of independent normal random variables is itself a normal random 
variable.  Hence, when the random variables (1 ) ( 1)ti t   are independent and each has a 

lognormal distribution with parameters and   and 2 , the random variable nS  has a 

lognormal distribution with parameters n  and 2n . 

Since the distribution function of a lognormal variable is readily written down in terms of its 
two parameters, in the particular case when the distribution function for the yield each year 
is lognormal we have a simple expression for the distribution function of nS  . 

So n nS N n n S N n n    2 2log ( , ) or log ( , ) , and the distribution function of nS  can therefore 
be written: 

 n
s nP S s

n



 

  
 

log
( )  

Question 

A man now aged exactly 50 has built up a savings fund of £400,000.  In order to retire at age 60, 
he will require a fund of at least £600,000 at that time.  The annual returns on the fund, i , are 

independent and identically distributed, with i N  21 log (0.075,0.1 ) .   

Calculate the probability that, if the man makes no further contributions to the fund, he will be 
able to retire at age 60. 
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Solution 

If the man makes no further contributions, his accumulated fund at age 60 will be S10400,000 . 

So, the probability that the fund will be sufficient for him to retire is: 

P S P S




     
 

 
  

 

    

10 10
600,000(400,000 600,000) 1
400,000

log1.5 101
10

1 ( 1.0895) (1.0895) 0.862

 

 
Similarly for the present value of a sum of 1 due at the end of n years: 

1 1
1

1

(1 ) (1 )

log log(1 ) log(1 )

n n

n n

V i i

V i i

   

      




 

Since, for each value of t, log(1 )ti  is normally distributed with mean   and variance 2 , 

each term on the right-hand side of the above equation is normally distributed with mean 

  and variance 2 .  Also the terms are independently distributed.  So, log nV  is normally 

distributed with mean n  and variance 2n .  That is, nV  has lognormal distribution with 

parameters n  and 2n . 

So n nV N n n V N n n     2 2log ( , ) or log ( , ) , and the distribution function of nV  can 
therefore be written: 

 n
s n s nP V s

n n
 

 
     

     
   

log ( ) log( )  

By statistically modelling nS  and nV , it is possible to answer questions such as: 

 to a given point in time, for a specified confidence interval, what is the range of values 
for an accumulated investment 

 what is the maximum loss which will be incurred with a given level of probability. 

It can also be noted that these techniques may be extended to calculate the risk metrics 
such as VaR, as introduced in a previous chapter, of a series of investments. 

Question 

The annual returns on a fund, i , are independent and identically distributed.  Each year, the 

distribution of i1  is lognormal with parameters   0.075  and  2 20.025 . 

Calculate the upper and lower quartiles for the accumulated value at the end of 5 years of an 
initial investment of £1,000. 
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Solution 

By definition, the accumulated amount S51,000  will exceed the upper quartile u  with probability 
25%, ie: 

 P S u P S u   5 50.75 (1,000 ) ( 1,000)  

So, using the formula for the distribution function of S5 : 

 
u

P S u



 

   
 

5
log( 1,000) 5

0.75 ( 1,000)
5

 

From page 162 of the Tables, we find that  (0.6745) 0.75 .  So, we must have: 

 
u 





log( 1,000) 5
0.6745

5
    ie  u e   5 0.6745 51,000 £1,511  

Similarly, the lower quartile is: 

l e   5 0.6745 51,000 £1,401  

 
So far in this section, we have assumed that the annual growth factors in each year are 
independent, ie we have assumed that the varying rate model applies.  We can also use a 
lognormal distribution for annual growth factors in conjunction with the fixed rate model. 

Suppose that the rate of return on an investment, i , is currently unknown, but once determined, 
it will be the same in all future years.  In this case:  

n
nS i (1 )  

If i N    21 log ( , ) , then:  

i N    2log(1 ) ( , )  

and: ni n i N n n     2 2log(1 ) log(1 ) ( , )  

So: n
nS i N n n    2 2(1 ) log ( , )  

Note that the distribution of nS  obtained here is different to that derived for the varying rate 

model, where nS N n n  2log ( , ) , which applies in the case where the returns in each year are 
independent. 
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Question 

A lump sum of $14,000 will be invested at time 0 for 4 years at an annual rate of return, i .  The 
rate of return, once determined, will be the same in each of the four years.  i1  has a lognormal 
distribution with mean 1.05 and variance 0.007.   

Calculate the probability that the investment will accumulate to more than $20,000 in 4 years’ 
time. 

Solution 

We first need to find the values of the parameters for the lognormal distribution.  Using the 
formulae for the mean and variance from the Tables: 

 e  
21

2 1.05       (Equation 1) 

 and: e e      
 

2 22 1 0.007  (Equation 2) 

Squaring Equation 1, we have: 

 e e     
  

 

21 2
2

2
2 21.05  

Substituting this into Equation 2 gives: 

 e 
             

22 2
2

0.007
1.05 1 0.007 ln 1 0.006329

1.05
 

So, using Equation 1: 

    21
2ln(1.05) 0.04563  

We know that i N    21 log ( , ) .  Since we have a constant rate of return over the 4 years, the 
fixed rate model applies.  Letting nS  denote the accumulated value at time n  of an investment of 

1 made at time 0, we have nS N n n  2 2log ( , ) . 

We need the probability  P S 414,000 20,000  where: 

 S N N   2
4 log (4 ,16 ) log (0.1825,0.1013)  
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So: 

   

 

 

 

P S P S

P S

P Z

P Z

  

 

 
  

 

 

  

4 4

4

14,000 20,000 1.429

ln 0.3567

0.3567 0.1825
0.1013

0.547

1 0.547 0.2922
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Chapter 5 Summary 

A stochastic model of investment returns provides information about the distribution of 
financial outcomes.  This distribution can be used to find best estimates and probabilities. 

The varying rate model and the fixed rate model provide formulae for the mean and variance 
of the accumulated amount of a fund or the present value of a future payment. 

Varying rate model  (single premium) 

  n
nE S j (1 )   n n

nVar S j s j    2 2 2( ) [(1 ) ] (1 )  

Fixed rate model  (single premium) 

  n
nE S E i   (1 )   n n

nVar S E i E i     
2 2( ) (1 ) ( [(1 ) ])  

For the varying rate model, the variance and higher moments of the accumulated amount of 
a series of payments can be calculated using recursive formulae. 

Varying rate model  (annual premium) 

 n nE A s j  | at rate  

Recursive formulae for  nE A : 

  E A 0 0  

and: 

     k kE A j E A    1(1 ) 1  ( k n1,2,..., ) 

Recursive formulae for nVar A( ) : 

 E A   
2
0 0  

and: 

     k k kE A j s E A E A 
          

2 2 2 2
1 1(1 ) 1 2         ( k n1,2,..., ) 

Then: 

   n n nVar A E A E A   
22( )  
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For the fixed rate model with annual premiums, calculate the mean and variance directly 
from the definitions. 

The lognormal distribution can be used to model the annual growth factor, i1 .  This allows 
probabilities to be determined in terms of the distribution function of the normal distribution. 

The lognormal model formulae for the varying rate model are: 

nS N n n  2log ( , )   n
s nP S s   

n



 

   
 

log( )  

nV N n n  2log ( , )   n
s n s nP V s

n n
 

 
     

     
   

log ( ) log
( )  
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Chapter 5 Practice Questions 

5.1 Investment returns on a given fund are fixed over the next five years at either 4% pa with 
probability 0.2 or 5% pa with probability 0.8.   

Calculate the standard deviation of the present value of a payment of £25,000 due to be made 
from the fund in 5 years’ time. 

5.2 A stochastic model of investment returns assumes that the annual rate of return during the next 
year will be 7.5% and that the rate of return in subsequent years will be at a fixed but unknown 
level with probabilities in accordance with the following probability distribution: 

 i


 



5.5% with probability 0.3

7.5% with probability 0.5

9.5% with probability 0.2

 

Calculate the expected accumulated amount at the end of the fifth year of an initial investment of 
£20,000. 

5.3 A stochastic model of investment returns assumes that the annual rates of return in different 
years are independent and identically distributed normal random variables with mean 8% and 
standard deviation 2%.   

Calculate the mean and standard deviation of the accumulated value, at time 2, of an initial 
investment of £10,000. 

5.4 An investment analyst wishes to model the annual rate of growth i  of an investment fund using a 
probability distribution of the form: 

 

k

i k

k


 



5% with probability 3

7.5% with probability 1 4

12.5% with probability

 

where k  is a suitable constant.   

Determine the maximum and minimum values that can be obtained for the mean and standard 
deviation of i  using this family of distributions. 
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5.5 An investor intends to invest three lump sums in an investment account, one at the start of each 
of the next 3 years, and is interested in the amount to which the combined payments will have 
accumulated by the end of the third year.  The amounts of the lump sums are shown in the table 
below.   

Calculate the mean and variance of the accumulated amount assuming returns in each year are 
independent and the mean and standard deviation of the rate of return in each year are as shown 
in the table: 

Year Lump sum invested Mean rate of return SD of rate of return 

1 £50,000 8% 2% 

2 £30,000 7% 3% 

3 £20,000 6% 4% 

 
5.6 The annual returns, i , on a fund are independent and identically distributed, with a mean of 6% 

and a standard deviation of 3%.  Each year, the distribution of i1  is lognormal with parameters 

  and  2 . 

(i) Calculate the values of   and  2 . [4] 

(ii) Calculate the probability that the accumulation of a single investment of £1 will be greater 
than 110% of its expected value after 10 years. [4] 

    [Total 8] 

5.7 £200 is invested for 12 years.  In any year the yield on the investment will be 3% with probability 
0.25, 5% with probability 0.6 and 6% with probability 0.15, and is independent of the yield in any 
other year. 

(i) Calculate the mean accumulation at the end of 12 years. [2] 

(ii) Calculate the standard deviation of the accumulation at the end of 12 years. [4] 
    [Total 6] 

  

Exam style 

Exam style 
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5.8 In any year, the rate of return on funds invested with a particular company has mean value j and 
standard deviation s, and is independent of the rates of return in all previous years. 

(i) Derive formulae for the mean and the variance of the accumulated value after n years of a 
single investment of 1 at time 0. [5] 

(ii) Let ti  be the rate of return earned in the t th year.  Each year the value of ti(1 )  is 

lognormally distributed, with parameters   0.04  and  2 0.09 . 

 (a) Show that n, the number of years that must elapse before the accumulation of a 
lump sum invested at time 0 has a 75% probability of at least doubling in size, 
satisfies: 

   n n  0.04 0.2024 ln2 0  

 (b) Hence calculate the value of n. [7] 
    [Total 12] 

5.9 The annual rates of return on an investment fund are assumed to be independent and identically 
distributed.  Each year the distribution of i1  is lognormal with parameters   0.07 and 

 2 0.006 , where i  is the annual yield on the fund. 

Calculate the amount that should be invested in the fund immediately to ensure an accumulated 
value of at least £500,000 in ten years’ time with a probability of 0.99. [6]

Exam style 

Exam style 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 5 Solutions 

5.1 The present value is: 

 5
25,000

20548.18
1.04

 with probability 0.2, or  

 5
25,000

19588.15
1.05

, with probability 0.8. 

The mean of these values is: 

    20,548.18 0.2 19,588.15 0.8 19,780.16 . 

So, the standard deviation of the present value is: 

     2 2 220,548.18 0.2 19,588.15 0.8 19780.16 £384  

5.2 The probability distribution of the accumulated amount at the end of 5 years is: 

 S

   



   

   

4

4
5

4

20,000 1.075 1.055 £26,635    with probability 0.3

20,000 1.075 1.075 £28,713    with probability 0.5

20,000 1.075 1.095 £30,910    with probability 0.2

 

So the expected accumulated amount is: 

 E S       5[ ] 0.3 26,635 0.5 28,713 0.2 30,910 £28,529  

5.3 The mean accumulated amount at the end of 2 years is: 

 E S E S j      2 2
2 2[10,000 ] 10,000 [ ] 10,000(1 ) 10,000 1.08 £11,664  

The variance of the accumulated amount at the end of 2 years is: 

 

Var S Var S

j s j



    

  



2
2 2

2 2 2 2 4

2 2 2 2 4

(10,000 ) 10,000 ( )

10,000 [((1 ) ) (1 ) ]

10,000 [(1.08 0.02 ) 1.08 ]

93,328  

So the standard deviation is: 

 93,328 £305.50  

Note that we don’t use the fact that the rates of return are normally distributed here.  To apply the 
varying rate model, all we need to know is the mean and variance of the annual rate of return. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 28  CM2-05: Stochastic models of investment returns 

© IFE: 2019 Examinations The Actuarial Education Company 

5.4 In order for this to be a sensible probability distribution, all the probabilities must lie between 0 
and 1.  So k  must lie in the range k 0 0.25 . 

The mean growth rate is: 

 E i k k k k        [ ] 3 0.05 (1 4 ) 0.075 0.125 0.075 0.025  

So the minimum value (corresponding to k  0.25 ) is 6.875% and the maximum value 
(corresponding to k 0 ) is 7.5%. 

The variance of the growth rate is: 

 

 Var i E i E i

k k k k

k k

   

        

 

22

2 2 2 2

2

( ) [ ]

3 0.05 (1 4 ) 0.075 0.125 (0.075 0.025 )

0.004375 0.000625

 

Differentiating with respect to k : 

 d Var i k
dk

 ( ) 0.004375 0.00125   

Setting this equal to 0, we see that the only turning point of the variance function is at: 

 k  0.004375 / 0.00125 3.5   

This is outside the permissible range of values of k .  So the variance function must be monotonic 
over the range of interest to us.  Therefore, the minimum standard deviation (corresponding to 
k 0 ) is 0% and the maximum standard deviation (corresponding to k  0.25 ) is 3.25%.  

5.5 To find the mean of A3 , the accumulated amount at the end of the third year, we need to use the 
recursive relationships: 

 E A 0[ ] 0  

  k k k kE A j P E A    1[ ] (1 ) [ ]  ( k 1,2,3 ) 

where kP  denotes the lump sum invested at the start of year k  and kj  is the mean rate of return 
for year k . 

This gives: 

 E A   1[ ] 1.08(50,000 0) 54,000  

 E A   2[ ] 1.07(30,000 54,000) 89,880  

 E A   3[ ] 1.06(20,000 89,880) 116,473  

So the mean accumulated amount is £116,473. 
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To find the variance of A3 , we need to use the recursive relationships: 

 E A 2
0[ ] 0  

    k k k k k k kE A j s P P E A E A     2 2 2 2 2
1 1[ ] (1 ) 2 [ ] [ ]  k ( 1,2,3)  

where ks  is the standard deviation of the rate of return for year k . 

This gives: 

 E A     2 2 2 2
1[ ] (1.08 0.02 )[50,000 2(50,000)(0) 0] 2,917,000,000  

 
E A    



2 2 2 2
2[ ] (1.07 0.03 )[30,000 2(30,000)(54,000) 2,917,000,000]

8,085,910,600
 

 

E A    



2 2 2 2
3[ ] (1.06 0.04 )[20,000 2(20,000)(89,880) 8,085,910,600]

13,593,665,650  

Then: 

 Var A E A E A    2 2 2 2
3 3 3( ) [ ] ( [ ]) 13,593,665,650 116,473 (£5,264)  

So the standard deviation of the accumulated amount is £5,264. 

5.6 (i) Parameters of the lognormal distribution 

We know that i N    21 log ( , ) , and that E i [ ] 0.06  and Var i  2( ) 0.03 .  Using the formulae for 
the mean and variance of the lognormal distribution from the Tables: 

 E i E i e     
21

2[1 ] 1 [ ] 1.06  (Equation 1) [1] 

and:    Var i Var i e e         
 

2 22 21 0.03 1  (Equation 2) [1] 

Squaring Equation 1, we have: 

  e e     
  

 

21 2
2

2
2 21.06  

Substituting this into Equation 2 gives: 

 e 
              

2 2
2 2 2

2
0.031.06 1 0.03 ln 1 0.00080068
1.06

 [1] 
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So, using Equation 1: 

      21
2ln 1.06 0.057869  [1] 

    [Total 4] 

(ii) Probability 

Let S10  denote the accumulated value at time 10 of an investment of £1 at time 0.  We require 

the probability  P S E S10 101.1 [ ] . 

As the rate of return in each year is independent of that in other years, using the varying rate 
model, we have: 

  E S j  10 10
10[ ] 1 1.06    since  j E i [ ] 0.06  [1] 

The distribution of S10  under this model is: 

    S N N   2
10 log 10 ,10 log 0.57869,0.0080068  [1] 

So: 

 

   
  

 

 

 

P S E S P S

P S

P Z

P Z

   

  

     
 
 

 

 



10
10 10 10

10
10

10

1.1 [ ] 1.1 1.06

ln ln 1.1 1.06

ln 1.1 1.06 0.57869

0.0080068

1.110

1 1.110

0.1335  [2] 
    [Total 4] 

5.7 (i) First of all, we need to find the mean, j , of the rate of return in each year: 

  j       (0.03 0.25) (0.05 0.6) (0.06 0.15) 0.0465  [1] 

Let S12  represent the accumulated amount at time 12 of an investment of 1 at time 0.  
So: 

    E S j   12 12
12[200 ] 200 1 200 1.0465 £345.06  [1] 

   [Total 2] 
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(ii) To calculate the variance of the accumulated amount, we first need to calculate the 

variance, s2 , of the rate of return in each year.   

 s        2 2 2 2 2(0.03 0.25) (0.05 0.6) (0.06 0.15) 0.0465 0.00010275  [1] 

So: 

 

 

    

   

Var S Var S

j s j



 
     

 

 
   

 



2
12 12

212 122 2 2

12 242 2

200 200 ( )

200 (1 ) 1

200 1.0465 0.00010275 1.0465

134.13  [2] 

So the standard deviation is £11.58. [1] 
   [Total 4] 

5.8 (i) Let nS  be the accumulated value, after n years, of a single investment of 1 at time 0.  Let 

ti  be the rate of return earned in the t th year.  Then: 

            n
n n nE S E i i i E i E i E i j          1 2 1 2(1 )(1 ) (1 ) 1 1 1 (1 )  [1] 

 and: 

  

     

     

n n

n

E S E i i i

E i E i E i

          

                  





2 2 22
1 2

2 2 2
1 2

1 1 1

1 1 1  [1] 

 Now, since  E X E X Var X 22[ ] [ ] ( ) : 

     k k k k kE i E i Var i E i Var i j s            
2 22 2 2(1 ) [1 ] (1 ) 1 [ ] ( ) (1 )  [1] 

 So: 

  
n

nE S j s        
2 2 2(1 )  [1] 

 Hence: 

  
n n

nVar S j s j      
2 2 2( ) (1 ) (1 )  [1] 

    [Total 5] 
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(ii)(a) Now: 

      n nS i i i   1 21 1 1  

 So: 

  

    

     

n n

n

S i i i

i i i

     

      





1 2

1 2

ln ln 1 1 1

ln 1 ln 1 ln 1  [1] 

Since  ti N ln 1 (0.04,0.09) , using the additive property of independent normal 

distributions means that nS N n nln (0.04 ,0.09 ) . [1] 

 The probability that the initial investment at least doubles is: 

     n nP S P S    2 0.75 2 0.25  [1] 

 Standardising gives: 

   n
nP S P Z

n
 

    
 

ln2 0.04
2 0.25

0.09
  

 where Z N (0,1) , so using page 162 of the Tables, we have: 

  
n

n


 
ln2 0.04

0.6745
0.09

 [1] 

 Rearranging: 

  

n n

n n

   

  

ln2 0.04 0.6745 0.3

0.04 0.2024 ln2 0  [1] 

(ii)(b) Letting x n , the equation becomes: 

  x x  20.04 0.2024 ln2 0  

 Solving the quadratic equation: 

  x  
  

20.2024 0.2024 0.16ln2 2.3413,7.4013
0.08

 [1] 

 So: 

  n  27.4013 54.8  years [1] 
    [Total 7] 
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5.9 Let X  be the amount invested at time 0, and let ki  denote the yield obtained in year k , 
k 1,2,...,10 .  The accumulated value of the fund after 10 years is then: 

     X i i i XS   1 2 10 101 1 ... 1  

This will be at least £500,000 if and only if: 

 S
X

10
500,000   [1] 

Since the yields are independent, it follows that: 

    S N N  10 log 10 0.07,10 0.006 log 0.7,0.06  [1] 

Hence: 

 

P S P S
X X

XP Z

              

        
 
  

10 10
500,000 500,000ln ln

500,000ln 0.7

0.06
 [1] 

Since this probability is 0.99, X
   
 

500,000ln 0.7

0.06
 must be the lower 1% point of the standard 

normal distribution, ie: 

 
X 

 
ln500,000 ln 0.7

2.3263
0.06

 [2] 

Solving for X  gives: 

 X X     ln ln500,000 0.7 2.3263 0.06 12.992188 438,970.80  

So the amount to be invested (rounded to the nearest £1) is £438,971.   [1] 
    [Total 6] 
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Portfolio theory 

 

   

  

Syllabus objectives 

4.1 Mean-variance portfolio theory 

4.1.1 Describe and discuss the assumptions of mean-variance portfolio theory. 

4.1.2 Discuss the conditions under which application of mean-variance portfolio 
theory leads to the selection of an optimum portfolio. 

4.1.3 Calculate the expected return and risk of a portfolio of many risky assets, 
given the expected return, variance and covariance of returns of the 
individual assets, using mean-variance portfolio theory. 

4.1.4 Explain the benefits of diversification using mean-variance portfolio theory. 
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0 Introduction 

This chapter introduces mean-variance portfolio theory, which is also called modern portfolio 
theory (MPT) or just portfolio theory.  As well as being very important in its own right, MPT forms 
the basis of the capital asset pricing model discussed later in the course.  

MPT assumes that investment decisions are based solely upon risk and return – more specifically 
the mean and variance of investment return – and that investors are willing to accept higher risk 
in exchange for higher expected return.  This can be consistent with the maximisation of expected 
utility as outlined earlier in the course, if the investor is assumed to have a utility function that 
only uses the mean and variance of investment returns, such as the quadratic utility function.  It 
can also be consistent if the distribution of investment returns is a function only of its mean and 
variance. 

Based upon these and other assumptions, MPT specifies a method for an investor to construct a 
portfolio that gives the maximum return for a specified risk (variance), or the minimum risk for a 
specified return.  Such portfolios are described as efficient. 

Section 1 of the chapter focuses upon the means by which to determine: 

 the opportunity set of available portfolios and the corresponding risk-return combinations 
between which the investor must choose and 

 the set of efficient portfolios, the efficient frontier. 

A rational investor who prefers more to less and is risk-averse will always choose an efficient 
portfolio. 

Section 2 introduces the benefits of diversification and shows that if the returns from all the 
assets in a portfolio are statistically independent then the variance of the portfolio return tends 
towards zero when the number of assets in that portfolio is increased. 

Note carefully that: 

 Figures 6.1 to 6.3 included within this chapter are all part of the Core Reading for this 
topic. 

 Within the context of mean-variance portfolio theory, risk is defined very specifically as 
the variance – or equivalently standard deviation – of investment returns.  Elsewhere in 
this and other courses we discuss other possible measures or types of risk that might be 
relevant depending upon the exact context considered. 

Some sections of this chapter have been adapted from lecture notes originally written by 
David Wilkie. 
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Question 

List other possible types of risk that might be relevant in an investment context. 

Solution 

There are many other types of investment-related risk, which are discussed in detail in this and 
other subjects.  Amongst the more important are: 

 default or credit risk – the other party to an investment deal fails to fulfil their obligations 

 inflation risk – inflation is higher than anticipated, so reducing real returns 

 exchange rate or currency risk – exchange rates move in an unanticipated way 

 reinvestment risk – stems from the uncertainty concerning the terms on which investment 
income can be reinvested 

 marketability risk – the risk that you might be unable to realise the true value of an 
investment if it is difficult to find a buyer. 
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1 Portfolio theory 

1.1 Introduction 

Mean-variance portfolio theory, sometimes called modern portfolio theory (MPT), specifies a 
method for an investor to construct a portfolio that gives the maximum return for a 
specified risk, or the minimum risk for a specified return. 

If the investor’s utility function is known, then MPT allows the investor to choose the portfolio 
that has the optimal balance between return and risk, as measured by the variance of return, and 
consequently maximises the investor’s expected utility. 

However, the theory relies on some strong and limiting assumptions about the properties of 
portfolios that are important to investors.  For example, it uses variance to measure risk and 
so penalises gains as well as losses.  In the form described here the theory ignores the 
investor’s liabilities, although it is possible to extend the analysis to include them. 

By ignoring actuarial risk – the risk that the investor fails to meet his or her liabilities – the theory 
as presented here is severely limited.  In its defence, MPT was the first real attempt to use 
statistical techniques to show the benefit of diversification for investors.   

The application of the mean-variance framework to portfolio selection falls conceptually into 
two parts: 

1. First, the definition of the properties of the portfolios available to the investor – the 
opportunity set. 

 Here we are looking at the risk and return of the possible portfolios available to the 
investor. 

2. Second, the determination of how the investor chooses one out of all the feasible 
portfolios in the opportunity set. 

That is, the determination of the investor’s optimal portfolio from those available. 
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1.2 Assumptions of mean-variance portfolio theory  

The application of mean-variance portfolio theory is based on some important assumptions: 

 all expected returns, variances and covariances of pairs of assets are known 

 investors make their decisions purely on the basis of expected return and variance 

 investors are non-satiated 

 investors are risk-averse 

 there is a fixed single-step time period 

 there are no taxes or transaction costs 

 assets may be held in any amounts, ie short-selling is possible, we can have infinitely 
divisible holdings, and there are no maximum investment limits. 

We will meet these assumptions again at various points throughout this chapter. 

1.3 Specification of the opportunity set 

In specifying the opportunity set it is necessary to make some assumptions about how 
investors make decisions.  Then the properties of portfolios can be specified in terms of 
relevant characteristics.  It is assumed that investors select their portfolios on the basis of: 

 the expected return and  

 the variance of that return 

over a single time horizon.  Thus all the relevant properties of a portfolio can be specified 
with just two numbers – the mean return and the variance of the return.  The variance (or 
standard deviation) is known as the risk of the portfolio. 

So, according to MPT, variance of return and expected return are all that matter – this is a key 
assumption.  Other key factors that might influence the investment decision in practice are 
ignored.  These include: 

 the suitability of the asset(s) for an investor’s liabilities 

 the marketability of the asset(s) 

 higher moments of the distribution of returns such as skewness and kurtosis 

 taxes and investment expenses 

 restrictions imposed by legislation 

 restrictions imposed by the fund’s trustees. 

Finally, we should note that the length of the time horizon, which is likely to vary between 
investors, is not specified. 

To calculate the mean and variance of return for a portfolio it is necessary to know the 
expected return on each individual security and also the variance/covariance matrix for the 
available universe of securities. 
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The variance/covariance matrix shows the covariance between each pair of the variables.  So, if 
there are three variables, 1, 2 and 3 say, then the matrix has the form: 

 
 
 
 
  

11 12 13

21 22 23

31 32 33

c c c
c c c
c c c

 

where ijc  is the covariance between variables i and j (for i j ), and iic  is the variance of 

variable i .  Since ij jic c  , the matrix is symmetric about the leading diagonal.   

Note that this means that with N different securities an investor must specify: 

 N expected returns 

 N variances of return 

 ( 1)
2

N N  covariances. 

Whilst estimates of the required parameters can be obtained using historical data, these are 
unlikely to prove reliable predictors of the future behaviour of investment returns and it may be 
necessary to adjust the historical estimates in the light of the other factors. 

Question 

Assuming that there are 350 shares in an equity index (as there are in the FTSE 350), calculate the 
number of items of data that need to be specified for an investor to apply MPT. 

Solution 

The required number of items of data is: 

 
  

350 349350 350 61,775
2

 

 
This requirement for an investor to make thousands of estimates of covariances is potentially a 
major limitation of mean-variance portfolio theory in its general form. 

However, we will see in later chapters that: 

 multifactor models and single-index models have been developed in an attempt to reduce 
the data requirements 

 the capital asset pricing model avoids this problem. 
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Efficient portfolios 

Two further assumptions about investor behaviour allow the definition of efficient 
portfolios. 

We have already introduced these in the assumptions of mean-variance portfolio theory above. 

The assumptions are: 

 Investors are never satiated.  At a given level of risk, they will always prefer a 
portfolio with a higher return to one with a lower return. 

 Investors dislike risk.  For a given level of return they will always prefer a portfolio 
with lower variance to one with higher variance. 

This means that investors prefer ‘more to less’ and that they are risk averse. 

A portfolio is inefficient if the investor can find another portfolio with the same (or higher) 
expected return and lower variance, or the same (or lower) variance and higher expected 
return. 

A portfolio is efficient if the investor cannot find a better one in the sense that it has either a 
higher expected return and the same (or lower) variance or a lower variance and the same 
(or higher) expected return. 

That is, an efficient portfolio is one that isn’t inefficient.  Thus, every portfolio – including those 
that consist of a single asset – is either efficient or inefficient. 

Once the set of efficient portfolios has been identified all others can be ignored. 

This is because an investor who is risk-averse and prefers more to less will never choose an 
inefficient portfolio.  The set of efficient portfolios is known as the efficient frontier. 

However, an investor may be able to rank efficient portfolios by using a utility function, as 
shown below. 

This will determine the investor’s optimal portfolio.   

If we know an individual’s utility function then we can describe their attitude towards risk and 
return.  If the assumption that investors make their decisions purely on the basis of expected 
return and variance holds, then this attitude towards risk and return can equally be described by 
indifference curves.  Indifference curves join points of equal expected utility in expected return-
standard deviation space, ie portfolios that an individual is indifferent between. 
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Suppose an investor can invest in any of the N securities, 1,...i N .  A proportion ix  is 

invested in security iS . 

Note that: 

 ix  is a proportion of the total sum to be invested 

 given infinite divisibility, ix  can take any real value, subject to the restriction that 




1
1

N
i

i
x  

 we have not specified the nature of the N securities. 

The return on the portfolio PR  is modelled as a random variable that is a linear combination 

of random variables, iR , representing the return on security iS , so that: 

 i
1

N

P i
i

R x R


   

So the portfolio return is a weighted average of the individual security returns. 

The expected return on the portfolio is: 

   i
1

N

P i
i

E E R x E


    

where iE  is the expected return on security iS . 

The variance is: 

  
1 1

N N

P i j ij
j i

V Var R x x C
 

     

where ijC  is the covariance of the returns on securities iS  and jS  and we write  ii iC V . 

So, the lower the covariance between security returns, the lower the overall variance of the 
portfolio.  This means that the variance of a portfolio can be reduced by investing in securities 
whose returns are uncorrelated, ie by diversification. 

The covariance ijC  is equal to   ij i j , where: 













standard deviation of security returns

standard deviation of security returns

correlation coefficient between security returns and security returns

i i

j j

ij i j

S

S

S S
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The case of two securities 

We can derive expressions for the mean and the variance of portfolio returns in simple cases. 

If there are just two securities, AS  and BS  , the above expressions reduce to: 

 A A B BE x E x E    

and 2 2 2A A B B A B ABV x V x V x x C   . 

Question 

Consider a portfolio consisting of equal holdings of two securities, xS  and yS , where: 

 the return on xS  is equally likely to be 5% or 10% pa 

 the return on yS  is equally likely to be 10% or 20% pa. 

(i) Calculate the means and variances of returns on each individual security. 

(ii) Calculate the mean and variance of the return on the portfolio as a whole, given that the 
correlation coefficient of the two securities is: 

 (a) 1 

 (b) 0 

 (c) –1 

 (d) 0.7 

(iii) Comment on your results. 

Solution 

(i) Means and variances for individual securities 

The mean returns on each security are: 

    

    

( ) 0.5 0.05 0.5 0.10 0.075 7.5%

( ) 0.5 0.10 0.5 0.20 0.15 15%

x

y

E S ie

E S ie
 

The variances can be calculated using the formula: 

 2 2( ) ( ) [ ( )]i i iV S E S E S     for   ,i x y   

where: 

 
    

    

2 2 2

2 2 2

( ) 0.5 0.05 0.5 0.10 0.00625

( ) 0.5 0.10 0.5 0.20 0.025

x

y

E S

E S
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So:  

  

  

2 2

2 2

( ) 0.00625 0.075 0.000625 (2.5%)

( ) 0.025 0.15 0.0025 (5%)

x

y

V S ie

V S ie
 

(ii) Mean and variance of portfolio as a whole 

The mean return on the portfolio in each case is given by: 

   ( ) 0.5 ( ) 0.5 ( )p x yE R E S E S  

ie     ( ) 0.5 0.075 0.5 0.15 0.1125pE R   ie  11.25% 

To find the variance of return on the portfolio we use the relationship: 

 
  

  

2 2( ) 0.5 ( ) 0.5 ( ) 2 (0.5 ,0.5 )

0.25 ( ) 0.25 ( ) 2(0.5)(0.5) ( , )

p x y x y

x y x y

V R V S V S Cov S S

V S V S Cov S S
 

(a) 1 xy  

When the correlation coefficient equals 1, we have: 

    ( , ) 1 0.025 0.05 0.00125x yCov S S  

So:   

       2

( ) 0.25 ( ) 0.25 ( ) 2(0.5)(0.5) ( , )

0.25 0.000625 0.25 0.0025 0.5 0.00125 0.00140625 (3.75%)

p x y x yV R V S V S Cov S S

ie

 

 (b) 0 xy  

When the correlation coefficient equals 0, we have: 

    ( , ) 0 0.025 0.05 0x yCov S S  

and:      2( ) 0.25 0.000625 0.25 0.0025 0.00078125 (2.795%)pV R ie   

(c) 1  xy  

When the correlation coefficient equals –1, we have: 

      ( , ) 1 0.025 0.05 0.00125x yCov S S  

and:        2( ) 0.25 0.000625 0.25 0.0025 0.5 0.00125 0.00015625 (1.25%)pV R ie  
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(d) 0 7 xy .  

When the correlation coefficient = 0.7, we have: 

    ( , ) 0.7 0.025 0.05 0.000875x yCov S S  

and:        2( ) 0.25 0.000625 0.25 0.0025 0.5 0.000875 0.00121875 (3.491%)pV R ie  

(iii) Comment 

The more closely correlated the investments in the portfolio, the larger the variance.  The highest 
result was obtained when the securities were assumed to be perfectly correlated (ie the 
correlation coefficient was +1) and the lowest result when the securities were assumed to be 
perfectly negatively correlated (ie the correlation coefficient was –1). 

This is to be expected.  For example, with negative correlation, the potential deviations from the 
expected return of each security separately will tend to cancel each other out, giving a smaller 
overall portfolio deviation from the overall expected return of the portfolio. 

 
We now return to the case where there are two securities, AS  and BS . 

As the proportion invested in AS  is varied, a curve is traced in E V  space.  The minimum 

variance can easily be shown to occur when: 

 
2

B AB
A

A AB B

V Cx
V C V




 
 

Question 

Prove the above result. 

Solution 

The variance of the portfolio return is: 

 
   

  

    

2 2

22

2

1 2 1

P A A B B A B AB

A A A B A A AB

V x V x V x x C

x V x V x x C
 

We want to choose the value for Ax  that minimises the variance PV .  To do this, we differentiate 
and set to zero: 

             2 2 1 1 2 1 2 0P
A A A B A AB A AB

A

dV x V x V x C x C
dx

 

      2 2 2 2 4 0A A B A B AB A ABx V V x V C x C  

      2A A B AB B ABx V V C V C  
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So, the minimum variance occurs when: 




 2
B AB

A
A AB B

V Cx
V C V

 

 
As an example, consider the case where: 

 4%AE    4%%AV     2%A   

 8%BE    36%%BV      6%B   

We now let the correlation coefficient between the two securities vary by considering AB  

equal to 0.75, 0, and +0.75 in turn.  The results are plotted in Figure 6.1, where the vertical 
axis represents expected values of return and the horizontal axis represents standard 

deviation of return.  In this space  E   the curves representing possible portfolios of the 

two securities are hyperbolae.  It is possible to plot the same results in E V  space, where 
the lines would be parabolae. 

 

 
Figure 6.1 

 

Note that AS  and BS  are denoted by S1 and S2 respectively in Figures 6.1 and 6.2, ie the points S1 
and S2 represent the expected return and standard deviation for portfolios consisting entirely of 

AS  and BS  respectively. 

Also note that in each case, the set of efficient portfolios consists only of those portfolios above 
the point of minimum variance. 
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Question 

Calculate the co-ordinates of the point of minimum variance in Figure 6.1 in the case when
  0AB , and comment on this result. 

Solution 

If   0AB , then the formula for the proportion of funds invested in asset A reduces to: 



B

A
A B

Vx
V V

 

So in this case:  

  


0.0036 0.9
0.0004 0.0036Ax    and   0.1Bx  

The resulting portfolio has expected return and variance given by: 

       0.9 0.04 0.1 0.08 0.044 4.4%P A A B BE x E x E ie  

and: 

 

   

       



2 2 2

2

2

0.81 0.0004 0.01 0.0036 2 0.9 0.1 0

0.01897

P A A B B A B ABx V x V x x C

    

ie  1.9%P  

This is less than both of the individual security standard deviations of 2% and 6%, illustrating the 
benefits of diversification. 
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Figure 6.2 below shows combinations of securities with correlation coefficients of +1, 0 and 
1.  For coefficients of +1 and -1, it is possible to obtain risk-free portfolios with zero 
standard deviation of return. 

Figure 6.2 

Note that if   is equal to +1 or –1, then there exists a risk-free portfolio with V = 0.  If   1 , it 
involves positive holdings of both securities, ie 1 2, 0x x .  If   1 , it involves a negative holding 
of SB (S2) and a positive holding of SA (S1). 

Question 

Show that with two assets the efficient frontier is a straight line in the case where  1 , as 
shown in Figure 6.2. 

Solution 

We can use the formula for the expected return of the portfolio to express Ax  in terms of PE . 

     1P A A B B A A A BE x E x E x E x E  

  



P B

A
A B

E Ex
E E

 

The variance of the portfolio return is: 

         2 2 2 2 2 22 2P A A B B A B AB A A B B A B A BV x V x V x x C x x x x  

If  1  (ie there is perfect positive correlation), then this simplifies to: 

            22 2 2 2 2P A A B B A B A B A A B BV x x x x x x   
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Taking square roots: 

 

 

  

 

 

   

 

  

 
 

 

 
 

 

1

P A A B B

A A A B

P B A P
A B

A B A B

A B B A A B
P

A B A B

x x

x x

E E E E
E E E E

E EE
E E E E

 

This is a straight line in  ,P PE  space. 

 
When there are N securities, the aim is to choose ix  to minimise V subject to the 

constraints: 

 
1

1
N

i
i

x


  

and PE E , say, in order to plot the minimum-variance curve. 

The aim is to choose the proportions to invest in each possible security in a way that minimises 
risk subject to the constraints that: 

 all the investor’s money is invested somewhere and 

 the expected return on the portfolio is set equal to the desired level. 

An alternative approach would be to maximise E subject to: 

 


 
1

1 and
N

i P
i

x V V  say 

However, the first approach is usually easier. 

Note carefully that E and V without the subscripts are the portfolio expected return or variance, 
ie the quantities that we are optimising, and that andP PE V  are the specified values used in the 
constraints. 
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Lagrangian multipliers 

One way of solving such a minimisation problem is the method of Lagrangian multipliers.   

The Lagrangian approach – in which we set up and optimise a suitable Lagrangian function – can 
be used to solve constrained optimisation problems such as we are considering here, provided 
that: 

 they are static, ie involve only a single time period 

 the constraints are all strict equalities. 

The basic idea is that if we wish to: 

 maximise or minimise some function 1( , ..., )Nf x x  

 subject to a set of M constraints 1( , ..., )j N jg x x c , j = 1, …, M 

 by choice of N variables ix , i = 1, … , N 

then we can set up a Lagrangian function of the form: 

  


 1 1
1

)( , ..., ) ( , ...,
M

N j j N j
j

x cW f x x g x  

It turns out that maximising/minimising 1( , ..., )Nf x x  subject to the constraints 1( , ..., )j N jg x x c , 

j = 1,…, M  is the same as maximising/minimising W with respect to 1 , ..., Nx x  and  1 , ..., M . 

Thus we set the derivative of W with respect to each ix  and  j  to zero.  This gives us a set of 

M N  equations in M N  unknowns.  Under suitable conditions these equations can be solved 
simultaneously to find the optimal values of the ix , and also the  j .  Note that the equations 







0
j

W  are just the M constraint equations themselves. 

In this instance we wish to: 

 minimise the portfolio variance, V 

 subject to the two constraints 



1

1
N

i
i

x  and  PE E  

 by choice of the securities , 1,2, ,ix i N . 
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The Lagrangian function is: 

  
1

1
N

P i
i

W V E E x 


 
      

 
 
  

or  
   

   
          

   
  

1 1 1 1
1

N N N N

ij i j i i P i
i j i i

W C x x E x E x  

where: 

 V, E and ix  are defined as above 

 PE  and 1 are the constraining constants and 

   and   are known as the Lagrangian multipliers.   

Question 

Recall the example in the Core Reading involving securities AS  and BS  illustrated in Figure 6.1, in 
which: 

 
 

 

4%, 4%%

8%, 36%%

A A

B B

E V

E V
 

 
Write down the Lagrangian function W in the case where the correlation coefficient is 
  0.75.AB  

Solution 

Here the Lagrangian function is: 

                 2 2 2 2 2 1A A B B A B AB A B A A B B P A BW x x x x E x E x E x x  

               2 24 36 2 0.75 2 6 4 8 1A B A B A B P A BW x x x x x x E x x   

ie             2 24 36 18 4 8 1A B A B A B P A BW x x x x x x E x x  

 
To find the minimum, we set the partial derivatives of W with respect to all the ix  and   and 

  equal to zero.  The result is a set of linear equations that can be solved. 

The equations are linear because: 

 the variance of portfolio returns is a quadratic function of the ix  and 

 the constraint terms are linear in each of ix ,  and . 

Hence, the first-order derivatives of W  contain powers of ix  no higher than one.   

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 18 CM2-06: Portfolio theory 

© IFE: 2019 Examinations The Actuarial Education Company 

The partial derivative of W with respect to ix  is: 

 
1

2
N

j ij i
i j

W x C E
x

 



  

   

To see where the 



1
2

N

j ij
j

x C  term comes from in the above expression, we start from the fact that 

for an N-security portfolio, the variance is equal to: 

 
 

 
1 1

N N

i j ij
i j

V x x C  

Writing out the covariance matrix in full gives: 

 2
1 11x C   1 2 12x x C  … 1 1i ix x C  … 1 1N Nx x C   

 2 1 21x x C   2
2 22x C  … 2 2i ix x C  … 2 2N Nx x C   

            

 1 1i ix x C  2 2i ix x C  … 2
i iix C  … i N iNx x C   

            

 1 1N Nx x C  2 2N Nx x C  … N i Nix x C  … 2
N NNx C   

  
If we differentiate with respect to ix , the ith row of the matrix gives us the following terms: 

(1)     1 1 2 2 ... 2 ...i i i ii N iNx C x C x C x C  

Also from the ith column, each of the other   1, , 1, 1, ,j i i N   rows, yields an j jix C  term, 

ie the following terms: 

(2)         1 1 2 2 1 1, 1 1,... ...i i i i i i i i N Nix C x C x C x C x C  

Summing (1) and (2), and noting that ij jiC C , we obtain:  

     1 1 2 22 2 ... 2 ... 2i i i ii N iNx C x C x C x C  

which we can write as: 

 



1
2

N

j ij
j

x C  
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The partial derivative of W with respect to   is: 

 
1

N

i i P
i

W E x E
 

 
    

   
  

and with respect to   is: 

 
1

1
N

i
i

W x
 

 
    

   
   

Setting each of these to zero gives: 

 
1

2 0
N

j ij i
j

x C E 


    (one equation for each of N securities) 

 
1

N

i i P
i

x E E


  

 
1

1
N

i
i

x


  

These 2N  equations in 2N  unknowns (first-order conditions) can be solved to find the 
optimal values of the security proportions, ie the ix ’s, as functions of the portfolio expectation 

PE .  These functions can then be substituted into the expression for the portfolio variance, the 
resulting expression for the portfolio variance as a function of the portfolio expectation being the 
equation of the minimum variance curve.  The top half of this curve, ie above the point of global 
minimum variance, is the efficient frontier. 

Question 

Write down the above conditions for the scenario in the previous question, where we had: 

 
 

 

4%, 4%%

8%, 36%%

A A

B B

E V

E V
 

and   0.75AB , giving a Lagrangian function of: 

             2 24 36 18 4 8 1A B A B A B P A BW x x x x x x E x x  
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Solution 

Differentiating the Lagrangian function gives the equations: 

 

 

 

 

 






    




    




    




    



8 18 4 0

18 72 8 0

4 8 0

1 0

A B
A

A B
B

A B P

A B

W x x
x

W x x
x

W x x E

W x x

 

 
We now generalise to any E and V. 

This is instead of considering specific values of PE  and PV .  In other words, we now look at ( , )E V  
as E is allowed to vary. 

The solution to the problem shows that the minimum variance V is a quadratic in E and each 

ix  is linear in E. 

The usual way of representing the results of the above calculations is by plotting the 
minimum standard deviation for each value of PE  as a curve in expected return-standard 

deviation  E   space. 

Recall that this is what we did for the two-security case in Figures 6.1 and 6.2 earlier in the 
chapter.  As V is quadratic in E, the resulting minimum-variance curve is a parabola in E – V space, 
and the minimum-standard deviation curve is a hyperbola in E .  Hereafter we always consider 

E  space unless stated otherwise. 

In this space, with expected return on the vertical axis, the efficient frontier is the part of the 
curve lying above the point of the global minimum of standard deviation.  All other possible 
portfolios are inefficient. 

According to MPT, inefficient portfolios should never be chosen by a rational, non-satiated, 
risk-averse investor. 

Question 

Solve the set of equations obtained in the previous question to derive an expression for the 
efficient frontier when AS  and BS  are the only two securities available and they have a 
correlation coefficient equal to 0.75. 
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Solution 

In order to minimise the portfolio variance V with respect to the portfolio expected return E we 
need to solve the following equations derived in the solution to the previous question: 

 

 

 

 






    




    




    




    



8 18 4 0

18 72 8 0

4 8 0

1 0

A B
A

A B
B

A B

A B

W x x
x

W x x
x

W x x E

W x x

 

Here we need to find Ax  and Bx  as (linear) functions of E.  In general terms, this requires us to 
solve the above 4 simultaneous equations in 4 unknowns Ax , Bx ,   and  .  In fact, in the 
two-security case we have here we can simply use the last two equations to obtain Ax  and Bx  (as 
we are not interested in solving for   and  ).   

These give: 

 
 

8 4,
4 4A B

E Ex x  

Substituting these back into the expression for the variance: 

   2 24 36 18A B A BV x x x x  

and simplifying gives: 

    21 11 68 128
8

V E E  

As expected, V is a quadratic function of E.  In E  space, the equation of the minimum-
standard deviation curve is therefore: 

     21 11 68 128
8

E E  

This curve is shown in Figure 6.1. 

The efficient frontier is that part of this curve above the point of global minimum standard 
deviation.  As minimising the standard deviation is equivalent to minimising the variance, to find 
this point we can differentiate the expression for V with respect to E: 

       
1 6822 68 0 3.0909 3.0909%
8 22

dV E E ie
dE
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So the efficient frontier is: 

     21 11 68 128
8

E E     for     3.0909E  

 
Recall that in the MPT framework investors make their decisions purely on the basis of expected 
return and variance.  If the returns on securities are normally distributed, these returns can be 
characterised by just the mean and the variance, so in this case MPT could be used to select 
optimal portfolios. 

In fact, it can be shown that normality of returns is not a necessary condition for the 
selection of optimal portfolios.  There is a more general class of distributions called the 
elliptically symmetrical family, which also result in optimality.  All the distributions in this 
class have the property that the higher order moments can be expressed in terms of just 
their mean and variance. 

1.4 Choosing an efficient portfolio 

Recall from Section 1.3 that indifference curves join points of equal expected utility in expected 
return-standard deviation space, ie portfolios that an individual is indifferent between.  Note that 
it is expected utility because we are considering situations involving uncertainty. 

A series of indifference curves (curves which join all outcomes of equal expected utility) 
can be plotted in expected return-standard deviation space.  Portfolios lying along a single 
curve all give the same value of expected utility and so the investor would be indifferent 
between them. 

The following diagram shows typical indifference curves in E  space. 

 expected return 

 

 

         

        

 

 

  0      standard deviation  

 

Question 

Explain why an investor’s indifference curves slope upwards, and what determines their gradient. 
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Solution 

An investor’s indifference curves slope upwards because we are assuming that the investor is 
risk-averse and prefers more to less.  Consequently, additional expected return yields extra utility, 
whereas additional risk reduces utility.  Thus, any increase (decrease) in risk/standard deviation 
must be offset by an increase (decrease) in expected return in order to maintain a constant level 
of expected utility. 

The gradient of the indifference curves is determined by the degree of the investor’s risk aversion.  
The more risk-averse the investor, the steeper the indifference curves – as the investor will 
require a greater increase in expected return in order to offset any extra risk. 

 
By combining the investor’s indifference curves with the efficient frontier of portfolios, we can 
determine the investor’s optimal portfolio, ie the portfolio that maximises the investor’s expected 
utility. 

Utility is maximised by choosing the portfolio on the efficient frontier at the point where the 
frontier is at a tangent to an indifference curve. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3 

 

Question 

Explain why the optimal portfolio on the efficient frontier is at the point where the frontier is at a 
tangent to an indifference curve. 
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Solution 

The optimal portfolio occurs at the point where the indifference curve is tangential to the efficient 
frontier for the following two reasons:   

1.   The indifference curves that correspond to a higher level of expected utility are 
unattainable as they lie strictly above the efficient frontier.   

2.   Conversely, lower indifference curves that cut the efficient frontier are attainable, but 
correspond to a lower level of expected utility.   

The highest attainable indifference curve, and corresponding highest level of expected utility, is 
therefore the one that is tangential to the efficient frontier.  The optimal portfolio occurs at the 
tangency point, which is in fact the only attainable point on this indifference curve, which is why it 
is optimal.   

 
For quadratic utility functions the process described above produces optimal portfolios 
whatever the distribution of returns, because expected utility is uniquely determined if we 
know the mean and variance of the distribution. 

Recall from utility theory that, if the investor has a quadratic utility function, their attitude 
towards risk can be fully characterised by just the mean and the variance of return.  Hence, when 
maximising expected utility by the choice of portfolio, the investor is concerned only with the first 
two moments of the investment returns yielded by the available portfolios and ignores all other 
factors.   

Optimal portfolios are also produced for any utility function if investment returns are assumed to 
be normally distributed.  This is important because investment returns are often modelled using a 
normal distribution. 

If it is felt that the assumptions leading to a two-dimensional mean-variance type portfolio 
selection model are inappropriate, it is possible to construct models with higher 
dimensions.  For example, skewness could be used in addition to expected return and a 
dispersion measure.  It would then be necessary to consider an efficient surface in three 
dimensions rather than an efficient frontier in two.  Clearly, the technique can be extended 
to more than three dimensions. 

Although such models have been constructed, they do not appear to be widely used.  The 
additional mathematical complexity, input data requirements and difficulty of interpretation 
building on the naïve assumptions are not compensated by real improvements in value 
added. 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-06: Portfolio theory Page 25 

The Actuarial Education Company  © IFE: 2019 Examinations 

2 Benefits of diversification 

Recall from Section 1.3 that the variance of the portfolio is: 

 
   

1 1
( )

N N

P i j ij
j i

V Var R x x C  

This expression can be rewritten as: 

 2

1 1 1

N N N

i i i j ij
i j i

i j

V x V x x C
  



     

Recall also from Section 1.3 that, the lower (ie closer to zero) the covariance between security 
returns, the lower the overall variance of the portfolio.  This means that the variance of a 
portfolio can be reduced by investing in securities whose returns are uncorrelated. 

Where all assets are independent, the covariance between them is zero and the formula for 
variance becomes: 

2

1

N

i i
i

V x V


   

If we assume that equal amounts are invested in each asset, then with N assets the 
proportion invested in each is 1 N .  Thus: 

      2

1 1

1/ 1 1
N N

i i
i i

VV N V N N V
N 

      

where V  represents the average variance of the stocks in the portfolio.  As N gets larger 
and larger, the variance of the portfolio approaches zero.  This is a general result – if we 
have enough independent assets, the variance of a portfolio of these assets approaches 
zero. 

In other words, a lower variance, ie lower risk, can be achieved by diversification. 

In general, the correlation coefficient and the covariance between assets is positive. 

If you read the financial press or watch the business news, you’ll usually find that the 
commentators think that the market as a whole is either doing well or badly.  This suggests that 
investment returns tend to move together, ie they are positively correlated. 

In these markets, the risk on the portfolio cannot be made to go to zero, but can be much 
less than the variance of an individual asset.  With equal investment, the proportion 
invested in any one asset ix  is 1 N  and the formula for the variance of the portfolio 

becomes: 

      2

1 1 1

1 1 1
N N N

i ij
i j i

i j

V N V N N C
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Factoring out 1 N  from the first summation and  1N N  from the second gives: 

    
1 1 1

( 1)
1 1

( 1)

N N N
ij

i
i j i

i j

CNV N N V
N N N  




 

    

Replacing the variances and covariances in the summation by their averages V  and C , we 
have: 

 1V NV C
N N


   

Note that there are N  variances and ( 1)N N  covariances that make up the 2N  entries in the 
N N  covariance matrix. 

The contribution to the portfolio variance of the variances of the individual securities goes 
to zero as N gets very large.  However, the contribution of the covariance terms approaches 
the average covariance as N gets large. 

So, as the number of assets in the portfolio is increased, the variance of the return on the 
portfolio gets closer to the average covariance of return between the pairs of assets in that 
portfolio. 

The individual risk of securities can be diversified away, but the contribution to the total risk 
caused by the covariance terms cannot be diversified away. 
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Chapter 6 Summary 

Assumptions underlying mean-variance portfolio theory 

 All expected returns, variances and covariances of pairs of assets are known. 

 Investors make their decisions purely on the basis of expected return and variance. 

 Investors are non-satiated. 

 Investors are risk-averse. 

 There is a fixed single-step time period. 

 There are no taxes or transaction costs. 

 Assets may be held in any amounts, ie short-selling is possible, we can have infinitely 
divisible holdings, there are no maximum investment limits. 

Definitions 

 The opportunity set is the set of points in E  space that are attainable by the 
investor based on the available combinations of securities. 

 A portfolio is efficient if there is no other portfolio with either a higher mean and the 
same or lower variance, or a lower variance and the same or higher mean.   

 The efficient frontier is the set of efficient portfolios in E  space. 

 Indifference curves join points of equal expected utility in E  space. 

 The optimal portfolio is the portfolio that maximises the investor’s expected utility.  
It occurs where an indifference curve is tangential to the efficient frontier.    

Derivation of efficient frontier – the case of two securities  

The three equations used to derive the equation of the efficient frontier when only two 
securities are available are: 

1.  1A Bx x  

2.  P A A B BE x E x E  

3.   2 2 2P A A B B A B ABV x V x V x x C  

pV  is minimised when 


 2
B AB

A
A B AB

V Cx
V V C

. 
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Derivation of the efficient frontier – the case of N securities  

Here we use the Lagrangian function: 

 
   

   
          

   
  

1 1 1 1
1

N N N N

ij i j i i P i
i j i i

W C x x E x E x  

This is differentiated with respect to each ix ,   and   to give: 

 



  

 
1

2
N

j ij i
i j

W x C E
x

 

 


 

 
1

N
P i i

i

W E x E  

 


 

 
1

1
N

i
i

W x  

Setting these derivatives to zero and solving 2N  equations in 2N  unknowns then gives 
the equation of the efficient frontier in E  space. 

Benefits of diversification 

Assuming an equal holding of each asset within a portfolio, the portfolio variance is given by: 

    
 

1V NV C
N N

 

So, as the number of assets in the portfolio is increased, the variance of the return on the 
portfolio gets closer to the average covariance of return between the pairs of assets in that 
portfolio. 

This means that if all the assets are independent then the variance of return on the portfolio 
tends towards zero, ie the risk can be diversified away completely. 

  0VV
N

 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-06: Portfolio theory Page 29 

The Actuarial Education Company  © IFE: 2019 Examinations 

Chapter 6 Practice Questions 

6.1 Explain what is meant by the following terms, in the context of mean-variance portfolio theory: 

(i) efficient frontier 

(ii) indifference curves 

(iii) optimal portfolio. 

6.2 An investor can invest in only two risky assets A and B.  Asset A has an expected rate of return of 
10% and a standard deviation of return of 20%.  Asset B has an expected rate of return of 15% and 
a standard deviation of return of 30%.  The correlation coefficient between the returns of Asset A 
and the returns of Asset B is 0.6. 

(i) Calculate the expected rate of return if 20% of an investor’s wealth is invested in Asset A 
and the remainder is invested in Asset B. 

(ii) Calculate the standard deviation of return on the portfolio if 20% of an investor’s wealth is 
invested in Asset A and the remainder is invested in Asset B. 

(iii) Explain why an investor who invests 20% of his wealth in Asset A and the remainder in 
Asset B is risk-averse. 

6.3 Using mean-variance portfolio theory, prove that the efficient frontier becomes a straight line in 
the presence of a risk-free asset. 

6.4 Consider a portfolio, P , which consists of N  assets held in equal proportions.  Let PR  represent 
the return on the portfolio, and let iR  represent the return on asset i .  The covariance of the 
return on asset i  with that on asset j  is ijC . 

(i) State the total number of data items needed to calculate  PE R  and ( )PVar R . 

(ii) Write down an expression for ( )PVar R . 

(iii) Using your expression from part (ii), show that the specific risk of the portfolio (ie the risk 
associated with the individual assets) tends to zero in a well-diversified portfolio. 
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6.5 Consider two independent assets, Asset A and Asset B, with expected returns of 6% pa and 
11% pa and standard deviations of returns of 5% pa and 10% pa, respectively.  Let ix  denote the 
proportion of the portfolio invested in Asset i . 

(i) If only Assets A and B are available, determine the equation of the efficient frontier in 
expected return-standard deviation space. [3] 

A third Asset, Asset C, is risk-free and has an expected return of 4% pa.  A Lagrangian function is 
to be used to calculate the equation of the new efficient frontier. 

(ii) Write down, but do not solve, the five simultaneous equations that result from this 
procedure.  [3] 

(iii) Use your simultaneous equations to derive the relationship between Ax  and Bx  on the 
new efficient frontier. [2] 

(iv) Hence derive the equation of the new efficient frontier in expected return-standard 
deviation space. [4] 

    [Total 12] 

6.6 Consider a world in which there are only 2 securities, 1 and 2, such that: 

 
 

 

2
1 1

2
2 2

5%, (10%)

10%, (20%)

E V

E V
 

Let   denote the correlation coefficient between the returns yielded by the two securities. 

(i) Derive the equation of the opportunity set in E–V space. [5] 

(ii) Derive expressions for the portfolio expected return E and the portfolio proportion 1x  
invested in Security 1 at the point of global minimum variance and hence comment briefly 
on how E and 1x  vary with  . [5] 

    [Total 10] 

6.7 (i) Describe in detail the assumptions underlying the use of mean-variance portfolio 
 theory.   [3] 

Consider a two-security world in which the returns yielded by Assets 1 and 2 are perfectly 
positively correlated, though they have different expected returns.  

(ii) Using the method of Lagrangian multipliers or otherwise, derive the equation of the 
efficient frontier in expected return-standard deviation space. [6] 

(iii) Use your answer to part (ii) to: 

 (a) determine the gradient of the efficient frontier 

(b) show that the efficient frontier is a straight line in expected return-standard 
deviation space that passes through the points representing Assets 1 and 2. [4] 

    [Total 13]

Exam style 

Exam style 

Exam style 
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Chapter 6 Solutions 

6.1 (i) Efficient frontier 

The efficient frontier is the line that joins the points in expected return-standard deviation space 
that represent efficient portfolios.   

A portfolio is efficient if the investor cannot find a better one in the sense that it has either a 
higher expected return and the same (or lower) level of risk (measured in terms of standard 
deviation of returns) or a lower level of risk and the same (or higher) expected return. 

(ii) Indifference curves 

Indifference curves in expected return-standard deviation space join together points representing 
all the portfolios that give the investor equal levels of expected utility, given the risk-return 
preferences of that particular investor.  They slope upwards for a risk-averse investor. 

(iii) Optimal portfolio 

The investor’s optimal portfolio is the portfolio on the efficient frontier that gives the highest 
possible level of expected utility, given the investor’s particular indifference curves. 

It is represented by the point in expected return-standard deviation space where the efficient 
frontier is tangential to the highest attainable indifference curve. 

6.2 (i) Expected return 

Let the expected return on the portfolio be denoted [ ]PE R .  Then: 

     [ ] 0.2 0.1 0.8 0.15 0.14 or 14%PE R  

(ii) Standard deviation of return 

Let the standard deviation of return on the portfolio be denoted P .  Then: 

       2 2 2 2 2 2P A A B B A B A Bx x x x  

where the x ’s denote the proportion of the portfolio invested in each asset, and   is the 
correlation coefficient between the returns of Assets A and B. 

Therefore: 

          2 2 2 2 20.2 0.2 0.8 0.3 2 0.2 0.8 0.6 0.2 0.3 0.07072P  

So:    0.26593 or 26.6%P  
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(iii) Explain why the investor is risk-averse 

In mean-variance portfolio theory, risk is measured by standard deviation of returns. 

An investor who invests 20% of his wealth in Asset A rather than investing 100% in Asset B is 
demonstrating risk aversion, because they are choosing to reduce the level of risk at the cost of 
attaining a lower expected return. 

6.3 The risk-free asset must sit on the efficient frontier because it provides the highest return for no 
risk, and it is not possible to have a risk (ie standard deviation) of less than zero.    

Consider an efficient portfolio consisting of risky assets only with mean PE  and variance PV , and a 
risk-free asset with return r  and zero variance. 

Let the proportion of an investor’s wealth invested in the efficient portfolio of risky assets only be 

Px , so that 1 Px  is the proportion invested in the risk-free asset, and let   be the correlation 
coefficient between the return on the risk-free asset and the return on the efficient portfolio of 
risky assets only. 

The variance of a portfolio on the efficient frontier can then be expressed as: 

            2 2 2 2 2(1 ) 0 2(1 ) 0P P P P P P P PV x x x x x  

So:   P Px  

Next, the formula for the expected return on the portfolio gives: 

 
    


(1 )P P P P

P

E rE x r x E x
E r

 

Substituting this into the above expression for the standard deviation we see that E  is linear in   
since: 

   


    
         

P
P

P P

E r E rE r
E r

  

Hence the efficient frontier is a straight line in expected return-standard deviation space. 

6.4 (i) Data items 

To work out  PE R , we would need to know the expected return of each of the N  assets.  So this 

requires N  data items. 

To work out var( )PR , we would need to know: 

 the variance of each of the N  assets ( N  data items) 

 the covariance of each different pair of assets (an additional ( 1)
2

N N  data items). 
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The number of covariances required is the number of different ways of choosing two assets 
from N . 

So the total number of data items needed is: 

  
  

( 1) ( 3)
2 2

N N N NN N  

(ii) Variance 

The proportion of the portfolio invested in each asset is 1
N

.  So the variance of the portfolio is 

given by: 

 
   



                     
  

2 2

1 1 1 1

1 1 1( )
N N N N

P i i ij
i i j i

i j

Var R Var R V C
N N N

 

where iV  is the variance of asset i  and ijC  is the covariance of the return on asset i  with that on 

asset j . 

This can alternatively be written as: 

 
  



       
   

 
2 2

1 1 1

1 1( ) 2
N N N

P i ij
i j i

i j

Var R V C
N N

 

(iii) Effect of diversification on specific risk 

The expression for the variance can be re-written as: 

 
  



          
 

1 1 1

1 1var( )
( 1)

N N N
iji

P
i j i

i j

CV NR
N N N N N

 

Let V  represent the average variance, and C  represent the average covariance.  Then: 

 


   
 


1

N
i

i

VV
N

     and    
 



 
   


1 1 ( 1)

N N
ij

j i
i j

C
C

N N
  

since there are N  variances to average and ( 1)N N  covariances in total. 

Note, from (i), that there are only ( 1)
2

N N  different covariances since ij jiC C . 

So: 

 
 

1 1( )P
NVar R V C

N N
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As N , the contribution to the overall portfolio variance of the individual variances 
(through V ) tends to zero.  So, the specific risk associated with the individual securities can be 
diversified away, but the contribution to the total risk (or variance) from the covariance terms 
cannot be diversified away. 

6.5 (i) Efficient frontier of A and B 

We can express the portfolio proportions as functions of the portfolio expected return: 

      6 11 1A A B B A AE x E x E x x  

   
 


11 11

6 11 5A
E Ex   and  

  
61

5B A
Ex x  [1] 

The two assets are independent, so the portfolio variance is: 

  2 2
A A B BV x V x V   

Substituting in the portfolio proportions we get: 

 

 

        
   

     

  

2 2
2 2

2 2

2

11 65 10
5 5

121 22 4 12 36

5 70 265

E EV

E E E E

E E  [1] 

Finally, we square root to get the equation for the opportunity set in expected return-standard 
deviation space: 

    25 70 265E E   

The efficient frontier is the part of this curve above the point at which the variance is minimised.  
To find this point we differentiate:   

   10 70 0dV E
dE

 

So the efficient frontier is the part of the opportunity set where  
70 7%
10

E , ie the efficient 

frontier is    25 70 265E E ,  7%E . [1] 
    [Total 3] 

(ii) Simultaneous equations 

The Lagrangian function is given by: 

              2 2 2 25 10 6 11 4 1A B A B C A B CV x x x x x E x x x  [1] 
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We now differentiate the function with respect to its five parameters and set to zero: 

  
   


50 6 0A

A

V x
x

 (1)  

  
   


200 11 0B

B

V x
x

 (2)  

  
   


4 0

C

V
x

 (3)  

 



    


6 11 4 0A B C
V E x x x  (4)  

 



    


1 0A B C
V x x x  (5) [2 in total for simultaneous equations] 

     [Total 3] 

(iii) Relationship between holdings in A and B 

From Equation (3) in part (ii), we have: 

   4  

Substituting this into Equations (1) and (2) gives: 

        
2 850 6 4 0
50 200A Ax x  [1] 

and       
7 7200 11 4 0
200 8B B Ax x x  [1] 

    [Total 2] 

(iv) New efficient frontier 

As a risk-free asset is available, the new efficient frontier is a straight line.  This straight line gives 
the expected return and standard deviation of portfolios consisting of a combination of the 
risk-free Asset C and a risky portfolio consisting of Assets A and B. [1] 

Part (iii) establishes that 
7
8B Ax x  along this line.  The efficient portfolio consisting entirely of 

risky assets must have  0Cx  and so at this point we have: 

 
8

15Ax   and  
7

15Bx   

The expected return of this portfolio is: 

       
8 76 11 8.33%

15 15A A B BE x E x E  [1] 
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The standard deviation of this portfolio is: 

            
   

2 2
2 2 2 28 75 10 5.375%

15 15A A B Bx V x V  [1] 

Therefore, the efficient frontier is a straight line in expected return-standard deviation space 
joining the points   ( 0, 4)E  and   ( 5.375, 8.333)E : 

  
   


8.333 44 4 0.806
5.375 0

E  [1] 

    [Total 4] 

6.6 (i) Opportunity set 

The variance of a portfolio consisting of Securities 1 and 2 is given by: 

   2 2 2 2
1 2 1 210 20 2(10)(20)V x x x x  [1] 

The portfolio expected return is given by: 

  1 25 10E x x   [1] 

Since the portfolio is fully invested, we require that: 

  1 2 1x x     2 11x x  

Substituting the last equation into the previous one and rearranging gives: 

 
1

10
5

Ex   
 2

5
5

Ex    [1] 

Substituting these back into the expression for the variance and simplifying gives the equation of 
the opportunity set as: 

             220 16 240 1 800 1V E E  [2] 

    [Total 5] 

(ii) Expressions for E and 1x  

A first-order condition for the point of global minimum variance (as a function of  ) can be found 
by differentiating the expression for the variance found in (i) and setting it equal to zero.  Thus: 

     
    


2 20 16 240 1 0V E

E
 [1] 

Hence, we find that at this point, after simplifying: 

 
 







30 1
5 4

E   [1] 
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Substituting this into the expression for 1x  found in (i), and simplifying, then gives: 

 





1
4 2
5 4

x   [1] 

To see how E  and 1x  vary with  , we can look at the derivatives, which can be found using the 
quotient rule.  After simplifying, we get: 

 
  

 


  2
30

5 4

E  [½] 

 
  




 
1

2
6

5 4

x  [½] 

Since 






0E , the portfolio expected return at the point of minimum global variance decreases as 

the correlation coefficient increases.  In fact, E  ranges from 2
36 %  when   1  through 6% 

when   0  to 0% when  1 . [½] 

Since 






1 0x , the portfolio proportion invested in Security 1 at the point of minimum global 

variance increases with the correlation coefficient.  In fact, 1x  ranges from 2
366 %  when   1  

through 80% when   0  to 200% when  1 . [½] 
    [Total 5] 

The portfolio proportion invested in Security 2 at the point of minimum global variance must 
correspondingly decrease with the correlation coefficient. 

6.7 (i) Assumptions underlying mean-variance portfolio theory  

 All expected returns, variances and covariances of pairs of assets are known.  [½] 

 Investors make their decisions purely on the basis of expected return and variance.  [½] 

 Investors are non-satiated.  [½] 

 Investors are risk-averse.  [½] 

 There is a fixed single-step time period.  [½] 

 There are no taxes or transaction costs.  [½] 

 Assets may be held in any amounts, ie short-selling is possible, we can have infinitely 
divisible holdings, there are no maximum investment limits.  [½] 

    [Maximum 3] 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 38 CM2-06: Portfolio theory 

© IFE: 2019 Examinations The Actuarial Education Company 

(ii) Equation of the efficient frontier 

In order to find the efficient frontier, we can set up the Lagrangian function.  When the 
correlation coefficient between the two security returns is equal to one, this is given by (using the 
usual definitions): 

              2 2 2 2
1 1 2 2 1 2 1 2 1 1 2 2 1 22 ( ) ( 1)pW x x x x x E x E E x x  [1] 

Therefore the first-order conditions are: 

     
    


2

1 1 2 1 2 1
1

2 2 0W x x E
x

 

     
    


2

2 2 1 1 2 2
2

2 2 0W x x E
x

 

 



   

 1 1 2 2 0p
W x E x E E  

 



   

 1 2 1 0W x x  [2] 

Combining the last two equations gives the optimal proportions of the two assets as: 

 





2
1

1 2

pE E
x

E E
    and    


  


1

2 1
1 2

1 pE E
x x

E E
 [1] 

Substituting these back into the expression for the variance of portfolio returns (ie the first three 
terms in the Lagrangian function) gives: 

 

 

   

 

             

   
         

2
2 2 2 2

2 1 1 2 2 1 1 2
1 2

2 2
2 1 1 2

1 2

1 ( ) ( ) 2( )( )

1 ( ) ( )

p p p p p

p p

V E E E E E E E E
E E

E E E E
E E

 

Hence, the standard deviation of portfolio returns equals: 

     
 

     
2 1 1 2

1 2

1 ( )p p pE E E E
E E

 

Thus: 

   p paE b    where    



1 2

1 2
a

E E
  and   




2 1 1 2

1 2

E Eb
E E

 

This is therefore the equation of the efficient frontier in expected return-standard deviation 
space.    [2] 
    [Total 6] 
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In fact, because we only have two risky assets, we can use the following quicker method, which 
avoids Lagrangians: 

 first write the equation  1 1 2 2 Px E x E E  in the form   1 1 1 2(1 ) Px E x E E  

 solve for 1x  in terms of the E ’s and then find  2 11x x  

 write down the variance, which is: 

          2 2 2 2 2
1 1 2 2 1 2 1 2 1 1 2 22 ( )PV x x x x x x  

 square root to get: 

    1 1 2 2P x x  

 substitute the expressions for 1x  and 2x . 

(iii)(a) Gradient 

The efficient frontier is normally plotted with expected return on the vertical axis, so its gradient 
will be equal to 1 a , ie:  

 gradient of the efficient frontier  
 


 


1 2

1 2

1 E E
a

. [1] 

(iii)(b) Points on efficient frontier 

When  1PE E , we have: 

 
   



   

 



 

   
         

 
 

 



1

1 2 2 1 1 2
1

1 2 1 2

1 2 1 1
1 2

1 2 1 2

1

p aE b

E EE
E E E E

E E E E
E E E E

 

Hence  1 1,E  lies on the efficient frontier, which is the point representing Asset 1.  A similar 

argument shows that it also passes through the point representing Asset 2. [2] 

We know that the efficient frontier is a straight line, since the slope is 1 a , which is constant. [1] 
    [Total 4] 

We have just shown that if two assets are perfectly positively correlated, then the efficient frontier 
is a straight line.  This will also be the case if two assets are perfectly negatively correlated. 
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End of Part 1 

What next?   

1. Briefly review the key areas of Part 1 and/or re-read the summaries at the end of 
Chapters 1 to 6. 

2. Ensure you have attempted some of the Practice Questions at the end of each chapter in 
Part 1.  If you don’t have time to do them all, you could save the remainder for use as part 
of your revision. 

3. Attempt Assignment X1. 
  

 

Time to consider …  
 … ‘learning and revision’ products 

Marking – Recall that you can buy Series Marking or more flexible Marking Vouchers to 
have your assignments marked by ActEd.  Results of surveys suggest that attempting the 
assignments and having them marked improves your chances of passing the exam.  One 
student said: 

‘The insight into my interpretation of the questions compared with 
that of the model solutions was helpful.  Also, the pointers as to how to 
shorten the amount of work required to reach an answer were 
appreciated.’ 

Face-to-face and Live Online Tutorials – If you haven’t yet booked a tutorial, then maybe 
now is the time to do so.  Feedback on ActEd tutorials is extremely positive: 

‘I would not pass exams without ActEd’s lovely, clever, patient tutors.  I don’t 
know how you managed to find so many great teachers.  Thank you!’ 

Online Classroom – Alternatively / additionally, you might consider the Online Classroom 
to give you access to ActEd’s expert tuition and additional support: 

‘Please do an online classroom for everything.  It is amazing.’ 

You can find lots more information, including demos and our Tuition Bulletin, on our 
website at www.ActEd.co.uk. 

Buy online at www.ActEd.co.uk/estore 
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Models of asset returns 

 

 

Syllabus objectives 

4.3 Single and multifactor models for investment returns 

4.3.1 Describe the three types of multifactor models of asset returns: 

 macroeconomic models 

 fundamental factor models 

 statistical factor models. 

4.3.2 Discuss the single-index model of asset returns. 

4.3.3 Discuss the concepts of diversifiable and non-diversifiable risk. 

4.3.4 Discuss the construction of the different types of multifactor models. 

4.3.5 Perform calculations using both single and multifactor models. 
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0 Introduction 

In the previous chapter, we looked at how mean-variance portfolio theory can be used to 
determine the efficient frontier, from which the investor can then determine the optimal 
portfolio.  Unfortunately, this approach can be difficult to implement in practice due to 
computational difficulty and the amount and type of data required. 

Much subsequent research has therefore been directed at developing means of simplifying the 
implementation process.  This has led to the development of multifactor or multi-index models 
and the single-index model that we discuss in this chapter.  These facilitate the determination of 
the efficient frontier with substantially less information than the standard mean-variance 
portfolio theory.  In addition, they can be used to characterise the sensitivities of a security’s 
returns to various factors.  Consequently, they are very important tools for portfolio 
management, being used both to model and predict the future investment returns yielded by 
different assets. 

This chapter also discusses the important ideas of specific risk – risk that can be diversified away – 
and systematic risk – which cannot.  These ideas are discussed further in other subjects. 
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1 Multifactor models 

1.1 Definition 

A multifactor model of security returns attempts to explain the observed historical return by an 
equation of the form: 

      ,1 1 ,2 2 ,...i i i i i L L iR a b I b I b I c  

where: 

 iR   is the return on security i 

  ,i ia c  are the constant and random parts respectively of the component of return 
unique to security i 

 1 ,..., LI I  are the changes in a set of L factors which explain the variation of iR  about the 

expected return ia  

  ,i kb   is the sensitivity of security i to factor k. 

Here the interpretation of the ,i kb ’s is that if ,i kb = 1.5 say, then an increase (decrease) of 1 in 

factor k is expected to produce an increase (decrease) of 1.5 in the return provided by security i.  
Conversely, ia  represents the expected value of that element of the investment return that is 
independent of the set of L factors and hence unique to security i. 

The L factors are therefore the systematic factors that influence the returns on every security and 
the corresponding part of the total return which is equal to: 

  ,1 1 ,2 2 ,...i i i L Lb I b I b I  

is referred to as the systematic return of security i.  Conversely, the remaining element of the total 
return, which is specific to each individual security and independent of the returns on all other 
securities, namely: 

 i ia c  

is referred to as the specific return of security i. 

When applying the multifactor model it is usual to assume that: 

 [ ] 0iE c   

 [ , ] 0i jCov c c  for all i j . 

 [ , ] 0i kCov c I  for all stocks and indices. 
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Note that: 

 although the above equation for the model assumes that asset returns are linearly related 
to the factors or indices, this requirement is not as restrictive as it might first appear, as 
the factors themselves may be non-linear functions of the underlying variables, eg the log 
of inflation 

 ia  and ic  are sometimes combined into a single parameter, with a non-zero expectation. 

Question 

Consider a two-factor model.  If: 

 the mean specific return is 1.0% 

 the expected values of the two factors are 3.0% and 2.2% and 

 the sensitivities of investment returns to each of the factors are 0.8 and  
–0.3 respectively, 

what is the expected return predicted by the model? 

Solution 

In a two-factor model: 

   ,1 1 ,2 2i i i i iR a b I b I c   

In this case: 

    ,1 ,21.0 0.8 0.3i i ia b b  

Thus: 

 
     

     

   

     



,1 1 ,2 2

,1 1 ,2 2

( )

1.0 0.8 3 0.3 2.2 0

2.74%

i i i i i

i i i i

E R E a b I b I c

a b E I b E I E c
 

 
The goal of the builders of such a model is to find a set of factors which explain as much as 
possible of the observed historical variation, without introducing too much ‘noise’ into 
predictions of future returns. 

Multifactor models can be classified into three categories, depending on the type of factors 
used. 

These are macroeconomic, fundamental and statistical factor models.  We discuss each of these in 
the following sections. 
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1.2 Macroeconomic factor models 

These use observable economic time series as the factors.  They could include factors such 
as the annual rates of inflation and economic growth, short-term interest rates, the yields on 
long-term government bonds, and the yield margin on corporate bonds over government 
bonds. 

The rationale here is that the price of, and hence the returns obtained from, a security should 
reflect the discounted present value to investors of the cashflows that it is expected to produce in 
the future.  The macroeconomic variables mentioned above are the factors that we might 
typically expect to influence both the size of the future cashflows from security i and the discount 
rate used to value them.  Note, however, that the more factors that are included, the more 
complex the model and so the harder it is to handle mathematically. 

A related class of model uses a market index plus a set of industry indices as the factors. 

Here, ‘industry’ refers to the company sectors, such as banking, energy, food, support services 
etc.  So, security returns are assumed to reflect the influence of both market-wide and 
industry-specific effects. 

Once the set of factors has been decided on, a time series regression is performed to 
determine the sensitivities for each security in the sample. 

This kind of time series regression is a natural multivariable extension of the one-variable case 
considered in the single-index model discussed later in this chapter. 

A common method used to determine how many factors to include is to start with relatively 
few, perform the regression and measure the residual (unexplained) variance.  An extra 
factor is then added and the regression repeated.  The whole process is repeated until the 
addition of an extra factor causes no significant reduction in the residual variance. 

An alternative approach is to start with a more general model containing a large number of 
possible factors and then to remove those whose elimination does not significantly affect the 
explanatory power of the model – ie the size of the residual variance. 

1.3 Fundamental factor models 

Fundamental factor models are closely related to macroeconomic models, but instead of (or 
in addition to) macroeconomic variables the factors used are company-specific variables.  
These may include such fundamental factors as: 

 the level of gearing 

 the price earnings ratio 

 the level of research and development spending 

 the industry group to which the company belongs. 

Again, the models are constructed using regression techniques. 
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Commercial fundamental factor models are available which use many tens of factors.  They 
are used for risk control, by comparing the sensitivity of a portfolio to one of the factors 
with the sensitivity of a benchmark portfolio. 

Suppose that you can find a portfolio that has similar sensitivities to similar factors as a 
benchmark portfolio.  Then by holding that portfolio you should be able to closely replicate the 
performance of the benchmark.  This technique could, for example, be used to construct a 
portfolio that follows or tracks the performance of an investment index without the investor 
needing to hold every individual constituent security of the index.   

1.4 Statistical factor models 

Statistical factor models do not rely on specifying the factors independently of the historical 
returns data.  Instead a technique called principal components analysis can be used to 
determine a set of indices which explain as much as possible of the observed variance.  
However, these indices are unlikely to have any meaningful economic interpretation and 
may vary considerably between different data sets. 

Question 

Explain the distinction between systematic return and specific return. 

Solution 

The systematic return of security i is the element of the total return that arises due to the 
influences of the L factors that affect the returns on every security.   It is equal to: 

  ,1 1 ,2 2 ,...i i i L Lb I b I b I  

The specific return of security i is the element of the total return that is independent of the L 
factors and hence independent of the returns on all other securities.  It is therefore specific or 
unique to security i and is equal to: 

 i ia c  

 
1.5 Construction of models 

Principal components analysis is a technique used to investigate the relationship between a set of 
endogenous variables, such as the factors determining the investment return in a multifactor 
model.  Within this context it can be used to: 

 determine the relative significance of the various factors by analysing the variance-
covariance matrix (between them) to determine which factors have the most influence 
upon the total variance of security returns 
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 combine groups of highly correlated factors into single factors or principal components 
that are much less highly correlated with each other – thereby reducing the number of 
factors in the model and improving the efficiency of the model. 

For applications of multi-index models to portfolio selection problems, it is convenient if the 
factors used are uncorrelated (or orthogonal).  Principal components analysis automatically 
produces a set of uncorrelated factors. 

Question 

Why is it convenient for the factors used to be uncorrelated? 

Solution 

Intuitively, the less correlated the factors are, the easier it is to disentangle the influences of each 
upon security returns.  If they are highly correlated, then they act in unison and have insufficient 
independent variation to enable the model to isolate their separate influences.   

Within a regression context, this problem is known as multicollinearity and it has the effect of 
making the coefficient estimates less efficient. 

 
Where the factors are derived from a set of market indices or macroeconomic variables, it is 
possible to transform the original set into an orthogonal set which retains a meaningful 
economic interpretation.   

Suppose, for example, we have two indices 1I  and 2I .  1I  could be a market index and 2I  an 

industry sector index.  Two new, uncorrelated factors, *
1I  and *

2I , can be constructed as 

follows: 

First, let *
1 1I I . 

This is done solely to keep our notation consistent in the final equation below. 

We then carry out a linear regression analysis to determine the parameters 1  and 2  in the 

equation: 

 *
2 1 2 1 2I I d      

So 1  and 2  represent the intercept and the slope of the regression line and 2d  is the ‘error’ 

term, which by definition is uncorrelated with *
1 1I I . 

We then set: 

  * *
2 2 2 1 2 1I d I I     . 

By construction *
2I

 is uncorrelated with 1I .   
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This is because *
2 2I d , which was the residual term in the previous equation.  Mathematically: 

 
    

  

* *
2 1 2 1 2 1 1

*
2 1 2 1

cov( , ) cov ( ),

cov( , ) cov( , ) 0

I I I I I

d I d I
 

Changes in *
2I  can be interpreted as the change in the observed value of 2I  that cannot be 

explained by the observed change in 1I . 

If there were a third index, a regression would be performed to determine the component of 
that index which could not be explained by the observed values of 1I  and 2I , and so on. 

Question 

A modeller has developed a two-factor model to explain the returns obtained from security i.  It 
has the form: 

    1 22 1.3 0.8i iR I I c  

However, the modeller is concerned that the two indices 1 and 2 may be correlated and so 
decides to re-express the model in terms of orthogonal factors.  By regressing Index 1 on Index 2, 
the modeller obtains the following equation for the line of best fit: 

  1 20.8 0.3I I  

Use this information to re-express the two-factor model in terms of two orthogonal factors *
1I  

and *
2I . 

Solution 

In this case it is easier to carry out the process the other way round, because the modelled has 
regressed 1I  on 2I , not 2I  on 1I  as before. 

So, first define two new variables: 

(1) *
2 2I I  

(2)   *
1 1 20.8 0.3I I I  

where *
1I  is equal to the residuals from the regression of 1I  on 2I , which by definition are 

uncorrelated. 
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We now need to re-express iR  in terms of the new variables *
1I  and *

2I .  It follows from (1) and (2) 
that:  

   * *
1 1 20.8 0.3I I I  

from which: 

(3)   * *
1 1 20.8 0.3I I I  

Using (1) and (3) to substitute for 1I  and 2I  in the original model then gives: 

       * * *
1 2 22 1.3 0.8 0.3 0.8i iR I I I c  

ie    * *
1 23.04 1.3 1.19i iR I I c  

Note that in general the process can be carried out either way around, although a different, but 
equally acceptable, answer will be obtained in each case. 
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2 The single-index model 

2.1 Definition 

The single-index model as described below is a special case of the multifactor model that includes 
only one factor, normally the return on the investment market as a whole.  It is based upon the 
fact that most security prices tend to move up or down with movements in the market as a 
whole.  It therefore interprets such market movements as the major influence upon individual 
security price movements, which are consequently correlated only via their dependence upon the 
market. 

The single-index model is sometimes also called the market model.  Note that other single-index 
or one-factor models are possible, in which the single index is a variable other than the market. 

The single-index model expresses the return on a security as: 

 i i i M iR R      

 where: 

 iR  is the return on security i 

 i , i  are constants 

 MR   is the return on the market 

 i   is a random variable representing the component of iR  not related to the 

market. 

Question 

How can we interpret  andi i ? 

Solution 

i  can be interpreted as the expected value of the component of security i’s return that is 
independent of the market’s performance and specific to that particular security. 

i  quantifies the component of the security return that is directly related to movements in the 
market – so that if i  = x, then security i’s return is expected to increase (decrease) by x% when 
the market return increases (decreases) by 1%.   

 
Under the model, i  is uncorrelated with MR  and i  is independent of j  for all i j . 

It is also normal to set i  such that  ( ) 0iE  for i = 1,…, N. 
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So: 

  [ ] 0iE   

   [ , ] 0i jCov  for all i j  

  [ , ] 0i MCov R  for all i. 

2.2 Results of the single-index model 

For any particular security,   and   can be estimated by time series regression analysis. 

In order to estimate  and  for security i, the historical returns produced over say t = 1, …, N 
monthly intervals for both security i, itR , and the market, MtR  say, are required.  We can then 
use regression analysis based upon the equation: 

     i i i M iR R  

In each case, there is the usual problem that future values may differ from estimates of past 
values.  An alternative approach is simply to use subjective estimates in the model – though even 
these are likely to be informed by estimates based on historical data. 

The expected return and variance of return on security i and the covariance of the returns 
on securities i and j are given by: 

 i i i ME E    (7.1) 

 2
i i M iV V V   (7.2) 

and ij i j MC V   (7.3) 

where iV  is the variance of i . 

Question  

Derive the first of the above results. 

Solution 

The expected return on security i is given by: 

     ( ) [ ]i i i M iE R E R  

By the linear additivity of expected values this can be written as: 

     ( ) ( ) ( ) ( )i i i M iE R E E R E  
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And since i  and i  are constants and i is chosen so that  ( ) 0iE , we have: 

   ( )i i i ME R E  

as required. 

 
Let’s now look at these equations in a little more detail. 

Equation 7.1 

The first of these three equations, (7.1), will be seen to be identical in form to the main result 
of the Capital Asset Pricing Model (CAPM) discussed in the next chapter.  However, it 
should be emphasised that the single-index model is purely empirical and is not based on 
any theoretical relationships between i  and the other variables. 

This is in contrast to CAPM, which can be derived using economic theory. 

Equation 7.2 

The second equation, (7.2), models the variance of the return on security i as the sum of a 
term related to the variance of the return on the market and a term specific to security i.  
These two terms are usually called systematic and specific risk respectively. 

Systematic risk can be regarded as relating to the market as a whole, while specific risk 
depends on factors peculiar to the individual security. 

So this result can be interpreted as: total risk equals systematic risk plus specific risk. 

As shown in Chapter 6, in a diversified portfolio, consisting of a large number of securities, 
the contribution of the specific risk on each security, to the total risk of the portfolio, 
becomes very small.  In this case, the contribution of each security to the portfolio’s total 
risk is then only the systematic risk of that security. 

So, diversification: 

 can be used to reduce and ultimately eliminate specific risk 

 leads to an averaging of systematic risk. 

Thus it is only the systematic risk, measured by i  of a security, that should be expected to 

be rewarded by increased return since this is non-diversifiable. 

For this reason systematic risk is also sometimes referred to as non-diversifiable or market risk. 

Investors can diversify away specific risk and do not therefore require compensation for 
accepting it.  Specific risk is sometimes also referred to as alpha, unsystematic, 
diversifiable or residual risk. 

Recall that i  in the single-index model equation is the expected value of the component of 
security i’s return that is independent of the market’s performance and specific to that particular 
security. 
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Question 

Show that the variance of portfolio returns can be written as: 

 


  2 2

1

N
P i i p M

i
V x V V  

and use this expression to show that: 

 the contribution of the specific risk on each security to the total risk of the portfolio 
becomes very small as the number of securities increases and 

 the contribution of each security to the portfolio’s total risk is only the systematic risk of 
that security, ie: 

     



  

1
P p M M i i

i
x , as N   

Solution 

The variance of portfolio returns can be found as follows: 

  


  2
,

1 1 1

N N N
P i i i j i j

i i j
j i

V x V x x C  

where the x’s are the portfolio weightings and the second summation is over j  i. 

ie   
  



   2 2

1 1 1
( ) ( )

N N N
P i i M i i j i j M

i i j
j i

V x V V x x V  

Combining all of the variance and covariance terms for the systematic risk then gives: 

  
  

  2

1 1 1

N N N

P i i i j i j M
i i j

V x V x x V  

Note that the second summation now includes the case i = j.  Collecting together the i and j terms 
in this summation then gives: 

  
  

  
        

  2

1 1 1

N N N
P i i i i j j M

i i j
V x V x x V  
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Therefore we have: 

 


  2 2

1

N
P i i P M

i
V x V V  

where  


 
1

N
P i i

i
x  which is the required expression. 

Now, suppose that equal amounts of money are invested in each of the N securities, so that 
1ix N  for all i = 1, …, N.  Then the first term in the expression for PV , which represents the 

contribution of the specific risk to the total portfolio variance, can be written as: 





1

1 1N
i

i
V

N N
 

ie 1
N

 times the average specific risk associated with each individual security V .  As N increases 

and the average specific risk remains unchanged, so this term will rapidly become smaller.  Hence, 
as N  , the specific risk tends to zero and: 

 2
P P MV V  

ie     



  

1
P P M M i i

i
x  

In other words, the contribution of the specific risk on each security to the total risk of the 
portfolio becomes very small and the contribution of each security to the portfolio’s total risk is 
therefore only the systematic risk of that security. 

 
Equation 7.3 

The third equation, (7.3), shows that, in this particular model, any correlation between the 
returns on two securities comes only from their joint correlation with the market as a whole.  
In other words, the only reason that securities move together is a common response to 
market movements; there are no other possible common factors. 

In reality, however, we might expect shares within the same sector (eg banks) to tend to move 
together because of factors influencing that particular sector which might not affect other sectors 
(eg oil companies). 

Question  

If i  doubles (with everything else remaining unchanged), then so does the expected return on 
security i.  True or false? 
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Solution 

Recall that the expected return on security i is given by: 

   i i i ME E  

So, provided i  is non-zero, which is usually the case, if i  doubles, the expected return will not 
also double.   

ie          2 2 2i i i M i i M iE E E E  

 
2.3 Data requirements 

Although many studies have found that incorporating more factors into the model (for 
example industry indices) leads to a better explanation of the historical data, correlation 
with the market is the largest factor in explaining security price variation.  Furthermore, 
there is little evidence that multifactor models are significantly better at forecasting the 
future correlation structure. 

The use of the single-index model dramatically reduces the amount of data required as 
input to the portfolio selection process.  For N securities, the number of data items needed 

has been reduced from  3 2N N   to 3 2N  . 

Question  

Derive these expressions for the number of data items. 

Solution 

In order to apply mean-variance portfolio theory with N securities, we need estimates of the 
following: 

 N expected returns 

 N variances 

 ½  N  (N – 1) correlation coefficients or covariances. 

So, in total we need ½  N  (N + 3) items of data.  For example, if N = 200, then ½  N  (N + 3) = 
20,300. 

Under the single-index model we need: 

 N values for the i ’s 

 N values for the i ’s 

 N values for the  iV ’s 

 the expected return ME  and variance MV  for the market.   
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Thus, in total we need 3N+2 items of data, which with 200 securities amounts to 602 items of 
data. 

 
A primary use of both single-index models and multifactor models is to determine the expected 
return, variance and covariance of security returns, thereby enabling the investor to determine 
the efficient frontier.  The single-index model in particular allows this to be done with a lot less 
information than is required with the standard mean-variance portfolio theory as described in the 
previous chapter. 

Furthermore, the nature of the estimates required from security analysts conforms much 
more closely to the way in which they traditionally work. 

Traditional investment analysis concentrates on estimating future performance, which in practice 
has normally meant the expected returns of securities, although increasing emphasis has also 
been placed on the risk or volatility of individual securities.  Mean-variance portfolio theory, 
however, also requires estimates of each security’s pairwise correlation with all other securities 
that may be included in the portfolio. 

In addition, considerably simplified methods for calculating the efficient frontier have been 
developed under the single-index model although, with increasing computer power, this is 
of considerably less importance than it was when the model was first published. 

Question  

State the main uses of multifactor models and single-index models.  What is their main limitation? 

Solution 

The main uses include: 

 Determination of the investor’s efficient frontier, as part of the derivation of the 
investor’s optimal portfolio. 

 Risk control – by enabling the investor to forecast the variability of portfolio returns both 
absolutely and relative to some benchmark.  For example, by constructing a portfolio 
whose sensitivities to the relevant factors are the same as the benchmark, it is possible to 
reduce the risk of under- or over-performance compared to that benchmark. 

 Performance analysis – by comparing the actual performance of the portfolio to that 
predicted by the model and based on the portfolio’s actual exposure to the relevant 
factors over the period considered. 

 Categorisation of investment styles – according to the extent of the exposure to particular 
factors. 

The main limitation is that the construction of factor models is based on historical data that 
reflect conditions that may not be replicated in the future.  Moreover, a model that does produce 
good predictions in one time period, may not produce good predictions in subsequent time 
periods. 
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Note that this particular limitation applies equally to many of the other investment models in 
common use, including the capital asset pricing model discussed in the next chapter, whose 
parameters are typically estimated using past data. 
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Chapter 7 Summary 

The multifactor model 

A multifactor model of security returns attempts to explain the observed historical return by 
an equation of the form: 

      ,1 1 ,2 2 ,...i i i i i L L iR a b I b I b I c  

where: 

  iR  is the return on security i, 

  ,i ia c  are the constant and random parts respectively of the component of return 
unique to security i 

  1 ,... , LI I  are the changes in a set of L factors which explain the variation of iR  about 
the expected return ai 

  ,i kb  is the sensitivity of security i to factor k. 

Types of multifactor model 

Macroeconomic – the factors are the main macroeconomic variables such as interest rates, 
inflation, economic growth and exchange rates. 

Fundamental – the factors will be company specifics such as P/E ratios, liquidity ratios and 
gearing measurements. 

Statistical – the factors are not specific items initially.  The method uses principal 
components analysis and historical returns on stocks to decide upon the factors. 

Single-index model 

This has just a single factor, which is usually the return on the market, MR . 

So:     i i i M iR R   

It can then be shown that for any security i: 

    i i i ME E  

   2
ii i MV V V  ie total risk is the sum of systematic risk and specific risk 

   ij i j MC V   ie securities ‘covary’ only through their covariance with 

    the market 
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Likewise, the variance of portfolio returns is equal to: 

  


  2 2

1

N
P i i p M

i
V x V V  

where: 

 ix  is the weight in security i 

  


 
1

N
P i i

i
x   
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Chapter 7 Practice Questions 

7.1 A portfolio P  consists of n  assets, with a proportion ix  invested in asset i , 1,2, ,i n  (so 

that 



1

1
n

i
i

x ). 

(i) The annual returns PR  on this portfolio can be assumed to conform to the single-index 
model of asset returns.  Write down an equation defining this model and show that: 

    2var( ) var( ) var( )P P M PR R  

 where P  denotes the component of the portfolio return that is independent of 
movements in the market. [3] 

(ii) Explain why the specific risk, var( )P , is sometimes referred to as the ‘diversifiable risk’, 
giving an algebraic justification for your answer. [4] 

(iii) Discuss the following statement: 

 ‘A portfolio with a beta of zero is equivalent to a risk-free asset.’ [2] 
    [Total 9] 

7.2 Show that in the single-index model of asset returns: 

   i i i ME E   

  2
i i M eiV V V   

and  ij i j MC V  

where eiV  is the variance of ie .  [8] 

7.3 Consider the data in the table below, which relates to Securities 1, 2 and 3. 

 Security 
 1 2 3 
i  0.0 2.0 –2.2 
i  1.1 0.6 2.0 

 iV  2.2 1.3 1.2 
 

You are given that: 

 the expected return and standard deviation of the market return are 10 and 5 respectively 

 the returns of each security can be modelled using an appropriate single-index model. 

Exam style 

Exam style 
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(i) Calculate: 

 (a) the expected return and standard deviation of return for each security  

 (b) the covariance of returns between each pair of securities.  

(ii) Consider a portfolio which consists of Securities 1, 2 and 3 in equal proportions.  
Calculate: 

 (a) the variance of the portfolio 

 (b) the systematic risk of the portfolio 

 (c) the specific risk of the portfolio. 

7.4 Distinguish between the three main classes of multifactor model. 

7.5 Consider the single-index model of investment returns in which for any security i : 

     i i i m iR R  

where  ( ) 0iE ,   ( ) 0i jE  for i j ,  ( ) 0m iE R  and mR  is the return on the market. 

(i) Assuming that this model applies, derive expressions for the mean investment return on 
security i , and the mean investment return on a portfolio P , containing n  securities, 
with a proportion ix  invested in security i . [3] 

(ii) Show that 


 
1

n

iP j ij
j

C x C , where iPC  and ijC  are the covariance of investment returns 

between security i  and portfolio P  and securities i  and j  respectively. [2] 

(iii) State a general expression for the variance  2
P  of portfolio P  in terms of 

the covariances ijC . [1] 

(iv) Use your results from (ii) and (iii) to show that: 

  






1P
iP

i Px
 

 where 


 2
iP

iP
P

C  and comment briefly on this result. [7] 

    [Total 13] 

  

Exam style 
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Chapter 7 Solutions 

7.1 (i) Equations for model and variance 

According to the single-index model: 

     P P P M PR R  [½] 

Taking variances of both sides gives: 

 

  

 

  

 2

var( ) var( )

var( ) var( )

P P P M P

P M P

R R

R  [1½] 

We have used the facts that: 

 P  is a constant [½] 

 P  and MR  are uncorrelated. [½] 
   [Total 3] 

(ii) Why specific risk is ‘diversifiable’ 

Modelling portfolio returns using the single-index model is usually based on the underlying 
assumption that each of the individual assets i  also follows a single-index model of the form: 

     i i i M iR R   

where  i  and  j  are uncorrelated when i j . 

So:   
  

     
1 1 1

n n n
P i i i i P M i i

i i i
R x R x R x  [1] 

So P  corresponds to 



1

n
i i

i
x  and it follows (since  i  and  j  are uncorrelated) that: 

   
 

 
   

 
  2

1 1
var( ) var var( )

n n

P i i i i
i i

x x  [1] 

If we select a portfolio with equal proportions of each asset, ie 
1

ix
n

, then: 

   
 

 
      

 
 2

1 1

1 1 1 1var( ) var( ) var( )
n n

P i i
i i

V
n n nn

 [1] 

where V  denotes the average specific risk of the assets in the portfolio. 

So, as n , the variance var( )P  will tend to zero. [½] 
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So this component of the variance of returns can be reduced to a very small level by selecting a 
sufficiently diversified portfolio.  It is therefore often called the ‘diversifiable risk’. [½] 
    [Total 4] 

(iii) Zero beta versus risk-free 

The statement is not correct. [½] 

A zero beta indicates no systematic risk. [½] 

A portfolio will only be totally risk-free if it has zero variance, ie if var( ) 0PR . [½] 

From the equation   2var( ) var( ) var( )P P M PR R , we see that, even if   0P , the overall 
variance will only be zero if  var( ) 0P , as well. [½] 

But, any (non-trivial) portfolio of risky assets will have a non-zero specific risk, ie  var( ) 0P . [½] 

However, it is theoretically true that a well-diversified portfolio with a beta of zero will be 
approximately risk-free. [½] 
    [Maximum 2] 

7.2 According to the single-index model, the return on Security i is given by: 

    i i i M iR R e  [½] 

where i  and i  are constants 

 MR  is the return on the market 

 ie  is a random variable representing the component of iR  not related to the market. [½] 

By the linear additivity of expected values, we have: 

    ( ) ( ) ( ) ( )i i i M iE R E E R E e  [½] 

Since i  and i  are constants and i  is chosen so that ( ) 0iE e , we have: 

   ( )i i i ME R E   

as required.   [½] 

The variance of returns for Security i  is: 

     vari i i M iV R e  [½] 

As i  is constant, this is equal to: 

   vari i M iV R e  [½] 
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Now, recall that the single-index model assumes that: 

 cov( , ) 0i Me R   [½] 

Hence: 

     var vari i M iV R e  [½] 

ie  2
i i M eiV V V  

as required.    [1] 

The covariance between Securities i  and j  is given by: 

    

   

      

, cov ,

cov ,

i j i j

i i M i j j M j

C R R

R e R e  [½] 

Again, since i  is constant, this is equal to: 

      , cov ,i j i M i j M jC R e R e  [½] 

As before, recall that the single-index model assumes that: 

 cov( , ) 0i Me R  [½] 

Hence: 

  

 

 

       

    

, cov , cov ,

cov , cov ,

i j i M j M i j

i j M M i j

C R R e e

R R e e  [½] 

We also have the assumption that cov( , ) 0i je e  when i j . 

So:      , cov ,i j i j M M i j MC R R V  [1] 

    [Total 8] 

7.3 (i)(a) Calculate the expected return and standard deviation 

The expected return for each security is calculated using the equation: 

   i i i ME E  

Hence: 

 1E  = 0  +  1.1  10  =  11.0  

 2E  = 2  +  0.6  10  =  8.0   

 3E  = –2.2  +  2.0  10  =  17.8 
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The variance for each security is calculated using the equation: 

  2
i i M iV V V   

Hence, the standard deviation for each security is given by: 

           
½ ½2 2 ½

1 1 1 1.1 25 2.2 (32.45) 5.70MV V   

           
½ ½2 2 ½

2 2 2 0.6 25 1.3 (10.3) 3.21MV V  

           
½ ½2 2 ½

3 3 3 2.0 25 1.2 (101.2) 10.06MV V  

(i)(b) Calculate the covariances 

The covariance of returns between securities i  and j  is calculated using the equation: 

  ,i j i j MC V  

Hence: 

  1,2 1 2 MC V   =  1.1  0.6  25  =  16.5 

  1,3 1 3 MC V   =  1.1  2.0  25  =  55.0 

  2,3 2 3 MC V  =  0.6  2.0  25  =  30.0 

(ii)(a) Variance of portfolio 

If PR  is the return on the portfolio and iR  is the return on security i , then: 

    1
1 2 33PR R R R  

So, the variance is: 

 

 

 

 

  

     

        



1
1 2 39

1
1 2 3 1,2 1,3 2,39

1
9

var( ) var

var( ) var( ) var( ) 2 2 2

32.45 10.3 101.2 2 16.5 2 55 2 30

38.55

PR R R R

R R R C C C

 

(ii)(b) Systematic risk 

The beta of the portfolio, P , is the weighted average of the betas of the individual securities: 

              3.71 1
1 2 33 3 31.1 0.6 2P  
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The systematic risk is: 

     
22 3.7

3 25 38.028P MV  

(ii)(c) Specific risk 

The specific risk, PV , can be calculated as the total portfolio variance (or risk) minus the 
systematic risk: 

  38.55 38.028 0.522  

Alternatively, the specific risk of the portfolio can be calculated directly using the specific risks of 
the individual securities: 

 
       

     

          

      

2 2 21 1 1 1 1 1
1 2 2 1 2 33 3 3 3 3 3

2 2 21 1 1
3 3 3

var

2.2 1.3 1.2 0.522

PV V V V
 

7.4 Macroeconomic factor models use observable economic time series as the factors. 

They therefore include factors such as: 

 annual rates of inflation  

 economic growth 

 short-term interest rates 

 the yields on long-term government bonds 

 the yield margin on corporate bonds over government bonds. 

These are the macroeconomic variables that are assumed to influence security prices and returns 
in practice.   

A related class of model uses a market index plus a set of industry indices as the factors. 

Fundamental factor models are closely related to macroeconomic models but instead of (or in 
addition to) macroeconomic variables, they use company-specific variables. 

These may include such fundamental factors as: 

 the level of gearing 

 the price earnings ratio 

 the level of R&D spending 

 the industry group to which the company belongs. 

The commercially available fundamental factor models typically use many tens of factors.  

Statistical factor models do not rely on specifying the factors independently of the historical 
returns data.   
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Instead a technique called principal components analysis can be used to determine a set of 
orthogonal indices that explain as much as possible of the observed variance. 

However, the resulting indices are unlikely to have any meaningful economic interpretation and 
may vary considerably between different data sets. 

7.5 (i) Mean investment returns 

The mean investment return on security i, iE , is found from: 

       [ ]i i i i m iE E R E R  

Since i  and i  are both constants,   i iE  and   i iE . [½] 

Also, by assumption,  ( ) 0iE . [½] 

So:          i i i m i i i mE E R E  [1] 

where mE  is the mean return on the market. 

For a portfolio P with portfolio weightings ix , 1, ,i n , the mean investment return is given by: 

   
  

 
    

  
  

1 1 1

n n n

P i i i i i i i m
i i i

E E x R x E x E  [½] 

If we define: 

  


 
1

n
P i i

i
x   and   


 

1

n
P i i

i
x  

then this can be written as: 

   P P P mE E  [½] 
    [Total 3] 

(ii) Covariance 

The covariance between security i  and the portfolio is: 

 

 









 
 
 
 











1

1

1

cov( , )

cov ,

cov ,

iP i P

n

i j j
j

n

j i j
j

n

j ij
j

C R R

R x R

x R R

x C  [2] 
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(iii) Variance of portfolio P 

We can write the portfolio variance in terms of the covariances, as follows: 

 
 

 2

1 1

n n

P i j ij
i j

x x C  [1] 

(iv) Show the formula for iP  

Differentiating the left-hand side of the expression in (iii) with respect to ix  gives: 

  


2 P
P

ix
  ... (1) [1] 

The right-hand side of the expression in (iii) can be written as: 

 
  



 2

1 1 1

n n n
i ii i j ij

i i j
j i

x C x x C  [1] 

Differentiating this with respect to ix  gives: 

 
 


  
1 1

2 2 2
n n

i ii j ij j ij
j j
j i

x C x C x C   [1½] 

Note that here the second term gives a contribution from each summation. 

Using the result from (ii) above, this can be written as: 

 2 iPC   ... (2)  [½] 

Hence, equating Equations (1) and (2) and cancelling the 2’s gives: 

  



P

P iP
i

C
x

  [1] 

Dividing both sides of this equation by  2
P : 

 
 




 2
1 P iP

P i P

C
x

  [½] 

The left-hand side now matches the definition of iP  given in the question.  So we have: 

 






1P
iP

i Px
  [½] 
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The definition of iP  given here is: 

 


 2
cov( , )iP i P

iP
PP

C R R
V

 

So iP  represents the beta of security i  relative to portfolio P .  The equation we have derived 
shows us that it is equal to the proportionate change in the standard deviation of the portfolio 
returns when there is a small change in the portfolio weighting ix . [1] 
    [Total 7]  
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Asset pricing models 

 

   

Syllabus objectives 

4.2 Asset pricing models 

4.2.1 Describe the assumptions, principal results and uses of the Sharpe-Lintner-
Mossin Capital Asset Pricing Model (CAPM). 

4.2.2 Discuss the limitations of the basic CAPM and some of the attempts that 
have been made to develop the theory to overcome these limitations. 

4.2.3 Perform calculations using the CAPM. 

4.2.4 Discuss the main issues involved in estimating parameters for asset pricing 
models. 
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0 Introduction 

Mean-variance portfolio theory, discussed previously, showed how an individual investor can 
characterise the relationship between risk and return for a particular security.  The capital asset 
pricing model described in this chapter extends the ideas discussed previously, in an attempt to 
characterise the entire investment market on the assumption that investors behave exactly as 
predicted by those models.    

The capital asset pricing model tells us about the relationship between risk and return in the 
security market as a whole, assuming that investors act in accordance with mean-variance 
portfolio theory and that the market is in equilibrium. 

Note that asset pricing models are also sometimes referred to as equilibrium models, because 
they characterise the equilibrium outcome in investment markets. 
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1 The capital asset pricing model (CAPM) 

1.1 Introduction 

Portfolio theory can be applied by a single investor given their own estimates of security 
returns, variances and covariances.  The capital asset pricing model developed by Sharpe, 
Lintner and Mossin introduces additional assumptions regarding the market and the 
behaviour of other investors to allow the construction of an equilibrium model of prices in 
the whole market. 

Hence, the assumption here is that all investors select their investments by applying the ideas and 
assumptions underlying mean-variance portfolio theory.   

Question 

List the assumptions underlying mean-variance portfolio theory. 

Solution 

The assumptions of mean-variance portfolio theory are that: 

 all expected returns, variances and covariances of pairs of assets are known 

 investors make their decisions purely on the basis of expected return and variance 

 investors are non-satiated 

 investors are risk-averse 

 there is a fixed single-step time period 

 there are no taxes or transaction costs 

 assets may be held in any amounts, (with short-selling, infinitely divisible holdings, no 
maximum investment limits). 

 
If this is the case, then the introduction of some additional assumptions enables us to characterise 
how investors may act in aggregate and thereby construct an equilibrium model of security prices.  
The resulting capital asset pricing model (CAPM) tells us about the relationship between risk and 
return for security markets as a whole. 
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1.2 Assumptions 

The extra assumptions of CAPM are: 

 All investors have the same one-period horizon. 

 All investors can borrow or lend unlimited amounts at the same risk-free rate. 

 The markets for risky assets are perfect.  Information is freely and instantly available 
to all investors and no investor believes that they can affect the price of a security 
by their own actions. 

 Investors have the same estimates of the expected returns, standard deviations and 
covariances of securities over the one-period horizon. 

 All investors measure in the same ‘currency’ eg pounds or dollars or in ‘real’ or 
‘money’ terms. 

A number of conditions need to be met for an investment market to be perfect – basically there 
must be no anomalies or distortions in the pricing of assets.  The following are the basic 
requirements for a perfect market: 

 There are many buyers and sellers, so that no one individual can influence the market 
price. 

 All investors are perfectly informed. 

 Investors all behave rationally. 

 There is a large amount of each type of asset. 

 Assets can be bought and sold in very small quantities, ie perfect divisibility. 

 There are no taxes. 

 There are no transaction costs. 

Not all of the above assumptions are 100% realistic.  However, the fact that the assumptions do 
not hold does not necessarily invalidate the CAPM, as it may nevertheless yield useful insight into 
the operation of security prices and returns.  We must recognise, however, that it will be only an 
approximation. 

1.3 Consequences of the extra assumptions  

Given the extra assumptions above, we can build on the results of mean-variance portfolio theory 
to develop the standard form of the capital asset pricing model as follows. 

1. If investors have homogeneous expectations, then they are all faced with the same 
efficient frontier of risky securities. 

Question 

Why? 
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Solution 

If investors: 

 have the same estimates of the expected returns, standard deviations and covariances of 
securities over the one-period horizon and 

 are able to perform correctly all the requisite calculations 

then they will all arrive at the same opportunity set and hence the same efficient frontier of risky 
securities. 

 
2. If in addition they are all subject to the same risk-free rate of interest, the efficient 

frontier collapses to the straight line in E   space which passes through the risk-
free rate of return on the E-axis and is tangential to the efficient frontier for risky 
securities. 

Question 

Suppose there are only two portfolios A and B available to invest in.  A is a portfolio of risky assets 
and B is a portfolio consisting of just one risk-free asset.  Show that the efficient frontier must be 
a straight line. 

Solution 

Firstly, we can use the formula for the expected return of the portfolio to express Ax  in terms of 

PE : 

     1P A A B B A A A BE x E x E x E x E  

  



P B

A
A B

E Ex
E E

 

Also, recall from the chapter on mean-variance portfolio theory that the variance of the portfolio 
return is: 

  2 2 2P A A B B A B ABV x V x V x x C  

Because Portfolio B is risk-free,  0BV  and  0ABC .  So the above equation simplifies to: 

  
 

    

2
2 2 2P B

P A A A
A B

E EV x
E E
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P B A A B

P A P
A B A B A B

E E EE
E E E E E E

 

This is a straight line in  ,P PE  space. 

 
So, if there is a risk-free asset, the efficient frontier must be a straight line. 

Question 

Explain why the new efficient frontier must be at a tangent to the old efficient frontier of risky 
assets. 

Solution 

The last question shows that the new efficient frontier must be a straight line.  We also know that 
it must intercept the E-axis at r because the risk-free asset is efficient.  (You cannot find a portfolio 
with the same zero variance and a higher return.) 

If this straight line isn’t at a tangent then it either passes above the old efficient frontier or it 
passes below it.  It cannot pass above since there is no portfolio that exists here.  If it passes 
below then it is not an efficient frontier because you can find portfolios of risky assets that have a 
higher expected return for the same variance.  Therefore the only possibility is that it must be at a 
tangent. 

 
All investors face the same straight-line efficient frontier in expected return-standard deviation 
space. 

 expected return   

 

 

 

 
  

   

 

          

       0     
    standard deviation  

Figure 8.1: The efficient frontier with risk-free lending and borrowing 

M 

 r 

efficient frontier 
efficient frontier 

(risky assets only) 
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Note that: 

 r represents the risk-free asset (which has zero standard deviation). 

 The efficient frontier with a risk-free asset is parabolic in expected return-variance space.  
The straight line above in expected return-standard deviation space is a degenerate case 
of a hyperbola. 

 The model does not require that investors all have the same attitude to risk, only that 
their views of the available securities are the same – and hence that the opportunity set is 
identical for all investors.   

3. All rational investors will hold a combination of the risk-free asset and M, the 
portfolio of risky assets, at the point where the straight line through the risk-free 
return (on the E-axis) touches the original efficient frontier. 

This is because if investors are rational they should only invest in efficient portfolios, which are 
located along the straight-line efficient frontier.  Every investor should choose a portfolio of the 
form: 

 a% of the risk-free asset  +  (100–a)% of M 

The portfolio of risky assets is shown as M on Figure 8.1.  The choice of a depends on the 
investor’s level of aversion to risk.  Note that it could be negative for an investor who has low risk 
aversion, so that the investor’s optimal portfolio lies on the efficient frontier to the right of M.  
This would mean that the investor is borrowing the risk-free asset and investing in the portfolio of 
risky assets M. 

4. Because this is the portfolio held in different quantities by all investors, it must 
consist of all risky assets in proportion to their market capitalisation.  It is commonly 
called the ‘market portfolio’.  The proportion of a particular investor’s portfolio 
consisting of the market portfolio will be determined by their risk-return preference. 

This is a key result of the CAPM.  It is important to realise that M is the market portfolio, rather 
than the market portfolio just being a name we give to M. 

Example 

Suppose that the market of risky assets being considered is that consisting of FTSE 100 companies 
only and that there are 15 million investors.  The market portfolio is then the FTSE 100 index 
itself.  If Investor 1 has 5% of their portfolio of risky assets in Vodafone shares then Investor 2 
must also have the same percentage and so on up to Investor 15,000,000.  CAPM says that every 
single investor holds 5% of their portfolio of risky assets in Vodafone shares and so, because these 
investors cover the whole market, the market must hold 5% of its risky assets in Vodafone, 
ie Vodafone’s market capitalisation would be 5% of all FTSE 100 shares. 

If we apply this logic across all companies in the FTSE 100 then it becomes clear that every 
investor must hold shares in proportion to their market capitalisation.  In this case every 
investor’s portfolio of risky assets would be the FTSE 100 index, ie the market portfolio. 
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1.4 The separation theorem 

The fact that the optimal combination of risky assets for an investor can be determined 
without any knowledge of their preferences towards risk and return (or their liabilities) is 
known as the separation theorem. 

The separation theorem doesn’t tell us whereabouts on the new efficient frontier an individual 
investor’s portfolio will be.  For this we need to know the investor’s attitude towards risk and 
return, or equivalently the investor’s utility function, in order to determine their preferred split 
between risky assets and the risk-free asset, ie the value of a.   

However, we no longer have to make thousands of estimates of covariances in order to 
determine the portfolio of risky assets, because we know that it is always the market portfolio, M. 

1.5 The capital market line 

The straight line denoting the new efficient frontier is called the capital market line.  Its 
equation is: 

  P M P ME r E r       

where: 

  PE  is the expected return of any portfolio on the efficient frontier 

  P   is the standard deviation of the return on portfolio P 

  ME  is the expected return on the market portfolio 

  M   is the standard deviation of the return on the market portfolio 

  r   is the risk-free rate of return. 

Thus, the expected return on any efficient portfolio is a linear function of its standard 

deviation.  The factor  M ME r   is often called the market price of risk. 

Question 

Derive the above equation of the capital market line. 

Solution 

We know that the points (0, )r  and ( , )M ME  are on the straight line and so its equation is: 

 
 

 


 0 0
P M

P M

E r E r  

We rearrange this to get the equation given for the capital market line, which can be found on 
page 43 of the Tables. 
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Note that: 

 The expected return on any efficient portfolio P can be written as: 

  


 
   

 
M

P P
M

E rE r  

 ie  expected return  =  risk-free rate + (market price of risk)  (amount of risk) 

 The ‘(price of risk)  (amount of risk)’ term is sometimes referred to as the risk  premium. 

 The market price of risk is equal to the gradient of the capital market line in expected 
return-standard deviation space. 

         PE  

                  

           

         

           

           

               r 

 

0           M     P  

Figure 8.2: The capital market line 

Hence, if the assumptions underlying the capital asset pricing model are true, then rational 
behaviour by investors should result in equilibrium security prices such that the expected return 
on any efficient portfolio is a linear function of its standard deviation.  It is important to note that 
this result applies to efficient portfolios only and not to inefficient portfolios. 

1.6 The security market line 

It is also possible to develop an equation relating the expected return on any asset to the 
return on the market: 

  i i ME r E r     

where: 

  iE    is the expected return on security i 

  r   is the return on the risk-free asset 

  ME    is the expected return on the market portfolio 

  i   is the beta factor of security i defined as  ov ,i M MC R R V  . 

efficient frontier of 
risky assets M

capital market line  

EM 
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The above equation and definition of i  can be found on page 43 of the Tables.  The equation is 
often written as: 

    i i ME r E r  

This presentation emphasises that the expected return on any asset is again equal to the risk-free 
rate plus a risk premium, which here is derived from the beta of the security. 

This is the equation of a straight line in E   space called the security market line.  It 

shows that the expected return on any security can be expressed as a linear function of the 
security’s covariance with the market as a whole.  Since the beta of a portfolio is the 
weighted sum of the betas of its constituent securities, the security market line equation 
applies to portfolios as well as to individual securities. 

           PE   

 

 

 

 

                r 

 

 

0        P  

Figure 8.3: The security market line 

Note that all portfolios, including those comprising a single security or asset, lie on the security 
market line whether or not they are efficient.  Thus, according to the capital asset pricing model, 
the security market line relationship can be used to determine the expected return of any asset or 
portfolio from its beta.  The expected return of a portfolio depends linearly upon its beta, which 
measures systematic risk and is independent of other non-systematic risk.  Consequently, 
investors are rewarded only for systematic risk and not for non-systematic risk, precisely because 
they are able to diversify it away. 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-08: Asset pricing models Page 11 

The Actuarial Education Company  © IFE: 2019 Examinations 

Question 

Consider Security A, which has a standard deviation of investment returns of 4%.  If: 

 the standard deviation of the market return is 5% 

 the correlation between A’s return and that of the market is 0.75 

 the risk-free rate is 5% 

 and the expected return on the market is 10% 

then calculate: 

(i) the beta of Security A 

(ii) Security A’s expected return. 

Solution 

(i) Beta of Security A 

This is given by: 

 

    


 

 
 

2

2

,

0.75 0.04 0.05 0.6
0.05

A M AM A M
A

M M

Cov R R
V

 

(ii) Expected return of Security A 

This is given by: 

 

 

 

  

  



0.05 0.6 0.10 0.05

0.08

A A ME r E r

 

ie 8%. 

 
Derivation of the security market line 

One way to derive the security market line is to note that according to the capital asset pricing 
model, all investors will hold the market portfolio of risky assets as part of their overall 
investment portfolio.  Consequently, each investor will hold a very well-diversified portfolio.   
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When discussing systematic and specific risk earlier in the course we saw that, as a portfolio 
becomes very well-diversified: 

 the systematic risk of the portfolio tends towards a weighted average of the systematic 
risks of the constituent securities 

 the non-systematic or specific risk tends to zero. 

So, an investor who holds a well-diversified portfolio, should be concerned only with expected 
return and systematic risk.  Hence portfolio decisions should be based only upon the expected 
return and the beta of the portfolio. 

Consider two well-diversified portfolios, 1 and 2, with expected returns 1E  and 2E  and betas 1  
and 2 .  If we construct a third portfolio consisting of equal holdings of Portfolios 1 and 2, then 
its expected return and beta will be equal to: 

    3 1 2½E E E  

and       3 1 2½  

Question 

Why? 

Solution 

If this were not the case, then it would be possible to make an instantaneous, risk-free profit.  For 
example, suppose that the beta relationship held, but that the expected return from Portfolio 3 
was less than 3E .  Then it would be possible to make risk-free profits by selling Portfolio 3 and 
using the proceeds to buy equal amounts of Portfolios 1 and 2.  Starting with a zero initial sum, 
we could end up with a positive net expected return and hence a risk-free profit. 

In practice, we would expect investors to notice the price anomaly and act exactly as above.  
Thus, the price of Portfolio 3 would be driven down (and hence its expected return up) and the 
prices of Portfolios 1 and 2 up (and hence their expected returns down) until the pricing anomaly 
was eliminated – with the security market line relationship again holding. 

Recall that the capital asset pricing model is an equilibrium model.  Therefore short-term 
deviations from the predicted expected returns may be possible when the market is out of 
equilibrium.   

 
Hence, if we plot Portfolios 1, 2 and 3 in expected return-beta space then they must all lie on the 
same straight line.  A similar argument applies to all portfolios and individual securities, the 
straight line in question being the security market line.  The general form of the equation of a 
straight line in expected return-beta space is (for any security i): 

  0 1i iE a a  
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 Thus, to complete the derivation we need to determine the values of 0a  and 1a . 

Question 

What are the betas of the market portfolio and the risk-free asset?  Use these beta values to 
complete the derivation of the security market line equation. 

Solution 

The beta factor of any portfolio i is defined as [ , ]i M MCov R R V .  Hence, for the market portfolio: 

   [ , ] 1M M M M M MCov R R V V V  

This must be the case since the return on the market is perfectly correlated with itself (ie the 
correlation coefficient equals one). 

Conversely, the risk-free asset has, by definition, neither systematic nor specific risk and so its 
beta must be zero. 

Now, the excess expected return on the market portfolio over and above the risk-free rate is 
ME r , whilst the excess systematic risk is  1M .  Hence, ME r  must also be the gradient of 

the security market line.  As all portfolios lie on the security market line, for any portfolio with a 
beta P  the excess expected return over and above the risk-free rate will equal P   ( )ME r .   

Consequently, the total expected return on the same portfolio must be equal to: 

    P P ME E r r  

ie   0 1and Ma r a E r   

 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 14 CM2-08: Asset pricing models 

© IFE: 2019 Examinations The Actuarial Education Company 

2 Limitations of CAPM 

2.1 Limitations and empirical evidence 

The limitations of the basic CAPM are well known and attempts have been made to 
overcome them since the model was first published.  Most of the assumptions of the basic 
model can be attacked as unrealistic and, furthermore, empirical studies do not provide 
strong support for the model. 

Models with less restrictive or unrealistic assumptions may therefore provide better predictions 
of the actual behaviour of security markets than the basic capital asset pricing model described 
above.  A further subtle yet important issue is that if the model assumes that a particular factor 
such as tax does not exist, then it cannot tell us about the influence of taxation upon security 
markets.  We might therefore wish to develop a model that explicitly introduces taxes. 

There are basic problems in testing the model since, in theory, account has to be taken of 
the entire investment universe open to investors, not just capital markets.   

An important asset of most investors, for example, is their human capital (ie the value of 
their future earnings). 

In other words tests of the model should allow for every single asset that an investor could 
purchase and that yields an uncertain return to an investor, eg houses, works of art, training 
courses etc.  It is therefore extremely difficult to test the validity of the capital asset pricing model 
if the returns on many assets cannot be observed.  Moreover, even if actual returns are 
observable, the capital asset pricing model is expressed in terms of expected returns, which 
typically are not. 

Nevertheless the studies that have been carried out do provide some evidence: 

 in support of a linear relationship between return and systematic risk over long periods of 
time 

 suggesting that return is not related to unsystematic or residual risk. 

2.2 Extensions of the basic CAPM 

Models have been developed which allow for decisions over multiple periods and for the 
optimisation of consumption over time to take account of this. 

Other versions of the basic CAPM have been produced which allow for taxes and inflation, 
and also for a situation where there is no riskless asset. 
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Multi-period models 

The basic capital asset pricing model assumes that investors are concerned only with a 
single-period time horizon.  Various multi-period models have, however, been developed that 
consider how investors with preferences defined over a time horizon of more than one period 
make investment decisions over that time horizon.  These models have shown that under certain 
assumptions, the investment decisions taken by investors with multi-period time horizons are 
consistent with those made by investors with just a single-period time horizon.  Consequently, 
each single period can be considered in isolation and the results of the single period capital asset 
pricing model are equally valid (or not) in the multi-period context. 

Amongst the multi-period models are: 

 the consumption capital asset pricing model – which relates investment returns to the 
growth rate of per capita consumption 

 one that allows for the uncertain inflation that will be present in a multi-period context – 
so that investors are concerned with real returns. 

Model with taxes 

The absence of taxes in the basic model means that investors are indifferent between income and 
capital gains.  One extension of the basic capital asset pricing model therefore derives a 
somewhat more complicated equilibrium relationship allowing for differential taxation and based 
upon the means and variances of post-tax returns.   

Zero-beta model  

It can be shown that the absence of a risk-free asset does not alter the form of the security 
market line, the role of the risk-free asset simply being replaced by a ‘zero-beta’ portfolio, ie a 
portfolio of risky assets with a beta equal to zero.  The equation of the security market line is 
then: 

    i Z M Z iE E E E  

where ZE  is the expected return of the zero-beta portfolio.  This is sometimes referred to as the 
zero-beta version of the capital asset pricing model. 

In the international situation there is no asset which is riskless for all investors (due to 
currency risks) so a model has been developed which allows for groups of investors in 
different countries, each of which considers their domestic currency to be risk-free. 
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3 Uses of CAPM 

As its name suggests, the capital asset pricing model (CAPM) can be used to price assets, 
where these could be financial securities or other assets such as capital projects.  If the 
beta of an asset can be estimated from past data, then the security market line can be used 
to estimate the prospective return that the asset should offer given its systematic risk, 
providing the economy is stable.  This return can then be used to discount projected future 
cash flows and so price the asset.  For a new asset with no history, the beta from a similar 
asset could be used. 

CAPM can be used to estimate the expected return on a financial security given its 
exposure to the various risk factors modelled.  This return can then be used to discount 
projected future cash flows and so price the security and determine if it appears to be 
under-valued or over-valued. 

Question 

How might you estimate the beta of a quoted share in practice? 

Solution 

To estimate the beta of the share you could obtain the returns on the share in question ( iR ) over 
each of the last sixty months say, together with the monthly returns over the same period on an 
appropriate market-wide index ( MR ).  For example, in the UK you might use the FTSE All-Share 
Index. 

The beta of the share could then be estimated as: 

 
 
 

 
,i M

i
M

Cov R R
Var R

 

This definition of i  is given on page 43 of the Tables. 
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4 Estimating parameters for asset pricing models 

The estimation of parameters is one of the most time-consuming aspects of stochastic 
asset modelling. 

The simplest case is the purely statistical model, where parameters are calibrated entirely to 
past time series.  Provided the data is available, and reasonably accurate, the calibration 
can be a straightforward and mechanical process. 

Of course, there may not always be as much data as we would like, and the statistical error 
in estimating parameters may be substantial.   

Consequently, the results obtained may lack credibility. 

Furthermore, there is a difficulty in interpreting data which appears to invalidate the model 
being fitted.  For example, what should be done when fitting a Gaussian model (discussed 
in Subjects CS1 and CS2) in the presence of large outliers in the data?  Perhaps the obvious 
course of action is to reject the hypothesis of normality, and to continue building the model 
under some alternative hypothesis that accommodates extreme events.   

The rejection of normality is a big step because non-normal models are generally much more 
difficult to apply and use than those based on the assumption of normality.   

Question 

Explain why the outliers might be important in an investment context. 

Solution 

The outliers are important because this is where the major financial risks lie.  It is very low 
investment returns – ie returns in the lower tail of the distribution – that will lead to a fall in asset 
values and possible difficulties with regard to financial solvency. 

 
In practice, a more common approach to outliers is to exclude them from the statistical 
analysis, and focus attention instead on the remaining residuals which appear more normal.  
The model standard deviation may be subjectively nudged upwards after the fitting process, 
in order to give some recognition to the outliers which have been excluded. 

It has often been the practice in actuarial modelling to use the same data set to specify the 
model structure, to fit the parameters, and to validate the model choice.  A large number of 
possible model structures are tested, and testing stops when a model which passes a 
suitable array of tests is found.  Unfortunately, in this framework, we may not be justified in 
accepting a model simply because it passes the tests.  Many of these tests (for example, 
tests of stationarity) can be weak and may not reject incorrect models. 

Indeed, even if the ‘true’ model was not in the class of models being fitted, we would still 
end up with an apparently acceptable fit, because the rules say we keep generalising until 
we find one. 

As we add more and more variables to a model, the model will necessarily fit the historical data 
more closely.  Whether it is capable of a meaningful interpretation is another matter.  Again, and 
as always, the modelling process relies heavily on the skill and judgement of the modeller. 
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This process of generalisation tends to lead to models which wrap themselves around the 
data, resulting in an understatement of future risk, and optimism regarding the accuracy of 
out-of-sample forecasts. 

An alternative approach to this that is widely used by econometricians and which avoids this 
problem of ‘data mining’ is the general-to-specific approach.  Here the modeller starts with a very 
general model, which includes all the variables (both current values and lagged values) that are 
thought likely to influence the variable being modelled.  The model is then made more specific by 
eliminating variables (one at a time) that do not materially affect the significance of the fit to past 
data. 

In the context of economic models, the calibration becomes more complex.  The objective 
of such models is to simplify reality by imposing certain stylised facts about how markets 
would behave in an ideal world.  This theory may impose constraints, for example, on the 
relative volatilities of bonds and currencies.  Observed data may not fit these constraints 
perfectly.  In these cases, it is important to prioritise the features of the economy that are 
most important to calibrate accurately for a particular application. 

Thus, we need to decide which is the most important – fitting past data as accurately as possible 
or complying with economic theory.  In practice, there will often be a trade-off between these 
two objectives. 

Question 

Why should the modeller not aim solely to fit the model as accurately as possible to past data? 

Solution 

The modeller should not aim solely to fit the model as accurately as possible to past data because 
the past might not be a very accurate indication of the future – eg if there are structural changes 
in investment and/or economic markets. 

 
 

 

  

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-08: Asset pricing models Page 19 

The Actuarial Education Company  © IFE: 2019 Examinations 

 

 

 

Chapter 8 Summary 

Assumptions of the CAPM (including MPT assumptions) 

 Investors make their decisions purely on the basis of expected return and variance.  
So all expected returns, variances and covariances of assets are known. 

 Investors are non-satiated and risk-averse. 

 There are no taxes or transaction costs. 

 Assets may be held in any amounts. 

 All investors have the same fixed one-step time horizon. 

 All investors make the same assumptions about the expected returns, variances and 
covariances of assets. 

 All investors measure returns consistently (eg in the same currency or in the same 
real/nominal terms). 

 The market is perfect. 

 All investors may lend or borrow any amounts of a risk-free asset at the same 
risk-free rate r . 

The extra assumptions of CAPM from MPT move away from thinking about individual 
investors to assumptions about the entire economy.  CAPM is an equilibrium model. 

Results of the CAPM 

 All investors have the same efficient frontier of risky assets. 

 The efficient frontier collapses to a straight line in E  space in the presence of the 
risk-free asset. 

 All investors hold a combination of the risk-free asset and the same portfolio of risky 
assets M. 

 M is the market portfolio – it consists of all assets held in proportion to their market 
capitalisation. 
 

The separation theorem suggests that the investor’s choice of portfolio of risky assets is 
independent of their utility function. 
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Capital market line 

 


  ( )P
p M

M
E r E r   

Market price of risk  

 



 M

M

E rMPR  

Security market line 

  ( )p P ME r E r  

where: 

 
 
 

 
,P M

P
M

Cov R R
Var R

 

The main limitations of the basic CAPM are that most of the assumptions are unrealistic and 
that empirical studies do not provide strong support for the model.  However there is some 
evidence to suggest a linear relationship between expected return and systematic risk. 

Estimating parameters for asset pricing models 

Determining the parameter values to use in asset pricing models poses significant 
challenges.  This is compounded by the fact that even the choice of model itself may be 
inappropriate. 
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Chapter 8 Practice Questions 

8.1 An investor has the choice of the following assets that earn rates of return as follows in each of 
the four possible states of the world: 

State Probability Asset 1 Asset 2 Asset 3 
1 0.2 5% 5% 6% 
2 0.3 5% 12% 5% 
3 0.1 5% 3% 4% 
4 0.4 5% 1% 7% 

Market capitalisation 10,000 17,546 82,454 
 
Determine the market price of risk assuming CAPM holds. 

Define all terms used.  [6] 

8.2 (i)  Explain what is meant by specific risk and systematic risk in the CAPM.  

(ii)  Explain the meaning of the ‘beta’ of a share, and describe how you would calculate it for: 

 (a)  a company 

  (b)  a portfolio. 

(iii) Explain how the beta for a portfolio can be used to determine the expected return for the 
portfolio.   

(iv) Why might the beta calculated in (ii)(a) be inappropriate for practical use? 

8.3 (i) State the assumptions of the capital asset pricing model (CAPM). [5] 

(ii) An investment market consisting of a risk-free asset and a very large number of stocks is 
such that, for modelling purposes, the market capitalisation of the -thk  stock can be 
expressed as: 

  1
2k   where 1,2,3,...k  

 The expected return on the -thk stock (expressed as a percentage) is: 

          1 125 5 1k ke e  

Assuming that the CAPM assumptions hold, find the expected return on the portfolio of 
risky assets held by each investor. [5] 

    [Total 10] 

  

Exam style 

Exam style 
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8.4 (i) Within the context of the capital asset pricing model, explain what is meant by the  
 ‘market price of risk’. [3] 

(ii) Show how the security market line relationship can be rearranged to give an expression 
for the expected return in terms of the market price of risk M , and briefly interpret your 
answer.   [3] 

    [Total 6] 

8.5 (i) (a) State the equation of the security market line and, assuming that the market 
portfolio offers a return in excess of the risk-free rate, use it to derive the betas of 
the market portfolio and the risk-free asset. 

 (b) Draw a diagram of the security market line relationship. 

 (c) What does the security market line indicate about the relationship between risk 
and return? [9] 

(ii) (a) By considering two points on the capital market line, determine its equation and 
comment briefly upon its applicability.  

 (b) Briefly interpret each of the terms in the relationship. [6] 
    [Total 15] 

 

 

  

Exam style 

Exam style 
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Chapter 8 Solutions 

8.1 The market price of risk is: 

 

M

M

E r  

where: 

 r  is the risk-free interest rate 

 ME  is the expected return on the market portfolio consisting of all risky assets 

 M  is the standard deviation of the return on the market portfolio. [1] 

Since Asset 1 always gives the same return of 5%, it is risk-free.  So the risk-free interest rate is 
 5%r .    [½] 

Assets 2 and 3, with the capitalisations shown, constitute the market portfolio of risky assets. [½] 

The total capitalisation of the market is  17,546 82,454 100,000 .  The table below shows the 
possible returns on this market portfolio: 

State Probability Return Return (%) 
1 0.2    5% 17,546 6% 82,454 5,824.54  5.82454% 
2 0.3    12% 17,546 5% 82,454 6,228.22  6.22822% 
3 0.1    3% 17,546 4% 82,454 3,824.54  3.82454% 
4 0.4    1% 17,546 7% 82,454 5,947.24  5.94724% 

    [2] 

So the expected return is: 

      0.2 5.82454% 0.4 5.94724% 5.794724%ME   [½] 

The variance of the returns is: 

 

      

 

2 2 2 2

2

0.2 (5.82454%) 0.4 (5.94724%) (5.794724%)

0.454020%% (0.673810%)

M 

 [1] 

So the market price of risk is: 

 

 

 
5.794724% 5% 1.179

0.673810%
M

M

E r  [½] 

This shows the extra expected return (over and above the risk-free rate) per unit of extra risk 
taken (as measured by the standard deviation) by investing in risky assets. 
    [Total 6] 
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8.2 (i) Specific and systematic risk 

The fluctuation (both up and down) of returns from a security can be broken into two 
components according to the extent to which: 

 company/industry specific events cause the returns to vary independently of movements 
in the investment market as a whole (ie specific risk) 

 the returns from the security move with the market as a whole (ie systematic risk). 

Specific risk is the risk unique to a particular security that can be eliminated from a portfolio if the 
portfolio is suitably diversified.  In terms of portfolio theory, it is the unrewarded risk. 

Systematic risk cannot be diversified away. 

(ii)  Beta for a share 

A share’s beta is a measure of its systematic risk.  It is a coefficient that measures the extent to 
which the return from the security covaries with the return from the market of risky assets as a 
whole.  It also indicates how the risk premium on the share compares to that for the market of 
risky assets as a whole.  

If the returns on a particular share move more aggressively than the market, the share has a high 
beta (greater than 1).  A defensive share that does not fluctuate as much as the market would 
have a coefficient below 1. 

(a)  To calculate it for a company  

Calculate the return on the share over a suitably large set of periods (say each month for 5 years) 
and also for the whole market. 

Plot these values with market returns on the horizontal axis, and the corresponding share returns 
on the vertical axis, and find the gradient of the line of best fit (by least-squares regression).  The 
beta is estimated as the gradient of the line. 

We do, however, need to be wary of company- or industry-specific events that may have caused 
the historical beta of the company to change over the period of estimation.  The estimate of the 
prospective beta may need to be adjusted accordingly. 

(b)  To calculate it for a portfolio 

The beta is the weighted average of the betas for the individual shares, weighted by the value of 
the holding for each of the shares.  So to calculate it, we would calculate the weighted average 
using the betas as worked out above.  Alternatively, repeat (a) using the returns on the 
portfolio.   
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(iii)  Expected return for the portfolio 

Assuming the capital asset pricing model holds, the beta for the portfolio gives a guide as to how 
the portfolio’s return is expected to differ from the market as a whole.  The following data is 
needed: 

 P   the beta for the portfolio 

 r  the risk-free rate of return (for short-term periods, take this to be Treasury bill 
returns, for longer periods perhaps look at government bond yields) 

 ME  the expected return on the market as a whole. 

The expected return for the portfolio is given by the security market line equation as:  

   ( )P M PE r E r  

Thus, for a portfolio with a beta of 1, the expected return on the portfolio is equal to the expected 
market return. 

If the market is not efficient, the expected return may be higher or lower than this. 

(iv)  Why might the beta be inappropriate? 

1. An analysis over a limited time period may produce an estimate for the beta with some 
random bias.  Empirical evidence suggests that betas for individual companies are not 
stable.   

2.  A company’s beta may change over time as the company may have a shift in emphasis 
and management. 

    So the beta based on an historical analysis may not be appropriate for the 
company as it currently is. 

   Similarly, the current beta may not be appropriate for the future. 

3.  The assumptions underlying portfolio theory and CAPM may not hold exactly.  So that 
even if we have an accurate estimate of beta we cannot use the equation in (iii) to 
estimate expected return. 

8.3 (i) CAPM assumptions 

 Investors make their decisions purely on the basis of expected return and variance.  So all 
expected returns, variances and covariances of assets must be known.  [1] 

 Investors are non-satiated. [½] 

 Investors are risk-averse. [½] 

 There are no taxes or transaction costs. [½] 

 Assets may be held in any amounts. [½] 

 All investors have the same fixed one-step time horizon. [½] 
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 All investors make the same assumptions about the expected returns, variances and 
covariances of assets. [½] 

 All investors measure returns consistently (eg in the same currency or in the same 
real/nominal terms). [½] 

 The market is perfect and in equilibrium. [½] 

 All investors may lend or borrow any amounts of a risk-free asset at the same risk-free 
rate r .   [½] 

 [Maximum 5] 

(ii) Market portfolio 

If CAPM holds then the portfolio of risky assets held by each investor will be the market 
portfolio.   [½] 

With a very large number of stocks, the expected return on the market portfolio is: 

 



 

1
M k k

k
E x E  

where kx  is the holding in stock k and kE  is the expected return on that stock.  [½] 

In this case we have: 

      
   

 

        1 1

1 1

1 25 5 1
2

k k
M k k k

k k
E x E e e  [1] 

Simplifying, we get: 

 

     
   

  





      

           
   

                        
         

  



1 1

1 1 1

1

2 3

1 1 15 20 5 20
2 2 2

1 1 1 1... 5 20
2 4 8 2

1 1 1 1 1 1... 5 20 ...
2 4 8 2 2 2

k k
M k k k

k k k

k

k

E e e

e
e

e
e e e

 [1½] 

Using the formula for the infinite sum of a geometric progression, we get: 

 

 
 
      

    
 

11 20
20225 5 17.251 1 2 11 1

2 2

M

e
eeE

e
e

  

So the expected return on the market is 17.25%. [1½] 
    [Total 5] 
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8.4 (i) Market price of risk 

Within the context of the capital asset pricing model, the market price of risk is defined as: 

  

M

M

E r  

where: 

 EM  =  the expected return on market portfolio 

 r =  the risk-free rate of return 

 M  =  the standard deviation of market portfolio returns. [1] 

It is the additional expected return that the market requires in order to accept an additional unit 
of risk, as measured by the portfolio standard deviation of return. [1] 

It is equal to the gradient of the capital market line in E  space. [1] 
    [Total 3] 

(ii) Security market line  

Recall the security market line relationship   ( )i i ME r E r  and also that the beta of a security 
is defined as: 

 


 2
cov( , )i M

i
M

R R  

If we define   ( , )iM i Mcov R R , then the security market line can written as:  

     
   

 
        

 
2
iM iM M iM

i M M
M M M M

E rE r E r r r  [2] 

As      


 iM iM i M
iM i

MM
 is a measure of the risk of portfolio i , the security market line states 

that the expected return on any portfolio can be expressed as the sum of the risk-free rate and 
the amount of risk multiplied by the market price of risk, ie: 

 expected return  =  risk-free rate  +  (market price of risk)  (amount of risk) [1] 
    [Total 3] 
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8.5 (i)(a) Equation of the security market line 

The security market line for any portfolio P is: 

   ( )P M PE r E r  

where: 

 PE  is the expected return on portfolio P 

 r  is the risk-free rate of return 

 ME  is the expected return on the market portfolio  

 P  is the beta of the portfolio with respect to the market portfolio  [1] 

The security market line holds for all securities and portfolios.  Thus, applying it to the market 
portfolio gives: 

   ( )M M ME r E r             (1 ) (1 )M M ME r  

Given that ME r , it must be the case that M  = 1.  [1] 

Similarly, applying the security market line relationship to the risk-free asset (with a beta of r ) 
gives: 

   ( )M rr r E r  

ie  0 ( )M rE r  

Given that ME r , then it must be the case that r  = 0, ie the risk-free asset has a beta of zero – 
which must be the case as it involves zero risk – systematic or otherwise. [1] 

(i)(b) Diagram 

  

         EP 

            

        EM  – 

           

 

 

 

0                                                  M = 1 P 

    [2 for correct diagram] 

security market line 
market portfolio  

r
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(i)(c) What does the security market line indicate? 

The security market line relationship is of interest because: 

 it enables us to determine the expected return on any asset or portfolio.  This can be 
done if we can estimate the risk-free rate, the expected return on the market portfolio 
and the beta of the individual asset or portfolio. [1] 

 it tells us that the expected return on any asset is equal to the risk-free rate plus a risk 
premium, which is a linear function of the systematic risk of the asset as measured by the 
beta factor.  [1] 

 it tells us that expected return does not depend on any other factors and in particular it is 
independent of the specific risk of an asset, which can be eliminated by diversification.  [1] 

The above results do of course depend upon the appropriateness or otherwise of the capital asset 
pricing model.     [1] 
    [Total 9]  

(ii)(a) Capital market line relationship 

The capital market line is the equation of the efficient frontier in ( , )E space, which is a straight 
line.    [½] 

It passes through the risk-free asset with coordinates (0, )r  and the market portfolio, which has 
coordinates ( , )M ME .  [½] 

Thus, the gradient of the capital market line is equal to: 

 
 

 


0
M M

M M

E r E r  

It has an intercept on the vertical axis at the risk-free rate r and consequently, for any efficient 
portfolio P , its equation must be:  

 


 
   

 
M

P P
M

E rE r  [½] 

The capital market line relationship only holds for efficient portfolios – those for which there is no 
other portfolio that offers either a higher expected return for a given risk or a lower risk for a 
given expected return – assuming that the capital asset pricing model itself applies.  Efficient 
portfolios are always combinations of the risk-free asset and the market portfolio. [1½] 

(ii)(b) Interpret the relationship 

r is the risk-free rate of return, ie the rate of return on a security that has a zero standard 
deviation of return.  This is sometimes interpreted as the return on a Treasury bill. [1] 

The quantity 

M

M

E r  is the market price of risk. 
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It can be interpreted as the extra expected return that can be gained by increasing the level of risk 
of an efficient portfolio by one unit.  In this context, risk strictly means the standard deviation of 
investment returns.  [1] 

The second term in the relationship, 


 
 
 

M
P

M

E r , is known as the risk premium.  It represents 

the additional return over and above the risk-free rate that can be obtained on a portfolio P by 
accepting risk, ie a non-zero portfolio standard deviation. [1] 
    [Total 6]  
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Brownian motion and  

martingales 
 

 

 

Syllabus objectives 

4.4 Stochastic models for security prices 

4.4.2 Explain the definition and basic properties of standard Brownian motion (or 
Wiener process). 
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0 Introduction 

Essentially, a stochastic process is a sequence of values of some quantity where the future values 
cannot be predicted with certainty.  This and the following chapter are concerned with 
continuous-time stochastic processes that have applications in financial economics.  These 
chapters are of a very mathematical nature and you may find some of it hard-going.  It is more 
important that you gain a higher-level understanding than that you master the pure maths that 
underlies it.  For example, you may find it useful to learn Ito’s Lemma as a procedure rather than 
trying to understand the pure mathematical concepts. 

The most important process studied here is the Wiener process, also known as Brownian motion, 
which is the subject of Section 1.  These two terms will be used interchangeably.  We define this 
as a process with continuous sample paths and independent and normally distributed increments.  
A Brownian motion is the continuous-time version of a random walk, as we will see.  The graph in 
Section 1.2 shows a typical sample path. 

If security prices can be modelled in some way in terms of Brownian motion, this will be useful for 
pricing certain types of options.  This is discussed further in Parts 3 and 4 of the course. 

Section 2 of this chapter introduces martingales.  A martingale is a process whose current value is 
the best estimate of its future values.  We will see later that martingale theory has important 
applications in relation to financial derivatives. 

The notation used in financial economics generally is not standardised and similar notation can 
refer to different quantities: readers should check the definitions provided in each section.  In 
particular, the value of a random stochastic process can be equivalently written as tX  or ( )X t .  

Furthermore, standard Brownian motion can be denoted by tB  (as in the Tables), or tW  or tZ  as 
found throughout the Core Reading. 

The Core Reading in this chapter is adapted from course notes written by Timothy Johnson. 
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1 Introduction to Brownian motion 

1.1 Introduction 

In 1895, Louis Bachelier embarked on a doctorate on the ‘Theory of Speculation’.  
Bachelier’s approach was fairly conventional at the time; he would model an asset price as 
a random walk.  At the start of his thesis he argues that: 

At a given instant the market believes neither in a rise nor in a fall of the true price. 

Which means that: 

The mathematical expectation of the speculator is zero. 

His innovation was to consider the walk to be continuous, rather than a discrete-time 
random walk.  This is analogous to moving from the binomial to the normal distribution. 

Bachelier was unable to mathematically define the paths he discussed.  A little later, in 
1903–1904, Einstein used a similar model to represent the motion of atoms/molecules in a 
liquid.  Einstein also failed to define the path he was working with.  However, since his 
paper was used as evidence that atoms existed it became important in physics that the 
paths were rigorously defined.  This was done by Norbert Wiener in 1921.  Today physicists 
will refer to the paths used by Bachelier as ‘Brownian motion’, a physical process, while 
mathematicians refer to them as a ‘Wiener process’, which is a mathematical object. 

The phenomenon of ‘Brownian motion’ is named after the nineteenth century botanist Robert 
Brown who observed the random movement of pollen particles in water.  The path of a 
two-dimensional Brownian motion process bears a resemblance to the track of such pollen 
particles. 

1.2 Definition of the Wiener process (standard Brownian motion) 

A stochastic process tW , 0t   is a Wiener process if: 

(i) 0 0W   

(ii) tW  has continuous sample paths. 

 This means that the graph of tW  as a function of t  doesn’t have any breaks in it. 

(iii) For any 0 s t   the increment t sW W  is normally distributed, 

 (0, ).t sW W N t s   

 This property shows that the increments are stationary in that their statistical properties 
rely on the size of the interval t s .  The concept of stationarity is discussed further in 
Subject CS2. 

(iv) tW  has independent increments, that is for any sequence of times 

1 20 nt t t     we have that the increments 
1 3 2 2 1
, , ,

n nt t t t t tW W W W W W


    are 

independent random variables. 

Alternatively, t sW W  is independent of ( )W
s u sF W  , the natural filtration of sW .  
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The natural filtration W
tF  represents the history of the process up to and including time t.  

This concept is covered in more detail in the martingale section of the chapter.  W
tF  may 

be written as  ( )u tW  to denote that it is the filtration generated by the process tW . 

The fact that a Wiener Process has independent increments implies it is Markovian 
(in fact it is ‘strong Markovian’).  

Intuitively, a Markov process is one where, if we know the latest value of the process, we 
have all the information required to determine the probabilities for the future values.  
Knowing the historical values of the process as well would not make any difference.  
Markov processes are also discussed in Subject CS2. 

Since  (0, )tW N t  it should be clear that ( ,  ) 1tP W t     . 

Property (iii) combined with property (i) gives us   0 (0, )t tW W W N t , which results in 

   0tE W . 

 

Figure 9.1: a typical sample path of Brownian motion 

Brownian motion can be viewed as the continuous version of a simple symmetric random walk. 

1.3 Brownian motion in general 

Standard Brownian motion is a special case of the more general form of Brownian motion. 

The term Brownian motion refers to a process { , 0}tZ t  that satisfies criteria (ii) and (iv) above, 

but with the distribution in criteria (iii) being replaced with      2( ), ( )N t s t s . 

Here   is the drift coefficient and   is known as the diffusion coefficient (or volatility). 

Standard Brownian motion is obtained when   0 ,  1  and 0 0Z . 

It turns out that Brownian motion is the only process with stationary independent increments and 
continuous sample paths.  This is far from obvious and we won’t prove it here. 

Brownian Motion
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The relationship between standard Brownian motion and Brownian motion is the same as the 

relationship between a standard normal distribution, (0,1)N , and a general   2( , )N  distribution.  
A Brownian motion with given diffusion and drift coefficients can be constructed out of a standard 
Brownian motion { , 0}tW t  by setting: 

   0t tZ Z W t  

Question 

Let tW  be a standard Brownian motion.  Prove that    0t tZ Z W t  is a Brownian motion with 
diffusion coefficient   and drift  . 

Solution 

The second property of a Brownian motion – that it has continuous sample paths – is met because 

tZ  is driven by only time t and the continuous process tW . 

The increments of tZ  are independent of the past because: 

        t s t sZ Z W W t s  

and we know that the increments t sW W  have this property. 

The third property we require is that: 

       2,t sZ Z N t s t s  

This follows because    0,t sW W N t s  and therefore: 

   

   

    

    

 

 

 

 

    

  

  

 

2

2

0,

0,

,

t s t sZ Z W W t s

N t s t s

N t s t s

N t s t s







 

 
Question 

How can a Brownian motion, tZ , that has drift   and diffusion parameter   and a starting value 

of 0Z  be converted into a standard Brownian motion? 
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Solution 

Just invert the relationship given: 




 
 0t

t
Z Z tW  

This is analogous to converting an observed value x  from a general normal distribution,   2( , )N , 
into a value from the standard normal distribution, (0,1)N , by calculating the standardised value: 






xz  

 
1.4 Properties of Brownian motion 

Standard Brownian motion has a number of other properties inherited from the simple symmetric 
random walk.  A simple symmetric random walk is a discrete-time stochastic process: 


 

1

n

n i
i

X Z  where 
 


1
2
1
2

1 with probability

1 with probability
iZ  

The value of the process increases or decreases randomly by 1 unit (= ‘simple’) with equal 
probability (= ‘symmetric’). 

If we reduce the step size progressively from 1 unit until it is infinitesimal (and rescale the X  
values accordingly), the simple symmetric random walk becomes standard Brownian motion.  An 
important consequence of this is that a standard Brownian motion returns infinitely often to zero, 
or indeed any other level. 

Many of the properties of standard Brownian motion can be demonstrated using the following 
decomposition.  For s t : 

    ( )t s t sW W W W  

a decomposition in which the first term is known at time s  and the second is independent of 
everything up to and including time s . 

In calculations involving Brownian motion, we often need to split up tW  in this way, so that we 
can work with independent increments. 

Covariance of a Wiener Process 

An important characteristic of a process is the covariance between its value at 0s   
and t s : 

 
( , ) [( [ ])( [ ])]

[ ( ( )]

s t s s t t

s s t s

Cov W W E W E W W E W

E W W W W
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This follows from the fact that  [ ] [ ] 0t sE W E W , and then by applying the decomposition 

  ( )t s t sW W W W . 

By independence of increments: 

2( , ) [ ] [ ] [( )]

( ) 0

s t s s t s

s

Cov W W E W E W E W W

Var W

s

  

 



 

This follows from the fact that    2 2[ ] ( ) [ ] 0s s sE W Var W E W s . 

In general, ( , ) min{ , }s tCov W W s t . 

The importance of this result is that, in fact, if a stochastic process has the property that: 

 ( , ) min{ , }s tCov X X s t  

then the process tX  is a Wiener process (this is Lévy’s Theorem). 

Scaled Wiener process 

Given a positive constant c and a Wiener process tW  define the stochastic process tX  by: 

 /t t cX cW  

The ‘clock’ of the process tX  has been scaled by a factor c.  For example, the process has 

been slowed down and magnified if 1c   (and speeded up and shrunk if 1c  ). 

By applying Lévy’s Theorem: 

 
 
 

( , ) ,

,

min ,

t u t
c c

t u t
c c

t u t

t u t
c c

Cov X X Cov cW cW

c Cov W W

c

tc
c

t











 

 





 

assuming  0u . 

Since ( , ) min{ , }t u tCov X X t u t   , tX  is a Wiener process. 
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The scaled process could also be re-parameterised as: 

 
1

t atX W
a

 

with 
1a
c

. 

Time-inverted Wiener process 

Given a Wiener process tW  define the stochastic process tX  by: 

 1/t tX tW  

The time-inverted Wiener process is itself a Wiener process, as can be shown by Lévy’s 
Theorem. 

Let 0u  . 

Then we have: 

 
 

1 1

1 1

( , ) ( ) ,

( ) ,

t u t

t u t

t u tCov X X Cov t u W tW

t u t Cov W W





  

  

 

Since 1/ ( ) 1/t u t   and by the covariance of Wiener processes: 

1 1
( , ) ( ) min ,

1
( )

t u tCov X X t u t
t u t

t u t
t u

t


      

 




 

Therefore tX  is also a Wiener process. 

The time-inverted Wiener process is useful in proving limiting properties.  For example, 
since 1/ttW  is a Wiener process, then: 

1/ 0lim lim 0t
tt t

W W W
t 

    

Correlated Wiener processes 

The process defined by: 

 21a b
t t tZ W W     

where a
tW  and b

tW  are independent Wiener processes and 1 1    defines the 

correlation between tZ  and a
tW . 
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It should be obvious that [ ] 0tE Z  . 

Question 

Show that [ ] 0tE Z . 

Solution 

The process tZ  is only a weighted sum of two Wiener processes, both of which have zero 
expectation.  Therefore we have: 

 

 

 

 

 

     

        

        

     

2

2

2

2

[ ] 1

1

1

0 1 0 0

a b
t t t

a b
t t

a b
t t

E Z E W W

E W E W

E W E W

 

 
The variance of the process is then given by: 

 2( ) 1a b
t t tVar Z Var W W     

 
 

Since a
tW  and 21 b

tW  are independent: 

     2 2( ) 1a b
t t tVar Z Var W Var W     

       2 21t t  

 t  

Similarly, the variance of the increment t u tZ Z   is u. 

Question 

Show that   ( )t u tVar Z Z u  for  0u . 
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Solution 

 

   

    

   

 

 

 

  

 

 

        
 

      
 

      
 

        



2 2

2

2

2 2

( ) 1 1

1

1

( ) (1 ) ( )

a b a b
t u t t u t u t t

a a b b
t u t t u t

a a b b
t u t t u t

Var Z Z Var W W W W

Var W W W W

Var W W Var W W

t u t t u t

u

 

 
Furthermore, the covariance of tZ  and a

tW  is given by: 

( , )a
t tCov Z W t  

The correlation between tZ  and a
tW  is defined as: 

( , )

( ) ( )

a
t t

a
t t

Cov Z W

Var Z Var W
  

Non-differentiability of sample paths 

There are various ways of proving the fact that the Wiener process is non-differentiable. 

Consider the following proof by contradiction.  If the derivative tdW
dt

 existed, then we can 

say that: 

0
lim t s t

t s

W W dW
t s dt


 


 


 or 

0
lim s t t

s t

W W dW
s t dt


 


 


 

The first inequality assumes that t s , and the second covers the case when s t .  These 
statements come from the definition of a derivative as the convergence of a function’s gradient: 

 


  
0

( ) ( )( ) lim
h

f x h f xf x
h

 

If such a derivative existed, then we could find an arbitrarily small   to measure the difference 
between the derivative and the gradient. 

However, (in the case t s ): 

  1
,t s t tW W dW dWN

t s dt dt t s
      

 

which will have a positive probability of being greater than  , and so the statement is 
uncertain.  In fact, since the variance increases as 0t s  , it never holds, almost surely. 
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That is to say, it’s impossible to bound a normal distribution. 

The fundamental theorem of calculus is that given a derivative, ( )f x , then the integral ( )f x , 

is understood as: 

 
( )

( ) ( ) ( ) ( ) ( ) ( )
b b b

a a a

df xf b f a f x dx f a dx f a df x
dx

         

However, since the idea of tdW
dt

 is meaningless, the stochastic integral, 

 
b

t
a

dW  

cannot be handled using classical calculus and there appears to be no way of 
understanding how a Wiener process behaves between two times. 

In other words, because a Wiener process isn’t differentiable anywhere then it’s not clear how 
integrals should be handled when the variable of integration is tW .  Stochastic integrals will be 
dealt with in the next chapter. 

1.5 Geometric Brownian motion 

As mentioned at the start of this chapter, Brownian motion was used by Bachelier to model the 
movements of the Paris stock exchange index. 

However successful the Brownian motion model may be for describing the movement of market 
indices in the short run, it is useless in the long run, if only for the reason that a standard 
Brownian motion is certain to become negative eventually.  It could also be pointed out that the 
Brownian motion model predicts that daily movements of size 100 or more would occur just as 
frequently when the process is at level 100 as when it is at level 10,000. 

A more useful model is: 

  tZ
tS e  

where tZ  is the Brownian motion process    0t tZ Z W t .  Thus tS , which is called geometric 

Brownian motion, is lognormally distributed with parameters 0Z t  and  2t .  So the values of 

log tS  are normally distributed with mean 0Z t  and variance  2 .t  
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Figure 9.2:  A Brownian motion, tW , and a geometric Brownian motion,  tZ
tS e  

The most important property of tS  is: 

  0tS  for all t  

From the properties of the lognormal distribution we also have: 

       2
0exp ( ) ½tE S Z t t   and     2 2( ) exp( ) 1t tVar S E S t  

Geometric Brownian motion features heavily in this course.  For example, Black and Scholes’ 
Nobel prize-winning formula for pricing European options assumes that the price of the 
underlying asset is a geometric Brownian motion.   

The properties of tS  are less helpful than those of Brownian motion.  For example, tS  has neither 
independent increments nor stationary increments. 

The increments of tS  are of the form   t sZ Z
t sS S e e . 

But this is not so important because tZ  does possess these desirable properties.  Analysis of path 

properties of tS  should involve first taking the logarithm of the observations, and then 
performing the analysis using techniques appropriate to Brownian motion. 

The log-return log t

s

S
S

 from time s to time t is given by   log log
t

s

Z
t

t sZ
s

S e Z Z
S e

. 

It follows by the independent increments property of Brownian motion that the log-returns, and 
hence the returns themselves, are independent over disjoint time periods. 

Brownian Motion

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

Time, t

V
a
lu

e
, 
x

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-09: Brownian motion and martingales Page 13 

The Actuarial Education Company  © IFE: 2019 Examinations 

2 Martingales 

2.1 Introduction 

In simple terms, a martingale is a stochastic process for which its current value is the best 
estimate of its future value.  So, the expected future value is the current value.  Other ways of 
thinking of a martingale are that the expected change in the process is zero or that the process 
has ‘no drift’.   

Note 

Throughout this course we will be using the word ‘expected’ in its statistical sense, rather than in 
the everyday sense. 

Consider a person standing on a ‘never-ending’ ladder.  Every minute they move up or down the 
ladder one step, depending on whether a tossed coin comes up heads or tails. 

In the everyday sense of the word, after the next toss of the coin, we ‘expect’ them to move up or 
down (but we don’t know which way).  However, in the statistical sense, because 

        1 1
2 21 1 0 , we ‘expect’ them to stay exactly where they are, even though there’s no 

way that that can happen! 

The idea of martingales is consistent with the original equestrian term ‘martingale’, meaning a 
holster used to keep a horse ‘pointing straight ahead’.   

Their importance for modern financial theory cannot be overstated.  In fact, the whole theory of 
pricing and hedging of financial derivatives is formulated in terms of martingales. 

For this reason, it may be best to think of a martingale as being a random process that has ‘no 
drift’ because the idea of drift is more consistent with the way we think about real financial 
assets.  We have already seen that it is possible to model the log of a share price, log tS , using 
Brownian motion with a drift  .  You can think of   as being the rate of the long-term drift of 
the log of the share price.  It is the underlying non-random trend.  It should not come as a great 
surprise that when we remove this underlying non-random trend (or drift) and look at log tS t , 
we obtain a martingale. 

Conditional expectation 

The features of martingales rely on the application of conditional expectations. 

The filtration tF  represents everything that can be known up to and including time t. 

Some random variables will be known by time t .  We say that tX  is tF -measurable if the value of 

the process is known at time t, ie it belongs to tF . 

A stochastic process , 0tX t  is said to be adapted to the filtration tF  if tX  is tF -measurable for 
all t .   
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If tF  is the filtration generated by tX (as opposed to any other process), then it is known as the 

natural filtration of tX  and is denoted here by X
tF .  The following results will be used extensively. 

(i)        
| X

tE E X F E X  

(ii) if X  is tF -measurable, then    | tE X F X  

(iii) if X  is independent of tF , then    | tE X F E X  

(iv) any function of tX  is adapted to X
tF . 

2.2 Wiener processes are martingales 

We have the following definitions of continuous-time martingales. 

Given a filtered probability space ( ,  ,  ,  )tF F P , a stochastic process tX  is called a 

martingale with respect to the filtration, tF , if: 

 tX  is adapted to tF  

 tE X     for all t 

 |t s sE X F X    for all s t  

The first condition is just a technicality to ensure that the process value can be known with 
certainty at time t, and the second is to guarantee that tX  is integrable.  In most questions we are 
only concerned with the last condition and we’ll assume the first two hold. 

Question 

In words, what does the [ | ]t sE X F  in the last condition mean? 

Solution 

[ | ]t sE X F  means the expected value of the process at time t, given that we are at time s and we 
know the history of the process up to and including time s. 

 
Of all the properties of martingales, the most useful is also the simplest: a martingale has constant 
mean, ie  0 0[ ] [ ]nE X E X X  for all n . 
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Given s t , a supermartingale is such that: 

 |t s sE X F X    

while a submartingale is such that: 

 |t s sE X F X    

A supermartingale has either negative or zero drift, whereas a submartingale has either positive 
or zero drift.  So a process which is both a supermartingale and a submartingale must therefore 
be a martingale. 

Consider: 

 

| ( ) |

| ( ) |

W W
t s s t s s

W W
s s t s s

E W F E W W W F

E W F E W W F

        

        

 

Since increments are independent and  (0, )t sW W N t s  : 

 | W
t s sE W F W     

The Wiener process is a martingale with respect to its natural filtration, noting that 

tE W      since tW    almost surely. 

Question 

An asset’s value at time t (in pence and measured in years) is denoted by tA  and fluctuates in 
value from day to day.  Within these random fluctuations, there appears to be an underlying 
long-term trend, in that the asset’s value is increasing by 2 pence on average each week.   

(i)  Assuming that there are exactly 52 weeks in a year, suggest a process based on tA  that 
you think might be a martingale. 

(ii) Suppose that the price increments have a continuous uniform distribution such that 
   [ 52( ),260( )]t sA A U t s t s .  Construct a martingale out of tA . 

Solution 

(i) The value of the asset is increasing on average by 2 pence a week.  Assuming that there 
are exactly 52 weeks in a year, this means the asset is ‘drifting’ by 104 pence a year.  
A martingale is a process without drift and so a good suggestion would be to remove this 
drift and consider the process: 

  104tA t  
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(ii) Using the formula for the expected value of a uniform distribution from page 13 of the 
Tables, we have: 

  
             

260( ) 52( )( ) 104( )
2t s s t s s s s

t s t sE A F E A A A F A A t s   

So for every increase of t s  in the time, the process is ‘drifting’ by 104( )t s . 

One way to construct a martingale is to subtract the drift.  Mathematically, we can 
subtract 104t from both sides of the last equation to get: 

     104 104t s sE A t F A s  

This now fits in with the definition given for a martingale in continuous time. 

So the process 104tA t  is again a martingale. 

 
2.3 Library of martingales 

Now consider the stochastic process defined by 2
tW t . 

 

 

22

22

2

| ( ) |

| 2 ( ) | |

W W
t s s t s s

W W W
s s s t s s t s s

s

E W t F E W W W F t

E W F E W W W F E W W F t

W s

          

               

 

 

so it is a martingale with respect to its natural filtration. 

Note how the three expectations above were evaluated: 

    
2 2| W
s s sE W F W  since the value of sW  is known with certainty at time s 

          ( )| ( )| 0W W
s t s s s t s sE W W W F W E W W F  because the increments of a Wiener 

process have zero mean 

                
2 2| 0W

t s s t s t sE W W F Var W W E W W t s  due to the statistical 

properties of Wiener process increments. 

Question 

Let tW  be a Wiener process.  Determine whether the process 2
tW  is a supermartingale or a 

submartingale. 
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Solution 

Given that 2
tW t  is a martingale with zero drift, then 2

tW  must have positive drift.  This means 

that 2
tW  is a submartingale. 

 
Finally, consider the stochastic process defined by  21

2
exp tW t  . 

The same approach is taken here as before; decompose the Wiener process, but also decompose 
time t into  ( )s t s . 

 
   

   

2 21 1
2 2

2 21 1
2 2

exp | exp ( ( )) ( ( ) |

exp exp ( ) ( ) |

W W
t s s t s s

W
s t s s

E W t F E W W W s t s F

W s E W W t s F

   

   

               

       

 

To evaluate this expectation, consider a random variable Z where    2,Z N , then its moment 

generating function is defined as:    
2 21

2( ) [exp( )] t t
ZMGF t E Z t e .  Therefore when 1t  we 

have:  
21

2[exp( )]E Z e . 

From the MGF of a normal: 

    21 1
2 2

[exp( )] exp exp [ ] ( )E Z E Z Var Z      

If  exp tY , where 21
2

( ) ( )t t sY W W t s      is a normally distributed random variable, we 

have that: 

 

 
 

 

21
2

1
2

2 21 1
2 2

exp ( ) ( ) | [exp( )]

exp [ ] ( )

exp ( ) ( )

1

W
t s s t

t t

E W W t s F E Y

E Y Var Y

t s t s

 

 

      

 

    



 

So: 

   2 21 1
2 2

exp | expW
t s sE W t F W s        

 

meaning that the process  21
2

exp tW t   is an W
tF -martingale. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 18 CM2-09: Brownian motion and martingales 

© IFE: 2019 Examinations The Actuarial Education Company 

This result is a special case of the fact that: 

 2 21
2

0 0

exp ( ) ( ( ))
T T

tf t dW f t dt 
 
 
 
 
   

is a martingale.  
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Chapter 9 Summary 

Wiener process (standard Brownian motion) 

A Wiener process is a stochastic process with the defining properties:  

 0 0W  

 it has independent increments 

 it has stationary increments 

 it has normally distributed increments, ie  (0, )t sW W N t s  

 it has continuous sample paths. 

A Wiener process is the continuous-time analogue of a random walk. 

Other properties of Wiener processes include: 

 { , 0}tW t  is a Markov process 

 { , 0}tW t  is a martingale, ie ( | )t s sE W F W  

 { , 0}tW t  returns infinitely often to 0, or indeed to any other level 

  ( , ) min ,s tCov W W s t  

   / , 0t t cX cW t  is also a Wiener process  (scaling property) 

   1/ , 0t tX tW t  is also a Wiener process  (time inversion property) 

 the sample path is not differentiable anywhere. 

Brownian motion with drift 

Brownian motion with drift is related to standard Brownian motion by the equation: 

    0t tZ Z W t  

where   is the volatility or diffusion coefficient and   is the drift.   
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Geometric Brownian motion (lognormal model)

For modelling purposes a Brownian motion may have to be transformed, for example by 
taking logarithms.  A useful model for security prices is geometric Brownian motion: 

  tZ
tS e  

where tZ   is the Brownian process    0t tZ Z W t .  Thus tS  is lognormally distributed 

with parameters 0Z t  and  2t . 

Martingales 

A martingale is a stochastic process such that: 

 tX  is adapted to tF  

     tE X   for all t 

 [ | ]t s sE X F X  for all s t  

Martingales are processes with no drift.  In fact, it can be shown that a martingale has 
constant mean, ie: 

  0[ ] [ ]nE X E X  for all n   

Martingales constructed from Wiener processes 

Various martingales can be constructed from Wiener processes, for example, tW , 2
tW t  

and   21
2tW te . 
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Chapter 9 Practice Questions 

9.1 Assume that the spot rate of interest at time t , ( )S t , can be modelled by = 2 ( )( ) W tS t e , where 
( )W t  is a Brownian motion with drift coefficient   and volatility coefficient 1 such that W(0) = 0.   

(i) Write down an expression for ( )W t  in terms of a standard Brownian motion, ( )B t .   [1]  

(ii) Show that  { ( ) 0}S t t  is a continuous-time martingale.   [4] 
    [Total 5] 

9.2 ’Brownian motion is the only process with stationary independent increments and continuous 
sample paths.’ 

(i) Give mathematical definitions of each of the three underlined terms. 

(ii) State the distribution of the increments for a standard Brownian motion. 

9.3 (i) What is meant by saying that the process { }tY  is a martingale with respect to another 

 process { }tX ? 

Let tB  (  0t ) be a standard Brownian motion. 

(ii) Show that tB  and 2
tB kt  are both martingales with respect to tB , for a suitably chosen 

value of the constant k , which you should specify. 

(iii) Show that there is a value of the constant c , which you should specify, such that 

 2( )ta bB ct  is a martingale with respect to tB , where a  and b  are constants. 

9.4 Let tB  (  0t ) be a standard Brownian motion process starting with 0 0B . 

(i) What is the probability that 2B  takes a positive value? 

(ii) What is the probability that 2B  takes a value in the interval ( 1,1) ? 

(iii) Show that the probability that 1B  and 2B  both take positive values is 3
8 . 

(iv) What is the probability that tB  takes a negative value at some time between  0t  and 
 2t ?  

9.5 Consider the statement: ‘If you want to find the variance of  ( ) ( )X B s B t , where s t , for a 
standard Brownian motion process, you can use the fact that ( )B s  and ( )B t  are independent to 
get  ( )Var X s t .’ 

(i) Explain why the statement is not correct, and find a correct expression for ( )Var X .  

(ii) Hence show that the general formula for  1 2( ) ( )Var B t B t  when 1 2, 0t t  can be 

expressed as  1 2 1 22min( , )t t t t . 
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9.6 Let tB  (  0t ) be a standard Brownian motion process starting with 0 0B . 

(i) Show that, when s t , ( )s tE B B s . [3] 

(ii) Hence find a general formula for the correlation coefficient 
1 2

( , )t tB B . [2] 

    [Total 5] 

9.7 (i) Write down a formula for  aXE e  where    2,X N  and, by differentiating, or 

 otherwise, derive an expression for  aXE Xe . [2] 

(ii) Show that: 

     
21

2taB a t
t tX B at e  

 is a martingale, where tB  is a standard Brownian motion, and a  is an arbitrary constant.  

You may assume that     tE X . [5] 

    [Total 7] 

Exam style 

Exam style 
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Chapter 9 Solutions 

9.1 (i) General Brownian motion 

A general Brownian motion can be defined as: 

    ( ) (0) ( )W t W t B t  

where ( )B t  is standard Brownian motion,   is the drift,   is the volatility coefficient and (0)W  is 
the value of general Brownian motion at time 0.   

Since  1  and (0)W =0: 

  ( ) ( )W t t B t   [1] 

(ii) ( )S t  is a martingale 

We write ( )S t  as tS  and ( )B t  as tB  for neatness.  Let t s , then: 

 

 

 

 

 

 









 

 



  

 

 

      

    

   

    

    

    

2

2

2

2

2

2 ( )

2 2

22

22

222

222

t

t

t

t s s

t ss

t ss

t B
t s s

t B
s

Bt
s

B B Bt
s

B BBt
s

B BBt

E S F E e F

E e F

e E e F

e E e F

e e E e F

e e E e  [2] 

The filtration sF  can be left out because of the independent increments property.  Now 

  0,t sB B N t s  and so the expectation is of the form [ ]aXE e  where  0,X N t s  and 

 2a .  Therefore, we can use the MGF of a normal distribution calculated at point 2  to 
determine the expectation. 

So, using the MGF formula, from page 11 of the Tables, we get: 

 

 

 

   

 

   





212
2

2

0( 2 ) ( )( 2 )22

2 2

s

s

t sBt
t s

s B

s

E S F e e e

e

S

 [1] 
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Finally we check that     tE S  for all values of t . 

 





 



 





  

    

   

 

   

2

2

2

212
2

2 2

22

2

0( 2 ) ( 2 )2

[ ]

( 2 )

1

t

t

t

t B
t

Bt

t
B

tt

E S E e

e E e

e M

e e

 

where: ( 2 )
tBM  is the MGF of tB  at 2 . [1] 

    [Total 4] 

9.2 (i) Mathematical definitions 

‘Stationary increments’ means that the distribution of t sB B  ( t s ) depends only on t s . 

‘Independent increments’ means that t sB B  is independent of the filtration rF  whenever 
 r s t . 

‘Continuous sample paths’ means that the function  ( )tt B  for each particular realisation   is 
a continuous function of t . 

(ii) Distribution of the increments 

For a standard Brownian motion, t sB B  (with t s ) has a (0, )N t s  distribution. 

9.3 (i) What is a martingale? 

Strictly, we should say that the process { }tY  is a martingale with respect to the filtration { }tF  of 

the process { }tX , which means that: 

 [ | ]t s sE Y F Y  for all s t  

and [ ]tE Y    

and  tY  is adapted to tF   

(ii) Show that these processes are martingales 

If we use an s  subscript to denote the expected value with respect to the filtration at time s , 
then we can write: 

      [ ] [( ) ] [ ] [ ]s t s t s s s t s s sE B E B B B E B B E B  

Since  (0, )t sB B N t s  and the value of sB  is known at time s , this gives: 

   [ ] 0s t s sE B B B  
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We have shown that the expected future value of tB  is equal to its current value (at time s ).  We 

also need to show that     tE B . 

One way to do this is to note that   21x x  for all values of x . 

So:                 
22 21 1 var( ) ( ) 1 0t t t tE B E B B E B t  

Therefore, tB  is a martingale (with respect to tB ). 

Similarly: 

 

 

  

    

       

    

  

2 2

2 2

2 2

2 2

2

[ ] [{( ) } ]

[( ) ] 2 [( ) ] [ ]

var [ ] [ ( )] 2 [ ]

( ) 0 0

s t s t s s

s t s s t s s s s

s t s s t s s s t s s

s

s

E B E B B B

E B B E B B B E B

B B E B B B E B B B

t s B

t s B  

So:   2 2[ ]s t sE B t B s  

We can show that      
2
tE B t  for any value of t, by first noting that: 

    2 2 ( 0)x k x k k  for all values of x .  

So:                    
22 2 2var( ) ( ) 0 2t t t tE B t E B t B E B t t t t  

Since the expected future value of 2
tB t  is equal to its current value (at time s ) and the expected 

value of its modulus is finite, 2
tB t  is a martingale with respect to tB , and the required constant 

is  1.k  

(iii) Value of c to make the process a martingale 

We know that tB  and 2
tB t  are both martingales with respect to tB . 

So, if we use an s  subscript to denote the expected value with respect to the filtration at time s , 
then: 

 [ ]s t sE B B  

and   2 2[ ]s t sE B t B s      2 2[ ]s t sE B B t s  
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Using these results, we then find that: 

 

   

  

    

   

2 2 2 2

2 2 2

2 2 2

2 2

[( ) ] [ 2 ]

2 [ ] [ ]

2 ( )

( ) ( )

s t s t t

s t s t

s s

s

E a bB E a abB b B

a abE B b E B

a abB b B t s

a bB b t s

 

So:     2 2 2 2[( ) ] ( )s t sE a bB b t a bB b s  

ie   2 2( )ta bB b t  is a martingale with respect to tB . So the required value of the constant is 

  2c b .  

The technical condition        
2

tE a bB ct  will hold as in (ii). 

9.4 (i) Probability that 2B  takes a positive value 

 2 2 0 (0,2)B B B N .  Therefore, 2B  is equally likely to be positive or negative (and has zero 
probability of being exactly zero). 

So:   1
2 2( 0)P B   

(ii) Probability that 2B  takes a value in the interval ( 1,1)  

 2 2 0 (0,2)B B B N . 

Standardising:  

                
   

2
1 1( 1 1) 0.760 (1 0.760) 0.520
2 2

P B  

(iii) Probability that 1B  and 2B  both take positive values 

We can write the required probability as: 

         1 2 1 0 2 1 1( 0, 0) ( 0, )p P B B P B B B B B  

If we now write  1 0X B B  and  2 1Y B B , then we know from the properties of Brownian 
motion that X  and Y  are independent, each with a (0,1)N  distribution. 

So the required probability is: 

    ( 0, )p P X Y X  
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Since the range of values of Y  depends on the value of X , we must use a double integral to 
evaluate this: 

  
 

 

  
0

( ) ( )
x y x

p x y dy dx  

where the joint density function is expressed as the product of the individual density functions by 
independence. 

So: 

 

  

 

 







 

 















    
  

 

  

 

 







0

0

0

0

( ) ( )

( ) ( )

( ) 1 ( )

( ) ( )

x y x

x
x

x

x

p x y dy dx

x y dx

x x dx

x x dx

 

Finally: 

  
             

22 2 31 1 1
2 2 2 80 0

( ) ( ) { ( )} 1p x x dx x  

(iv) Probability that tB  takes a negative value at some time between 0 and 2 

The probability is 1 because tB  will almost surely take a negative value at some point close to 
 0t .  

9.5 (i) Explain why the statement is not correct 

The statement is not correct because ( )B s  and ( )B t , which represent the value of the process at 
two different times, are not independent.  In fact, they are positively correlated. 
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It is actually the increments ( ) (0)B s B  and ( ) ( )B t B s  that are independent.  The correct 
calculation can be done by expressing  ( ) ( )X B s B t  in terms of these increments: 

  

 

 

     

 

    

    

     

( ) ( ) ( )

2 (0) 2{ ( ) (0)} { ( ) ( )}

4 (0) 4 ( ) (0) ( ) ( )

0 4 ( ) 3

Var X Var B s B t

Var B B s B B t B s

Var B Var B s B Var B t B s

s t s s t  

(ii) Show the general formula 

This 3s t  formula works if s t .  If t s , we can swap the letters to get 3t s . If s t , we 
have: 

          ( ) ( ) ( ) 2 ( ) 4 ( ) 4 (or 4 )Var X Var B s B t Var B s Var B s s t  

which agrees with either formula. 

So a general formula would be  2min( , )s t s t , or if we’re using 1t  and 2t  to denote the times, 
 1 2 1 22min( , )t t t t .  

9.6 (i) Show that ( ) s tE B B s  

If we express tB  in terms of the increment t sB B , which is independent of the value of sB , we 
get: 

 

  

  

       

2

2

[ ] [ {( ) }]

[ ( )] [ ]

( ) ( ) [ ] [ ( )] 0 0

s t s t s s

s t s s

s t s s s

E B B E B B B B

E B B B E B

E B E B B Var B E B s s  [3] 

(ii) Find a general formula for the correlation coefficient 

We can then calculate the covariance and correlation between these two values: 

        ( , )s t s t s tCov B B E B B E B E B s  

and    
( , )( , )

( ) ( )
s t

s t
s t

Cov B B s sB B
tVar B Var B st

 [1] 

This formula only applies when s t .  We can generalise this to cover any positive times 1t  and 2t , 
if we write it in the form: 

  
1 2

1 2

1 2

min( , )( , )
max( , )t t

t tB B
t t

 [1] 

    [Total 2] 
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There are various alternative ways of writing this, eg 
 

   
 

1 2
1 2

2 1
( , ) min ,t t

t tB B
t t

. 

9.7 (i) Formulae for expectations 

     

2 21
2a aaXE e e   [½] 

This is the MGF of a normal random variable and can be found in the Tables.  

We therefore have: 

                

2 2 2 21 1
2 22a a a aaX aXd dE Xe E e e a e

da da
. [1½] 

    [Total 2] 

(ii) Show that tX  is a martingale 

 

 

   

       



  

  

        

      

            

2

2

2 2

0.5

0.5

0.5 0.5

t

s t s

t s t ss s

aB a t
t s t s

a B B B a t
s t s s

a B B a B BaB a t aB a t
s s t s s

E X F E B at e F

E B B B at e F

E B at e e F E B B e e F  [2] 

Now we can use the fact that we are conditioning on all the information known at time s.  Any 
terms involving sB  can be taken outside the expectation, as can terms in s  and t  (which are 
fixed, not random points in time).  This gives: 

                     

2 20.5 0.5t s t ss sa B B a B BaB a t aB a t
s s t s sB at e E e F e E B B e F  [1] 

We can then drop the conditions since the increments are independent of the past: 

                     

2 20.5 0.5t s t ss sa B B a B BaB a t aB a t
s t sB at e E e e E B B e  [1] 

Using part (i), and noting that  (0, )t sB B N t s  so that   0  and   2 t s , we therefore get: 

       

 

  



   

 



2 22 2

2

0.5 0.50.5 0.5

0.5

s s

s

a t s a t saB a t aB a t
s

aB a s
s

s

B at e e e a t s e

B as e

X  [1] 

as required.  Note that the bounded condition is given in the question. 
    [Total 5] 
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Stochastic calculus and Ito  

processes 
 

Syllabus objectives 

4.4 Stochastic models for security prices. 

4.4.3 Demonstrate a basic understanding of stochastic differential equations, the 
Ito integral, diffusion and mean-reverting processes. 

4.4.4 State Ito’s Lemma and be able to apply it to simple problems. 

4.4.5 Write down the stochastic differential equation for geometric Brownian 
motion and show how to find its solution. 

4.4.6 Write down the stochastic differential equation for the Ornstein-Uhlenbeck 
process and show how to find its solution. 
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0 Introduction 

This chapter is concerned with stochastic calculus, in which continuous-time stochastic processes 
are described using stochastic differential equations.  As is the case in a non-stochastic setting 
(eg in mechanics), these equations can sometimes be solved to give formulae for the functions 
involved.  The solutions to these equations often involve Ito integrals, which we will look at in 
some detail.  The other key result from stochastic calculus is Ito’s Lemma.  This is used to 
determine the stochastic differential equation for a stochastic process whose values are a 
function of another stochastic process. 

Diffusions are a generalisation of Brownian motion in which the constraint that the increments 
are independent is dropped.  However, a slightly weaker condition, known as the ‘Markov 
property’, is retained.  Such processes can be thought of as Brownian motion where the drift and 
diffusion coefficients are variable. 

The main example given is the Ornstein-Uhlenbeck process.  It is mean-reverting, that is, when the 
process moves away from its long-run average value, there is a component that tends to pull it 
back towards the mean.  For this reason the process can be used to model interest rates, which 
are usually considered to be mean-reverting. 

As another example we will discuss geometric Brownian motion.  This can be used to model share 
prices.  Here the log of the share price is assumed to follow Brownian motion, so the model is 
sometimes known as the lognormal model. 

The Core Reading in this chapter is adapted from course notes written by Timothy Johnson. 
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1 Stochastic calculus 

1.1 Introduction 

Newton originally developed calculus to provide the necessary mathematics to handle his laws 
describing the motion of bodies.  His second law, for example, can be written as F ma , where F 
is the force applied to a body, m its mass, and a  is the resulting acceleration.  The acceleration is 
the time derivative of velocity, which is in turn the time derivative of position.  We therefore 
arrive at the differential equation: 

d xF mx m
dt

 
2

2
 

This is the model of the motion of the body. 

This is all very well so long as the path followed by a body or particle is sufficiently smooth to 
differentiate, as is generally the case in Newtonian mechanics.  However, there are situations 
when the paths followed are not sufficiently smooth.  For example, you may have studied 
impulses eg when two snooker balls collide.  In these cases the velocity of the objects involved 

can change suddenly and dx
dt

 is not a differentiable function. 

As mentioned at the start of the previous chapter, the original Brownian motion referred to the 
movement of pollen grains suspended in a liquid.  Each pollen grain is very light, and therefore 
jumps around as it is bombarded by the millions of molecules that make up the liquid, giving the 
appearance of a very random motion.  A stochastic model of this behaviour is therefore 
appropriate.  A deterministic model in terms of the underlying collisions wouldn’t be very 
practical. 

The sample paths of this motion are not sufficiently smooth however.  As we have seen, they are 
differentiable nowhere.  Therefore, a description of the motion as a differential equation in the 
usual sense is doomed to failure.  In order to get around this, a new stochastic calculus has to be 
developed.  This turns out to be possible and allows the formulation of stochastic differential 
equations (SDEs). 
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The stochastic differential equations that we deal with will be continuous-time versions of the 
equations used to define time series, ie stochastic processes operating in discrete time.  For 
example, you may recall that a zero-mean random walk tX  can be defined by an equation of the 
form: 

 t t tX X N 1   or  t t tX X N 1  

where tN  is a standard normal random variable.  The tN ’s in this equation are called white noise. 

This is a stochastic difference equation: a ‘difference’ equation, since it involves the difference 

t tX X  1 , and ‘stochastic’ because the white noise terms are random.  It can be ‘solved’ to give: 

t

t s
s

X X N


  0
1

 

In continuous time, the analogue of a zero-mean random walk is a zero-mean Brownian motion, 
say tZ .  The change in this Brownian motion over a very short time period (in fact, an infinitesimal 

time period) will be denoted by t t dt tdZ Z Z  .  Since Brownian motion increments are 

independent, we can think of tdZ  as a continuous-time white noise.  In fact, we have: 

  s t
s t

Cov dZ dZ
dt s t

 


2

0
,  

For a standard Brownian motion, tW , this would be: 

  s t
s t

Cov dW dW
dt s t


  

0
,  

We therefore have the stochastic differential equation: 

 s sdZ dW  

This can be solved by integrating both sides between 0 and t to give: 

 
t

t sZ Z dW  0
0

 

  
t

t sZ Z dW  0
0

 

Compare this to the discrete-time case 
t

t s
s

X X N


  0
1

. 
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The analogy is that the sdW  process is considered as a continuous-time white noise process and, 
because we’re working in continuous time, we need to integrate, rather than sum the terms.  The 
existence, meaning and properties of such integrals are discussed in this section, together with 
some more interesting examples. 

1.2 The Ito integral 

When attempting to develop a calculus for Brownian motion and other diffusions, one has to face 
the fact that their sample paths are nowhere differentiable. 

A direct approach to stochastic integrals like 
T

t tY dW
0

 is therefore doomed to failure. 

An integral like this in which we are integrating with respect to Brownian motion is called an Ito 
integral.  It is the fact that we are integrating with respect to the Brownian motion that is the 
problem.  Integration of random variables with respect to a deterministic variable x can be dealt 
with in the standard way. 

A quick review of some basic integration results and notation will be helpful. 

An integral such as 
b

a
dx b a   should be very familiar.  The integral sign can be interpreted 

simply as a summation.  The summands are the dx  expressions.  These represent small changes in 
the value of x .  Therefore, the integral just says that summing up all the small changes in x 
between a and b gives the total change b a . 

Similarly, the integral      
b

a
df x f b f a   just gives the total change in the function f as x varies 

between a and b.  This notation may be less familiar, but this is what it means. 

The integral    
b

a
g x df x  can be evaluated directly if  f x  is a differentiable function since then 

we can use      
b b

a a

dfg x df x g x dx
dx

  .  However, if we want to integrate 
T

t tY dW
0

 where tY  is a 

(possibly random) function of t , and tW  is a standard Brownian motion, then we cannot apply 

the above method, as tW  is not differentiable. 

However, such Ito integrals can be given a meaning for a suitable class of tF -measurable random 

integrands tY .  This involves a method of successive approximation by step functions. 

We will illustrate this approach assuming that the integrand is not random, but just a 
deterministic function f t( ) . 
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Ito integrals for deterministic functions 

Firstly, when we integrate the constant function f t ( ) 1  we expect: 

 
T

T
t t T TdW W W W W    00

0
 

This is basically what integration means.  We add up the (infinitesimal) increments tdW  to get the 

overall increment TW W 0 .  It is worth noting that the increments of Brownian motion are just 
normal random variables, and furthermore, the increments over disjoint time periods are 
independent.  In ‘adding’ up the increments tdW  we are effectively summing independent normal 

random variables.  Moreover, the increment tdW  should have a  N dt0,  distribution.  Again this 

is consistent with the value of the integral ( tW ), which has a  N t0,  distribution. 

Also, any constant multiple of the integrand should just multiply the integral.  For example: 

   
T

T
t t T TdW W W W W    00

0
2 2 2 2  

Finally, the integrals should add up in the usual way over disjoint time periods.  For example, if we 
have the function: 

t

f t t

 
  



1 1 2

( ) 2 2 3

0 otherwise

 

Then:    t t t t tf t dW dW dW W W W W W        
3 2 3

2 3
3 2 11 2

1 1 2
( ) 1 2 2 2  

More generally: 

T

t TT

t T

t t T

dW W W T

f t dW

dW dW W W W T


    
 


     





 

1
1
2

1
2 1

1 2

1 1 2

( )

1 2 2 2 3

 

Question 

What distribution does tf t dW
2.5

1.5
( )  have? 
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Solution 

       t t t t tf t dW dW dW W W W W W W         
2.5 2 2.5

2 2.5
2 1.5 2.5 21.5 2

1.5 1.5 2
( ) 1 2 2 2  

Now we know that the two terms on the RHS are independent normal random variables with 
distributions  N 0,0.5  and  N 0,2  respectively.  (Remember that constants square when taking 

the variance.)  It follows that the original integral has distribution: 

 tf t dW N 
2.5

1.5
( ) 0,2.5  

 
In summary, for these simple cases, we can think of the integration as summing independent 
normal variables. 

It should be obvious from the above that we can integrate any function f t( )  that is piecewise 
constant by splitting the integral up into the constant pieces, and then adding up the answers 
(assuming this turns out to be finite). 

Even without introducing random integrands, the problem of how to integrate more general 

functions, such as 
b

t
a

f t dW ( ) , remains. 

This general integral can be thought of as the continuous-time limit of a summation.  Consider 
discretising the interval a b[ , ]  using discrete times  nt t t0 1, , ,  where t a0  and nt b .  The 

infinitesimal increments can then be replaced by the finite increments 
i i it t tW W W


  

1
.  

Assuming n is large, f t( )  can be approximated by if t 1( )  where i it t t  1 .  The integral above 
can then be defined as the limit of a summation: 

  i

b n
t i t

n ia
f t dW f t W

 
  1

1
( ) lim  

What is the distribution of this integral?  Again, the approximation helps.  The distribution of each 
summand is known: 

     ii t i i if t W N f t t t    2
1 1 10,  
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And since the summands are independent we get: 

      
b n n

t i i i i i i
n ni ia

f t dW N f t t t N f t t t   
  

 
   

 
   2 2

1 1 1 1
1 1

( ) lim 0, lim 0,  

where we just assume this limit makes sense.  In fact, as n gets large, the finite increment i it t  1  
becomes the infinitesimal increment dt , and the summation becomes an integral. 

Therefore: 

b b

t
a a

f t dW N f t dt
 
 
 
 

  2( ) 0, ( )  

Once you get used to the notation, you needn’t revert to the summation notation – just interpret 
the integral directly as a sum.  For example, since  tdW N dt 0, , we must have 

 tf t dW N f t dt 2( ) 0, ( )  since we’re just multiplying a normal random variable by a constant.  (We 

are thinking of t as being fixed when we do this.)  Furthermore, these random variables, for 
different values of t, are independent and, since independent normal random variables have an 
additive property, we arrive at: 

b b

t
a a

f t dW N f t dt
 
 
 
 

  2( ) 0, ( )  

In the case where we have deterministic integrands, we have: 

 ( ) 0
b

t
a

E f t dW
 
  
  
  

and, since: 

 2 2( ) ( )E f t f t     

we have that: 

 2( ) ( )
b b

t
a a

Var f t dW f t dt
 
  
 
 
   

One final property of the integral is that it is a martingale when considered as a process with 

respect to t, ie if we define the process  
t

t s
a

X f s dW  .  Intuitively, since the process has 

zero-mean increments it should continue ‘straight ahead’ on average.   
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Mathematically, if u t : 

       
u t t

t u s s u u s u u
a u u

E X F E f s dW f s dW F X E f s dW F X
   
       
      
  |  

The last equality follows because we know that 
t

s
u

f s dW ( )  is normal with mean zero. 

Ito integrals for stochastic functions 

We now consider what happens when f  is a function of both tW  and time t . 

Kiyoshi Ito, working in isolation in Japan during the Second World War, realised that if a 
function of a Wiener process, ( , )tf W t  could be differentiated twice and was measurable 

with respect to the natural filtration of the Wiener process, and by using the fact that the 
process has independent increments, then the Ito integral: 

  1
10

( , ) lim ( , )
i i i

T n

t t t i t tn i
f W t dW f W t W W

 
   

could be defined providing it was square-integrable: 

 2

0

( , )
T

tE f W t dt
 
   
  
  

where t 0 0  and nt T . 

In particular: 

 
0

( , ) 0
T

t tE f W t dW
 
  
  
  

and following from this: 

 

2

2

0 0 0

( , ) ( , ) ( , )
T T T

t t t t tVar f W t dW E f W t dW E f W t dt
                 

     
    

where the above result is called the Ito isometry, and: 

 
0 0

( , ) ( , )
T S

t t S t tE f W t dW F f W t dW
 
  
  
   for S T . 

The last statement tells us that Ito integrals are martingales. 

Let g be a second function of tW  and time t . 
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Furthermore, the Ito integral is linear: 

  
0 0 0

( , ) ( , ) ( , ) ( , )
T T T

t t t t t t tf W t g W t dW f W t dW g W t dW      

and the following product rule is satisfied: 

 
0 0 0

( , ) ( , ) ( , ) ( , )
T T T

t t t t t tE f W t dW g W t dW E f W t g W t dt
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2 Ito processes 

An Ito process is a stochastic (random) process described in terms of a deterministic part 
and a random part as a stochastic integral equation: 

0
0 0

( , ) ( , )
T T

T t t tX X X t dt X t dW      

To prevent the process ‘exploding’ (hitting   in finite time) some technical restrictions on 
the functions  , which represents the drift, and  , which represents the volatility, need to 

be imposed.  A sufficient condition is: 

 | ( ) | | ( ) | (1 | |)x x K x     

for a constant K. 

Ito processes are usually written in the shorthand: 

 ( , ) ( , )t t t tdX X t dt X t dW    

and this form is often referred to as a stochastic differential equation (SDE), though Ito 
processes are a sub-class of stochastic processes (an SDE need not represent an Ito 
process). 

Note that the SDE is just notational shorthand for the stochastic integral equation. 

A number of SDEs are introduced here, which will then be solved later in the chapter. 

Arithmetic Brownian motion 

The process defined by: 

 t tdX dt dW   , 0X x  

for known constants   and 0   is an Ito process.  It is sometimes known as a Brownian 

motion with drift or a Bachelier process. 

This stochastic differential equation can be solved directly by integrating both sides between time 
0 and T. 

We have: 

 
0 0

T T

T t TX x dt dW x T W           

From this, we can deduce that: 

 TE X x T      

    2 2
T TVar X Var W T    

  2,TX N x T T   
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Geometric Brownian motion (exponential process) 

The SDE given by: 

 t t t tdX X dt X dW   , 0X x  

for known constants   and 0  , is known as geometric Brownian motion (GBM).  The 

rate of change of tX  is proportional to tX  means that GBM never hits zero (or infinity by 

time inversion).  It is not immediately apparent what the distributional properties of tX  will 

be, since the drift term, involving tX  is stochastic. 

We will solve this SDE later in this chapter.  Geometric Brownian motion is widely used to model 
asset prices. 

The Ornstein-Uhlenbeck and the mean-reverting process 

The SDE given by: 

 t t tdX X dt dW    , 0X x  

with ,  0    is known as the Ornstein-Uhlenbeck process. 

Note that the drift term will pull this process to zero, while the volatility term is random. 
Adding the term   to the Ornstein-Uhlenbeck SDE gives: 

 ( )t t tdX X dt dW      

which is the mean-reverting process, which is drawn to the value of  . 

Mean-reverting process are ideal for modelling interest rates where one would expect the rate to 
fluctuate around a particular value rather than tending to grow indefinitely. 

The Square root mean-reverting process 

This process is also known as the Feller, or the Cox-Ingersoll-Ross (CIR) process.  

The process defined by the SDE: 

 ( )t t t tdX X dt X dW      

with ,  ,  0     is, like the Ornstein-Uhlenbeck process, mean reverting.  However, for the 

choice of parameters 2 2   the process is positive.  If the process hits zero, its volatility 

disappears, and its drift is positive, the process deterministically moves away from zero and 
spends ‘no time’ at zero (ie the time spent at zero has measure zero).  This is a very useful 
property in modelling asset prices. 

This process is also very useful for modelling interest rates, which are generally required to 
remain positive. The CIR process will be dealt with later in the term structure of interest rates 
chapter. 
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2.1 Stochastic calculus 

Taylor’s theorem 

We have shown that a stochastic calculus exists and satisfies certain properties.  However, with 
standard calculus we have rules that allow us to integrate and differentiate, eg the product rule, 
the quotient rule, and the chain rule.  The key result of stochastic calculus is Ito’s Lemma. 

This is the stochastic calculus version of the chain (function-of-a-function) rule and the only rule 
that we will need.   

To be consistent with what is to follow, we will first derive the chain rule for standard calculus.  

Suppose we have a function-of-a-function  tf x  and we want to find  t
d f x
dt

.  We first write 

down Taylor’s theorem to second-order: 

       t t t t tf x f x x f x x     2½  

You may find it helpful to refer to the formulae on page 3 of the Tables if you are unfamiliar with 
Taylor series. 

Now dividing by t  and letting t 0  gives: 

       t tt
t t

t

df x xdx
f x f x

dt dt t




  
2

0
lim ½  

Since: 

 t t t
t t

t t t

x x dx
x x

t t dt  

 
 

   

     
 

2

0 0 0
lim lim lim 0  

the second term on the right-hand side must vanish, giving the chain rule: 

   t t
t

df x dx
f x

dt dt
  

or in different notation: 

   t t tdf x f x dx  

What does this become if we replace the function tx  by the non-differentiable Wiener process 

tW ?  The analysis starts in much the same way.  We can write Taylor’s theorem to second-order 
as: 

      t t t t tf W f W W f W W     2½  
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Now, in the standard case, taking the limit t 0  effectively involves replacing   by d  and 
ignoring second-order and higher-order terms.  However, with Wiener processes, it turns out that 

the second-order term  tdW 2  cannot be ignored.  In fact, it must be changed to dt ,  

ie  tdW dt2 .  This is not rigorous, but is a useful rule of thumb. 

What we end up with is therefore: 

     t t t tdf W f W dW f W dt  ½  

This is Ito’s Lemma for functions of Wiener processes, ie it tells us how to differentiate functions 
of standard Brownian motion.  Note, however, that this statement must be interpreted in terms 
of integrals, since standard Brownian motion is not differentiable. 

Question 

Find the stochastic differential equation for tW2 . 

Solution 

Applying the above formula we have: 

 t t t t td W W dW dt W dW dt   2 2 ½2 2  

 
What does this actually mean?  As we keep saying, this can only be interpreted sensibly in terms 

of integrals.  If we integrate both sides of the SDE for tW2  in the previous question from 0 to s, 
say, we get: 

 
s s s

t t td W W dW dt   2

0 0 0
2  

The left-hand side and second term on the right-hand side can be evaluated: 

ss
t s t tW W W dW s      2 2

0
0

2  

Finally, rearranging this equation tells us that: 

 
s

t t sW dW W s  2

0

1
2

 

This last example shows how Ito’s Lemma can be used to evaluate Ito integrals. 
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The above version of Ito’s Lemma only dealt with functions of Wiener processes.  We will now 
generalise this to consider functions of tX  and t, where tX is an Ito process for which 

t t t tdX X t dt X t dW  ( , ) ( , ) , as defined earlier. 

Ito’s Lemma 

At this point we can say little about the properties of Ito diffusions such as geometric 
Brownian motion, the Ornstein-Uhlenbeck process and the CIR process.  We can begin to 
understand them if we can consider functions of the diffusions. 

We call a function: 

 ( , ) : [0, )f x t      

an Ito function, ( , )f x t V ,  

(V  is the set of functions which have continuous derivatives in t, and continuous second 
derivatives in x) 

if: 

(i) 2,1( , )f x t C  , ie it has a continuous second derivative with respect to x and is 

continuous in time 

(ii) ( , )f x t  is WF B -measurable 

Where B is a Borel measure.  You may have met Borel measures if you have studied measure 
theory at university.  However, we will not be using Borel measures further in this course. 

(iii) ( , )f x t  is WF -adapted 

Where W is a Wiener process. 

(iv) It is square-integrable: 

  2 ( , )
T

S
E f x t dt
 
   
  
  

Then let the process tX  be defined by: 

 t t t tdX X t dt X t dW  ( , ) ( , )  

If the Ito process tX  was the input to an Ito function then: 

 
2

2
0 2

0 0

1
( , ) ( ,0) ( , ) ( , )

2

T T

T t t t
f f f ff X T f X X t dt X t dW
t x xx

  
                 
   

This is Ito’s Lemma (or Ito’s formula). 
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The notation here means that the partial derivatives of the deterministic function  f  (and the 
functions   and  ) are evaluated at the random point tX t( , ) .  On grounds of notational 
compactness it is also common to express Ito’s Lemma in the following way: 

T T

T t t t t
t tt

f f f ff X T f X X t X t dt X t dW
t X XX

  
    

     
    
 

2
2

0 2
0 0

1
( , ) ( ,0) ( , ) ( , ) ( , )

2
 

where we have used the notation f
t

  to mean f

tt X t
 ( , ) , and 

t

f
X

  to mean f

tx X t
 ( , )  etc. 

In shorthand this is sometimes written: 

 
2

2
2

( , ) ( , ) 1 ( , ) ( , )
( , ) ( , ) ( , ) ( , )

2t t t t t
f x t f x t f x t f x tdf X t X t X t dt X t dW

t x xx
  

    
        

 

This can be condensed to: 

t t t t t
t tt

f f f fdf X t X t X t dt X t dW
t X XX

  
    

    
    

2
2

2
1( , ) ( , ) ( , ) ( , )
2

 

One interpretation of Ito’s Lemma is that any (sufficiently well-behaved) function of an Ito 
process, is another Ito process, with drift and diffusion given by: 

 t t
t t

f f fX t X t
t X X

   
 

  

2
2

2
1( , ) ( , )
2

  and  t
t

f X t
X




( , )  

Combining Ito’s formula with the Taylor expansion of ( , )f x t  we can deduce the following 

‘rules’: 

  2tdW dt ,  2( ) 0t tdW dt dtdW dt    

These results can be summarised by the following multiplication table: 

 dt  tdW  

dt  0 0 

tdW 0 dt  

 

Using these rules, we can write Ito’s Lemma in a third way: 

  
2

2
2

( , ) ( , ) 1 ( , )
( , )

2t t t
f x t f x t f x tdf X t dt dX dX

t x x
  

  
  

 

This is actually just an application of Taylor’s theorem in two variables. 
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And we can derive the stochastic integration by parts formula.  Given: 

 ( , ) ( , )t t t tdX X t dt X t dW    and ( , ) ( , )t t t tdY Y t dt Y t dW    

Notice that both processes are driven by the same Wiener process tW . 

Then: 

( )t t t t t t t td X Y X dY Y dX dX dY    

This is another application of Taylor’s theorem in two variables: 

 

 

 

t t t t
t t t t

t t

t t t t
t t

t t

t t
t t

t t

t t t t t t

X Y X Y
d X Y dX dX

X X

X Y X Y
dY dY

Y Y

X Y
dX dY

X Y

Y dX X dY dX dY

 
  

 

 
  

 


 
 

  







2
2

2

2
2

2

( ) ( )1( )
2

( ) ( )1
2

( )

 

The t tdX dY  term requires the use of the multiplication table to give: 

  



 

t t t t t t t t

t t t t t t t

t t t
dt

t t

dX dY X t dt X t dW Y t dt Y t dW

X t Y t dt X t Y t X t Y t dtdW

X t Y t dW

X t Y t dt

   

     

 

 

 



  

  









2

0 0

2

( , ) ( , ) ( , ) ( , )

( , ) ( , )( ) ( ( , ) ( , ) ( , ) ( , ))

        ( , ) ( , )

( , ) ( , )

 

Therefore we have: 

 
   

   

( ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

t t t t t t t t t t t t

t t t t t t t t t t t

d X Y X Y t dt Y t dW Y X t dt X t dW dX dY

X Y t Y X t X t Y t dt X Y t Y X t dW

   

     

    

    
 

which involves an additional term to classical calculus  ( )d fg fdg gdf  . 
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In classical calculus we have, using Taylor’s theorem again: 

 

 

 



fg fgd fg df df
f f

fg fgdg dg
g g

fg dfdg
f g

gdf fdg dfdg


 
  

 

 
  

 


 
 

  







2
2

2

2
2

2

0

( ) 1 ( )
( )

2

( ) 1 ( )
2

( )

 

Crucially here, the dfdg term is considered to be zero. 

2.2 Applications of Ito’s Lemma 

Squared Brownian motion 

Consider applying the function 2( , )f x t x t   to the Ito diffusion defined by: 

 0
0

    
T

T T t t tX W W dW dX dW      

This example is very similar to one from earlier in the chapter when we found the stochastic 

differential of tW2 , though the presentation is different. 

In this case: 

  2( , )
1

f x t x t
t t

 
   

 
 

  2( , )
2

f x t x t x
x x

 
  

 
 

 
2

2

( , )
(2 ) 2

f x t x
xx

 
 


 

so, using: 

 
2

2
2

( , ) ( , ) 1 ( , ) ( , )
( , ) ( , ) ( , ) ( , )

2t t t t t
f x t f x t f x t f x tdf X t X t X t dt X t dW

t x xx
  

    
        

 

with ( , ) 0x t   and ( , ) 1x t   we have: 

 t t t tdf X t X dt X dW          
 

1
( , ) 1 0 2 1 2 1 2

2
 

  2 t tW dW  
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Or as a stochastic integral equation we have: 

 2

0

2
T

T t tW T W dW    

Which recovers our previous result of: 

  
T

t t TW dW W T  2

0

1
2

 

Question 

A process tX  satisfies the stochastic differential equation: 

   t t t tdX X dB X dt    

where tB  is a standard Brownian motion. 

Deduce the stochastic differential equation for the process tX3 . 

Solution 

By Ito’s Lemma: 

        t t t t t t t td X X X dB X X X X dt    3 2 2 23 3 3  

Alternatively, Taylor’s formula to second-order is given by: 

       hf x h f x hf x f x     
2

2
 

With the given notation,      df x f x h f x    and h dx  this becomes: 

      df x f x dx f x dx   2½  

For the specific case of  f x x 3  , and ignoring terms above order 2, gives: 

 t t t t tdX X dX X dX  23 23 3  

But    t t t tdX X dB X dt    so the multiplication table gives: 

   t tdX X dt2 2  
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Finally: 

      

      
t t t t t t t

t t t t t t t

dX X X dB X dt X X dt

X X dB X X X X dt

  

  

  

  

3 2 2

2 2 2

3 3

3 3 3
 

as Ito’s Lemma gave us. 

 
Geometric Brownian motion 

Consider applying the function ( , ) xf x t e  to the Ito diffusion defined by: 

 2 2
0

0 0

1 1
     

2 2

T T

T t t tX X dt dW dX dt dW                  
      

It’s important to note that the constants   and   here are not the same as the functions 

tX t( , )  and tX t ( , )  given in the definition of Ito’s Lemma.  Re-parameterising Ito’s Lemma gives: 

t t t t t
t tt

f f f fdf X t X t X t dt X t dW
t X XX

  
    

    
    

2
2

2
1( , ) ( , ) ( , ) ( , )
2

 

where: 

t t t tdX X t dt X t dW  ( , ) ( , )  

So in this case if we let x t     
 

21
( , )

2
 and x t ( , )  we get: 

 t tdX dt dW      
 

21
2

 

as required, and then Ito’s Lemma gives: 

 

t t t t t
t tt

t
t tt

f f f fdf X t X t X t dt X t dW
t X XX

f f f fdt dW
t X XX

  

   

    
    
    

                 

2
2

2

2
2 2

2

1( , ) ( , ) ( , ) ( , )
2

1 1
2 2
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In this case: 

  ( , )
0xf x t e

t t
 

 
 

 

  ( , )
( , )x xf x t e e f x t

x x
 

  
 

 

  
2

2

( , )
( , )x xf x t e e f x t

xx
 

  


 

By using Ito’s Lemma we have: 

t t
t tt

t t t t

f f f fdf X t dt dW
t X XX

f X t f X t dt f X t dW

   

   

                 

        
  

2
2 2

2

2 2

1 1( , )
2 2

1 10 ( , ) ( , ) ( , )
2 2

 

So: 

  ( , ) ( , )t t tdf X t f X t dt dW    

or, setting ( , ) tX
t tS f X t e  : 

  t t tdS S dt dW    

  t
t

t

dS dt dW
S

    

This is geometric Brownian motion and implies that the SDE: 

 t t t tdS S dt S dW    

is equivalent to: 

 tX
tS e  with 21

2t tdX dt dW      
 

 

or: 

 
 

  

21
0 2

0 0

21
0 2

exp

exp

T T

T t

T

S S dt dW

S T W

  

  

 
   
 
 

  

 
 

This is the solution to the geometric Brownian motion SDE  t t tdS S dt dW   , and is a 

standard share price model.  
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We can confirm this observation by applying the function ( , ) ln( )f s t s  to the Ito diffusion 

defined by: 

 0
0 0

    
T T

T t t t t t t tS S S dt S dW dS S dt S dW           

This yields: 

  21
2

( , )t t tdf S t dt dW dX       

showing the symmetry with the previous result. 

Question 

Let the process tS  evolve according to the SDE: 

 t t tdS S dt dW    

By considering  tSln , show that: 

   T TS S T W    21
0 2exp  

Solution 

Let    t tf S S ln  and apply Taylor’s theorem to give: 

 

   

 

 

t t t
t t

t t
t t

t t
t

t t

t

f fdf S dS dS
S S

dS dS
S S

S S
dt dW dt

S S

dt dW


 

  

 
  
 

  

  

    
 





2
2

2

2
2

2 2

2

2

1
2

1 1

2

2

1
2

 

Integrating both sides between time 0 and T gives: 

    T Tf S f S T W       
 

2
0

1
2

 

  T TS S T W  
      
  

2
0

1
exp

2
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On this basis we can consider the distribution of ln( )TS  where tS  is a geometric Brownian 

motion: 

  21
0 2

ln( ) ln( )TE S S T       

and: 

 
 

0

2

ln( )
T

T tVar S Var dW

T





 
 
 
 




 

Question 

Find the expected value and variance of TSln . 

Solution 

Given that: 

  T TS S T W    21
0 2exp  

Then: 

  T TS S T W     21
0 2ln ln  

Since  TE W  0  ,  TVar W T  and all other terms are deterministic we have: 

 
     

 
T TE S E S T E W

S T

  

 

      

   

21
0 2

21
0 2

ln ln

ln 0
 

and: 

 
      T TVar S Var S T Var W

T

  



   

 

21
0 2

2

ln ln

0

 

as required. 

 
In conclusion, the distribution of a geometric Brownian motion at a time T is lognormally 
distributed: 

   2 21
0 2

ln( ) ln( ) ,TS N S T T     
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The Ornstein-Uhlenbeck process 

Consider applying the function ( , ) tf x t xe  to the Ito diffusion defined by: 

 0
0 0

     
T T

T t t t t tX X X dt dW dX X dt dW            

This is known as the Ornstein-Uhlenbeck process. 

We need: 

  ( , )
( , )t tf x t xe xe f x t

t t
  

 
  

 
 

  ( , ) t tf x t xe e
x x

  
 

 
 

  
2

2

( , )
0tf x t e

xx
 

 


 

so: 

 
( , ) t t

t t t

t
t

df X t X e dt e dX

e dW

 







 


 

When applying Ito’s Lemma we use t tX t X  ( , )  and tX t ( , ) , therefore we have: 

t t t t t
t tt

t t t
t t t

t
t

f f f fdf X t X t X t dt X t dW
t X XX

X e X e dt e dW

e dW

  



  

   



    
        

      
 



2
2

2

2

1( , ) ( , ) ( , ) ( , )
2

1 0
2

 

As a stochastic integral equation we have: 

T T
t

t tdf X t e dW 
0 0

( , )  

  
T

t
T tf X T f X e dW  0

0
( , ) ( ,0)  

  0
0

T
T t

T tX e X e dW     

  ( )
0

0

T
T T t

T tX X e e dW       
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Question 

The stochastic differential equation t t tdX X dt dW     can also be solved using the integrating 

factor te . 

Show that you get the same solution if you solve the SDE using an integrating factor. 

Solution 

We want to solve the equation: 

t t tdX X dt dW     

or t t tdX X dt dW    

Multiplying through by the integrating factor te  and then changing the dummy variable to s 
gives: 

 s s s
s s se dX e X ds e dW      

The left-hand side is now the differential of a product.  So we have: 

  s s
s sd e X e dW   

Now we can integrate between 0 and t to get: 

 
t

t s
t se X e X e dW    0

0
0

 

Finally, we can rearrange this to get the desired form: 

  
t

t st
t sX X e e dW     0

0
 

 
More generally we have: 

 
T

T t T u
T t u

t
X X e e dW      ( ) ( )  

On this basis we can examine the distributional properties of TX .  Note the Ito integral has 

a deterministic integrand and so: 

 

( ) ( )

( )

T
T t T u

T t u
t

T t
t

E X E X e e dW

X e
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This is because the expectation of an Ito integral is zero, ie: 

 
T

T u
u

t
E e dW  
 
  
  
 ( ) 0  

And: 

  2( ) [ ]T T TVar X E X E X    
 

  

 

T
T t T u

t u
t

T T
T t T u T t T u

t u t u
t t

Var X e e dW

Var X e Var e dW Cov X e e dW

 

   



 

   

       




 
  
 
 

   
     
   
   



 


( ) ( )

( ) 2 ( ) ( ) ( )

0
0

2 ,
 

By Ito isometry: 

 

T
T u

T
t

TT u
t

Var X e du

e










 

 



   

2 2 ( )

2
2 ( )

( )

2

 

 
2

2 ( )1
2

T te 


    

For large ( )T t  this is approximately 
2

2




 while for small ( )T t  it is (unsurprisingly) close 

to zero. 

Question 

Why is this unsurprising? 

Solution 

T t  is the length of time over which the process is being observed.  When this quantity is small it 
means that there’s little opportunity for the process value TX  to deviate very far from tX .  This 
behaviour is captured by having a variance close to zero. 

 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-10: Stochastic calculus and Ito processes Page 27 

The Actuarial Education Company  © IFE: 2019 Examinations 

The mean-reverting process 

The mean-reverting process, defined by the SDE: 

 ( )t t tdY Y dt dW      

is based on the Ornstein-Uhlenbeck process.  In the mean-reverting process, the process is 
pulled back to some equilibrium level,   at a rate determined by 0  .  Note that this 

process can go negative. 

We can investigate this by considering t
te Y  (noting that the equation dx xdt implies the 

solution tx e ) then: 

 
 

 

t t t
t t t

t t
t t t

d e Y e Y dt e dY

e Y dt e Y dt dW

  

 



   

 

   ( )
 

so: 

 t t t
t td e Y e dt e dW      

Changing the variable of integration and integrating both sides between times t and T gives: 

  
T T T

s s s
s s

t t t
d e Y e ds e dW        

which implies that: 

 
T T

T t s s
T t s

t t
e Y e Y e ds e dW         

because there are no random variables in the integrands, these are straightforward, and: 

  ( ) ( ) ( )1
T

T t T t T s
T t s

t
Y e Y e e dW              

This result implies that: 

  ( ) ( )1T t T t
T tE Y e Y e          

while 

  
2

( )
T

T s
T s

t
Var Y E e dW  
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By Ito isometry: 

   
2

2 ( )1
2

T t
TVar Y e 


    

Observe that this tells us that: 

    
2

( ) ( ) 2 ( )1 , 1
2

T t T t T t
T tY N e Y e e  




      
    

 
  

This process is used again in the chapter on the term structure of interest rates. 
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3 Appendix 

The following text is Core Reading that gives additional background information.  It is presented 
here, without explanation, for completeness. 

3.1 Square root mean-reverting process 

The process defined by the SDE: 

( )t t t tdX X dt X dW      

with , 0    is known as the CIR, Feller or ‘square root mean-reverting’ process.  If 

parameters satisfy 2 2   the process is positive.  If the process hits zero, its volatility 
disappears and its drift is positive, the process deterministically moves away from zero and 
spends ‘no time’ at zero (ie the time spent at zero has measure zero).  This is a very useful 
property in modelling asset prices. 

There is no closed form solution for tX , unlike for the O-U process, however the moments 

of the process can be derived. 

Consider the function ( , ) tf t x e x , and so: 

       
2

2
2

1

2
t t t t

t t t t t t

t t
t t

d e X e X dt e X dX e X dX
t x x

e dt e X dW

   

  

  
  
  

 

 

  0
0 0

T T
T t t

T t te X X e dt e X dW        

since the expectation of an Ito integral is zero: 

0 (1 )T T
TE X e X e        

To calculate the variance, use the fact that    22Var X E X E X     and use t
t tY e X , 

from above we have: 

t t
t t tdY e dt e X dW     

Observe that: 
1
2

tty e x e x   

1
2

tt
t t tdY e dt e Y dW    

Since ty xe , it follows that 0
0 0X e Y   and: 

 0 ( 1)t
tE Y Y e      
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while: 

31
22

2

2

( ) 2

(2 ) 2

t t t t t

tt
t tt

d Y Y dY dY dY

e Y dt e Y dW   

 

  
 

and, because the integral is finite, and we can put the expectation in the time integral and 

0 0X Y : 

2 2 2
0

0

2 2
0 0

0

(2 )

(2 ) ( 1)

T
t

T t

T
t t

E Y X e E Y dt

X e X e dt



 

 

  

        

      





 

so: 

2 2
2 2 2 2 2

0 0
2 2

( )( ) (1 )
2

T T T T
TE X e X X e e e

k k
      

               

hence: 

2 2
2 2 2 2

0 0

2
0

2 2
2 2

0

2 2
( )( ) (1 )

2

         (1 )

( ) (1 2 )
2

T T T T
T

T T

T T T T

Var X e X X e e e
k k

e X e

X e e e e

   

 

   

   
 



 
 

   

 

   

              

    

    

 

and: 

2
lim

2TT
Var X 


     

3.2 Multi-dimensional Ito formula 

An m-dimensional process is a stochastic process made up of m independent processes. 
On the basis of an m-dimensional process we can define an n-dimensional Ito process as: 

 

1 1 11 1 1

1 1

  

m m

n n n nm m

dX dt dW dW

dX dt dW dW

  

  

   



   







 

Given a function 1 2( , ) ( , , , , )nf t x f t x x x   we have the multi-dimensional Ito formula: 

2

1 , 1

1
( , ) ( , ) ( , ) ( , )

2

n n

i i j
i i ji i j

df t x f t x dt f t x dX f t x dX dX
t x x x 
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3.3 Changing the Measure and Girsanov’s Theorem 

The basic idea 

A standard normal random variable, (0,1)X N  has the familiar density: 

21 1
exp

22
x


  
 

 

and so: 

2 2 21 1 1 1 1
exp exp ( ) exp

2 2 22 2
x x x  

 
               
     

 

This means that if (0,1)X N  and we have a function ( )h X  then: 

  2

2 2

1 1
( ) ( ) exp

22

1 1 1
( )exp exp ( )

2 22

E h X h x x dx

h x x x dx



  


   
 

            
    









 

so defining: 

21
( ) ( )exp

2
g y h y y     

 
 

and given (0,1)Y N : 

  21 1
( ) ( ) exp ( )

22
E h X g y y dy


    
 



 

We can call the original probability measure, the standard normal, Q and the new 
probability, ( ,1)N   that has a non-zero mean, P so that: 

 

 

2

2

1 1
( ) ( ) exp

22

( )

1
( )exp

2

Q

P

P

E h X h x x dx

E g Y

E h Y Y
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Or there is a function, ( )Z Y  such that: 

   ( ) ( ) ( )Q PE h X E h Y Z Y  

or more specifically: 

   ( ( )) ( ( )) ( )Q PE h X E h Y Z    

and Z is a Radon-Nikodým Derivative. 

When working in continuous time the state space is infinite, meaning that for any path,  ,  

( ) ( ) 0P Q    and so the definition of a Radon-Nikodým Derivative is: 

( )
( )

( )

dQZ
dP




  

Bearing in mind that probability densities can evolve, we define: 

t
t

t

dQZ
dP

  

but we retain the properties of the Radon-Nikodým Derivative. 

 ( 0) 1P Z    (equivalently ( ) 1P Z    ), 

 [ ] 1PE Z  , 

 [ ] [ ]Q PE Y E ZY , 

 If Y is an tF -measurable random variable on 0 s t T     , then 

1
[ | ] [ | ]Q s P t s

s
E Y F E YZ F

Z
  

3.4 Change of a Wiener Process 

A Wiener Process is (0, )tW N t   with the density: 

21 1
exp

22

x
tt

   
  

 

and so using the same arguments as above but with the substitutions x
t

w   and 

t   , where   is any constant, we have that the Wiener Process has the density: 

2 2
21 1 1 1 1

exp exp exp
2 2 22 2

x x t x t
t t t t 
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This implies that: 

2

2
2

1 1
exp

22 1
exp

21 1
exp

22

x t
t t dQ x t

dPx
t t





      
           

       
   

 

Setting t tX W t    we have that ( , )tX N t t , ie it is not a Wiener process.  However, if 

we define the Radon-Nikodým Derivative: 

21
exp

2t t
dQZ W t
dP

      
 

 

we generate a new probability under which tX  is a Wiener process. 

These ideas capture the Cameron-Martin-Girsanov (usually shortened to the ‘Girsanov 
Theorem’). 

Given a Wiener Process tW , 0 t T    , on ( , , )F P  with tF  being the natural filtration of 

tW .  Let t  be an tF  adapted process.  Define: 

 2

0 0

1
exp

2

t t

t s s sZ dW ds 
     
  
   

and: 

 
0

ˆ
t

t t sW W ds    

and assume that: 

 2 2

0

T

P s sE Z ds
 
   
  
  

Then under the measure Q defined by: 

( ) ( ) ( )
A

Q A Z dP    

the process ˆ
tW  is a Wiener Process and a Q-martingale. 
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3.5 The Martingale Representation Theorem 

Consider a driftless Ito process: 

 ( , )t t tdX t X dW  

then its integral equation, for S T  is: 

( , )
T

T S t t
S

X X t X dW    

and so (informally): 

 
| ( , ) |

T
W W

T S S t t S
S

S

E X F X E t X dW F

X


 

        




 

and we have that the driftless Ito process is a martingale. 

We have seen that the Ito processes 2
tW t  , tW dt  and 

21
2tW te   

 are W
tF  martingales 

and what is more, they can be described by driftless Ito processes: 

 2

0

2
T

T t tW T W dW    

0 0

( )
T T

t tW dt T t dW    

1 1
2 2

0

1T t
T

W T W t
te e dW     

In fact, these are examples of a general theory, the Martingale Representation Theorem. 

In the Martingale Representation Theorem, let n
tW  be an n-dimensional process.  Suppose 

that tM  is a continuous 
nW

tF -martingale, then there exists a unique function, ( , )n
tt W  , 

that is 
nW

tF -adapted such that: 

 

0
0

( , )

( , )

T
n

T t u u
t

T
n

t t

M E M u W dW

M t W dW
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The Martingale Representation Theorem can be understood by noting that, since tM  is a 

continuous 
nW

tF -martingale its movement depends completely on n
tW , as such it is not 

unreasonable to believe that its motion is a function of the motion of n
tW . 

For example, consider an 
nW

tF -martingale ( , )t tM M t X V   with tX  being an Ito process 

defined by the SDE: 

( , ) ( , )t t t tdX t X dt t X dW    

In this case: 

2
2

2

( , ) ( , ) ( , ) ( , )1
( , ) ( , ) ( , )

2
t t t t

t t t t t
M t X M t X M t X M t XdM t X t X dt t X dW

t X XX
  

    
    

    
 

Since tM  is a martingale, the drift term is zero: 

 
( , )

( , ) t
t t

M t Xt X dW
X







 

and so the 
nW

tF -adapted process,  , associated with the Martingale Representation 

Theorem is given by: 

 
( , )

( , ) ( , ) t
t t

M t Xt W t X
X
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The chapter summary starts on the next page so that you can 
keep all the chapter summaries together for revision purposes. 
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Chapter 10 Summary 

Ito integrals 

Ito integrals of the form 
T

t tf W t dW
0

( , ) , where tf W t( , )  is measurable with respect to the 

natural filtration of tW : 
 cannot be integrated directly 

 can often be simplified using Ito’s Lemma 

 have a normal distribution, with mean zero and variance 
T

tE f W t dt 
  2

0
( , ) . 

Ito’s Lemma 

Ito’s Lemma can be used to differentiate a function f of a stochastic process tX .   

If t tdX dt dW   , then: 

 t t
t tt

f f fdf X dt dW
X XX

  
   

   
   

2
21

2 2( )  

This form is used when the new process depends only on the values of the original 
process. 

 t t
t tt

f f f fdf X t dt dW
X t XX

  
    

    
    

2
21

2 2( , )  

This form is used when there is explicit time-dependence, ie the new process 
depends on the value of the original process and the time. 

Alternatively, Taylor’s formula to the second-order can be used to write: 

     t t t
t t

f f fdf X t dt dX dX
t X X
  

  
  

2
2

2, ½  

into which t tdX dt dW    can be substituted.  The second-order terms can then be 
simplified using the multiplication table: 

t

t

dt dW
dt

dW dt
0 0
0
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Ornstein-Uhlenbeck process

Mean-reverting financial quantities (such as interest rates) can be modelled using the 
Ornstein-Uhlenbeck process.   

The process is defined by the SDE: 

 t t tdX X dt dW     

where   is a positive parameter. 

It can be shown that the formula for the process itself is: 

  
T

T tT
T tX X e e dW     0

0
 

Also, the probability distribution of TX  is T TN X e e 


  
  

 

2
2

0 , (1 )
2

, and the long-term 

distribution is N 


 
  
 

2
0,

2
. 

The mean-reverting process 

This process is a generalisation of the Ornstein-Uhlenbeck process, and is defined by the 
SDE: 

  t t tdY Y dt dW      

The solution is given by: 

 
T

T t T t T s
T t s

t
Y e Y e e dW            ( ) ( ) ( )1  

Geometric Brownian motion 

Asset prices are often modelled using geometric Brownian motion. 

The process is defined by the SDE: 

  t t tdS S dt dW    

It can be shown that the formula for the process itself is: 

  T TS S T W    21
0 2exp  
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Chapter 10 Practice Questions 

10.1 (i) Write down Ito’s Lemma as it applies to a function tf X( )  of a stochastic process tX  that 

satisfies the stochastic differential equation t t t tdX dB dt   , where tB  is a standard 
Brownian motion. 

(ii) Hence find the stochastic differential equations for each of the following processes: 

 (a) t tG Xexp( )   

 (b) t tQ X 2   

 (c) t tV X   1(1 )   

 (d) t tL X 100 10   

 (e) t tJ B ln  

 (f) t t tK B B 35 2   

10.2 Let tB  ( t  0 ) be a standard Brownian motion with B 0 0 . 

(i) By first writing down an expression for sd B2( ) , show that 

  
t

s s tB dB B t  21
20

( )  

(ii) What is the expected value at time 0 of 
t

s sB dB0 ? 

(iii) What is the expected value at time u  ( u t 0 ) of 
t

s sB dB0 ? 

(iv) What can you say about the process 
t

t s sI B dB 0 , based on your results from (i) and (iii)?  

10.3 Find the mean and variance of the stochastic integral tI tdB 
1
0

. 

10.4 Let tX{ }  be a continuous-time stochastic process defined by the equation t tX W  2 , where 

tW{ }  is a standard Brownian motion and   and   are constants. 

By applying Ito’s Lemma, or otherwise, write down the stochastic differential equation satisfied 
by tX .  
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10.5 Let tX  be an Ito process that satisfies    t t t tdX X t dt X t dB  , ,  where tB  is a standard 

Brownian motion.  Let  tf X t,  be a function of t and tX . 

(i) By considering Taylor’s theorem, suggest a partial differential equation that must be 
satisfied by  tf X t,  in order that it is a martingale. 

(ii) Verify that your equation holds when  t tf X t B t 2, . 

(iii) Find  g t  such that  t tB g t B3  is a martingale. 

10.6 In the following, tB  denotes a standard Brownian motion. 

(i) Write down the general solution of the stochastic differential equation: 

  t t tdX X dt dB     [1] 

(ii) Hence determine the solution of the stochastic differential equation: 

   t t tdR R dt dB  0.8 4  

 where R 0 5 .    [1] 

(iii) Find the distribution of the process tR  at time t and in the long-term. [3] 
    [Total 5] 

10.7 The Ito process, tX , is defined by the stochastic differential equation: 

     t t t t t t tdX X X X dt X X dB    0.5 1 1 2 1  

where tB  is a standard Brownian motion, and X 0 0.5 . 

By considering the stochastic differential equation for the process t
t

Y
X

 
  

 

1ln 1 , find tX  in 

terms of tB .   [7] 

10.8 The market price of a certain share is being modelled as a geometric Brownian motion.  The price 

tS  at time t  0  satisfies the equation: 

 t
e t

S
t B

S
  

0
log  

where tB t { , 0}  is a standard Brownian motion and   and   are constants. 

(i) Show that the stochastic differential tdS  can be written in the form: 

   t
t

t

dS
c dB c dt

S
 1 2 , 

 where c1  and c2  are constants you should specify. [4] 

Exam style 

Exam style 

Exam style 
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(ii) Derive expressions for tE S[ ]  and  tVar S . [4] 

(iii) Derive expressions for  t tCov S S
1 2

,  and t tE S S
2 1

[ | ]  where t t 1 20 . [6] 

(iv) By using your expression for t tE S S
2 1

[ | ] , write down a function of tS  that is a 

martingale.  [1] 
    [Total 15] 

10.9 Let tS  be a geometric Brownian motion process defined by the equation t tS t W  exp( ) , 

where tW  is a standard Brownian motion and   and   are constants. 

(i) Write down the stochastic differential equation satisfied by t e tX S log . [1] 

(ii) By applying Ito’s Lemma, or otherwise, derive the stochastic differential equation satisfied 
by tS .   [3] 

(iii) The price of a share follows a geometric Brownian motion with   0.06  and  0.25 
(both expressed in annual units).  Find the probability that, over a given one-year period, 
the share price will fall.   [3] 

    [Total 7] 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 10 Solutions 

10.1 (i) Ito’s Lemma 

Ito’s Lemma states that tf X( )  satisfies the SDE: 

 t t t t t t t tdf X f X dB f X f X dt       21
2( ) ( ) [ ( ) ( )]  

As a ‘technicality’, the function f has to be twice differentiable, in order for the RHS to make sense. 

(ii)(a) Stochastic differential equation for tG  

Here the function we are applying Ito’s Lemma to is xf x e( ) , with xf x e ( )  and xf x e ( ) . 

So we get: 

 
t t tX X X

t t t t t

t t t t t t

dG e dB e e dt

G dB G dt

  

  

  

  

21
2

21
2

[ ]

[ ]
 

(ii)(b) Stochastic differential equation for tQ  

Here the function we are applying Ito’s Lemma to is f x x 2( ) , with f x x ( ) 2  and f x ( ) 2 . 

So we get: 

 t t t t t t tdQ X dB X dt     22 [2 ]  

We can write this entirely in terms of the new process as: 

 t t t t t t tdQ Q dB Q dt    ½ ½ 22 [2 ]  

(ii)(c) Stochastic differential equation for tV  

Here the function we are applying Ito’s Lemma to is f x x   1( ) (1 ) , with f x x     2( ) (1 )  and 

f x x    3( ) 2(1 ) .  So we get:  

 

t t t t t t t t

t t t t t t t

dV X dB X X dt

V dB V V dt

  

  

         

    

2 2 2 3

2 2 2 3

(1 ) [ (1 ) (1 ) ]

[ ]  

(ii)(d) Stochastic differential equation for tL  

Here the function we are applying Ito’s Lemma to is f x x ( ) 100 10 , with f x ( ) 10  and 

f x ( ) 0 .  So we get: 

 t t t t t t tdL dB dt dB dt       10 (10 0) 10( )  
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(ii)(e) Stochastic differential equation for tJ  

Since tJ  is a function of standard Brownian motion, tB , rather than tX , when applying Ito’s 
Lemma, we note: 

 t tdB dB dt   1 0  

Equivalently, t 0  and t 1 .   

Here the function we are applying Ito’s Lemma to is f x x( ) ln( ) , with f x x  1( )  and 

f x x   2( ) .   So we get: 

 

t t t t

t t t

dJ B dB B dt

B dB B dt

 

 

    

 

1 21
2

1 21
2

1 1

 

(ii)(f) Stochastic differential equation for tK  

tK  is a function of standard Brownian motion, tB , so t 0  and t 1 .   

Here the function we are applying Ito’s Lemma to is f x x x 3( ) 5 2 , with f x x  2( ) 15 2  and 

f x x ( ) 30 .  So we get: 

 

t t t t

t t t

dJ B dB B dt

B dB B dt

     

  

2 1
2

2

1 (15 2) 1 (30 )

(15 2) 15   

10.2 (i) Expression for sd B2( )  

Either by applying Ito’s Lemma or by simply expanding as a Taylor series, we find that: 

  s s s s s sd B B dB dB B dB ds    2 21
2( ) 2 2( ) 2  

where, as usual, we have replaced the second order Brownian differential sdB 2( )  with the time 
differential ds , using the 2 2  multiplication grid given. 

To show this, let s sG B B 2( ) , then s
s

G G B
s B

 
 

 
0, 2  and 

s

G
B





2

2 2 ,  and since we can write 

s sdB ds dB 0 1 , the drift and volatility functions in the stochastic differential equation for sdB  
are 0 and 1 respectively.  Hence, using Ito’s Lemma from page 46 in the Tables we have: 

 s s sdG B ds B dB         
20 2 ½ 1 2 0 1 2  

ie s s sd B B dB ds 2( ) 2  
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Alternatively, using a Taylor Series expansion we have: 

 

s s
s s

s s s

s s

G G GdG ds dB dB
s B B

ds B dB dB

B dB ds

  
  
  

     

 

2
2

2

2

½ ( )

0 2 ½ 2 ( )

2

 

If we now integrate this equation between time 0 and time t , we get: 

 
t t t

s s sd B B dB ds   2
0 0 0

( ) 2  

ie  
t t t

s s sB B dB s     2
000

2  

ie 
t

t s sB B B dB t  2 2
0 0

2   
t

s s tB dB B t   21
20

( )  

Note that the value of this integral is a random variable.  

(ii) What is the expected value at time 0? 

At time 0 the future values of tB  are unknown, and we have: 

 
t

s s t tE B dB E B t E B t           2 21 1
0 0 02 20

( ) [ ( ) ]  

But we know that tB B N t 0 ~ (0, ) . 

So:  t t tE B B E B t t    22 2
0 0 0( ) var ( ) ( ) 0  

and 
t

s sE B dB t t       1
0 20

[ ] 0  

(iii) What is the expected value at time u? 

At time u  (where u t 0 ) the values of tB  up to time u  are known, but the values after time u  
are unknown.  If we split the integral into two parts, we have: 

 
t u t

s s s s s su
B dB B dB B dB   0 0

 

The first integral on the RHS is known at time u  and, from part (i), it is equal to: 

 
u

s s uB dB B u  21
20

( )  
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The second integral on the RHS is a random quantity. Using the same method as in part (i), it is 
equal to: 

 
tt

s s s t uu u
B dB B s B t B u        2 2 21 1 1

2 2 2( ) ( ) ( )  

The only random quantity in this expression is tB2  and we need to find the expected value of this 

based on the information we have at time u . We know that t uB B N t u  (0, )  or, since we know 

the value of uB , t uB N B t u ( , ) . This tells us that: 

 u t u t u t uE B B E B t u B    2 2 2( ) var ( ) [ ( )]  

So the expected value of our second integral is: 

 
t

u s su
E B dB     0  

Combining the two parts of the integral, we get: 

 
t

u s s u uE B dB B u B u         2 21 1
2 20

( ) 0 ( )  

Alternatively, we could use the fact that tB t2  is a martingale with respect to tB  to show this. 

(iv) What can you say about this process? 

From part (i), we know that 
t

s sB dB0  is always equal to tB t21
2 ( ) .  So, in particular, u uB u I 21

2 ( ) . 

So we can write the result in (iii) as: 

  u t uE I I   whenever u t 0  

This tells us that the process tI  is a martingale with respect to tB . 

It is a general property that Ito integrals are martingales. 

10.3 This integral can be thought of as the (limiting) sum of the small elements ttdB . 

The tdB ’s are random quantities with mean 0 and variance dt . So the expected value of each 

element is 0 and the variance is t dt2 . 

So: t tE I E t dB t E dB    
  

1 1
0 0

( ) ( ) 0  
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Also: 

 t tVar I t dB Var t dB   
  

1 1
0 0

( ) var ( )   

since the increments are independent.  So: 

 Var I t dt t    
11 2 31 1

3 30 0
( )  

10.4 Since tX  is a function of standard Brownian motion, tW , when applying Ito’s Lemma, we note 
that the stochastic differential equation for the underlying stochastic process (standard Brownian 
motion) is: 

 t tdW dW dt   1 0  

Let t t tG W X W   2( ) , then: 

 G
t





0  

 t
t

G W
W





2   

  
t

G
W






2

2 2    

Hence, using Ito’s Lemma from page 46 in the Tables we have: 

 t t tdG W dt W dW           
20 2 ½ 1 2 0 1 2  

ie t t tdX W dW dt  2  

Alternatively, using a Taylor Series expansion we have: 

 

t t
t t

t t t

t t

G G GdG dt dW dW
t W W

dt W dW dW

W dW dt

 

 

  
  
  

     

 

2
2

2

2

½ ( )

0 2 ½ 2 ( )

2

 

Remembering that tdW dt2( )  from the multiplication table. 
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10.5 (i) PDE for a martingale 

Taylor’s theorem (ignoring higher order terms) is given by  

    t t t
t t

f f fdf X t dt dX dX
t X X
  

  
  

2
2

2
1,
2

 

Substituting in for tdX  gives: 

        t t t t t
t tt

f f f fdf X t X t X t dt X t dB
t X XX

  
    

    
    

2
2

2
1

, , , ,
2

 

Note that in the function f we have explicit time dependence.  This gives the extra term f dt
t



 in 

the Taylor expansion. 

For a martingale we require zero drift and hence 

    t t
tt

f f fX t X t
t XX

   
  

 

2
2

2
1 , , 0
2

 

(ii) Verify that the equation holds 

Here t tX B  and we are looking at a function of standard Brownian motion. 

Note that t tdB dt dB   0 1 , so   0  and  1 , and the derivatives are: 

 f
t


 


1 , t
t

f B
X





2 , 
t

f
X





2

2 2  

Since the terms on the left-hand side of the equation in part (i) sum to zero, the equation 
holds.    

(iii) Find g t( )  

Again   0  and  1 .  Using the equation from part (i), we require: 

   t tg t B B   ½ 6 0   

So it follows that  g t  3  and hence  g t t 3  will do, ie t tB tB3 3  is a martingale.   

We could also have used g t t c  ( ) 3 , where c  is any constant. 
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10.6 (i) Solution for tX  

The process tX  is an Ornstein-Uhlenbeck process so that: 

  
t

t st
t sX X e e dB     0

0
 [1] 

(ii) Solution for tR  

The process tR 4  is an Ornstein-Uhlenbeck process so that:  

    
t

t st
t sR R e e dB       0

0
4 4  [½] 

which in this case becomes: 

  
t

t st
t sR e e dB     0.80.8

0
4  [½] 

    [Total 1] 

(iii) Distribution of tR  

Since  sdB N ds 0, , and these increments are independent, it follows that: 

  
t t

t st t
t

eR N e e ds N e


  
            


1.6

1.60.8 0.8

0

14 , 4 ,
1.6

 [2] 

In the long-term  t
t

R N


lim 4,0.625 . [1] 

    [Total 3] 

10.7 Starting with a Taylor Series expansion for tdY : 

     t t t t t
t

dY d f X dX f X dX
X

 
     

 

21ln 1 0.5  (1)       [1] 

where  f x
x

   
 

1
ln 1 .  We have: 

   x
f x

x x
x

  
   
 

2

2
1 1
1 1

  and   
   

x xf x
x xx x

    


2 222

2 1 1 2

1
 [2] 
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We also have: 

    t t tdX X X dt 2 22 1  [1] 

by using the 2 2  multiplication grid for increments, which tells us that dt 2( ) 0  and tdB dt  0 .  
Substituting this into (1), along with the derivatives of f  gives: 

 

      

 
 

t t t t t t t
t t

t
t t

t t

t

dY X X X dt X X dB
X X

X
X X dt

X X

dB

            

         



22
22

1 0.5 1 1 2 1
1

1 2
0.5 1

1

 [1] 

Alternatively, substituting the same partial derivatives as above into Ito’s Lemma on page 46 in 
the Tables, together with the drift and volatility functions: 

     t t t ta X X X X  0.5 1 1 2  

    t t tb X X X  1  

gives: 

 

    
 

 

t
t t t t t t

t t t t

t t t
t t

t

X
dY X X X X X dt

X X X X

X X dB
X X

dB

       
   

  




22
2 22

2

1 210.5 1 1 2 ½ 1
1

11

 [2] 

It follows by integrating and taking the initial condition X 0 0.5  (which implies Y 0 0 ) into 
account that: 

 t tY B      ie: t
t

B
X

 
  

 

1ln 1  [1] 

Rearranging gives: 
t

t BX
e




1

1
 [1] 

    [Total 7] 

10.8 (i) Stochastic differential tdS  

Rearranging the relationship given, we get: 

 tt B
tS S e  0   [½] 
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Since tS  is a function of standard Brownian motion, tB , when applying Ito’s Lemma, we note that 
the stochastic differential equation for the underlying stochastic process (standard Brownian 
motion) is: 

 t tdB dt dB   0 1  [½] 

Let tt B
t tG t B S S e   0( , ) , then: 

 tt B
t

G S e S
t

  
 

 0  [½] 

 tt B
t

t

G S e S
B

  
 

 0  [½] 

  tt B
t

t

G S e S
B

  
 



2
2 2

02
  [½] 

Hence, using Ito’s Lemma from page 46 in the Tables we have: 

 t t t t tdG S S S dt S dB            
2 20 ½ 1 1  [½] 

ie  t t t tdS S dt S dB    2½  [½] 

Alternatively, using a Taylor Series expansion we have: 

 

 

t t
t t

t t t t t

t t t

G G GdG dt dB dB
t B B

S dt S dB S dB

S dt S dB

  

  

  
  
  

   

  

2
2

2

2 2

2

½ ( )

½ ( )

½

 

Remember that tdB dt2( )  from the multiplication table. 

This can be written as: 

  t
t

t

dS
dB dt

S
     21

2  

So: c 1   and  c    21
2 2  [1] 

    [Maximum 4] 

(ii) Expressions for the mean and variance 

The expected value of tS  is: 

 t tt B Bt
tE S E S e S e E e   0 0[ ] [ ] [ ]  
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Since tB N t (0, ) , its MGF is tB tE e e 
2½[ ] . 

So: t t tt
tE S S e e S e     

22 ½½
0 0[ ]  [2] 

The variance of tS  is: 

 

 

t

t

t t t

t B t t

Bt t t

t t t t t t t

Var S E S E S

E S e S e

S e E e S e

S e S e S e e e

   

  

      

 



 

 

 

 

   

2

2

2 2 2 2

2 2

2 2 ½2 2
0 0

22 22 2
0 0

2 2 2 22 2 2 2
0 0 0

[ ] ( [ ])

[ ] ( )

[ ]

( )  [2] 

An alternative approach is to use the formulae for the mean and variance of the lognormal 
distribution. 
    [Total 4] 

(iii) Expressions for the covariance and conditional expectation 

The covariance of tS
1

 and tS
2

 is: 

  t t t t t tCov S S E S S E S E S 
1 2 1 2 1 2

, [ ] [ ] [ ]  

From above: 

 t t
tE S S e 

2
1 1

1
½

0[ ]   and  t t
tE S S e 

2
2 2

2
½

0[ ]  

The expected value of the product is: 

 
t t t t

t t
t t

E S S E S t B S t B

S e E B B

   

 

  

 

1 2 1 2

1 2
1 2

0 1 0 2

( )2
0

[ ] [ exp( ) exp( )]

[exp( )]
 

To evaluate this we need to split tB
2

 into two independent components: 

 t t t tB B B B  
2 1 2 1

( )   where  t tB B N t t 
2 1 2 1(0, )  
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We then get: 

 

t t
t t t t t t

t t
t t t

t t
t t t

t t

t tt t

E S S S e E B B B B

S e E B B B

S e E B E B B

S e t t t

S e e









 

 

 

 

 











   

  

 

 



1 2
1 2 1 1 2 1

1 2
1 2 1

1 2
1 2 1

1 2

2 23 1
1 21 2 2 2

( )2
0

( )2
0

( )2
0

( )2 2 2
0 1 2 1

( )2
0

[ ] [exp( { ( )})]

[exp(2 { })]

[exp(2 )] [exp( { })]

exp(2 ) exp[½ ( )]

 

Putting these together gives: 

 

  t tt t t t t t
t t

t t tt t

Cov S S S e e S e S e

S e e e e

     

  

  



 

 
  

 

2 23 1 2 2
1 21 2 1 1 2 22 2

1 2

2 2 23 1 1
1 1 21 2 2 2 2

( ) ½ ½2
0 0 0

( )2
0

, .

    [4] 

The conditional expectation is: 

 

t t t t

t
t t t t

t t t
t t t t

t t t t t t
t t

E S S E S t B B

S e E B B B B

S e B E B B B

S e e S e



 

   

 



  

   

 

  

 

 

2 1 2 1

2
1 2 1 1

1 2 1
1 2 1 1

2 2
2 1 2 1 2 1

1 1

0 2

0

( )
0

( ) ½ ( ) ( ½ )( )

[ | ] [ exp( )| ]

[exp( { ( )})| ]

exp( ) [exp( { })| ]

 [2] 

    [Total 6] 

(iv) Martingale 

We can rearrange the last result in the form: 

 t t
t t tE e S S e S      

2 2
2 1

2 1 1
( ½ ) ( ½ )[ | ]  

which shows that, subject to the convergence criterion, the process t
te S   2( ½ )  is a martingale 

with respect to tS{ } .  [1] 

This is an example of a ‘discounted’ security price process and it is a martingale.  Such processes 
are very important in the theory of derivative pricing. 

10.9 (i) Stochastic differential equation 

We know that: 

 t t tX S t W   log  
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So tX  satisfies the SDE: 

 t tdX dt dW    [1] 

(ii) Apply Ito’s Lemma 

We can now apply Ito’s Lemma to find the SDE for tS , which is a function of tX , namely 

t tS Xexp( ) .  

Now: 

 t
t

t

S
X

X





exp( )  

 t
t

t

S
X

X






2

2 exp( )  

and from (i) above , t tdX dt dW   , so the drift and volatility functions in the stochastic 

differential equation for tX  are   and   respectively. 

Hence, Ito’s Lemma gives: 

 
t t t t t

t t

dS X X dt X dW

S dt dW

  

  

  

  

2

2

[ exp( ) ½ exp( )] exp( )

[( ½ ) ]
 

‘Otherwise’ 

The ‘otherwise’ approach uses a Taylor Series expansion: 

 

 t t
t t t

t t

t t t t

t t t t

t t t t t

S S
dS dX dX

X X

X dX X dX

X dt dW X dt dW

X dt dW X dt dtdW dW

   

    

 
 
 

 

   

    

2
2

2

2

2

2 2 2 2

½

exp( ) ½exp( ) ( )

exp( )[ ] ½exp( )[ ]

exp( )[ ] ½exp( )[ ( ) 2 ( ) ]

 

We can then disregard the second order terms, except for tdW 2( ) , which we replace with dt . This 
gives: 

 
t t t t

t t

dS X dt dW X dt

S dt dW

  

  

  

  

2

2

exp( )[ ] ½exp( )

[( ½ ) ]
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(iii) Find the probability 

The probability that the share price will fall during a given year – say from time t 1  to time t  – 
is: 

 t
t t

t

S
P S S P

S


 
   

 
1

1
( ) 1  [½] 

From the equation given in the question, we know that: 

  t t
t t

t t

S t W
W W

S t W
 

 
  

 


   

  1
1 1

exp[ ]
exp ( )

exp[ ( 1) ]
 [½] 

Using the fact that t tW W N 1 (0,1) , we then find: 

 

 

 
t t t t

t t

t t

P S S P W W

P W W

P W W

 

 




 





      

   

      

      
 

1 1

1

1

( ) exp ( ) 1

( ) 0

0.06 ( 0.24) 0.405
0.25

 [2] 

    [Total 3] 
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Stochastic models of  

security prices 
 

 

 

Syllabus objectives 

4.4 Stochastic models for security prices 

4.4.1 Discuss the continuous-time lognormal model of security prices and the 
empirical evidence for or against the model. 
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0 Introduction 

Stochastic models of security prices are used to simulate future investment returns as an 
important part of processes such as asset-liability modelling and pricing derivatives using the 
Black-Scholes framework.   

Several basic types of models are available, each making different assumptions about the 
processes that generate investment returns.  Each will, in general, yield different results.  
Consequently, the results obtained should be analysed with regard to both the nature of the 
model and the values of the model parameters employed. 

This chapter focuses on one such model of security prices that is widely used in financial 
economics: the continuous-time lognormal model.  This model assumes that the log of security 
prices follows a continuous-time random walk with drift, or equivalently, the log of security prices 
follows a Brownian motion with drift.  The share prices themselves will therefore follow geometric 
Brownian motion as introduced earlier in the course. 

We will look at the empirical evidence both for and against this model. 

The Core Reading in this chapter is adapted from course notes written by Timothy Johnson. 
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1 Are stochastic processes good models for asset prices? 

Econometrics is concerned with identifying relationships between economic data: is there a 
relationship between market indices and interest rates; are long-term bonds preferable to 
short-term Treasury bills?  It involves inference – identifying a model – from discrete 
statistical data. 

In mathematics it is generally easier to work with continuous objects rather than discrete 
objects, a good example is that the normal distribution is used more widely than the 
binomial model, on which it is based.  Hence, modelling of complex financial entities is 
usually done using what are generally referred to as stochastic models. 

Many econometric models are ‘stochastic’, in that they involve randomness, however the 
approach in econometrics is to see this randomness as a consequence of ‘noise’ or 
‘uncertainty’; stochastic models represent randomness as the key driving force. 

The advantage of using rigorously defined mathematical objects is their definitions can be 
tested against intuition.  For example, the Wiener Process is defined as: 

(i)  starting at zero 

(ii)  is continuous 

(iii)  has independent increments 

(iv)  which are normally distributed.  

Clearly asset prices do not start at zero (they represent capital value so start at a value 
determined by initial capital). 

Asset prices are not continuous.  However fast algorithmic trading gets, trades are made at 
discrete points in time. 

The evidence that asset prices are Markovian tend to refer to ‘the long run’ and over shorter 
timeframes this assumption appears to fail.  Similarly, even if asset prices had stationary 
increments, it would be practically impossible to identify them, and they certainly don’t 
exhibit normally distributed increments. 

This analysis suggests that a Wiener process is not a good model for asset prices.  To 
correct for these short-comings, Ito diffusions are used to model asset prices, principally 
geometric Brownian motion (GBM).  GBM has lognormally distributed increments; this is an 
improvement on normally distributed increments in that the process does not hit zero.  

However, overriding these practical limitations, stochastic calculus enables sophisticated 
analysis to be undertaken that can result in closed form expressions for asset prices to be 
deduced. 
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2 The continuous-time lognormal model  

2.1 Definition 

The continuous-time lognormal model is another name for geometric Brownian motion.  Although 
the basic (non-geometric) Brownian motion model may be good at describing the movement of 
market indices in the short run, it is not very good in the long run for two reasons: 

1. Brownian motion without a positive drift is certain to become negative eventually.  Even 
with a positive drift, there is the possibility of negative security prices in the future, which 
isn’t very realistic. 

2. The Brownian motion model predicts that daily movements of size 10, say, would occur 
just as frequently when the process is at a level of 500 as when it is at a level of 5,000. 

We can remove these two problems by working with logs. 

The conventional continuous-time lognormal model of security prices assumes that log prices 
form a random walk.  If tS  denotes the market price of an investment, then the model states that, 
for u t , log returns are given by: 

             
2log log ,u tS S N u t u t  

where   is the drift, and   is the volatility. 

The parameter   is also known as the diffusion coefficient. 

Note that the   that appears in the lognormal model refers to the drift in the log price.  This is 

not quite the same as the average rate of drift of the price itself, which is   21
2 .  The 

corresponding stochastic differential equations for the log price and the price itself are 

    log t td S dt dW  and      21
2 )t t t tdS S dt S dW . 

Note that the parameterisation here is slightly different to that found in the previous chapter 
where we had: 

                 2 21
2log log ,u tS S N u t u t u t  and   t t t tdS S dt S dW  

This simply means that the values for the drift terms are different in each case, ie   

         21
2( )u t u t u t .  These parameters are specific to the investment considered.  

By definition: 

            
 

       
 

2 2log( ) log( ) log , ,u u
u t

t t

S SS S N u t u t LogN u t u t
S S

   

therefore the proportionate change in the share price from time t  to time u  (ie the percentage 
return) is lognormally distributed, and does not depend on tS . 
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2.2 Properties 

The lognormal model has the following properties: 

 The mean and variance of the log returns are proportional to the length of the interval 
considered  u t , and so the standard deviation of the log returns (often taken to be a 

measure of volatility) increases with the square root of the interval.   

 The dependence on the length of the interval means that the mean, variance and 
standard deviation tend to infinity as the length of the interval increases; the exceptions 
are the simplified cases where there is no drift in the log price    0  or where there is 

no volatility    0 .   

In other words, the mean will tend to infinity unless the log security price doesn’t drift and the 
standard deviation will tend to infinity unless there is no volatility.   

Assuming zero volatility would be an extreme simplification because it renders the model 
deterministic.  It means that there is nothing random about movements in the security price 
process, and in a no-arbitrage world the return on the security should equal the risk-free rate of 
interest because the security is itself risk-free. 

The lognormal model has often been used to model ordinary share prices, in which case   0  
represents the upward drift of log share prices due to growth in company profits, which is linked 
to other economic factors. 

The fact that the mean and standard deviation tend to infinity as the length of the time period 
increases isn’t necessarily as unrealistic as it may first appear.  Since we generally expect share 
prices to grow over time, in the very long run it is reasonable to expect that share prices will be 
very large indeed.  The increase in the uncertainty surrounding share prices over long future time 
periods is also consistent with the standard deviation tending to infinity. 

Although the mean and standard deviation of a security price will tend to infinity over time under 
this model, the mean and standard deviation of the annual changes in the log of the security price 
are constant.   

Question 

Explain why the mean and standard deviation of the annual changes in the log of the security 
price are constant under this model. 

Solution 

The change in the log of the security price is log( ) log( )u tS S .  This will always have the same 
distribution for any time period of length u t .   

So the expected value and standard deviation of annual changes in the log of the security price 
are constant. 
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 It is assumed that returns over non-overlapping intervals are independent of each other. 

This is because the normal variables generating the random variation in the log of the 
security price are assumed to be independent. 

 We can write the value of the investment at time u as: 

   exp( )u t u tS S X  

where        2,u tX N u t u t  

 This format should be familiar from earlier chapters. 

 Hence, we know that uS   is lognormally distributed and we can write: 

            21
2expu tE S S u t u t   

                   2 2 2exp 2 exp 1u tVar S S u t u t u t  

The mean and variance of the lognormal distribution for a random variable X  with 
parameters   and   are given on page 14 of the Tables: 

    2[ ] exp 2E X  

and       2 2( ) exp 2 exp( ) 1Var X  

2.3 Empirical tests of the lognormal model of security prices 

Empirical results for testing the lognormal model are mixed. 

As the model incorporates independent returns over disjoint intervals, it is impossible to use past 
history to deduce that prices are cheap or dear at any time.  This implies weak form market 
efficiency, and is consistent with empirical observations that technical analysis does not lead to 
excess performance. 

Recall from the material on the Efficient Markets Hypothesis that technical analysis involves using 
past data on asset prices to predict future price movements.  If the market is weak-form efficient, 
there is no advantage to be gained from technical analysis, as the current share price reflects all 
information contained in the price history of an investment. 

Before we move on to look at the evidence against the continuous-time lognormal model for 
share prices, it should be pointed out that this model is widely used.  For example, it is the 
assumed underlying process for share prices that we will use to price share options later on in the 
course.  This is largely due to the (relative) mathematical simplicity of the model. 

This model also has the advantage that share prices cannot become negative.  As we saw earlier: 

  exp( )u t u tS S X    where          2,u tX N u t u t  
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and we know that the exponential function does not take negative values. 

We now consider a number of weaknesses in the lognormal model in more detail. 

Volatility,   

The most obvious weakness is that estimates of   vary widely according to what time period is 
considered, and how frequently the samples are taken. 

For example, the volatility has been found to be greater in recessions and periods of financial 
crisis.  Also   can be estimated based on daily, monthly or annual share price records.  Even if the 
data used covers the same time period, this usually leads to different numerical estimates of  . 

We can also take some evidence from option prices.  Later in this course, we will discuss the 
Black-Scholes formula.  This formula expresses the price of an option as a function of several 
variables, one of which is  .  Hence, given the actual price of an option in the marketplace, 
together with values for all the other variables in the model (which we can actually observe), we 
can work backwards to derive the implied value for   that is consistent with that observed price.  
In other words, the price of an option tells us implicitly what the market believes the volatility of 
the security price to be. 

Examination of historical option prices suggests that volatility expectations fluctuate markedly 
over time. 

Drift parameter,   

A more contentious area relates to whether the drift parameter   is constant over time.  There 
are good theoretical reasons to suppose that   should vary over time.  It is reasonable to 
suppose that investors will require a risk premium on equities relative to bonds. 

The risk premium compensates the investor for the extra risk taken – both default risk (if 
compared to government bonds) and volatility of the share price. 

So, if the expected return on bonds is currently high, investors will require a correspondingly 
higher expected return on equities in order to make it worthwhile to hold them, instead of bonds.  
If this is not the case, then investors will sell equities and buy bonds until the expected returns are 
again brought back into line. 

Mean reversion 

One unsettled empirical question is whether markets are mean-reverting, or not.  A 
mean-reverting market is one where rises are more likely following a market fall, and falls are 
more likely following a rise. 

Hence, if returns have recently been above the long-run average level, then we might expect 
them to be lower than average over the next few periods, so that average returns revert back 
towards their long-run trend level. 

There appears to be some evidence for this, but the evidence rests heavily on the aftermath of a 
small number of dramatic crashes.   
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After a major crash, we might well expect the market to revert to its former level after sufficient 
time. 

In the continuous-time lognormal model, we know that returns over non-overlapping intervals are 
independent.  This implies that what happens over the next time period is unaffected by past 
experience, and is therefore inconsistent with evidence of mean-reversion. 

Momentum effects 

Furthermore, there also appears to be some evidence of momentum effects, which imply that a 
rise one day is more likely to be followed by another rise the next day. 

For example, if returns increase, then everyone may jump on the bandwagon and drive prices 
even higher. 

As above, this is inconsistent with the independent returns of the lognormal model. 

Normality assumption 

A further strand of empirical research questions the use of the normality assumption in market 
returns.  Actual returns tend to have many more extreme events, both on the upside and 
downside, than is consistent with such a model.  In particular, market crashes appear more often 
than one would expect from a normal (or lognormal) distribution.  Furthermore, days with no 
change, or very small change, also happen more often than the normal distribution suggests. 

While the lognormal model produces continuous price paths, jumps or discontinuities seem to be 
an important feature of real markets. 

Overall, the distribution of actual market returns appears to be more peaked (relating to days of 
little or no change) and with fatter tails (relating to extreme upside and downside events) than is 
consistent with strict normality. 

However, whilst a non-normal distribution can provide an improved description of the actual 
returns observed (in particular the greater frequency of more extreme events than would be the 
case under the lognormal model), the improved fit to empirical data comes at the cost of losing 
the tractability of working with normal (and lognormal) distributions. 

Question 

The shares of Abingdon Life can be modelled using a lognormal model in which   0.104  pa and 
  0.40  pa.  If the current share price is 2.00, derive a 95% confidence interval for the share 
price in one week’s time, assuming that there are exactly 52 weeks in a year.    

Solution 

Letting tS  denote the current share price and uS  denote the share price in one week’s time, we 
have: 

       1
520.104 0.40 2.00tS u t  
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So a 95% confidence interval for log( )uS  is given by: 

       log( ) log( ) ( ) 1.96u tS S u t u t  

Substituting in the relevant values gives: 

 

 

   

  



1
52

0.104log( ) log2 1.96 0.40
52

log2 0.002 0.1087

0.5864, 0.8039

uS

 

Therefore, a 95% confidence interval for next week’s share price is 0.5864 0.8039( , ) (1.80, 2.23)e e . 

 
Summary 

To summarise the points made in this section, the continuous-time lognormal model may be 
inappropriate for modelling investment returns because: 

 The volatility parameter   may not be constant over time.  Estimates of volatility from 
past data are critically dependent on the time period chosen for the data and how often 
the estimate is re-parameterised. 

 The drift parameter   may not be constant over time.  In particular, bond yields will 
influence the drift. 

 There is evidence in real markets of mean-reverting behaviour, which is inconsistent with 
the independent increments assumption. 

 There is evidence in real markets of momentum effects, which is inconsistent with the 
independent increments assumption. 

 The distribution of security returns  log u tS S  has a taller peak in reality than that 

implied by the normal distribution.  This is because there are more days of little or no 
movement in financial markets. 

 The distribution of security returns  log u tS S  has fatter tails in reality than that implied 

by the normal distribution.  This is because there are more extreme movements in 
security prices. 

 The sample paths of security prices are not continuous, but instead appear to jump 
occasionally. 

2.4 Market efficiency 

It is important to appreciate that many of the empirical deviations from the lognormal model do 
not imply market inefficiency. 

If we believe in market efficiency, then we must be able to explain how an efficient market can be 
consistent with the evidence we’ve given above. 
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For example, periods of high and low volatility could easily arise if new information sometimes 
arrived in large measure and sometimes in small.  Market jumps are consistent with the arrival of 
information in packets rather than continuously.  Even mean reversion can be consistent with 
efficient markets.  After a crash, many investors may have lost a significant proportion of their 
total wealth.  It is not irrational for them to be more averse to the risk of losing what remains.  As 
a result, the prospective equity risk premium could be expected to rise. 

Consequently, the hypothesis of market efficiency can be difficult to disprove. 

Many orthodox statistical tests are based around assumptions of normal distributions.  If we 
reject normality, we will also have to retest various hypotheses.  In particular, the evidence for 
time-varying mean and volatility is greatly weakened.   
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Chapter 11 Summary 

The continuous-time lognormal model 

    2ln ln ( ), ( )u tS S N u t u t  where tS  is the share price at time t,   is the drift 

parameter,  is the volatility parameter and u t . 

      1 2
2

[ ] exp ( ) ( )u tE S S u t u t  

                 2 2 2exp 2 exp ( ) 1u tVar S S u t u t u t  

 The mean and variance of the log returns are proportional to the interval u t . 

 ln tS  has independent and stationary increments. 

 ln tS  has continuous sample paths. 

The continuous-time lognormal model may be inappropriate for modelling investment 
returns because: 

 The volatility parameter   may not be constant over time.  Estimates of volatility 
from past data are critically dependent on the time period chosen for the data and 
how often the estimate is re-parameterised. 

 The drift parameter   may not be constant over time.  In particular, bond yields will 
influence the drift. 

 There is evidence in real markets of mean-reverting behaviour, which is inconsistent 
with the independent increments assumption. 

 There is evidence in real markets of momentum effects, which is inconsistent with 
the independent increments assumption. 

 The distribution of security returns  log u tS S  has a taller peak in reality than that 

implied by the normal distribution.  This is because there are more days of little or 
no movement in financial markets. 

 The distribution of security returns  log u tS S  has fatter tails in reality than that 

implied by the normal distribution.  This is because there are more extreme 
movements in security prices. 

 The sample paths of security prices are not continuous, but instead appear to jump 
occasionally. 
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This page has been left blank so that you can keep the chapter 
summaries together for revision purposes. 
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Chapter 11 Practice Questions 

11.1 Explain what is meant by the continuous-time lognormal model of security prices. 

11.2 When valuing derivatives it is often assumed that the price of the underlying security follows a 
geometric Brownian motion with stochastic differential equation: 

   ( )t t tdS S dt dZ  

where tZ  represents a standard Brownian motion. 

List the advantages and disadvantages of this assumption. 

11.3 An investor has decided to model PPB plc shares using the continuous-time lognormal model.  
Using historical data, the investor has estimated the annual drift and volatility parameters to be 
6% and 25% respectively.  PPB’s current share price is $2. 

(i) Calculate the mean and variance of PPB’s share price in one year’s time. [3] 

(ii) Calculate the probability that:  

 (a) PPB’s shares fall in value over the next year. 

 (b) PPB’s shares yield a return of greater than 30% over the next year. 

 Assume that no dividends are to be paid over the next year. [4] 
    [Total 7] 

  

Exam style 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 11 Solutions 

11.1 The continuous-time lognormal model of security prices assumes that log prices form a random 
walk in continuous time. 

If tS  denotes the market price of an investment at time t , then the model states that, for u t , 
log returns are given by: 

     2log( ) log( ) ( ), ( )u tS S N u t u t  

where   is the parameter associated with the drift and   is the parameter associated with the 
volatility. 

The values of   and   are specific to the investment considered. 

Under the continuous-time lognormal model, the proportional change in the price is lognormally 
distributed, so that returns over any interval do not depend on the initial value of the 
investment, tS .  

The mean and variance of the log returns are proportional to the length of the interval 
considered ( )u t . 

It is assumed that returns over non-overlapping intervals are independent of each other. 

11.2 Geometric Brownian motion gives rise to a lognormal model for share prices. 

Advantages 

 This assumption makes the mathematics more tractable than other more complex 
models. 

 Share prices cannot become negative in this model. 

 The variance of the returns in a particular period is proportional to the length of that 
period, which seems intuitively reasonable. 

 A lognormal model for share prices with independent returns in non-overlapping time 
intervals is consistent with the assumption that markets are efficient (at least, in weak 
form). 

 The return and risk characteristics of the underlying share (given by   and  ) are 
expressed as a proportion of the current share price, rather than in absolute terms. 
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Disadvantages 

 In reality, share price movements may not be consistent with such a process, which 
generates continuous sample paths.  For example, prices may ‘jump’, ie change suddenly 
by a significant amount. 

 Also, in reality,   and   are not constant.  For instance, the drift parameter might 
depend on interest rates, and studies of historical option prices suggest that investors’ 
expectations of volatility fluctuate markedly over time. 

 Historical evidence suggests that large movements in prices are more common than the 
lognormal distribution implied would suggest. 

 Historical evidence also suggests that days of little or no movement in prices are more 
common than the lognormal distribution implied would suggest. 

 The assumption of an efficient market may be invalid.  

 There is evidence that share prices exhibit momentum effects in the short-term and 
mean-reversion in the long-term.  This contradicts the property of independent 
increments. 

11.3 (i) Mean and variance of PPB’s share price in one year’s time 

Based on the information given in the question:  

    2
1 0log log ,S S N  [1] 

So, using the formulae for the mean and variance of the lognormal distribution from page 14 in 
the Tables, we have: 

       
2

1 0 0 exp ½E S S S  

           2 2 2
1 0 0 exp 2 exp 1Var S S S  

So, with   0.06, 0.25  and 0 2S  we have: 

         
2

1 0 2 exp 0.06 ½ 0.25 2.1911E S S  [1] 

            2 2 2
1 0 2 exp 2 0.06 0.25 exp 0.25 1 0.30963Var S S  [1] 

    [Total 3] 
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(ii)(a) Probability that PPB’s shares fall in value over the next year 

Here we want the probability that 1 0S S . 

 

 

 

 
   

 

  
   

   

  
  

   
 
 
  

1
1 0

0

1

0

1

0

1

log log 1

log 0.06
0 0.06

0.25 0.25

SP S S P
S

SP
S

S
S

P  [1] 

Therefore: 

             1 0 0.24 1 (0.24) 1 0.59483 0.40517P S S P Z  [1] 

So, there is a probability of almost 41% that the share price will fall over the next year. 

(ii)(b) Probability that PPB’s shares yield more than 30% over the next year 

Here we want the probability that 1 01.30S S . 

 

 

 

 

 
   

 

  
   

   

  
      

 
 
  

1
1 0

0

1

0

1

0

1.30 1.30

log log 1.30

log 0.06
log 1.30 0.06

0.25 0.25

SP S S P
S

SP
S

S
S

P  [1] 

Therefore: 

           1 01.30 0.80946 1 (0.80946) 1 0.79087 0.20913P S S P Z  [1] 

So, there is an approximately 21% chance that the share will yield a return of 30% or more over 
the next year.  [Total 4] 

The relatively high probabilities in both (a) and (b) reflect the volatility parameter of 25%, which 
isn’t unrealistic for an individual share. 
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Characteristics of derivative 

securities 
 

 

Syllabus objectives 

6.1 Option pricing and valuations 

6.1.1 State what is meant by arbitrage. 

6.1.2 Outline the factors that affect option prices. 

6.1.3 Derive specific results for options which are not model dependent: 

 Show how to value a forward contract. 

 Develop upper and lower bounds for European and American call and 
put options. 

 Explain what is meant by put-call parity. 
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0 Introduction 

A derivative is a security or contract which promises to make a payment at a specified time 
in the future, the amount of which depends upon the behaviour of some underlying security 
up to and including the time of the payment. 

The value of the derivative contract at any time is therefore derived from that of the underlying 
security – which is itself often referred to simply as the underlying.  The underlying asset could be 
a share, bonds, index, interest rate, a currency, or a commodity such as gold or wheat. 

Much of the remainder of this course focuses on the mathematics underlying the valuation of 
derivatives.  After this introductory chapter, Part 3 outlines the more detailed analysis and 
procedures used to value derivatives and, in particular, options. 

An option gives an investor the right, but not the obligation, to buy or sell a specified asset 
on a specified future date. 

Options are contracts agreed between investors to trade in an underlying security at a given date 
at a set price.  The holder of the option is not obliged to trade – hence the name ‘option’ – and 
will only do so if it is profitable.  The other party, known as the ‘writer’, is obliged to trade if the 
holder of the option wants to.  The writer of an option collects a premium from the holder for 
giving the holder the right to exercise (or not) the option.  

There are two basic types of option: 

A call option gives the right, but not the obligation, to buy a specified asset on a set date in 
the future for a specified price. 

A put option gives the right, but not the obligation, to sell a specified asset on a set date in 
the future for a specified price. 

From these two types of option, there are four positions that an investor could take: 

1. holding (ie buying) a call option 

2. holding (ie buying) a put option 

3. writing (ie selling) a call option 

4. writing (ie selling) a put option. 

Question 

Explain why buying a put is not the same as selling a call. 

Solution 

The difference is between right and obligation.   

Buying a put costs money and allows the buyer to choose whether or not to sell the underlying 
asset.  The buyer of a put option is likely to choose to sell the underlying asset if the market price 
is less than the exercise (or strike) price.   
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Selling a call means that the seller receives money and must sell the underlying asset if, and only 
if, the holder of the call option wants to.  The writer of a call option is likely to be forced to sell the 
underlying asset if the market price exceeds the exercise (or strike) price. 

 
Timing 

Some options can be exercised only on the specified ‘expiry’ or ‘exercise’ date; others can be 
exercised on any working day prior to expiry.  These are respectively known as ‘European’ and 
‘American’ options. 

A European option is an option that can only be exercised at expiry. 

An American option is one that can be exercised on any date before its expiry. 

Terminology 

A long position on a contract is when the contract has been purchased, while a short 
position is when the contract is sold. 

So, the buyer/holder of an option has a long position in the option, and the seller/writer of an 
option has a short position. 

Therefore, a long position on a European option gives the holder the right but not the 
obligation to exercise the option.  The holder of the short position will then be obliged to 
exercise it. 

‘Long’ and ‘short’ do not only apply to options – they can be applied to any asset.  So, for 
example, ‘a long position in a share’ means ‘owning the share’. 

Question 

An investor has a short position in an American put option with an exercise price of 20p and an 
October expiry date. 

Describe the nature of the contract that the investor has entered. 

Solution 

The investor has given another person the right, but not the obligation, to sell the underlying 
asset to the investor at a price of 20p at any time up to a date in the following October.   

In return, the investor will have received a premium. 
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1 Arbitrage 

One of the central concepts in this area of financial economics is that of arbitrage. 

1.1 Definition 

Put in simple terms, an arbitrage opportunity is a situation where we can make a certain 
profit with no risk.  This is sometimes described as a free lunch.  Put more precisely, an 
arbitrage opportunity means that: 

(a) we can start at time 0 with a portfolio that has a net value of zero (implying that we 
are long in some assets and short in others).   

This is usually called a zero-cost portfolio. 

(b) at some future time T: 

 the probability of a loss is 0 

 the probability that we make a strictly positive profit is greater than 0. 

If such an opportunity existed then we could multiply up this portfolio as much as we 
wanted to make as large a profit as we desired.  The problem with this is that all of the 
active participants in the market would do the same and the market prices of the assets in 
the portfolio would quickly change to remove the arbitrage opportunity. 

So, if we can find a strategy, or an investment portfolio, that gives an arbitrage profit, then we can 
simply repeat this strategy, or buy this investment portfolio, as many times as possible before 
asset prices change to ‘close out’ this opportunity for arbitrage profit. 

1.2 The principle of no arbitrage 

The principle of no arbitrage states simply that arbitrage opportunities do not exist. 

This principle is vital to the pricing of derivative securities.  Essentially, any two assets that behave 
in exactly the same way must have the same price.  If this were not true, we could buy the ‘cheap’ 
one and sell the ‘expensive’ one as many times as we liked, making an unlimited arbitrage profit! 

If we assume that there are no arbitrage opportunities in a market, then it follows that any 
two securities or combinations of securities that give exactly the same payments must have 
the same price.  This is sometimes called the ‘law of one price’.  The ideas are demonstrated 
in the following examples. 

Example 1 

Consider a very simple securities market, consisting of two securities, A and B.  At time 

0t   the prices of the securities are 0
AP  and 0

BP respectively.  The term of both the 

securities is 1 year.  At 1t   there are two possible outcomes.  Either the ‘market’ goes up, 

in which case security A pays 1 ( )AP u and B pays 1 ( )BP u , or it goes down, with payments 

1 ( )AP d and 1 ( )BP d  respectively. 
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Investors can buy securities, in which case they pay the time 0 price and receive the time 1 
income, or they can sell securities, in which case they receive the time 0 price and must pay 
the time 1 outgo. 

Now, assume that we have the following payment table: 

Security 
Time 0 price 

0P  
£ 

Market goes up 

1( )P u  

£ 

Market goes down 

1( )P d  

£ 

A 6 7 5 

B 11 14 10 

 
There is an arbitrage opportunity here.  An investor could buy one unit of security B and sell 
two units of security A.  This would give income at time 0 of £12 from the sale of security A 
and an outgo of £11 from the purchase of security B – which gives a net income at time 0 of 
£1.  At time 1 the outgo due on the portfolio of 2 units of security A exactly matches the 
income due from security B, whether the market moves up or down.  Thus, the investor 
makes a profit at time 0, with no risk of a future loss. 

It is clear that investment A is unattractive compared with investment B.  This will cause 
pressure to reduce the price of A and to increase the price of B, as there will be no demand 
for A and an excessive demand for B.  Ultimately we would achieve balance, when 

0 0 / 2A BP P , when the arbitrage opportunity is eliminated, and the prices are consistent. 

The situation where 0 0 / 2A BP P  satisfies the ‘law of one price’ introduced earlier. 

Example 2 

Now, consider the following table: 

Security 
Time 0 price 

0P  
£ 

Market goes up 

1( )P u  

£ 

Market goes down 

1( )P d  

£ 

A 6 7 5 

B 6 7 4 

 
An arbitrage opportunity exists, as an investor could buy one unit of A and sell one unit of 
B.  The net income at time 0 is £0, as the income from the sale of B matches the outgo on 
the purchase of A.  At time 1 the net income is £0 if the market goes up, and £1 if the market 
goes down.  So, for a zero investment, the investor has a possibility of making a profit 
(assuming the probability that the market goes down is not zero) and no possibility of 
making a loss. 

With these prices, investors will naturally choose to buy investment A and will want to sell 
investment B.  This will put pressure on the price of A to increase, and on the price of B to 

decrease.  The arbitrage opportunity is eliminated when 0 0 .A BP P  

From this point on, when considering derivative pricing, we will work with the assumption that no 
arbitrage opportunities exist. 
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2 Preliminary concepts 

2.1 Notation 

We will now consider options in more detail, starting by introducing the notation we will need: 

t  is the current time 

tS  is the underlying share price at time t 

K  is the strike or exercise price 

T  is the option expiry date 

tc  is the price at time t of a European call option 

tp  is the price at time t of a European put option 

tC  is the price at time t of an American call option 

tP  is the price at time t of an American put option 

r  is the risk-free continuously compounding rate of interest (assumed constant) 

Alternatively, we could describe r  is the risk-free force of interest. 

2.2 European call options 

As we have already seen, the buyer of a European call option has the right, but not the obligation, 
to buy the share from the seller of the option on a set date, usually referred to as the exercise 
date (or expiry date).  Conversely, the seller or writer of the option, who has no choice, is obliged 
to deliver the share should the holder of the option exercise the option. 

If at time T  the share price TS  is less than the strike price, then the holder would lose money by 

exercising the option to buy.  So, in fact, the option will not be exercised if TS K .  This is 
because the holder of the option would be silly to pay K  for the share when it could be purchased 
for TS  (< K) in the open market.  In this case, the holder of the option simply walks away and 
‘loses’ the premium originally paid for the option itself.  Conversely, the writer of the option gets 
to keep the premium received at the outset and therefore makes an overall profit on the deal 
equal in value to that premium. 

If TS K , then the holder can buy the share at the strike price and sell immediately at the market 

price, TS  , receiving a positive cashflow at expiry of TS – K. 

Here the option should be exercised because it generates a positive cashflow for the holder.   

Question 

Determine the cashflow at expiry for the writer of the call option in this latter case. 
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Solution 

The writer of the option experiences a cashflow of   0TK S .  This is because the writer is obliged 

to sell the share at K  when it is in fact worth TS K . 

 
The holder’s net cashflow at the expiry date is called the ‘payoff’.  The payoff on a European call 
option is therefore: 

   ( ) max ,0T Tf S S K  at time T. 

To purchase a traded option the buyer must pay the seller an option premium when the contract 
is made. 

As always, the writer of the option makes a profit or loss that is equal and opposite to that of the 
buyer, so that the total profit or loss to the two parties sums to zero. 

The writer of the option keeps the premium regardless of whether or not the option is ultimately 
exercised.  It is paid by the buyer to the writer in order to enjoy the choice conferred by holding 
the option.  Remember that the writer has no such choice, but must trade if the buyer wishes to 
do so.  Later in this chapter, we will discuss the factors that influence the value of the option, 
ie how much the premium should be. 

A call option is described as: 

 in-the-money if the current price, tS  , is greater than the strike price, K 

 out-of-the-money if tS < K 

 at-the-money if tS = K. 

Hence, an in-the-money call option is one that would result in an immediate profit – ignoring the 
premium originally paid – if it could be exercised now, whereas an out-of-the-money option 
would produce an immediate loss.  Recall that if the option is European then it can be exercised 
only at the expiry date. 

Example 

Suppose that the current price of Share X is 115 and that a European call option is available on 
Share X with an exercise price of 110. 

The option is currently in-the-money, as the share price exceeds the exercise price.   

If the share price remained unchanged until the exercise date, then the holder of the option 
would exercise it, to generate a positive cashflow of 5.   

If instead the share price fell to 105 at the exercise date, the option would not be exercised, as 
the share would then be worth less than the exercise price, and the option holder would be able 
to buy the share more cheaply on the open market. 
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2.3 European put options 

The holder of a European put option has the right to sell one share at time T  to the writer at the 
strike price K. 

Again the choice, in this case to sell the share on the specified exercise date, lies with the buyer of 
the option, who is not obliged to sell.  As before, the writer of the put is obliged to buy the share 
from the option holder should the latter exercise the option to sell. 

The option will only be exercised if TS  < K and the payoff is, therefore: 

 f( TS ) = max{K – TS  , 0} at time T. 

Question 

Explain why a European put option is exercised only if TS  < K. 

Solution 

A European put option should be exercised if TS K  because the option holder would then be 

able to sell the share for K  when it is worth only TS .  The holder’s cashflow at expiry would be 

  0TK S  in this case, and as this is positive, it is worthwhile exercising the option.   

Conversely, if TS K , the holder would be silly to sell the share to the writer of the put option for 

K, when it could instead be sold for TS  in the open market. 

 
A put option is described as: 

 in-the-money if tS  < K 

 out-of-the-money if tS  > K 

 at-the-money if tS = K. 

As before, an in-the-money option is one that would result in an immediate profit – ignoring the 
premium originally paid – if it could be exercised now, whereas an out-of-the-money option 
would produce an immediate loss. 

2.4 American options 

Recall that the only difference between an American and a European option is that with an 
American option the holder can exercise the option before the expiry date, not just on the expiry 
date, as is the case for a European option.  As always, the writer of the option is obliged to trade 
should the holder wish to do so. 

Note that the names European option and American option have arisen for historical reasons.  
There is no longer any direct link with the place where the contracts are traded. 
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2.5 Other terminology 

Intrinsic value 

The intrinsic value of a derivative is the value assuming expiry of the contract immediately 
rather than at some time in the future.  For a call option, for example, the intrinsic value at 
time t is simply: 

 max ,0tS K  

Question 

Write down the intrinsic value of a put option at time t. 

Solution 

The intrinsic value of a put option at time t is either: 

 K – tS  if the exercise price exceeds the share price – in which case it will be exercised, or 

 0 if the exercise price is less than the share price – in which case it will not be exercised. 

So, overall, the intrinsic value of a put option is max{ ,0}tK S . 

 
Thus, the intrinsic value of an option is: 

 positive, if it is in-the-money 

 equal to zero, if it is at-the-money 

 equal to zero, if it is out-of-the-money. 

Time value 

The time value or option value of a derivative is defined as the excess (or the shortfall) of an 
option’s current price over its intrinsic value.   

It primarily represents the value of the choice that the option provides to its holder.  The more 
valuable the choice is to the holder, perhaps because of the greater uncertainty there is about 
future share price movements for example, the greater is the time value. 
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3 Factors affecting option prices 

3.1 Introduction 

A number of mathematical models are used to value options.  One of the more widely used 
is the Black-Scholes model.  This uses five parameters to value an option on a 
non-dividend-paying share.  The five parameters are: 

 the underlying share price, tS  

 the strike price, K 

 the time to expiry, T – t 

 the volatility of the underlying share,   

 the risk-free interest rate, r . 

In the case of a dividend-paying share, we can consider dividends to be a sixth factor. 

Here the price of an option means the size of the option premium paid at the outset. 

3.2 Underlying share price 

The first parameter is the initial price of the underlying share at time t, tS . 

The effect of the price of the underlying share on a typical call option is shown in 
Figure 12.1.   

 

Figure 12.1: Call option (with strike price 100) premium and intrinsic value  
as a function of the current share price, St  

The dotted line in the graph represents the intrinsic value.  The time value is therefore the vertical 
distance between the actual price, ie premium, and the intrinsic value.  For a call option on a 
non-dividend-paying share this is always positive. 
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Note that the price for a call option is always greater than the intrinsic value.  This follows 
on from the lower bound derived below, namely that: 

 r T t
t t tc S Ke S K      

ie         
( )max ,0 max ,0r T t

t t tc S Ke S K = intrinsic value  

The share price affects the option price (or premium) differently for call options and put options. 

Question 

Suppose that the price of Share X is 112 and that a put option on Share X with an exercise price of 
110 is currently priced at 5.   

Calculate the intrinsic value and time value of the option. 

Solution 

If   112, 110 and 5t tS K p , then: 

 Intrinsic value  =        max , 0 max 110 112, 0 0tK S  

 Time value  =  total value   intrinsic value   5 0 5  

 
Call option 

In the case of a call option, a higher share price means a higher intrinsic value (or, where 
the intrinsic value is currently zero, a greater chance that the option is in-the-money at 
maturity).  A higher intrinsic value means a higher premium. 

Put option 

For a put option, a higher share price will mean a lower intrinsic value and a lower premium.   

In each case, the change in the value of the option will not match precisely the change in 
the intrinsic value because of the later timing of the option payoff. 

So, the time value is not constant with respect to share price.  The graph shows that the time 
value is greatest when there is more uncertainty in the outcome.  When the share price is well 
above or below the exercise price, the question of whether exercise will take place is more 
certain, so the time value is smaller.  The uncertainty is greatest when the share price is around 
the exercise price. 

3.3 Strike price 

In the case of a call option, a higher strike price means a lower intrinsic value.  A lower 
intrinsic value means a lower premium.  For a put option, a higher strike price will mean a 
higher intrinsic value and a higher premium.  In each case the change in the value of the 
option will not match precisely the change in the intrinsic value because of the later timing 
of the option payoff. 
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3.4 Time to expiry, T – t 

The longer the time to expiry, the greater the chance that the underlying share price can 
move significantly in favour of the holder of the option before expiry.  So the value of an 
option will increase with term to maturity.  This increase is moderated slightly by the 
change in the time value of money. 

Question 

We can also note that the longer the time to expiry, the greater the chance that the underlying 
share price can move against the holder of the option before expiry.   

Justify, therefore, why the value of a call option increases with term to maturity. 

Solution 

Consider the holder of a call option.  Although a longer time to expiry does mean that there is a 
greater chance that the share price can fall a long way, this does not fully offset the value of the 
chance of greater profits if the price goes up.  This is because once the share price goes below the 
exercise price K, the option will not be exercised and the holder simply loses the premium paid at 
outset. 

Now, regardless of how far the share price goes down, the maximum loss that the holder can 
make in this instance is the premium paid at the outset, whereas the maximum profit if the price 
goes up is unlimited.  Thus, the holder of the option faces an asymmetric risk – ie lots of upside 
profit potential and limited downside risk.  Consequently, the more chance there is of the share 
price moving a long way, the more valuable the option. 

 
Whereas this is true for all the simple call options we consider in this course, it may not be true 
for a deeply in-the-money European put option.  This is because the guaranteed gain from being 
able to exercise the option and receive money sooner could be worth more than the possible gain 
from the share price moving in your favour over a longer period to expiry. 

3.5 Volatility of the underlying share 

Within this context, volatility refers to the general level of variability in the market price of the 
underlying share. 

The higher the volatility of the underlying share, the greater the chance that the underlying 
share price can move significantly in favour of the holder of the option before expiry.  So 
the value of an option will increase with the volatility of the underlying share. 

The argument here is the same as for the time to expiry.  Note that the holder of an option will 
therefore like volatility or risk, whereas with most other assets we dislike risk and consequently 
place a lower value on a riskier asset. 
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3.6 Interest rates 

An increase in the risk-free rate of interest will result in a higher value for a call option 
because the money saved by purchasing the option rather than the underlying share can be 
invested at this higher rate of interest, thus increasing the value of the option. 

Buying a call option and later exercising it can be broadly compared with buying the share 
directly.  By using the call option the buyer is deferring the payment of the bulk of the purchase 
price and can earn extra interest during the period until exercising the option (although the buyer 
will then miss out on any dividends). 

For a put option, higher interest means a lower value. 

This is because put options can be purchased as a way of deferring the sale of a share.  Comparing 
this strategy with an immediate sale of the share, we see that the investor’s money is tied up in 
the share for longer, and so is not benefiting from the higher interest rate. 

The basic Black-Scholes model can be adapted to allow for a sixth factor determining the 
value of an option: 

3.7 Income received on the underlying security 

In many cases the underlying security might provide a flow of, say, dividend income.  
Normally such income is not passed onto the holder of an option.  Then the higher the level 
of income received, the lower is the value of a call option, because by buying the option 
instead of the underlying share the investor foregoes this income.  The reverse is true for a 
put. 

Question 

Consider an American put option on a non-dividend-paying share.  

List the five factors that determine the price of this option and, for each factor, state whether an 
increase in its value produces an increase or a decrease in the value of the option. 

Solution 

The five factors and the effect of an increase in each of them on an American put option are: 

Factor Value of American put option will …  

share price decrease 

exercise price  increase 

time to expiry increase 

volatility of share price increase 

risk-free rate of interest decrease 
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3.8 The Greeks and risk management 

So far, we have discussed the factors that affect the price of a derivative contract and suggested 
what happens to the price when you increase or decrease each factor.  In addition, we can try to 
quantify what the change in the price will be in response to a change in one of the factors, while 
holding the others constant.  In other words, we can calculate the (partial) derivative of the 
derivative price with respect to each of the above factors.  These (mathematical) derivatives are 
given Greek letters and are collectively known as ‘the Greeks’.  The Greeks are covered in more 
detail in a later chapter. 

In the same way that we can consider the price of a single derivative contract, we can also work 
out the effect of the various factors on a whole portfolio of shares and derivatives – we simply 
add up the Greeks for each constituent.  These Greeks can then tell us about the exposure to risk 
of our portfolio, eg what will happen to the value of our portfolio if share prices fall by 10%, or the 
risk-free interest rate increases by 1%, and so on.  The Greeks can therefore be used to manage 
risk.   
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4 Pricing forward contracts 

4.1 Introduction 

We now consider a different type of derivative to a share option – the forward contract. 

A forward contract is the most simple form of derivative contract.  It is also the most simple 
to price in the sense that the forward price can be established without reference to a model 
for the underlying share price. 

The ‘forward price’ is the price the holder agrees to pay for the asset at the expiry date.  So it 
corresponds to the exercise price for an option. 

When pricing call options and put options later in the course using the Black-Scholes framework, 
we will assume that the underlying share price follows geometric Brownian motion.  In order to 
calculate a forward price, however, no such assumption is needed. 

A forward contract is an agreement made at some time  0t , say, between two parties 
under which one agrees to buy from the other a specified amount of an asset (denoted S) at 
a specified price on a specified future date.  The investor agreeing to sell the asset is said to 
hold a short forward position in the asset, and the buyer is said to hold a long forward 
position. 

The underlying asset for a forward contract could be one of several types, eg a commodity 
(such as gold) or a financial security (such as a share).  Here we will consider primarily shares. 

Suppose that, besides the underlying share, we can invest in a cash account that earns 
interest at the continuously compounding rate of r per annum.  

The forward price K should be set at a level such that the value of the contract at time 0 is 
zero (that is, no money changes hands at time 0). 

In other words, there is no initial premium to pay when entering a forward contract. 

Example 

Investor A agrees to sell 1,500 of Company X’s shares in six months’ time to Investor B at a price 
of £1.40 per share.  So, £1.40 is the forward price of one share. 

Suppose that six months later Company X’s share price is £1.35.  Investor A then has to sell 1,500 
shares, with a current market value of £2,025, for £2,100, and so makes a profit from the forward 
contract of £75.  Similarly, Investor B has to buy the shares for a loss of £75. 

4.2 Calculating the forward price for a security with no income 

We now move on to determining the fair price for a forward contract.   

We start off with the case where the underlying asset pays no income over the duration of the 
forward contract, and we demonstrate two proofs of the formula for the forward price in this 
case. 
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Proposition 

The fair or economic forward price is 0
rTK S e . 

Proof (a) 

Before showing the actual proof, we will first demonstrate that when the forward is priced 
correctly, everything works well. 

Suppose, first, that we have set the forward price at 0
rTK S e . 

We also suppose that we take a short forward position, ie agree to sell the asset at time T . 

At the same time we can borrow an amount 0S  in cash (subject to interest at rate r) and buy 

one share.  The net cost at time 0 is then zero. 

The forward contract costs nothing and the share costs 0S , which we have borrowed. 

At time T we will have: 

 one share worth TS  on the open market 

 a cash debt of 0
rTS e   

 a contract to sell the share at the forward price K . 

Therefore we hand over the one share to the holder of the forward contract and receive K.  

At the same time we repay the loan: an amount 0
rTS e . 

Since 0
rTK S e  we have made a profit of exactly 0.  There is no chance of losing money on 

this transaction, nor is there any chance of making a positive profit.  It is a risk-free trading 
strategy. 

So  0
rTK S e  appears to be the correct forward price.  The actual proof is one of contradiction.  

We will follow the same procedure as above in the case where  0
rTK S e  and demonstrate that 

this would allow an arbitrage profit. 

Now suppose instead that 0
rTK S e .  We can issue one forward contract and, at the same 

time, borrow an amount 0S  in cash (subject to interest at rate r) and buy one share.  The net 

cost at time 0 is zero.   

At time T we will have: 

 one share worth TS  on the open market 

 a cash debt of 0
rTS e   

 a contract to sell the share at the forward price K . 

Therefore we hand over the one share to the holder of the forward contract and receive K.  

At the same time we repay the loan: an amount 0
rTS e . 
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Since 0
rTK S e  we have made a guaranteed profit, having made no outlay at time 0. 

This is an example of arbitrage: that is, for a net outlay of zero at time 0 we have a 
probability of 0 of losing money and a strictly positive probability (in this case equal to 1) of 
making a profit greater than zero. 

Instead of issuing one contract at this price, why not issue lots of them and we will make a 
fortune? 

In practice a flood of sellers would come in immediately, pushing down the forward price to 

something less than or equal to 0
rTS e .  In other words, the arbitrage possibility could exist 

briefly, but it would disappear very quickly before any substantial arbitrage profits could be 
made. 

Having shown that  0
rTK S e  leads to arbitrage opportunities, we complete the proof by 

contradiction by showing that  0
rTK S e  also leads to arbitrage opportunities. 

Now suppose that 0
rTK S e . 

We follow the same principles.  At time 0: 

 buy one forward contract 

 sell one share at a price 0S  

 invest an amount 0S  in cash. 

The net value at time 0 is zero. 

Above, ‘buy one forward contract’ means the same as ‘take a long position in the forward 
contract, ie agree to buy the asset’. 

At time T: 

 we have cash of 0
rTS e  

 we pay  0
rTK K S e  for one share, after which our net holding of shares is zero 

 the shareholding has zero value and we have 0 0rTS e K   cash. 

Again this is an example of arbitrage, meaning that we should not, in practice, find that 

0
rTK S e . 

Since both  0
rTK S e  and  0

rTK S e  lead to arbitrage opportunities the only possibility for the fair 

price is  0
rTK S e . 
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Proof (b) 

Let K be the forward price.  Now compare the setting up of the following portfolios at time 0: 

 A: one long forward contract 

 B: borrow rTKe  cash and buy one share at 0S . 

If we hold both of these portfolios up to time T then both have a value of TS K at T. 

By the principle of no arbitrage, these portfolios must have the same value at all times 

before T.  In particular, at time 0, portfolio B has value 0
rTS Ke  which must equal the 

value of the forward contract. 

This can only be zero (the value of the forward contract at t = 0) if: 

0
rTK S e  

Question 

A three-month forward contract exists on a zero-coupon corporate bond with a current price per 
£100 nominal of £42.60.  The yield available on three-month government securities is 6% pa 
effective.   

Calculate the forward price. 

Solution 

Being careful to note that the risk-free yield given is quoted as an annual effective rate, rather 
than a force: 

   
3 3

12 1242.6 42.6 1.06 £43.23rK e  

 
4.3 Calculating the forward price for a security with fixed cash income 

We now consider more complicated cases where the underlying asset pays income during the 
term of the forward contract.   

In this section and the following one, the derivation of the formula for the forward price follows 
reasoning similar to Proof (b) above, although the methodology of Proof (a) would also achieve 
the same answer. 

Assume now that at some time 1t ,  10 t T , the security underlying the forward contract 

provides a fixed amount c to the holder.  For example, if the security is a government bond, 
there will be fixed coupon payments due every six months. 
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Now consider the following two portfolios: 

Portfolio A: Enter a forward contract to buy one unit of an asset S, with forward price K, 

maturing at time T; simultaneously invest an amount   1r tr TKe ce  in the 
risk-free investment. 

We are now assuming that the risk-free force of interest is constant throughout the term of the 
contract so that r  is appropriate for investments of term T and 1t .  If this was not the case, we 
would simply use two different forces of interest corresponding to the appropriate time periods. 

Portfolio B: Buy one unit of the asset, at the current price 0S .  At time 1t  invest the 

income of c in the risk-free investment. 

At time  0t  the price of Portfolio A is   1r tr TKe ce  for the risk-free investment, and zero 
for the forward contract. 

The price of Portfolio B is 0S . 

At time t T  the payout from Portfolio A is: income of  1( )r T tK ce  from the risk-free 

investment; outgo of K on the forward contract.  Receive 1 unit of asset, value TS .  The net 

portfolio at T is one unit of the asset S plus  1( )r T tce  units of the risk-free security. 

The payout from Portfolio B is one unit of the asset, value TS , plus  1( )r T tce  units of the 

risk-free security, from the invested coupon payment. 

The net cashflows of Portfolio A at time T are identical to those of Portfolio B – both give a 

net portfolio of one unit of the underlying asset S plus  1( )r T tce  units of the risk-free 
security.  Using the no arbitrage assumption the prices must also be the same – that is: 

      1 1( )
0 0

rt r T trT rTKe ce S K S e ce   

So the forward price is equal to the accumulated value at time T of the current price, less the 
accumulated value at time T of the income payment, which will not be received by the buyer of 
the asset under the forward contract. 

Question 

A fixed-interest security pays coupons of 8% pa half-yearly in arrear and is redeemable at 110%.  
Two months before the next coupon is due, an investor negotiates a forward contract to buy 
£60,000 nominal of the security in six months’ time.  The current price of the security is £80.40 
per £100 nominal and the risk-free force of interest is 5% pa. 

Calculate the forward price. 

Solution 

Only one coupon will be received during the 6-month term of the forward contract.  This will be 
received in 2 months’ time and will be for amount: 

   0.5 0.08 60,000 £2,400  
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So, using the formula derived above, the forward price is equal to: 

      0.05 6/12 0.05 (6/12 2/12)60,00080.4 2,400 £47,021
100

K e e  

 
For a long forward contract on a fixed-interest security there may be more than one coupon 
payment.  It is easy to adapt the above method to allow for this.  If we let I denote the 
present value at time  0t  of the fixed income payments due during the term of the forward 

contract, then the forward price at time  0t  per unit of security S is 

  0( ) rTK S I e  

The word ‘long’ here is being used to say that the term is long, rather than being a reference to a 
‘long forward position’ (ie agreeing to purchase the asset under the forward contract).   

So, in this case, the forward price is equal to the current price, less the present value at time 0 of 
the income payments during the term of the contract, accumulated to time T .  This formula 
appears on page 45 of the Tables, where the forward price is denoted by F  rather than K .  

Question 

Consider the scenario in the previous question.   

On the same day, a different investor negotiates a forward contract to purchase £50,000 nominal 
of the security in ten months’ time.   

Calculate the forward price of this contract. 

Solution 

Two coupons will be received during the 10-month term of this forward contract: one in 2 
months’ time and another in 8 months’ time.  The amount of each coupon will be: 

   0.5 0.08 50,000 £2,000 . 

So, using the formula given above: 

           
 

0.05 2/12 0.05 8/12 0.05 10/1250,00080.4 2,000 £37,826
100

K e e e  

 
As well as being used to calculate the forward price for contracts based on fixed-interest 
securities (which have known coupon payments), the formula above can also be used to calculate 
the forward price for contracts based on shares where the dividend payments to be received 
during the term of the contract are known in monetary terms.  In this case, I  would be equal to 
the present value of the dividends received during the term of the contract. 
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4.4 Calculating the forward price for a security with known dividend yield 

We will now consider shares where the dividend income is specified in terms of a dividend yield, 
rather than in monetary terms.  The dividend yield for an equity is defined to be: 

 
Dividend per shareDividend yield

Price per share
 

Let D be the known dividend yield per annum.  We assume that dividends are received 
continuously, and are immediately reinvested in the security of S. 

This has the effect that the number of shares will increase by a constant force, D.  This rate of 
increase will not be affected by changes in the share price.  If the share price increases then the 
value of dividends will increase by the same proportion. 

If we start with one unit of the security at time  0t , the accumulated holding at time T 

would be DTe  units of the security.  This is because the number of units owned is 

continuously compounding at rate D per annum for T years.  If instead of 1 unit at time  0t  

we hold DTe  units, reinvesting the dividend income, at time T we would hold   1DT DTe e  
unit of the security. 

Now consider the following two portfolios: 

Portfolio A: Enter a forward contract to buy one unit of an asset S, with forward price K, 

maturing at time T; simultaneously invest an amount rTKe  in the risk-free 
investment. 

Portfolio B: Buy DTe  units of the asset S, at the current price 0S .  Reinvest dividend 

income in the security S immediately it is received. 

At time  0t  the price of Portfolio A is rTKe  for the risk-free investment, and zero for the 
forward contract. 

The price of Portfolio B is 
0

DTe S . 

At time t T  the cashflows of Portfolio A are: an amount K is received from the risk-free 
investment.  Outgo K is paid on the forward contract.  Receive 1 unit of asset S.  The net 
portfolio at T is one unit of the asset S. 

The payout from Portfolio B is one unit of the asset S. 

The net cashflows of Portfolio A at time T are identical to those of Portfolio B – both give a 
net portfolio of one unit of the underlying asset S.  Using the no arbitrage assumption the 
prices must also be the same – that is: 

      ( )
0 0

rT DT r D TKe S e K S e  

This formula also appears on page 45 of the Tables, where the forward price is denoted by F  
rather than K , and the continuously compounded dividend yield is denoted by q  rather than D .  
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Question 

The current price of a share is £200.  The share pays dividends continuously to provide a fixed 
dividend yield, and the current dividend is £5 pa.   

Calculate the forward price of a five-year contract on one share if the risk-free force of interest is 
5% pa. 

Solution 

The dividend yield is 
5 2.5%

200
.  The forward price is therefore: 

   (0.05 0.025) 5200 £226.63K e  

 
It is simple to adjust the portfolios to get the forward price if the dividends are paid 
discretely. 

The important principle for this case and the known income case is that, if the income is 
proportional to the underlying security, S, we assume the income is reinvested in the 
security.  If the income is a fixed amount regardless of the price of the security at the 
payment date, then we assume it is invested in the risk-free security.   

This is because when the payment is proportional to the stock price (eg dividends) we know 
how many units of stock they will purchase, but we do not know how much cash is paid (as 
the stock price is unknown).  So we can predict the amount of stock held at the end if we 
assume reinvestment in the stock. 

With a cash payment on the other hand, we would not know how much stock could be 
bought, but we do know how much the cash would accumulate to at the risk-free force of 
interest.  Assuming dividends are reinvested in the security, but cash is invested at the 
risk-free (and known) force of interest enables us to predict the final portfolio without 
requiring any information about the price of the asset S during the course of the contract. 
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5 Bounds for option prices 

In this section we deduce upper and lower limits for call and put option prices based on general 
reasoning.  Remember that throughout this chapter we are considering options based on 
non-dividend-paying shares. 

In this section, we assume that the current time is t  and each option considered expires at 
time T .  

5.1 Lower bounds on option prices 

European calls 

Consider a portfolio, A, consisting of a European call on a non-dividend-paying share and a 

sum of money equal to  r T tKe  . 

At time T, portfolio A has a value which is equal to the value of the underlying share, 
provided the share price TS  is greater than K. 

This is because the sum of money will grow with interest to be worth exactly K at time T (since
 ( )r T tKe  is the present value at time t of a payment of K at time T).  If TS K , the call option will 

be exercised, using the accumulated amount of money, K, to purchase the share (leaving zero 
cash).  The payoff is thus TS  at time T. 

If TS  is less than K then the payoff from portfolio A is greater than that from the share. 

In this instance, the payoff from portfolio A is K – the accumulated amount of cash at the exercise 
date – because the option would not be exercised, since the share is only worth ( )TS K . 

Since the option plus cash produces a payoff that is at least as great as that from the share, 
it must have a value greater than or equal to tS  .   

This follows from the no arbitrage assumption. 

This gives us a lower bound for tc : 

   ( )r T t
t tc Ke S  

ie  r T t
t tc S Ke    
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Question 

Suppose that the exercise price of a 3-month European call option on Share X is 100 and the 
continuously compounded risk-free rate of return is 12% pa. 

Calculate the lower bound for the option’s price if the current price of Share X is: 

(i) 115 

(ii) 125. 

Solution 

(i) In this case, the lower bound for the European call option price is: 

  
  



0.12 0.25115 100

17.96

t

t

c e

c
 

 
(ii) If instead the share price were 10 higher at 125, then the lower bound would be: 

  



0.12 0.25125 100

27.96

t

t

c e

c
 

 
ie it would also be 10 higher. 

 
European puts 

A similar argument can be used for put options: portfolio B contains a European put option 

and a share.  Compare this with the alternative of cash, currently worth  r T tKe  .  At time 
T, portfolio B will be worth at least as much as the cash alternative.   

At time T the cash will be worth K.   

Portfolio B (the share plus the put option) will be worth: 

 K  if TS K  (because the option will be exercised by selling the share, leaving K) 

 TS  if TS  > K (because the option will not be exercised). 

Thus portfolio B is always worth at least as much as the cash deposit at time T. 

Thus: 

  r T t
t tp S Ke           

   r T t
t tp Ke S    
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If the lower bound derived above does not hold, ie if: 

  ( )r T t
t tp Ke S  

then an arbitrage opportunity exists. 

An investor could borrow an amount t tp S  in the cash market to purchase the share and put 
option, thus creating a portfolio of a share, the put option and a cash loan.  At expiry, this 
portfolio is worth: 

           

     

 

 

  

      

 

 



max ,0 max ,

max ,

max 0,

0

r T t r T t
T T t t T t t

r T t r T t
T

T

K S S p S e K S p S e

K S Ke e

S K
 

Overall, for zero initial outlay, the investor has made a strictly positive profit, ie the investor has 
taken advantage of an arbitrage opportunity. 

Question 

Calculate the lower bound for a 3-month European put option on Share X if the current share 
price is 95, the exercise price is 100 and the continuously compounded risk-free rate is 12% pa. 

Solution 

In this case, the lower bound for the European put option on Share X is: 

 
  



0.12 0.25100 95

2.04

t

t

p e

p
 

 
American calls 

Recall that, unlike its European counterpart, an American option can be exercised at any date up 
to and including the expiry date.   

A surprising result, however, is that it is never optimal to exercise an American call on a 
non-dividend-paying share early (ie before its expiry date).  Hence the above relationship for 
European calls also holds for American calls, ie: 

    ( )r T t
t tC S Ke  
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The reason for this surprising result is as follows: 

If we exercise an American call option early then we receive tS K .  Since an American option 
provides the same rights as a European option (ie exercise at expiry) and more besides (ie exercise 
before expiry), the value of the American call option must be at least that of the equivalent 
European call option (ie t tC c ).  However, we already know that the European call option is 
worth more than its intrinsic value: 

     ( )r T t
t t tc S Ke S K  

So: 

  t tC S K  

and because we always receive more by selling the American call option than we do by exercising 
it, the option to exercise early is effectively worthless. 

It is important to realise that this surprising result is only true for a non-dividend paying share (or 
a share with no dividends between time t and expiry).  The crucial point is that if there is a 
dividend between time t and expiry then it may be beneficial to exercise the option early in order 
to receive this dividend. 

American puts 

The lower bound for an American put option can be increased above that derived above for 
a European put option.  Since early exercise is always possible, we have: 

 t tP K S   

So, the intrinsic value is a lower bound for the price.  This condition, which is stronger than for 
European puts, holds because early exercise may be sensible for an American put in order to 
receive the exercise money earlier.  By receiving the cash before the last possible expiry date, the 
holder of the option then benefits from receiving interest on that cash for the remaining term. 

Summary 

Finally note that if any of the lower bounds given above are negative we can get a tighter bound 
from the fact that any option has a non-negative value to the holder – ignoring the premium 
already paid.  This means that the following bounds can be given: 

    ( )max ,0r T t
t tc S Ke  

    ( )max ,0r T t
t tC S Ke  

   ( )max ,0r T t
t tp Ke S  

  max ,0t tP K S  
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Question 

Comment on the time value of each of the above options. 

Solution 

Recall that the time value is defined as the option price minus the intrinsic value. 

The European and American call options have the same lower bound: 

    ( )max ,0r T t
t tc S Ke         and     ( )max ,0r T t

t tC S Ke  

The intrinsic value of these call options is  max ,0tS K .  Since: 

       ( )max ,0 max ,0r T t
t tS K S Ke   

the value of both call options is greater than the intrinsic value.  The time value is therefore 
positive.   

For an American put we can say that the time value is positive: 

           max ,0 max ,0 max ,0 0t t t tP K S K S K S  

However, for a European put option the time value could be negative.  The analysis above gives: 

            max ,0 max ,0 max ,0r T t
t t t tp K S Ke S K S  

A look at the right-hand side shows that this will be negative if    ( )r T t
tK S Ke , since then 

  0tK S  and      r T t
t tKe S K S . 

The reason that the time value of a European put can be negative is that by holding the option, 
rather than selling the share, an investor has money tied up that is not earning interest.  This 
doesn’t occur with the American put because of the possibility of early exercise.   

It also doesn’t happen with the call options because they work the other way round, ie holding 
the call means that an investor can invest money.  If the share paid dividends, however, 
something like this could happen with the call, since then holding the option means that an 
investor is missing out on the dividends. 
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5.2 Upper bounds on option prices 

European calls 

A call option gives the holder the right to buy the underlying share for a certain price.  The 

payoff  max ,0TS K  is always less than the value of the share at time , TT S .  Therefore 

the value of the call option must be less than or equal to the value of the share: 

 t tc S  

This is obvious from the fact that an investor could just buy the share anyway, without needing to 
have the call option. 

European puts 

For a European put option the maximum value obtainable at expiry is the strike price K.  
Therefore the current value must satisfy: 

  r T t
tp Ke   

ie it cannot exceed the discounted value of the sum received on exercise – which it will equal if 
the share price falls to zero. 

Note that these bounds make no assumptions about the behaviour of the share price.  

For certain types of stochastic model for tS  we find that we are able to write down explicit 

formulae for the prices of European call and put options. 

For example, if we assume that the process determining the share price is described by geometric 
Brownian motion, then we can use the Black-Scholes analysis and formulae discussed later in the 
course.   

American calls 

We can see that the call option inequality applies also to an American call option on a non-
dividend-paying stock. 

ie t tC S  

American puts 

On the other hand, the possibility of early exercise of an American put option presents us 
with much more complexity.  There are no simple rules for deciding upon the time to 
exercise.  Partly as a result of this, there is no explicit formula for the price of an American 
put option. 

For American puts the upper bound for a European put may not hold.  For example, if the share 
price is zero, an American put is worth exactly K, not the discounted value of K.  All we can be sure 
of is that a put will never be worth more than K. 

ie tP K  
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Summary 

The upper bounds derived in this section are: 

 t tc S  

 t tC S  

   ( )r T t
tp Ke  

 tP K  
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6 Put-call parity 

Consider the argument we used to derive the lower bounds for European call and put 
options on a non-dividend-paying stock.  This used two portfolios: 

 A: one call plus cash of  r T tKe   

 B: one put plus one share. 

Recall that both portfolios included only European options on non-dividend-paying shares – this is 
an important condition underpinning the arguments that follow. 

Both portfolios have a payoff at the time of expiry of the options of  max , TK S .   

We can see this as follows. 

Portfolio A 

First consider portfolio A, consisting of a European call plus cash of  ( )r T tKe .  The value of 
portfolio A at the expiry date is given by: 

   T TS K K S   if TS K   (ie the call option is exercised)  

and  0 K K    if TS K  (ie the call expires worthless)  

Portfolio B 

Now consider portfolio B, consisting of the underlying share plus a European put with the same 
expiry date and exercise price as the call.  On expiry the value of portfolio B is: 

  0 T TS S    if TS K  (ie the put expires worthless)  

and   T TK S S K   if TS K  (ie the put option is exercised) 

Thus, the values at expiry are the same for both portfolios regardless of the share price at that 
time, namely  max , TK S . 

Since they have the same value at expiry and since the options cannot be exercised before 
then they should have the same value at any time t T . 

ie  r T t
t t tc Ke p S      

This relationship is known as put-call parity. 

If the result was not true then this would give rise to the possibility of arbitrage.  That is, for 
a net outlay of zero at time t we have a probability of 0 of losing money and a strictly 
positive probability (in this case 1) of making a profit greater than zero.  In this case, the 
failure of put-call parity would allow an investor to sell calls and take a cash position and 
buy puts and shares with a net cost of zero at time t and a certain profit at time T. 
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One consequence of put-call parity is that, having found the value of a European call on a 
non-dividend-paying share (eg from the Black-Scholes formula discussed later in the course), we 
can easily find the value of the corresponding put. 

In contrast to forward pricing, put-call parity does not tell us what tc  and tp  are 

individually: only the relationship between the two.  To calculate values for tc  and tp  we 

require a model. 

In all of these sections, the pricing of derivatives is based upon the principle of no arbitrage. 

Note that we have made very few assumptions in arriving at these results.  No model has 
been assumed for stock prices.  All we have assumed is that we will make use of buy-and-
hold investment strategies.  Any model that we propose for pricing derivatives must, 
therefore, satisfy both put-call parity and the forward-pricing formula.  If a model fails one of 
these simple tests then it is not arbitrage-free. 

Question 

Explain why the put-call parity relationship above does not hold in the case of: 

(i) American options on non-dividend-paying shares. 

(ii) European options on dividend-paying shares. 

Solution 

(i) This is because it can be worthwhile to exercise an American put early – in which case the 
cash will not have accumulated fully and so the payoffs do not work out to be the same.  
This means that Portfolio B is worth more than Portfolio A. 

(ii) Dividends will be received on Portfolio B, but not on Portfolio A.  Again we see that 
Portfolio B is then worth more than Portfolio A. 

 
In the case of dividend-paying securities, the put-call parity relationship is: 

      ( ) ( )r T t q T t
t t tc Ke p S e  

This formula can be found on page 47 of the Tables.  Here q is the continuously compounded 
dividend rate, so we are assuming that all dividends are reinvested immediately in the same 
share. 
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Question 

Company X issues 3-month European call options on its own shares with a strike price of 120p.  
The call options are currently priced at 30p per share.  The current share price is 123p and the 
current risk-free force of interest is  6%r pa . 

(i) If dividends are payable continuously at a rate of 12%q pa , calculate the fair price for 
put options on the share with the same strike price. 

(ii) Explain the strategy for arbitrage profit if, instead, the price of the put options is 25p. 

Solution 

(i) Put option value 

Using put-call parity, the value of the put option should be: 

             ( ) ( ) 0.06 0.25 0.12 0.2530 120 123 28.8pr T t q T t
t t tp c Ke S e e e  

(ii) Arbitrage profit 

If the put options are only 25p, then they are cheap.  If things are cheap, then we should buy 
them in order to generate arbitrage profits.  So, looking at the put-call parity relationship, we ‘buy 
the cheap side and sell the expensive side’, ie we buy put options and shares and sell call options 
and cash. 

For example: 

 sell 1 call option 30p 

 buy 1 put option (25p) 

 buy 1 share  (123p) 

 sell (borrow) cash 118p 

This is a zero-cost portfolio and, because put-call parity does not hold, we know it will make an 
arbitrage profit, which we can check as follows. 

In 3 months’ time, repaying the cash will cost us: 

  0.06 0.25118 119.78e  

We will also have received dividends totalling d, say, on the share. 

1. If the share price is above 120 in 3 months’ time, then the other party will exercise their 
call option and we will have to sell them the share.  They will pay 120 for it and our profit 
is: 

     120 119.78 0.22d d  

 (In this case, the put option will expire worthless.)  
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2. If the share price is below 120 in 3 months’ time, then we will exercise our put option and 
sell the share for 120.  Our profit is: 

     120 119.78 0.22d d  

 (In this case, the call option will expire worthless.) 

So we see that in either case, this zero-cost portfolio generates positive future profits. 
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Chapter 12 Summary 

Derivatives 

A derivative is a security or contract that promises to make a payment at a specified time in 
the future, the amount of which depends upon the behaviour of some underlying security up 
to and including the time of the payment. 

Arbitrage 

An arbitrage opportunity is a situation where we can make a certain profit with no risk. 

The principle of no arbitrage states that arbitrage opportunities do not exist. 

The law of one price says that any two portfolios that behave in exactly the same way must 
have the same price.  If this were not true, we could buy the ‘cheap’ one and sell the 
‘expensive’ one to make an arbitrage (risk-free) profit. 

Intrinsic value and time value 

The intrinsic value of a derivative is the value assuming expiry of the contract immediately 
rather than at some time in the future. 

The time value of a derivative is the excess (or the shortfall) of the total value of an option 
over its intrinsic value. 

Options 

A European call option gives its holder the right, but not the obligation, to buy one share 
from the issuer of the contract at time T at the strike price K.   

A European put option gives its holder the right, but not the obligation, to sell one share to 
the issuer of the contract at time T at the strike price K.   

American options are similar to their European equivalents, except that they can be 
exercised at any time t up to expiry T. 

Factors affecting option prices 

 underlying share price, tS  

 strike price, K 

 time to expiry, T – t 

 volatility of the underlying share,   

 risk-free interest rate, r  

 dividend rate, q 
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Forwards 

A forward contract is an agreement between two parties under which one agrees to buy 
from the other a specified amount of an asset at a specified price on a specified future date.   

For a forward contract on an underlying asset that pays no income, because both  0
rTK S e  

and  0
rTK S e  lead to an arbitrage opportunity, the fair forward price is given by: 

 0
rTK S e  

For a forward contract on an underlying asset that pays fixed cash income, the fair forward 
price is: 

  0( ) rTK S I e  

where I  is the present value of the income paid by the asset during the term of the forward 
contact. 

For a forward contract on an underlying asset that pays dividends at a continuously 
compounded dividend yield of D , the fair forward price is: 

  ( )
0

r D TK S e  

Bounds for option prices 

Option prices lie within the following ranges: 

     ( )max ,0r T t
t t tS c S Ke  

     ( )max ,0r T t
t t tS C S Ke  

      ( ) ( )max ,0r T t r T t
t tKe p Ke S  

   max ,0t tK P K S  

Put-call parity 

      ( ) ( )r T t q T t
t t tc Ke p S e  
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Chapter 12 Practice Questions 

12.1 Write down expressions for the payoff functions for the option holder for each of the following 
derivative contracts in terms of the current time t , the expiry time T , the price uS  of the 
underlying at time u  and the exercise price K , indicating clearly the time(s) at which exercise may 
occur: 

(a) a European call option 

(b) a European put option 

(c) an American call option 

(d) an American put option 

12.2 Identify the profit or loss for the investors in each of the following scenarios: 

(a) Investor A purchases a European call option with an exercise price of 480p for a premium 
of 37p.  The price of the underlying share is 495p at the expiry date. 

(b) Investor B purchases a European put option with an exercise price of 180p for a premium 
of 12p.  The price of the underlying share is 150p at the expiry date. 

(c) Investor C issues a European put option with an exercise price of 250p for a premium of 
22p.  The price of the underlying share is 272p at the expiry date. 

12.3 A speculator has a portfolio consisting of one short position on a European call option on a share. 

Explain what this means and sketch the position diagram (a diagram of the overall profit/loss at 
expiry against the security price at expiry) for this portfolio assuming that no dividends are 
payable, and that the initial option premium was c . 

12.4 A speculator has a portfolio consisting of one European call option and one European put option 
on the same underlying security.  The two options have the same expiry date and the same strike 
price K .  The prices paid for the options were c  and p , respectively. 

(i) Sketch the position diagram (a diagram of the overall profit/loss at expiry against the 
security price at expiry) for this portfolio, marking the coordinates of the key points on 
your graph. 

(ii) Explain what this portfolio implies about the speculator’s opinion concerning the future 
share price. 
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12.5 A call option on a stock that does not pay dividends has the following parameter values (in the 
usual notation): 

  240S ,  250K ,  0.5T ,  0.06r ,   0.2  

The graphs below show the theoretical price of this option at time  0t  when each of the 
parameters S , K , T  and r  is varied without changing the values of the other parameters.  

Identify which parameter has been plotted along the x -axis of each graph. 

Graph 1 

 

Graph 2 

 

 
Graph 3 

 

 
Graph 4 

 

 
12.6 A 9-month forward contract is issued on a share that has a current price of £7.  Dividends of 50p 

per share are expected in 2 months’ time and 8 months’ time. 

Assuming a risk-free effective rate of interest of 6% per annum and no arbitrage, calculate the 
forward price. 
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12.7 The table below shows the closing prices (represented by letters) on a particular day for a series 
of European call options with different strike prices and expiry dates on a particular 
non-dividend-paying security. 

 Strike price 

 125 150 

3 months W Y 

6 months X Z 

 
(i) Write down, with reasons, the strictest inequalities that can be deduced for the relative 

values of , , ,W X Y Z , assuming that the market is arbitrage-free. (Your inequalities should 
not involve any other quantities.) [4] 

(ii) Calculate numerical values for a lower and an upper bound for X , given that the current 
share price is 120 and the continuously compounded risk-free interest rate is 6% pa. [2] 

    [Total 6] 

12.8 Let tp  be the price of a European put option exercisable at time T  with a strike price K  on an 

underlying non-dividend-paying share with price tS  at time t . 

(i) By considering a suitably chosen notional portfolio or portfolios (which should be 
specified carefully), show that the price tp  satisfies the inequality: 

    ( )r T t
t tp Ke S  [4] 

(ii) Explain how you would modify your inequality if you knew that holders of the share on 
the day before the option expires are entitled to receive a cash dividend of 0.02 TS  
payable at time T . [2] 

    [Total 6] 

12.9 Consider an asset with price tS  at time t , paying a dividend at a constant dividend yield, D .  
Dividends are paid at the end of each year and are immediately reinvested in the asset.  The 
continuously compounded risk-free rate of interest is r  pa. 

Derive the forward price, K , of a contract issued at time t , with maturity at time T , to trade one 
unit of the asset, where T t  is an integer number of years.  State any assumptions you make. [6] 

12.10 By constructing two portfolios with identical payoffs at the exercise date of the options, derive an 
expression for the put-call parity of European options on a share that has a dividend of known 
amount d  payable prior to the exercise date. [6] 

 

  

Exam style 

Exam style 

Exam style 

Exam style 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 12 Solutions 

12.1 (a)  Payoff max( ,0)TS K , exercise at time T  only. 

(b)  Payoff max( ,0)TK S , exercise at time T  only. 

(c)  Payoff max( ,0)uS K , exercise at any time  t u T . 

(d)  Payoff max( ,0)uK S , exercise at any time  t u T . 

12.2 (a) Profit      37 (495 480) 22 , ie a loss of 22p. 

(b) Profit      12 (180 150) 18 , ie a profit of 18p. 

(c) Profit     22 0 22 , ie a profit of 22p. 

In (c), Investor C has collected the premium and the option has expired worthless. 

12.3 Having a short position on one call option means that the speculator has issued (or written) a call 
option.  The speculator will therefore have received the initial premium, c , and will have to 
deliver one share to the other party in exchange for a payment equal to the strike price K , say, on 
the expiry date if the other party elects to exercise the option. 

The speculator’s profit is given by: 

  max( ,0)Tc S K  

and the position diagram is: 

0
K

Profit

Share price 
at expiry

c

K + c
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12.4 (i) Position diagram 

The profit for the call option is  max( ,0)TS K c . 

The profit for the put option is  max( ,0)TK S p . 

The profit for a portfolio containing both of these options is equal to the sum of these, which can 
be written as: 

         max( ,0) max( ,0)T T TS K K S c p S K c p  

So the position diagram for the holder of this portfolio looks like this: 

0

– c – p
K

Profit

Share price 
at expiry

K – c – p

K – c – p K + c + p

 

(ii) Speculator’s opinion 

The speculator would have set up this portfolio in the belief that the share price at the expiry date 
would have moved a long way from the strike price K , where this movement could be in either 
direction.  This situation can arise when the market is waiting for news (eg an announcement of 
the company’s latest results or a court ruling) that will have a definite effect on the share price, 
but no one knows which way it will go. 
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12.5 The graphs and associated parameters are shown below. 

Graph 1 

 

This is a graph of the option price against the 
strike price K . 

Graph 2 

This is a graph of the option price against 
the current share price S . 

 
Graph 3 

 

This is a graph of the option price against the 
risk-free interest rate r . 

 
Graph 4 

This is a graph of the option price against 
the time to expiry T . 

The clues to look for were: 

 The value of a call option decreases as the strike price increases, and Graph 1 is the only 
graph that goes down. 

 Since the payoff for a call option depends on the difference S K , the graph against S  
should be similar to the graph against K  , but reflected in the vertical axis (because 
increasing K  by 10 would have a similar effect to reducing S  by 10).  So this is Graph 2. 

 If  0T , this call option would be at its maturity date and it would be out-of-the-money 
with no value (since S K ).  So the graph against T  must go through the origin, as in 
Graph 4. 

 The value of a call option increases with the interest rate, but would not have zero value 
when  0r .  This is consistent with Graph 3. 
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12.6 The present value of the dividends, I, is: 

     2/12 8/120.5 1.06 1.06 0.9761I  

The forward price is given by: 

       0.75
0( )(1 ) (7 0.9761) 1.06 £6.29TK S I r  

12.7 (i) Inequalities 

The value of an option is greater if the remaining life is longer. 

So: X W   and  Z Y  [1] 

The value of a call option is smaller if the exercise price is greater. 

So: Y W   and  Z X  [1] 

Also, the value of an option will be strictly positive. [1] 

Combining these results, we have: 

   0 ( , )Y W Z X  

ie  W and Z must have values between Y and X. [1] 
    [Total 4] 

Based on the information given in the question we can’t determine the order of W and Z.  

(ii) Lower and upper bounds 

The lower bound for a European call option is given by the inequality: 

    ( )r T t
t tc S Ke  

Using the parameter values for X, this gives: 

     0.06 0.5120 125 1.31tc e  

Since this is negative, we take  0tc  instead. [1] 

The upper bound for a call option is given by the inequality: 

 t tc S     ie   120tc  [1] 
    [Total 2]  
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12.8 (i) Show that the price satisfies the inequality 

Consider the following portfolios set up at the current time t : 

Portfolio A:  Cash of  ( )r T tKe  [½] 

Portfolio B:  1 European put option and 1 share [½] 

Portfolio A will be worth K  at the expiry time T , in any event. [½] 

Now consider the value of Portfolio B at the expiry time T .  If the share price is below the strike 
price, we can exercise the put (selling the share in the process) and obtain an amount K .  If the 
share is above the strike price, we have a share worth more than K . 

So, either way, Portfolio B is worth at least K . [1] 

We can show this mathematically by writing down the portfolio payoff, which is: 

    max( ,0) max( , )T T TK S S K S K  

Hence, at the expiry date, Portfolio B is worth at least as much as Portfolio A. [½] 

It follows (from the principle of no-arbitrage) that this must also be true at all earlier times t .  In 
symbols: 

    ( )r T t
t tp S Ke      ie       ( )r T t

t tp Ke S  [1] 
    [Total 4] 

(ii) Modifying the inequality 

Consider an alternative Portfolio B* consisting of 1 European put option and 1
1.02

 shares.  

The (cash) dividend payable on these shares at time T  will be worth 
10.02

1.02
 times the share 

price at that time, which would allow us to buy an extra 0.02
1.02

 shares.  So we would end up with 

 
1 0.02 1

1.02 1.02
 share and 1 put option in our portfolio. [1] 

By the same argument as before, this is worth at least as much as Portfolio A.  So we now have 
the inequality: 

    ( )1
1.02

r T t
t tp S Ke      ie       ( ) 1

1.02
r T t

t tp Ke S  [1] 

    [Total 2] 
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12.9 Consider the following two portfolios, set up at time t : 

Portfolio A: A forward contract to buy one unit of the asset at time T  for forward price K ; 

simultaneously invest an amount  ( )r T tKe  in the risk-free investment.  [1] 

Portfolio B: Buy   ( )(1 ) T tD  units of the asset, reinvesting the dividend income in the asset 
immediately as it is received. [1] 

At time T , the risk-free investment in Portfolio A has grown to amount K , which is used to buy 
one unit of the asset using the forward contract. 

At time T , the amount of the asset in Portfolio B has grown with the reinvested dividend income 
to one unit. 

So, the outcome of both of these portfolios is that one unit of the underlying asset is held at 
time T .   [1] 

Assuming no arbitrage, the value of these portfolios must therefore also be equal at time .t  [1] 

The cost of setting up Portfolio A is  ( )r T tKe . [½] 

The cost of setting up Portfolio B is   ( )(1 ) T t
tS D   [½] 

Equating these: 

           ( ) ( ) ( ) ( )(1 ) (1 )r T t T t r T t T t
t tKe S D K S e D  [1] 

    [Total 6] 

12.10 Suppose that the dividend d  is payable at some date  1t t T .  Consider two portfolios at time 
t  as follows: 

1. Portfolio A – which consists of one European call option plus cash equal in amount to the 
discounted value of the strike price plus the present value of the dividends to be paid at 

time 1t  – ie a cash amount of    1( ) ( )r t t r T td e K e . [1] 

2. Portfolio B – which consists of one European put plus one dividend-paying share. [1] 

Then the value of portfolio A at the exercise date T  is given by: 

      1 1( ) ( )r T t r T t
T TS K d e K S d e  if TS K   [½] 

(ie the call option is exercised leaving the investor with the share plus the accumulated value of 
the dividend received), and:  

     1 1( ) ( )0 r T t r T td e K d e K  if TS K  [½] 

(ie the call expires worthless and the investor is left with cash equal to the exercise price plus the 
accumulated value of the dividend). 
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Similarly, the value of portfolio B is: 

     1 1( ) ( )0 r T t r T t
T TS d e S d e  if TS K  [½] 

(ie the put expires worthless and the investor is left with the share plus the accumulated value of 
the dividend received), and: 

      1 1( ) ( )r T t r T t
T TK S S d e K d e  if TS K  [½] 

(ie the put option is exercised and the investor is left with cash equal to the exercise price plus the 
accumulated value of the dividend).   

Thus, the payoffs at expiry are the same for both portfolios regardless of the share price at that 
time.  Since they have the same value at expiry and since the options cannot be exercised before 
then, in an arbitrage-free market they should have the same value at any time t T . [1] 

Therefore: 

       1( ) ( )r t t r T t
t t tc d e Ke p S  [1] 

    [Total 6] 
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End of Part 2 

What next?   

1. Briefly review the key areas of Part 2 and/or re-read the summaries at the end of 
Chapters 7 to 12. 

2. Ensure you have attempted some of the Practice Questions at the end of each chapter in 
Part 2.  If you don’t have time to do them all, you could save the remainder for use as part 
of your revision. 

3. Attempt Assignment X2. 
  

 

Time to consider …  
 … ‘revision’ products 

Flashcards – These are available in both paper and eBook format.  One student said: 

‘The paper-based Flashcards are brilliant.’ 

You can find lots more information, including samples, on our website at www.ActEd.co.uk. 

Buy online at www.ActEd.co.uk/estore 
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The Greeks 

 

 

Syllabus objectives 

6.1  Option pricing and valuations 

6.1.12 Demonstrate an awareness of the commonly used terminology for the first, 
and where appropriate second, partial derivatives (the Greeks) of an option 
price. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 2 CM2-13: The Greeks 

© IFE: 2019 Examinations The Actuarial Education Company 

0 Introduction 

Later in the course we will consider how to price European options.  We will first do this using a 
discrete-time model (the Binomial model) and then using a continuous-time model (the 
Black-Scholes model).  The important point to realise is that no matter how complicated the 
model used to value a given derivative, it cannot conflict with the simpler properties that we 
already know from the introductory chapter on derivatives. 

For example, no matter how ingenious a model for valuing a European call option might be, if it 
contradicts the fact that   max ,0T Tc S K  then it must be ruled out.  Similarly, we know that, 

regardless of the pricing model used, put-call parity must hold, ie: 

      ( ) ( )r T t q T t
t t tc Ke p S e  

So, whatever we find out about the Greeks for call and put options by studying this chapter must 
remain true no matter how complicated the model used to value the derivatives is. 
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1 Portfolio risk management 

1.1 Introduction 

Call options allow exposure to be gained to upside movements in the price of the 
underlying asset.  Put options allow the downside risks to be removed.  In each case, 
however, because of the effect of gearing, both call and put options, on their own, are more 
risky than the underlying asset. 

Question 

Explain what is meant by gearing in this context. 

Solution 

When purchasing a call or a put option, the option premium paid is typically much smaller than 
the price of the underlying asset itself.  Purchasing the option nevertheless enables us to obtain 
exposure to most of the variation in the price of the underlying asset.  Consequently, the 
percentage returns obtained by purchasing the option will be much greater (or much less) than 
those obtained by purchasing the underlying asset instead.  This effect is referred to as gearing. 

We will look at a numerical example of gearing later in the chapter. 

 
In more general terms, combinations of various derivatives and the underlying asset in a 
single portfolio allow us to modify our exposure to risk. 

In particular, we can use derivatives to reduce the exposure of our portfolio to the risk of adverse 
movements in the market price of the underlying assets.  If, for example, we are concerned about 
falls in the investment market, we might buy put options.  By guaranteeing the price at which we 
can sell our assets, this reduces the risk associated with market falls.  We will still, however, 
benefit from the resulting profits should the market instead go up.   

Derivative contracts therefore give us more control over the market risks that we face, thereby 
increasing our opportunity set of possible risk and return combinations.  Moreover, if we hold 
suitable derivatives and the underlying assets in appropriate combinations then we can 
sometimes eliminate almost all of the market risk facing our portfolio – though other risks such as 
lack of marketability or credit risk will remain.  The strategy of reducing market risk in this way is 
known as hedging. 

For example, in the proof of the Black-Scholes PDE we will take a mixed portfolio of a 
derivative and the underlying asset to create an instantaneously risk-free portfolio.  This is 
called delta hedging. 

Delta hedging involves the construction of a portfolio whose overall ‘delta’ is equal to zero.  We 
will discuss this, and the Black-Scholes partial differential equation (PDE), later. 

Delta is just one of what are called the Greeks.  The Greeks are a group of mathematical 
derivatives that can be used to help us to manage or understand the risks in our portfolio.   
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Let ( )tf t S  be the value at time t  of a derivative when the price of the underlying asset at t  

is tS . 

We now introduce a set of six Greeks. 

1.2 Delta 

The delta for an individual derivative is: 

 ( )t
t t

f f t S
S S
 

   
 

 

The notation here works as follows.  We are thinking of the derivative price ( , )tf t S  as a function 
of time t and share price tS .  The partial derivative of ( , )tf t S  with respect to tS , estimated at 
time 2 when the share price equals 100 is then written as: 

 
 2

(2,100)f
S

 

For the underlying asset, whose value is tS , 1  . 

Question 

Explain briefly why the delta of the underlying asset is equal to 1. 

Solution 

The delta of the underlying asset is equal to the derivative of the underlying asset price with 
respect to itself.  By definition, this must be equal to 1, ie: 

 
  


1t

t

S
S

 

 
Delta is defined as the rate of change of the derivative price with respect to changes in the 
underlying asset price (assuming all other parameters remain unchanged).  It therefore tells us 
the (approximate) change in the derivative price when the underlying asset price changes. 

Question 

Investor A has £10,000 invested in a portfolio consisting of 1,000 shares in Company X.  Investor B 
has £10,000 invested in a portfolio of 5,000 call options on shares in Company X and the delta of 
each call option is 0.5.   

Calculate the percentage change in the value of each portfolio if the share price increases by 10%. 
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Solution 

Each Company X share is worth £10, and each call option is worth £2. 

If the share price increases by 10% to £11, Investor A’s portfolio will be worth £11,000 – a 10% 
increase in value.   

Investor B’s portfolio consists entirely of call options.  We can use the value of delta to estimate 
the change in value of a call option when the underlying share price changes.  Since delta is equal 
to 0.5, when the share price increases by £1, the call option price will increase by (approximately) 

 0.5 £1 50p, from £2 to £2.50.  So Investor B’s portfolio will be worth  5,000 2.5 £12,500  – a 
25% increase in value. 

So we see that the percentage change in value is greater for the portfolio of options.  This is an 
example of the effect of gearing mentioned earlier.   

 
When we consider delta hedging, we add up the deltas for the individual assets and 
derivatives (taking account, of course, of the number of units held of each).  If this sum is 
zero and if the underlying asset prices follow a diffusion then the portfolio is 
instantaneously risk-free. 

A portfolio for which the weighted sum of the deltas of the individual assets is equal to zero is 
described as delta-hedged or delta-neutral. 

Instantaneously risk-free means that if we know the value of the portfolio at time t, then we can 
predict its value at time t + dt with complete certainty.  In other words, there is no risk or 
uncertainty concerning the change in the value of the portfolio over the instantaneous time 
interval (t, t + dt]. 

Later we will meet the following ‘risk-free’ portfolio that we will use to construct the 
Black-Scholes partial differential equation.  It is: 

 minus one derivative 

 plus   
 t

f
S

 shares. 

Thus, the total delta of this portfolio is equal to: 

 (–1)     +     (+1)  =  0 

Consequently, the ‘risk-free’ portfolio must be instantaneously risk-free. 

Question 

By applying Ito’s Lemma, show that a delta-hedged portfolio with value  , tV t S  is 

instantaneously risk-free if the underlying process tS  is a diffusion. 
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Solution 

Consider the change in the value of the portfolio  , tdV t S .  Ito’s Lemma tells us that: 

     
  
  

2
2

2, ½t t t
t t

V V VdV t S dt dS dS
t S S

 

Now since tS  is a diffusion we have      , ,t t t tdS t S dt t S dZ , so    2 2 ,t tdS t S dt  giving: 

 

      

     



  

  

  
  
  

  
   
  

    
        

2
2

2

2
2

2

2
2

2

½ ,

, , ½ ,

, ½ , ,

t t
t t

t t t t
t t

t t t t
t tt

V V VdV dt dS t S dt
t S S

V V Vdt t S dt t S dZ t S dt
t S S

V V V Vt S t S dt t S dZ
t S SS

 

It follows that the change in the portfolio value V over the next instant will be deterministic if the 

stochastic tdZ  term vanishes, ie if the delta of the portfolio 
  


0

t

V
S

. 

 
If it is intended that the sum of the deltas should remain close to zero (this is what is called 
delta hedging) then normally it will be necessary to rebalance the portfolio on a regular 
basis.  The extent of this rebalancing depends primarily on gamma. 

Within this context, we can distinguish between dynamic hedging and static hedging. 

The process of simply constructing an initial portfolio with a total delta of zero, at time 0 say, and 
not rebalancing to reflect the subsequent changes in delta, is known as static delta hedging. 

Note, however, that as the share price tS  varies with time, so does: 

 the price of the derivative, ( , )tf t S  

 
 


( , )t

t

f t S
S

. 

Hence, in order to ensure that the total portfolio delta remains equal to zero over time we need 
to ‘rebalance’ the constituents of the portfolio – so as to offset the changes in delta.  Strictly 
speaking, since delta changes continuously through time, this rebalancing process must itself be 
continuous. 

The process of continuously rebalancing the portfolio in this way in order to maintain a constant 
total portfolio delta of zero is known as dynamic delta hedging. 
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1.3 Gamma 

 
2

2
t

f
S


 


 

For the underlying asset, whose value is tS , 0  .   

Question 

Explain why the gamma of the underlying asset is equal to zero. 

Solution 

Gamma is the second derivative of f  with respect to the underlying share price, ie the first 
derivative of delta with respect to the underlying share price.  We saw previously that the delta of 
the underlying asset is equal to one and hence constant.  The derivative of a constant is zero and 
so the gamma of the underlying asset must be zero, ie: 

  
   

 
(1) 0

t tS S
 

 
Gamma is the rate of change of   with the price of the underlying asset. 

It therefore measures the curvature or convexity of the relationship between the derivative price 
and the price of the underlying asset. 

Suppose a portfolio is following a delta hedging strategy.  If the portfolio has a high value of 
  then it will require more frequent rebalancing or larger trades than one with a low value of 
gamma. 

This is because a high value of   means that   is more sensitive to changes in the share 
price .tS   Consequently, a given change in tS  will produce a greater change in  , which means 
that a greater amount of rebalancing will be required in order to ensure that the overall portfolio 
delta remains equal to zero.  Conversely, if   is small, then   will change less when the share 
price changes and so the adjustments needed to keep a portfolio delta-neutral will be minimal. 

It is recognised that continuous rebalancing of the portfolio is not feasible and that frequent 
rebalancing increases transaction costs.  The need for rebalancing can, therefore, be 
minimised by keeping gamma close to zero. 

Hence, for practical hedging purposes, a portfolio with a low   is preferable, as costly 
rebalancing will be required less frequently in order to keep the portfolio approximately delta-
hedged.  Note that it may also be possible to construct a gamma-neutral portfolio – ie one with 
an overall gamma equal to zero. 

1.4 Vega 

 
f
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For the underlying asset, tS , 0  .   

(Unlike the other names, vega is not a Greek letter.)  

If you have met the Greeks before, possibly at university, then you may have seen this derivative 
called kappa (a real Greek letter).  Derivative traders, however, call it vega. 

This is the rate of change of the price of the derivative with respect to a change in the 
assumed level of volatility of tS . 

We refer here to the ‘assumed’ level of volatility.  As we saw in the previous chapter, the value of 
an option depends on the volatility of the underlying share price.  However, unlike the other 
parameters that affect option prices, the volatility cannot be observed directly in the market, and 
so its value must be estimated or assumed. 

The value of a portfolio with a low value of vega will be relatively insensitive to changes in 
volatility.  Put another way, it is less important to have an accurate estimate of   if vega is 
low.  Since   is not directly observable, a low value of vega is important as a risk 
management tool.  Furthermore, it is recognised that   can vary over time.  Since many 
derivative pricing models assume that   is constant through time, the resulting 
approximation will be better if vega is small. 

1.5 Rho 

 
f
r

 



 

Rho tells us about the sensitivity of the derivative price to changes in the risk-free rate of 
interest.  The risk-free rate of interest can be determined with a reasonable degree of 
certainty, but it can vary by a small amount over the (usually) short term of a derivative 
contract.  As a result, a low value of   reduces risk relative to uncertainty in the risk-free 

rate of interest. 

1.6 Lambda 

 
f
q

 



 

where q  is the assumed, continuous dividend yield on the underlying security. 

Note that in the definitions of  ,   and   we are assuming that  , r  and q  take constant 
values throughout the life of the derivative contract, but that these ‘constant’ values could 
change.   

Question 

Explain why the lambda of a long forward position in a dividend-paying share is negative. 
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Solution 

If we enter a forward contract to purchase a dividend-paying share in the future (ie take a long 
forward position), instead of buying the share now, then we do not receive the dividends paid by 
the share over the lifetime of the forward contract.  The greater the value of these dividends, the 
more income we miss out on by holding the forward and the lower the value of the forward.  
Consequently, lambda is negative for a forward contract. 

 
1.7 Theta 

 
f
t


 


 

Since time is a variable which advances with certainty, it does not make sense to hedge 
against changes in t  in the same way as we do for unexpected changes in the price of the 
underlying asset.   

Note that: 

 theta is usually written as a capital letter   

 t here is the time since the start of the contract, not the remaining life, which is T t . 

We will discuss theta again later in the context of the Black-Scholes PDE when its intuitive 
interpretation will become clearer. 

Question 

For each of the Greeks  ,  ,  ,   and  , discuss whether its value will be positive or negative 
in the case of: 

 a call option 

 a put option. 

Solution 

Delta 

An increase in the share price would either push a call option that is currently out-of-the-money 
towards being in-the-money or push one that is already in-the-money further into-the-money.  
Therefore delta is positive for a call option. 

A decrease in the share price would either push a put option that is currently out-of-the-money 
towards being in-the-money or push one that is already in-the-money further into-the-money.  
Therefore delta is negative for a put option. 
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Vega 

If the underlying security becomes more volatile then there is a greater chance of the price 
moving in favour of the option holder.  Although there is also an increased chance of it moving 
against the holder, the downside loss is capped.  Therefore vega should be positive for both a call 
option and a put option. 

Theta 

The intuitive argument is very similar to before.  The greater the time to expiry, the more chance 
that the share price will move in the holder’s favour, with the downside loss again being capped.  
Thus, because time t works in the opposite direction to time to expiry T t , theta is usually 
negative for both a call and a put option. 

There are circumstances where theta may be positive but these are considered beyond the scope 
of this subject. 

Rho 

We can think of holding a call option as having cash in the bank waiting to buy the share.  If 
interest rates rise then the holder of a call option will benefit in the meantime.  The holder of a 
put option may already own a share and is waiting to sell it for cash.  So if interest rates rise then 
the holder of the put will lose out on that interest in the meantime.  So rho is positive for a call 
option and negative for a put option. 

Lambda 

Again, we can think of holding a call option as having cash in the bank waiting to buy the share.  If 
the dividend rate rises then the holder of a call option will lose out in the meantime.  The holder 
of a put option may already own a share and is waiting to sell it for cash.  So if dividend rates rise 
then the holder of the put will benefit from the extra dividends in the meantime.  So lambda is 
negative for a call option and positive for a put option. 
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Chapter 13 Summary 

The Greeks 

Delta  
 

 t

f
S

  the change of the derivative price with the share price 

Gamma  
 



2

2
t

f
S

  the change of delta with the share price 

Theta  
 


f
t

  the change of the derivative price with time 

Vega  


 



f   the change of the derivative price with volatility 

Rho   



f
r

  the change of the derivative price with the risk-free rate 

Lambda  



f
q

  the change of the derivative price with the dividend rate 

Delta hedging 

A portfolio for which the weighted sum of the deltas of the individual assets is equal to zero 
is described as delta-hedged. 
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The practice questions start on the next page so that you can 
keep the chapter summaries together for revision purposes. 
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Chapter 13 Practice Questions 

13.1 An investor claims to be able to value an unusual derivative on a non-dividend-paying share using 
the pricing formula: 

  42 tS
t tV S e  

where tS  denotes the price of the share at time t . 

(i) Derive formulae for the delta and gamma of the derivative, based on the pricing formula 
above.      

(ii) For each of the following scenarios, calculate the number of shares that must be purchased 
or sold along with a short holding in one derivative, in order to achieve a delta-hedged 
portfolio: 

 (a) the current share price is 1 

 (b) the current share price is 3.  

(iii) Explain which of the scenarios in (ii) is likely to involve more portfolio management in the 
near future if the investor is determined to maintain a delta-hedged portfolio. 

13.2 (i) Define the delta, gamma and theta of an option. [3] 

(ii) Describe, using a numerical example, the concept of delta hedging. [6] 
    [Total 9] 

13.3 Give definitions of the ‘Greeks’ that could be used as an aid to management in each of the 
following situations.  State also the desired ranges for their numerical values and define any 
notation you use. 

(a) A hedge fund manager wishes to establish a delta-neutral position that would not need 
frequent rebalancing. 

(b) A derivatives trader is concerned that a change in the distribution of the daily price 
movements of particular shares might affect the values of the options held on those 
shares. 

(c) The trustee of a pension fund that purchased a large number of options last year as a 
means of hedging is concerned about changes in the value of the fund as the options 
approach their expiry date. [6] 

13.4 A call option has a price of 20.15p and a delta of 0.558 at time t .  Determine the hedging 
portfolio of shares and cash for this option at time t , given that the price of the underlying share, 

 240ptS . 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 13 Solutions 

13.1 (i) Delta and gamma 

Using the product rule, the delta of the derivative is: 
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The gamma of the derivative is: 
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Using the product rule on each term in the brackets gives: 
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(ii)(a) Current share price is 1 

When the share price is 1, the delta of the derivative is: 

          4 12 1 1 2 1 0.03663e   

So a short holding of one derivative requires selling 0.03663 shares to achieve a delta-hedged 
portfolio. 

(ii)(b) Current share price is 3 

When the share price is 3, the delta of the derivative is: 

          4 32 3 1 2 3 0.0001843e   

So a short holding of one derivative requires selling 0.0001843 shares to achieve a delta-hedged 
portfolio. 

(iii) Portfolio management 

The amount of rebalancing required depends on the value of gamma.  If the current share price is 
1, then the gamma is: 

         4 1 22 1 8 1 8 1 0.03663e   
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If the current share price is 3, then the gamma is: 

         4 3 22 1 8 3 8 3 0.000602e   

So, in the first scenario, we have a higher value of gamma and so the delta of the portfolio is more 
sensitive to changes in the share price.  This means it is more likely to involve more rebalancing of 
the portfolio in the near future if the investor is to maintain a delta-hedged position. 

13.2 (i) Define delta, gamma and theta 

  measures the sensitivity of the price f  of a derivative to changes in the price tS  of the 
underlying asset: 

 
 

 t

f
S

  [1] 

  measures the sensitivity of the   of a derivative to changes in the price tS  of the underlying 
asset: 

  
  

 

2

2
t t

f
S S

  [1] 

  measures the sensitivity of the price f  of a derivative to changes in time: 

 
 


f
t

   [1] 

    [Total 3] 

(ii) Describe delta hedging and give a numerical example 

Delta hedging involves creating a portfolio consisting of a holding of a derivative and the 
underlying asset, so that the delta for the portfolio is zero. [1] 

This means that the value of the portfolio will not change if the price of the underlying changes by 
a small amount (all other factors remaining unchanged). [1] 

The delta of a portfolio can be calculated as a weighted sum of the deltas of the constituents of 
the portfolio.   [1] 

Suppose, for example, that an institution has sold 1,000,000 call options on a share, each with a 
delta of 0.5.  The delta for this portfolio would be    0.5 1,000,000 500,000 , and so this 
portfolio is not delta-hedged. [1] 
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If, however, the institution also purchased 500,000 shares, the portfolio would now be 
delta-hedged, because the shares themselves have a delta of 1, so that the delta for the portfolio 
would be     1,000,000 ( 0.5) 500,000 1 0 .  A small change in the value of the shares would 
now make no difference to the value of the portfolio as a whole. [2] 
    [Total 6] 

13.3 Let f  denote the value of the part of the portfolio containing the relevant shares and derivatives 
on those shares.  [½] 

Let tS  denote the share price. [½] 

Let   denote the market volatility of the share price. [½] 

Let t  denote calendar time. [½] 

(a) Hedge fund manager 

For a delta-neutral position, the hedge fund manager will want to have an overall delta of zero: 

 
  


0

t

f
S

  [1] 

To minimise the need for rebalancing to maintain a delta-neutral position, the manager will also 
want to have a low gamma: 

 
  



2

2 0
t

f
S

  [1] 

(b) Derivatives trader 

The derivatives trader will be primarily concerned about the volatility.  In order for changes in the 
volatility not to affect the value of the options, the trader will want to have a vega close to zero: 

 


 
 


0f   [1] 

Note that the question refers to a change in the distribution of the price movements, not the 
values themselves. 

(c) Pension fund trustee 

The pension fund trustee will be primarily concerned about the effect of calendar time on the 
value of the options.  To avoid the fund value falling, the trustee will prefer to have a 
non-negative theta: 

 
  


0f

t
  [1] 

    [Total 6] 
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13.4 Let there be x  shares and y  units of cash in the hedging portfolio at time t . 

The value of the hedging portfolio must be equal to the value of the call option at time t .  This 
gives: 

  240 20.15x y  (1) 

The delta of the hedging portfolio must be equal to the delta of the call option at time t .  This 
gives: 

     0.558share cashx y   

Now: 

  
  


1t

share
t

S
S

  and    0cash  

giving  0.558x . 

Using equation (1), this gives  113.77y .  

So the hedging portfolio consists of 0.558 shares and cash of 113.77p . 
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The binomial model 

 

 

   

Syllabus objectives 

6.1 Option pricing and valuations 

6.1.4 Show how to use binomial trees and lattices in valuing options and solve 
simple examples. 

6.1.5 Derive the risk-neutral pricing measure for a binomial lattice and describe 
the risk-neutral pricing approach to the pricing of equity options. 

6.1.6 Explain the difference between the real-world measure and the risk-neutral 
measure.  Explain why the risk-neutral pricing approach is seen as a 
computational tool (rather than a realistic representation of price dynamics 
in the real world). 

6.1.7 State the alternative names for the risk-neutral and state price deflator 
approaches to pricing. 

6.1.11 Describe and apply in simple models, including the binomial model and the 
Black-Scholes model, the approach to pricing using deflators and 
demonstrate its equivalence to the risk-neutral pricing approach. 
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0 Introduction 

In this chapter, we start to develop simple models that can be used to value derivatives.  In 
particular, we use binomial trees or lattices to find the value at time 0 of a derivative contract that 
provides a payoff at a future date based on the value of a non-dividend-paying share at that 
future date. 

The analysis throughout this and the subsequent chapters applies the no-arbitrage principle in 
order to value derivative contracts.  The basic idea is that if we can construct a portfolio that 
replicates the payoff from the derivative under every possible circumstance, then that portfolio 
must have the same value as the derivative.  So, by valuing the replicating portfolio we can value 
the derivative. 

The models discussed in this chapter represent the underlying share price as a stochastic process 
in discrete time and with a discrete state space – in fact a geometric random walk.  In subsequent 
chapters, we will discuss the continuous-time and continuous-state space analogue, geometric 
Brownian motion (or the lognormal model), which can be interpreted as the limiting case of the 
binomial model as the size of the time steps tends to zero. 
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1 Background 

Here we will consider a model for stock prices in discrete time; the first point at which we 
introduce a model.  The model will seem very simple and naïve at first sight, but: 

(a) it introduces the key concepts of financial economic pricing and 

(b) it leads us to the celebrated Black-Scholes model as a limiting case. 

1.1 Assumptions 

In the binomial model it is assumed that: 

 there are no trading costs  

 there are no taxes 

 there are no minimum or maximum units of trading 

 stock and bonds can only be bought and sold at discrete times 1, 2, ... 

 the principle of no arbitrage applies. 

As such the model appears to be quite unrealistic.  However, it does provide us with good 
insight into the theory behind more realistic models.  Furthermore, it provides us with an 
effective computational tool for derivatives pricing. 

As well as being used to determine the derivative price, the principle of no arbitrage leads to a 
constraint on the parameters used in the binomial model. 

1.2 Definitions 

The share price process 

We will use tS  to represent the price of a non-dividend-paying stock at discrete time 

intervals  0,1,2,...t t  .  For 0, tt S  is random. 

Note that in this instance ‘stock’ specifically means a share or equity as opposed to a bond.  For 
the time being we ignore the possibility of dividends, which would otherwise unnecessarily 
complicate matters. 

The stock price tS  is assumed to be a random or stochastic process.  Over any discrete time 

interval from t 1  to t , we assume that tS  either goes up or goes down.  We also assume that 

we cannot predict beforehand which it will be and so future values of tS  cannot be predicted 
with certainty.  We will, however, be able to attach probabilities to each possibility and we also 
assume that the sizes of the jumps up or down are known. 

The cash process 

Besides the stock, we can also invest in a bond or a cash account which has value tB  at 

time t per unit invested at time 0.  This account is assumed to be risk-free and we will 
assume that it earns interest at the constant risk-free continuously compounding rate of r 
per annum.  Thus, rt

tB e . 
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We usually assume that r > 0, so that: 

 tB B 0  = 1 and t tB B  1  for t > 0 

 tB  increases in an entirely predictable manner as we move through time, ie at the 
continuously compounding rate of r per time period. 

At all points in time there are no constraints (positive or negative) on how much we can 
hold in stock or cash. 
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2 The one-period model 

2.1 Basic structure 

The aim in this chapter is to find the value at an arbitrary time 0 – ie now – of a derivative that 
provides a payoff at some future date based on the value of the stock at that future date.  As a 
starting point, we consider a one-period binomial model.  In this model, we start at time t = 0, 
when the stock price is equal to S0 .  Over the one-period time interval to t = 1, the stock price 
will do one of two things.  It will either: 

1. jump upwards or 

2. jump downwards. 

Here we are trying to find the value of a derivative that pays out an amount that depends directly 
on the value of the stock price at time 1, ie on S1 . 

We have two possibilities for the price at time 1: 

  0
1

0

if the price goes up

if the price goes down

S u
S

S d


 


 

Here u is a fixed number bigger than 1 and d is a fixed number less than 1. 

This is represented in Figure 14.1 (part of the Core Reading). 

 

 

 

 

Figure 14.1: One-period binomial model for stock prices 
 
This figure shows a one-period binomial model for the stock price.  One-period because we 
consider only the time interval from time 0 to time 1, binomial because there are only two 
possible ways in which the stock price can move, ie up to S u0  or down to S d0 . 

Such a model is referred to as a binomial tree and each of the paths from S0  to S u0  and from S0  

to S d0  is referred to as a branch.  The points at each end of the branches are sometimes known 
as nodes. 

We can now see the implication of there being no arbitrage in this model. 

In order to avoid arbitrage we must have rd e u  .  Suppose that this is not the case. 

S0 u 

S0 

S0 d 
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For example, if re d u  , then we could borrow £1 of cash and buy £1 of stock.  At time 0 
this would have a net cost of £0.  At time 1 our portfolio would be worth: 

 rd e  or 

 ru e   

both of which are greater than 0.  This is an example of arbitrage. 

Or more generally, if one asset (eg the share) is certain to earn more over the one step than the 
other (eg the cash), then we simply borrow the lower-yielding asset to invest in the 
higher-yielding asset as many times over as we like, thus making an arbitrage profit.  The only way 
to avoid this scenario is if the share performs either ‘better’ or ‘worse’ than the cash, 

ie rd e u  .  

2.2 Determination of the derivative price at time 0 

Suppose that we have a derivative which pays uc  if the price of the underlying stock goes 

up and dc   if the price of the underlying stock goes down. 

So, the value of the payment made by the derivative at time 1, which we can denote by the 
random variable C1 , depends on the underlying stock price at time 1. 

Question 

Write down an expression for C1 . 

Solution 

C1  is the derivative payoff at time 1, which is equal to: 

 C 1  u

d

c S u
c S d




0

0

if the stock price went up (to )
if the stock price went down (to )

 

 
At what price should this derivative trade at time 0? 

At time 0, suppose that we hold   units of stock and   units of cash.  The value of this 

portfolio at time 0 is 0V . 

So: V S  0 0  

The portfolio is sometimes represented as an ordered pair   , .    and   are the Greek 

letters ‘phi’ and ‘psi’. 
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At time 1, the same portfolio has the value: 

  0
1

0

if the stock price went up

if the stock price went down

r

r
S u e

V
S d e

 

 

  


 

eg if the stock price went up, then the value of one unit of the stock has increased to S u0  and the 

value of an initial unit in the cash account has increased to re . 

So   ,  could be any values and this portfolio could consist of an amount of shares and an 

amount of cash in whatever quantities we choose.  We are going to choose   and   in order 
that the portfolio replicates the payoff of the derivative, no matter what the outcome of the share 
price process. 

Let us choose   and   so that 1 uV c  if the stock price goes up and 1 dV c  if the stock 

price goes down.  Then: 

 0
r

uS u e c    

and: 

 0
r

dS d e c    

This choice of   and   therefore ensures that the value of the portfolio   ,  at time 1 is equal 

to the derivative payoff whether the stock price goes up or down.  Hence, by the no-arbitrage 
principle, the value of this portfolio at time 0, V0 , must also be the value of the derivative 
contract at that time.  So, if we can solve these simultaneous equations to find   and  , then we 

can determine V0 , which must be equal to the value of the derivative at time 0. 

So, we have two linear equations in two unknowns,   and  . 

The easiest way to solve these equations is to subtract them.  This enables us to find  .  We can 
then substitute into either equation to find  .   

We solve this system of equations and find that: 

  
0 ( )
u dc c

S u d






 

 r d uc u c de
u d

   
   

 

 0 0V S    

We now notice that all the terms in the numerators for   and  involve either uc  or dc .  

Therefore it is possible to rearrange V0  so that it is a sum of a multiple of uc  and a multiple 

of dc .  
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r

u d d uc c e c u c d
V

u d u d

 
 

 0
( )

 

       r r
u dde c ue c

u d
      

1 (1 ) ( 1)  

       

r
r r

u d

r r
r

u d

e e d c u e c
u d

e d u ee c c
u d u d





     

  
  

   

( ) ( )

 

ie   0 1r
u dV e qc q c    

where  
re dq

u d





 and 1
ru eq

u d


 


.  

Note that the no-arbitrage condition rd e u   ensures that 0 1q  . 

Recall that the formula for V0  must, by the no-arbitrage principle, be equal to the price of the 
derivative at time 0.  Since q 0 1 , let’s just ‘pretend’ for now that q is a probability.  If we do 
this then we can see that the right-hand side simplifies to: 

  rV e E C0 1  

ie, the discounted value of the expected derivative payoff at time 1.  However, we must 
remember we are just ‘pretending’ that q is a probability when in actual fact it isn’t a real-world 
probability, so we add a Q to the notation to remind ourselves: 

  r
QV e E C0 1  

We will see that, although it doesn’t reflect reality, this ‘pretending’ idea is a good way of thinking 
about it. 

If we denote the payoff of the derivative at 1t   by the random variable 1C , we can write: 

 0 1
r

QV e E C     

where Q is an artificial probability measure which gives probability q to an upward move in 
prices and 1 q  to a downward move.  We can see that q depends only upon u, d and r and 

not upon the potential derivative payoffs uc  and dc .  Note, by convention 0QE Y F    is 

sometimes written as  QE Y . 

We can think of a probability measure as a set of probabilities (more about this later).  Note also 
that Q doesn’t depend in any way on the real-world probabilities. 
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This is a surprising result.  We might have thought at the start that the price of the derivative 
should be some sort of discounted value of the expected payoff.  The above result is telling us 
that this is the case, but the probabilities used to calculate the expectation are not the real-world 
probabilities of the two possible derivative values.  Instead we calculate the expectation using the 
‘probabilities’ q  and q1 . 

2.3 Probability measures 

General definition 

Within the context of a binomial tree, a probability measure is simply a function that assigns a real 
number in the interval [0,1] to each of the branches in our binomial tree such that at any node 
they sum to 1.  We can thus interpret each number as a probability. 

Note carefully that the probabilities assigned by a probability measure do not need to correspond 
to the real-world probabilities that the stock price actually moves up or down between times 0 
and 1.  In fact, any function that assigns a value q[0,1]  to the up-branch and 1–q to the 
down-branch is a possible probability measure.  Q  is therefore the particular measure, amongst 

many possible measures, that happens to assign the probability 
re dq

u d





 to the up-branch 

between times 0 and 1, and 
ru eq

u d


 


1  to the down-branch. 

QE C1( )  therefore represents the expectation of the derivative payoff C1  with respect to the 

probability measure Q – ie the expectation of C1  based on an up-probability of q and a 
down-probability of 1– q.   

We could equally evaluate the expectation of C1  based on a different probability measure, P say, 

which assigns a different probability 0  p  1 to the up-branch.  In that case, PE C1( )  would be the 

expectation of C1  with respect to P: 

ie P u dE C pc p c  1( ) (1 )  

We could in fact use any probability measure we like to calculate an expectation – including the 
real-world probabilities – with different measures producing different expectations.  The 
probability measure Q is, however, especially useful as it enables us to calculate the derivative 
price. 

In fact Q is called the risk-neutral probability measure as we will see later. 

Replicating portfolio 

The portfolio ( , )   is called a replicating portfolio because it replicates, precisely, the 

payoff at time 1 on the derivative without any risk. 
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In other words, uV c1  if the stock price goes up and dV c1  if the stock price goes down.  So, 

there is never any risk or possibility that V C1 1 .  Hence, in a world that is free of arbitrage, the 

values of the derivative and the replicating portfolio   ,  at time 0 must be equal – ie they are 

both equal to r
QV e E C0 1( ) . 

It is also a simple example of a hedging strategy: that is, an investment strategy which 
reduces the amount of risk carried by the issuer of the contract.  In this respect not all 
hedging strategies are replicating strategies. 

A replicating portfolio will always precisely reproduce the relevant payoff or cashflow.  A 
hedging portfolio aims to reduce the amount of risk relating to a derivative strategy, but is 
not guaranteed to reproduce the payoff or cashflow precisely.  Furthermore, a replicating 
portfolio is only a hedging portfolio if the position taken in it is opposite to that of the payoff 
or cashflow which it aims to reproduce. 

So, if we hold the portfolio   ,  and sell the derivative, then the total value of the resulting 

portfolio at time 1 will be zero, however the stock price moves over the interval to time 1.  An 
immediate consequence of this is that in an arbitrage-free world the value of the combined 
portfolio is zero at time 0.  Hence, the value of the combined portfolio does not change from zero 
as we move from t = 0 to t = 1 and so we are said to have a perfectly-hedged position.  This will 
also be true if we instead sell the portfolio   ,  and hold the derivative. 

It is also possible to have an intermediate position where the risk is reduced but not eliminated.  
This would be the case, for example, if we sold the derivative and held the portfolio   ½ ,½ .  

This portfolio is not a replicating strategy. 

The real-world probability measure, P 

Up until now we have not mentioned the real-world probabilities of up and down moves in 
prices.  Let these be p and 1 p  where 0 1p  , defining a probability measure P. 

So P is a set of probabilities that assigns the actual or real-world probability p of an upward jump 
in the stock price to an up-branch of the binomial tree and 1– p to a down-branch. 

Other than by total coincidence, p will not be equal to q. 

This is because p is the actual probability of the stock price moving upwards, whereas q is simply a 
number defined as: 

re dq
u d





 

So, q depends upon u, d and r, but not p. 

When we wish to emphasise that q is not a real-world probability, it is often referred to as a 
synthetic probability.  The important thing to note is that the real-world probability p (if indeed 
this can be determined) is irrelevant to our calculation of the derivative price, which is based 
solely on the synthetic probability q. 
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2.4 The risk-neutral probability measure, Q 

Let us consider the expected stock price at time 1.  Under P this is: 

   1 0 1PE S S pu p d      

This is the expectation of the stock price at time 1 with respect to the real-world probability 
measure P. 

Under Q it is: 

   1 0 0 0
( ) ( )

1
r r

r
Q

u e d d u eE S S qu q d S S e
u d u d

  
            

 

Under Q we see that the expected return on the risky stock is the same as that on a risk-free 
investment in cash. 

This is because the last equation shows that the expected stock price  QE S1  is equal to the 

accumulation of the initial stock price S0  at the risk-free rate of return r.  (So, the expected rate 
of return on the stock must be equal to the risk-free rate.) 

In other words, under the probability measure Q, investors are neutral with regard to risk: 
they require no additional return for taking on more risk. 

This is because both risk-free cash and the risky stock are priced so as to yield the same expected 
return with respect to the measure Q.  So if we use the measure Q this is equivalent to assuming 
that investors do not require an additional risk premium to compensate them for the additional 
risk that they incur when investing in the risky stock, ie they are risk-neutral.   

Note carefully that we are not saying that investors in the real world are risk-neutral – or 
equivalently that investors are risk-neutral under the real-world probability measure P.  We are 
simply saying that they can be assumed to be risk-neutral under the non-real-world probability 
measure Q. 

This is why Q is sometimes referred to as a risk-neutral probability measure. 

It is the probability measure with respect to which any asset, whether risky or risk-free, offers the 
same expected return to investors, namely, the risk-free rate of return. 

Under the real-world measure P, the expected return on the stock will not normally be equal 
to the return on risk-free cash.  Under normal circumstances, investors demand higher 
expected returns in return for accepting the risk in the stock price.  So we would normally 
find that p q .  However, this makes no difference to our analysis. 

Question 

Show why we would normally find that p > q. 
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Solution 

The probability measure Q is the set of probabilities such that all assets, whether risky or risk-free, 
give the same expected return, namely the risk-free rate. 

Under normal circumstances, investors demand higher expected returns in return for accepting 
the risk inherent in the random stock price.  So, the expected return calculated with respect to the 
real-world probability measure P should be higher than that based on the risk-neutral probability 
measure Q, so as to compensate investors for the additional risk inherent in the stock.  In order to 
generate this additional expected return, the expected stock price at time 1 must be higher under 
P than under Q, ie: 

    P QE S E S1 1  

    S pu p d S qu q d    0 0(1 ) (1 )  

 pu pd qu qd    

 p q u d  ( )( ) 0  

Given that u – d > 0 by assumption, we would therefore normally find that p > q. 

 
2.5 Numerical example 

The above computations will become clearer if we consider a simple numerical example. 

Let’s consider a one-period binomial model of a stock whose current price is 40.  Suppose that: 

 over the single period under consideration, the stock price can either move up to 60 or 
down to 30 

 the actual probability of an up-movement is equal to ½ 

 the continuously compounded risk-free rate of return is 5% per time period 

 we wish to find the current value of a one-period European call option, V0 , that has an 
exercise price of 45. 

The binomial tree in respect of the stock price is therefore as follows: 

                 S 1 60  

           S 0 40            

S 1 30  
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We can likewise consider a corresponding binomial tree in respect of C1 , the payoff provided by 
the call option at time 1 – ie the profit paid at exercise: 

                uC c   1 60 45 15  

            C 0 ?  

            dC c 1 0  

Recall that V0 , the value of the replicating portfolio  ( , )  at time 0, must be equal to C0 , the 
derivative value at time 0. 

Question 

Explain why dc 0 . 

Solution 

dc  0  because if the stock price goes down over the single period under consideration, then it 
ends up at 30.  As this is less than the exercise price of 45, the call option will not be exercised and 
will expire worthless.  Hence, the option payoff is then equal to 0. 

 
In order to find V0 , and hence C0 , we can calculate the risk-neutral probabilities, q and 1 – q, and 
then use the result that: 

 r
QV e E C0 1( )  

ie  r
u dV e q c q c  0 (1 )  

Recall from above that the risk-neutral probability q is equal to: 

re dq
u d





 

In this instance: 

 d  
30 0.75
40

 

and: u  
60 1.5
40

 

So: eq 
 



0.05 0.75 0.40169
1.5 0.75

 

and: q 1 0.59831  
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Hence: 

  V e    0.05
0 0.40169 15 0.59831 0 5.732  

ie C 0 5.732  

Question 

Find the constituents of the replicating portfolio   ,  and show that it costs 5.732 to set up this 

portfolio. 

Solution 

Recall from above that: 

 u dc c
S u d





0( )

 

and r d uc u c d
e

u d
   

   
 

So, using the relevant values gives: 

 


 


15 0
0.5

40(1.5 0.75)
 

 e     
    

0.05 0 1.5 15 0.75
14.268

1.5 0.75
 

Hence, the replicating portfolio consists of: 

 a positive holding of half a share 

 a negative holding of 14.268 of cash – ie we borrow cash. 

Alternatively, we could have solved the simultaneous equations: 

 e  0.0560 15  and e  0.0530 0  

Finally, the cost of the replicating portfolio is equal to: 

V S  0 0  

and using the relevant values from above gives: 

V    0 0.5 40 14.268 5.732  

as required. 
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Three final points to note are that: 

1. We did not use the actual or real-world probability of p = ½ to find V0 , ie V0  is 
 independent of p. 

2. p q  ½ 0.40169 , as noted above. 

3. V0  differs from the discounted value of the expected derivative payoff based on 
 the actual probability of p = ½, which is equal to: 

   V e     0.05
0 0.5 15 0.5 0 7.134  

 Note that V V 0 0 .  This is because p > q, and so the real-world probability measure 
places greater weight upon the good outcome when the share price increases to 60. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 16 CM2-14: The binomial model 

© IFE: 2019 Examinations The Actuarial Education Company 

3 Two-period binomial tree 

3.1 Basic structure 

The one-period binomial model is a good starting point for our analysis of derivative pricing.  The 
stochastic processes underlying stock price movements will, however, typically be more complex 
than can be represented by the one-period model.  We therefore need to extend the previous 
model into a multi-period context.  The obvious next step is to develop a two-period binomial 
model.  It turns out that the ideas discussed above carry over quite naturally to the two-period 
model. 

To keep things simple, we assume that the periods we are dealing with are years. 

Warning: The notation used in this section makes the calculations look more complicated than 
they really are.  When carrying out numerical calculations using a diagram, it’s actually quite a 
straightforward process. 

We now look at a two-period binomial model.  The most general model is as follows (see 
Figure 14.2, part of the Core Reading): 

 

 

 

 

 

 

 

 

 

 

 
Figure 14.2: Two-period binomial model.  Where the price at a particular node  

is denoted  tS j , this means the price in state  ,t j . 

The subscripts here denote time and the arguments in brackets denote the vertical position, 
counting from the top of the tree. 

S2(1) = S1(1) u1(1) = S0 u0(1) u1(1) 

S2(2) = S1(1) d1(1) = S0 u0(1) d1(1) 

S2(3) = S1(2) u1(2) = S0 d0(1) u1(2) 

S2(4) = S1(2) d1(2) = S0 d0(1) d1(2) 

 

 

 S1(2) = S0 d0(1) 

S0(1) = S0 

S1(1) = S0 u0(1) 

State(0,1) 

State(2,1) 

State(2,2) 

State(2,3) 

State(2,4) 

State(1,1) 

State(1,2) 
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Period 1: 

  0 0
0

0 0

(1) if up, to state (1,1)

(1) if down, to state (1,2)

S u
S

S d


 


 

The first period is essentially the same as our previous one-period model.  The stock price 
therefore starts at S0  at time 0 and either goes up or down over the period from t  0  to t 1.  
We do, however, need to be more careful with our notation once we move into a multi-period 
model. 

Accordingly, the stock price is assumed to start from an initial state or node that is referred to as 
State (0,1) – ie State 1 at time 0.  There is, of course, only one possible state at time 0, defined by 
the stock price S0 .  The stock price then changes over the year from time 0 to time 1.  It either 
moves along the up-branch to State (1,1), the first state (or up-node) at time 1, or down to State 
(1,2), the second state (or down-node) at time 1. 

The stock price at State (1,1) following an up-movement is therefore S u0 0(1) , where tu j( )  
denotes the proportionate increase in the stock price in an up-movement over the time interval 
from time t  to time t 1 , starting from State (t, j).  Similarly, should the stock price move down 
to State (1,2), then it will be equal to S d0 0(1) , where td j( )  is defined similarly to tu j( )  but 
instead denotes the proportionate decrease in the stock price.  

Period 2: 

From state  1,1 , ie following a price increase in the first time interval: 

   0 0 1
0 0

0 0 1

(1) (1) if up, to state (2,1)
1

(1) (1) if down, to state (2,2)

S u u
S u

S u d


 


 

So, for example, if the stock price falls in the second period, then it moves from State (1,1) to 
State (2,2) via the down-branch d1(1) . 

From state  1,2 , ie following a price decrease in the first time interval: 

   0 0 1
0 0

0 0 1

(1) (2) if up, to state (2,3)
1

(1) (2) if down, to state (2,4)

S d u
S d

S d d


 


 

Recall that u1(2)  denotes the up-branch price ratio from time 1 to time 2, starting at State (1,2). 
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3.2 Determination of the derivative price at time 0 

Suppose that the derivative gives a payoff at time 2 of  2c j  if the price of the stock at 

time 2 is in state  2, j . 

How do we calculate the price of the derivative at time 0? 

The approach used turns out to be the natural extension of that used in the one-period model.  
Here we first find the intermediate price at time 1 and then use this price to find the price at 
time 0. 

We do this by working backwards from time 2.  So we calculate the value of the contract at 
time 1 for each of the possible states at time 1. 

These two states are State (1,1) following an upward movement in the first period and State (1,2) 
following a price fall. 

Let  1V j  be the value of the contract if we are in state j at time 1.  Then, by analogy with 

the one-period model: 

            1 1 2 1 21 1 1 1 1 2rV e q c q c    

            1 1 2 1 22 2 3 1 2 4rV e q c q c    

where:    1
1

1 1

(1)
1

(1) (1)

re dq
u d





 and:   1

1
1 1

(2)
2

(2) (2)

re dq
u d





 

So, the value of the derivative at time 1 is equal to the expectation at time 1 of the derivative 
payoff at time 2, calculated with respect to the risk-neutral probability measure Q and discounted 
at the risk-free rate of return. 

No-arbitrage conditions imply that    r
t td j e u j   (and hence  0 1tq j  ) for all t 

and j. 

Question 

Explain why no-arbitrage conditions imply that r
t td j e u j ( ) ( ) . 

Solution 

This is the same as the restriction described earlier.  Suppose that this is not the case.  Say that at 

time 1 we are in State (1, j) and re d j u j 1 1( ) ( ) .  Then we can buy a share for S j1( )  and borrow 
the amount of cash needed to pay for this.  At time 1, this would have a net cost of £0.  At time 2, 

our portfolio will be worth either rd j e S j1 1( ( ) ) ( )  or ru j e S j1 1( ( ) ) ( )  both of which are greater 
than 0 – according to our assumption.  So, we have a violation of the no-arbitrage condition. 
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The price at time 0 is found by treating the values  1 1V  and  1 2V  in the same way as 

derivative payoffs at time 1. 

So: 

           0 0 1 0 11 1 1 1 1 2rV e q V q V       

Combining the two steps above we can then conclude that the value of the derivative at time 0 is 
equal to the expectation at time 0 of the derivative payoff at time 2, calculated with respect to 
the risk-neutral probability measure Q and discounted at the risk-free rate of return over two 
time periods.  We return to this below. 

Let 2C  be the random derivative payoff at time 2 (that is, it takes one of the values  2c j  for 

1,2,3,4j  ). 

Let tV  be the random value of the contract at time t. 

Let tF  be the history of the process up to and including time t (that is, the sigma-algebra 

generated by the sample paths up to and including time t) and let F be the sigma-algebra 
generated by all sample paths (up to the final time considered by the model). 

‘Sigma-algebra’ is a technical term that is not important here.  Recall that tF , which we called the 
filtration in the chapter on Brownian motion and martingales, is basically the information known 
about the process tS  by time t.  F is often used to denote the information known by the final time 
of the model, in this case the payoff date of the derivative at time 2. 

Amongst the information that tF  gives us is: 

 our current position in the binomial tree, State (t, j) 

 the current stock price tS j( ) . 

So, tV j( ) , the value of the derivative contract if we are in State j at time t, must depend on tF . 

Let Q be the probability measure generated by the probabilities    0 11 , 1q q  and  1 2q . 

That is, let Q be the risk-neutral probability measure. 

Then: 

  1 21  up in year 1r
QV e E C      

  1 22  down in year 1r
QV e E C      

or 1 2 1
r

QV e E C F      
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The formula: 

 r
QV e E C F1 2 1[ | ]  

says that the no-arbitrage value of the derivative at time 1 is equal to: 

 the expectation of the derivative payoff at time 2, 

 calculated with respect to both the risk-neutral probability measure Q and the 
information set F1 , generated by the history of the stock price movements up to and 
including time 1, 

 discounted at the continuously compounded risk-free rate of return, r. 

Likewise: 

   

0 1 0

2 1 0

2
2 0

r
Q

r r
Q Q

r
Q

V e E V F

e E e E C F F

e E C F



 



   

   

   

   

So, the no-arbitrage value of the derivative at time 0 is equal to: 

 the expectation of the derivative payoff at time 2 

 calculated with respect to both the risk-neutral probability measure Q and the 
information set F0 , generated by the history of the stock price movements up to and 
including time 0, 

 discounted at the continuously compounded risk-free rate of return, r.   

Note that the final expression above is derived by applying the so-called tower property of 
conditional expectations.  This states that for any random variable X, probability measure P and 
sigma-algebra iF : 

 P P j i P iE E X F F E X F[ { | }| ] [ | ]  

for i j .  This is a generalisation of the formula E E A B E A[ [ | ]] [ ] .  
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Numerical example 

Again a numerical example should help to clarify matters.  This example extends the previous 
one-period example to a two-period scenario.   

Let’s now consider a two-period binomial model of a stock whose current price is 40 (as before).  
Suppose that: 

 Over the first period, the stock price can either move up to 60 or down to 30 (as before). 

 Following an up-movement in the first period, the stock price can either move up to 80 or 
down to 50. 

 Following a down-movement in the first period, the stock price can either move up to 40 
or down to 25. 

 The real-world probability of an up-movement is always equal to ½ (as before). 

 The continuously compounded risk-free rate of return is 5% per time period. 

 We wish to find V0 , the current value of a two-period European call option, that has an 
exercise price of 45. 

The binomial tree in respect of the stock price is therefore as follows: 

Share prices 

 

 

 

 

 

 

 

 

t = 0             t = 1         t = 2 

 

40 

60

30

80

50

40

25
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We can also draw a corresponding binomial tree showing the derivative value at each state or 
node: 

Derivative values 

 

 

 

 

 

 

 

 

t = 0             t = 1              t = 2 

Note that the derivative value at each final node is always equal to the payoff at that node – 
which is certain once that particular node has been reached. 

Question 

Draw a further binomial tree corresponding to the above trees and annotate it with the states 
t j( , )  and the risk-neutral probabilities.  

Solution 

States and risk-neutral probabilities 

      q1 (1) 

 

  q0 (1)     1– q1 (1) 

             

 

1– q0 (1)   q1 (2) 

 

1– q1 (2) 

 

V0 

 V1(1)

 V1(2)

35

5

0

0

 (0,1) 

 (1,1)

 (1,2)

(2,1)

(2,2)

(2,3)

 (2,4)
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Finally, we can also annotate the branches of the binomial tree with the price movement factors, 
u and d – and show the relevant values in the nodes: 

Share price movements 

          

       u1 (1)  

 

   u0 (1)       
              d1 (1) 

       

 

u1 (2) 

d0 (1) 

d1 (2) 

t = 0    t = 1             t = 2 

To find V0 , the value of the derivative at time 0, we need to work backwards through the tree.  In 
doing so, we can essentially consider the binomial tree as three distinct one-period trees – two in 
the second period and one in the first.  For each subtree we apply the one-period approach of the 
previous section and then combine our results to find the two-period derivative price.  We 
therefore proceed in three steps as follows: 

1. We first determine V1(1) , the derivative’s value at time 1, assuming that we are 
 then at State (1,1).  This is found in exactly the same way as in the one-period model, 
 but using the second-period risk-neutral probability q1(1) . 

2. We repeat the first step to find V1(2) , the derivative’s value at time 1, assuming that we 

are then at State (1,2), using the second-period risk-neutral probability q1(2) . 

3. We then repeat the procedure to find V0 , the derivative’s value at time 0, as the 

discounted value of the expectation of V1  using the first-period risk-neutral probability 
q0(1) . 

  3/2 

  3/4 

 4/3 

 5/6 

 4/3 

  5/6 
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Step 1: Starting at State (1,1) 

The price movement factors are u 1(1) 4 3  and d 1(1) 5 6 .  So, the risk-neutral probability is: 

 
r ee dq

u d


  
 

0.05
1

1
1 1

5 6(1)
(1) 0.43588

(1) (1) 4 3 5 6
 

Starting from State (1,1), the possible derivative payoffs at time 2 are c 2(1) 35  and c 2(2) 5 . 

Hence: 

  rV e q c q c  1 1 2 1 2(1) (1) (1) (1 (1)) (2)  

ie  V e     0.05
1(1) 0.43588 35 (1 0.43588) 5 17.195  

Step 2: Starting at State (1,2) 

The price movement factors are u 1(2) 4 3  and d 1(2) 5 6 . 

Starting from State (1,2), the possible derivative payoffs at time 2 are c 2(3) 0  and c 2(4) 0 . 

So, the risk-neutral probability is: 

 
r ee dq

u d


  
 

0.05
1

1
1 1

5 6(2)
(2) 0.43588

(2) (2) 4 3 5 6
 

Note that this answer is the same as in the first step, because the u and d price movement factors 
happen to be the same.  This will not always be the case. 

Finally, we have that: 

  rV e q c q c  1 1 2 1 2(2) (2) (3) (1 (2)) (4)  

ie  V e     0.05
1(2) 0.43588 0 (1 0.43588) 0 0  

This is equal to zero as both of the final possible stock prices are below the exercise price and so 
the derivative payoff at time 2 must be zero, given that the stock price fell in the first period. 

So, the calculations in Step 2 were pointless!  We have given them for completeness but in the 
exam you should always be aware of a chance to simplify the calculations like this. 
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Step 3: Starting at State (0,1) 

Question 

Repeat the previous steps for the first time period to show that: 

(i) the risk-neutral probability is q 0(1) 0.40169  

(ii) the derivative price at time 0 is V 0 6.570 . 

Solution 

(i) Risk-neutral probability  

For the first time period, the price movement factors are u 0(1) 3 2  and d 0(1) 3 4 . 

So, the risk-neutral probability is: 

 
re d e

q
u d

 
  

 

0.05
0

0
0 0

(1) 3 4
(1) 0.40169

(1) (1) 3 2 3 4
 

which is, of course, the same as in the one-period model in the previous section. 

(ii) Derivative price at time 0 

Starting from State (0,1), the possible derivative values at time 1 are V 1(1) 17.195  and 
V 1(2) 0 . 

Hence: 

  rV e q V q V  0 0 1 0 1(1) (1) (1 (1)) (2)  

ie  V e     0.05
0 0.40169 17.195 (1 0.40169) 0 6.570  
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4 n-period binomial tree 

The final step in the development of the binomial model approach to derivative pricing is to 
extend the model to a more general, multi-period or n-period context.  Once again, the ideas 
discussed above carry over quite naturally into the general multi-period model. 

4.1 Basic structure 

We can generalise all the preceding results to n periods. 

At time t  there are 2t  possible states      ,1 , ,2 ,..., ,2 .tt t t  

Recall that in the two-period model: 

 at time 0, there is 20 = 1 state 

 at time 1, there are 21 = 2 states 

 at time 2, there are 22 = 4 states. 

In state  ,t j  the price of the underlying stock is  tS j . 

From this state the price can: 

 go up to      1 2 1t t tS j S j u j    and state  1,2 1t j   

 or down to      1 2t t tS j S j d j   and state  1,2t j . 

The 2j’s come in because of the way the states are numbered in each column.  For example, if we 
are currently in State 3 (say) then we’ll move to State 5 in the next column after an up-movement 
or State 6 after a down-movement. 

4.2 Risk-neutral probability measure 

The risk-neutral probabilities 

If the risk-free rate of interest, r, is constant with    r
t td j e u j   then this induces the 

probabilities: 

   ( )

( ) ( )

r
t

t
t t

e d jq j
u j d j





 

(as in the one-period and two-period models) of an up-move from state  ,t j . 

The probability measure Q 

Putting the sample paths and the qprobabilities together gives us the probability 
measure Q. 

We have noted before that 1 0
r

QE S S e   , giving rise to the use of the name risk-neutral 
measure for Q. 
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This follows from the fact that the time 0 expectation of the time 1 stock price with respect to the 
measure Q is equal to the accumulated value of the initial stock price at the risk-free rate. 

Similarly in the n-period model we have: 

 1
r

Q t t tE S F S e     

Question 

Prove that r
Q t t tE S F S e 1[ | ]  for t  0,1,2,...  

Solution 

We know that 
re dq

u d





.  It follows that: 

     
r

r
Q t t t t t t

e dE S F qS u q S d S u d d S e
u d

 
       

  
1| 1  

 
Now applying the tower law, ie Q Q t s Q sE E X F F E X F[ { | }| ] [ | ]  for s t : 

    r r
Q t Q Q t t Q t Q tE S F E E S F F E S e F e E S F 

       1 0 1 0 0 0[ | ] | | | |  

It follows that: 

 1
1 1 0 0

t r
Q t Q tE S E S F S e 

         

by induction.  So the use of the expression risk-neutral measure for Q is still valid. 

This is because the expectation with respect to Q of the stock price in t 1  periods’ time is equal 
to the initial stock price accumulated at the risk-free rate of return over those t 1  periods. 

4.3 Finding the derivative price at time 0 

We can write  nC j  for the payoff under a derivative maturing at time n in state  ,n j  and 

 tV j  for the price of the derivative at time t in state  ,t j .  The corresponding random 

variables are denoted by nC  and tV  respectively.  As was shown in the two-period model, 

we calculate prices by starting at the maturity date and working backwards. 

Thus: 

    n nV j C j  

and for t n : 

 1
r

t Q t tV e E V F
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So, moving backwards through the n t  stages of the tree from time n to time t we get: 

  r n t
Q n te E C F       

As we work our way backwards through the binomial tree, by analogy with the one-period 

model we can also construct a replicating strategy  1 1,t t    where: 

  1t j  = number of units of stock when in state  ,t j  at time t 

  1 1(2 1) (2 )

( ) ( ( ) ( ))
t t

t t t

V j V j
S j u j d j
  




 

and  1t j  = amount held in cash when in state  ,t j  at time t 

 1 1(2 ) ( ) (2 1) ( )

( ) ( )
r t t t t

t t

V j u j V j d je
u j d j

    
  

 
 

t j 1( )  and t j 1( )  denote the appropriate holdings of shares and cash respectively for the 
replicating portfolio over the time interval from t to t+1. 

Note here that the holding of  1t j   shares means that the difference between the value of 

the holding in shares when prices go up and when prices go down precisely matches the 
difference between the two possible values of the option. 

ie  t t t t t tj S j u j d j V j V j         1 1 1( ) ( ) ( ) ( ) (2 1) (2 )  

This means that all risk has been removed. 

Question 

Which of the following statements would be true if we wanted to have a replicating portfolio at all 
times in a general n-period binomial tree? 

1. Once we set up the initial replicating portfolio, we would leave it unchanged throughout. 

2. There is a particular replicating strategy required for each time interval and we would 
have to adjust our portfolio at each step. 

3. A different replicating strategy is required for every node in the tree and we would have 
to adjust our portfolio at each step depending on which node we are at. 

Solution 

Statement 3 is true.  We would usually have to rebalance our replicating portfolio in a different 
way at each node visited. 
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This model, as well as those in the preceding sections, allows share prices to move in a way 
which is clearly much simpler than reality.  However, models are always approximations to 
reality and the quality of a model can be gauged by how closely answers provided by the 
model resemble reality. 

All models are, by definition, simplified characterisations of reality.  They attempt to capture the 
important features of a particular situation in order to help us understand that situation.  The 
strengths, weaknesses and assumptions of the model are as important as the results the model 
produces, and their explicit consideration often provides additional insight into the situation being 
modelled. 

In this case, the binomial model is recognised as an effective model (provided the time to 
maturity is broken up into a suitable number of sub-periods) for pricing and valuing 
derivative contracts.  In this respect, we might describe the binomial model as a good 
computational tool. 
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5 Recombining binomial trees 

5.1 Ease of computation 

The model in the previous subsection is very flexible, given that it allows for different levels 
of volatility when in different states. 

Question 

How does the previous model allow for different levels of volatility in different states? 

Solution 

The previous model allows for different levels of volatility in different states by allowing for 
different up and down price factors in different states, ie t tu j d j( ) and ( )  vary with t and j. 

 
However, the usefulness of the model is severely limited by the number of states which 

exist even for relatively low numbers of time periods up to maturity (that is, 2n  states), 
since computation times even for simple derivative securities are at best proportional to the 
number of states. 

One solution to this problem is to assume instead that the volatility is the same in all states, so 
that the price ratios for the up-steps and down-steps are the same size, irrespective of where they 
appear in the binomial tree.  This may not be an unreasonable assumption given that the steps 
are expressed in proportionate (or percentage), rather than absolute, terms.   

Note that this now means that 2 up-steps and 1 down-step (say) over 3 time periods will take us 
to the same share price whatever order the steps occur in. 

Suppose that we assume that the sizes of the up-steps and down-steps are the same in all 
states.  That is: 

  tu j u  and  td j d  

  tq j q  

for all ,t j  with rd e u   and 0 1.q   

Note that the constancy of the risk-neutral probability q, follows directly from that of the step 
sizes, given that q is a direct function of them: 

 
r

t
t

t t

e d j
q j

u j d j





( )
( )

( ) ( )
 

ie 
r

t
e dq j q
u d


 


( ) , constant 
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Then we have: 

  0
t tN t N

tS S u d   

where tN  is the number of up-steps between time 0 and time t.  This means that we have 

1n   possible states at time n instead of 2n .  

So, in a ten-period model, for example, the number of possible states at time 10 is reduced from 
1,024 to just 11. 

Consequently, computing times are substantially reduced, provided the payoff on the 
derivative is not path-dependent: that is, it depends upon the number of up-steps and 
down-steps but not their order.  For such non-path-dependent derivatives we have 

 n nC f S  for some function f.   For example, for a European call option we have 

   max ,0f x x K  , where K is the strike price. 

For a European put option,  f(x) = max{K  x, 0} where K is the strike price. 

Question 

Would the following derivatives satisfy the non-path-dependent assumption mentioned here? 

 Derivative A pays a cash amount in one year’s time equal to the highest value the share 
price reached during the year. 

 Derivative B pays a cash amount in one year’s time equal to the average of the share price 
at the start and end of the year. 

Solution 

Derivative A is path-dependent since the highest value would be different if, for example, we had 
the sequences uudd  and dduu . 

Derivative B is not path-dependent, since an average calculated based only on the initial and final 
values does not depend on the particular path taken in between. 

 
This special form for the n-period model allows us to call it a recombining binomial tree or a 
binomial lattice (see Figure 14.3). 

The term recombinant is also used in this context. 

A further implication of this model is that, unlike the non-recombining model discussed in the 
previous sections, there will usually be more than one route from the initial node to any particular 
final node. 

  

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 32 CM2-14: The binomial model 

© IFE: 2019 Examinations The Actuarial Education Company 

5.2 Binomial distribution 

Under this model the q-probabilities are, as stated above, equal, and all steps are made 
independent of one another.  So the number of up-steps up to time t , ,tN  has a binomial 

distribution with parameters t and q.  Furthermore, for 0 < t < n: 

 tN  is independent of n tN N  

ie the number of up-steps (and hence down-steps) in non-overlapping time intervals is 
independent,  

 and n tN N  has a binomial distribution with parameters n t  and q. 

The price at time t of the derivative is: 

    
0

( )!
(1 )

!( )!

n t
r n t k n t k k n t k

t t
k

n tV e f S u d q q
k n t k


     




 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.3: Recombining binomial tree or binomial lattice 

This figure is part of the Core Reading. 
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To derive the above expression for tV , we note that the general expression for the value of the 
derivative contract at time t is (irrespective of whether the tree is recombining or not): 

r n t
t Q n t

r n t
Q n t

r n t
Q n t

s

V e E C F

e E f S F

e f s P S s F

 

 

 





  

( )

( )

( )

[ | ]

[ ( )| ]

( ) [ | ]

 

where the summation is over all the possible values that nS  can take and the probabilities are the 
risk-neutral probabilities.   

If the tree is recombining then: 

 n t n tN N n t N N
n tS S u d    ( ) ( )   

where n tN N  is the number of up-steps between time t  and time n .  So n tN N  can take 

values from 0 to n t  and n tN N Bin n t q ( , ) .  Therefore: 

tV   
n t

r n t k n t k k n t k
t Q t t

k
e f S u d P S u d F


     


 ( )

0
[ | ]  

or  tV   
n t

r n t k n t k k n t k
t

k

n te f S u d q q
k n t k


     




 

 ( )

0

( )! (1 )
!( )!

 

Question 

Consider a binomial lattice model for a 2-month call option with an exercise price of 200.  
Suppose that the share price either goes up by 4% or down by 3% each month, the risk-free 
continuously compounded rate is ½% per month and the current share price is also 200. 

Use the formula above to estimate the value of the option. 

Solution 

Here:  

u d r n t    1.04 0.97 0.005 2  

So, the risk-neutral probability is equal to: 

 
re d eq

u d
 

  
 

0.005 0.97 0.500179
1.04 0.97
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Hence: 

Share price at exercise Call option payoff Probability of payoff 

 2200 1.04 216.32  16.32 q 2 0.250179  

  200 1.04 0.97 201.76  1.76 q q 2 (1 ) 0.500000  

 2200 0.97 188.18  0 q 2(1 ) 0.249821  

 
The current call option price is therefore: 

 
 V e      



0.005 2
0 16.32 0.250179 1.76 0.500000 0 0.249821

4.914
 

 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-14: The binomial model Page 35 

The Actuarial Education Company  © IFE: 2019 Examinations 

6 Calibrating binomial models 

It is often convenient when calibrating the binomial model to have the mean and variance 
implied by the binomial model correspond to the mean and variance of a lognormal 
distribution.  The reasoning will become clearer when considering continuous-time versions 
in later chapters. 

For recombining binomial models, an additional condition that leads to a unique solution is: 

 
1u
d

   

ie, an up-step and a down-step would mean the share price, after two steps, is the same as it is at 
time 0. 

Recall the solution to the SDE for geometric Brownian motion.  If t t t tdS S dt S dB   , then 

tS S0/  has a lognormal distribution with parameters   t  21
2  and t 2 . 

Question 

If tS S0/  has a lognormal distribution with parameters   t  21
2  and t 2 , then give formulae 

for the mean and variance of tS S0 . 

Solution 

The formulae on page 14 of the Tables give us the expectation and variance of tS S0/ : 

    ttS
E t t e

S
  

 
    

 

1 12 2
2 20

exp ,   t ttS
e e

S
  

  
 

22

0
var ( 1)  

 
If we parameterise the lognormal distribution (under the risk-neutral law) so that:  

         
2

2
0 0 0ln ,

2
S t S t N r t t t t


  
        

 

then the conditions that must be met are: 

      expE S t t S t r t           (1) 

and      2var ln S t t S t t           (2) 
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Here:  

 t  is the time interval of each step in the binomial model 

  S t  denotes the price of the asset at time t . 

Noting that: 

      1E S t t S t qu q d       

it follows from equation (1) that:  

    qu q d r t  1 exp  

Rearranging to make q the subject, we get: 

 exp r t d
q

u d
 




 

Using the equation (2) and the assumption that 
1u
d

 : 

               

      

22 2

22

var ln ln 1 ln ln

ln ln

S t t S t q u q u E S t t S t

u E S t t S t

 



            

    

 

The last term involves terms of higher order than t .  

Using the lognormal distribution given: 

    S t t S t N r t t   
  
       

2
2ln ,

2
  

we have: 

    E S t t S t r t 
 

       
 

222 2ln
2

 

which tends to 0 as t  0 . 

So, if we ignore the      2
lnE S t t S t    terms and equate the expression to 2 t  , we 

get: 

       S t t S t u t      
2 2var ln ln  
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Then, we solve to get: 

 exp( )u t   

and hence also: 

 exp( )d t    

When a (continuously payable) dividend is paid on the underlying asset, it is convenient 
and conventional to adjust the up-steps and down-steps to be: 

 exp( )u t t     

 exp( )d t t      

where   is the continuously payable dividend rate. 

These formulae can be found on page 45 of the Tables (using the letter q instead of  ).  In some 
exam questions, explicit values for u and d are not given.  In this case, we assume that ud 1  and 
use these formulae to calculate u and d. 

Question 

A non-dividend-paying share has volatility  20% pa.  Calculate the values of u  and d  for the 
share price movements over one month. 

Solution 

Applying the formula for u, we get: 

 
 

u t t   

 



exp

exp 0.2 1 12 0 12

1.0594

 

Since the dividends are zero, we have: 

 d
u

 
1 0.9439  
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7 The state price deflator approach 

In this section we will present a different, but equivalent, approach to pricing. 

7.1 One-period case 

Recall the one-period binomial model where: 

1 0
1

1 0

if

if
u

d

c S S u
V c S S d

  
 

Then: 

0 1[ ]

(1 )

r
Q

r
u d

V e E V

e qc q c



   



  
 

So far we have been pricing derivatives on a risk-neutral basis.  Here the fair price for the 
derivative is the discounted value of: 

‘probability’ share price goes up  derivative value if share price goes up 

+ 

‘probability’ share price goes down  derivative value if share price goes down 

We can re-express this value in terms of the real-world probability p : 

0

1 1

(1 )
(1 )

(1 )

[ ]

r
u d

P

q qV e p c p c
p p

E A V

   
  


  





 

where 1A  is a random variable with: 

1 0

1

1 0

if

1
if

1

r

r

qe S S u
p

A
qe S S d
p





    
 

 

The expression for the value of the derivative takes the same form as before.  It is the discounted 
value of: 

‘probability’ share price goes up  derivative value if share price goes up 

+ 

‘probability’ share price goes down  derivative value if share price goes down 
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However, in this case we have real-world probabilities and a different discount factor.  The 
discount factor A1  depends on whether the share price goes up or goes down.  This means it is 
random and so we call it a stochastic discount factor. 

1A  is called a state price deflator.  It also has a variety of other names: 

 deflator 

 state price density 

 pricing kernel 

 stochastic discount factor. 

Question 

Let the value of a share at time 0 be S 0 100  and let the continuously compounded risk-free rate 
be 3% per time period.  In one time period’s time the share price will either have gone up to 120 
or down to 85.  The real-world probability that the share price goes up is 0.6.  Calculate the 
possible values of the state price deflator A1 . 

Solution 

We can calculate the risk-neutral probability q  in the same way as earlier in the chapter: 

 u d   
120 851.2  and  0.85
100 100

 

  
re d eq

u d
 

  
 

0.03 0.85 0.51558
1.2 0.85

 

We can then use the formula for the state price deflator A1  and the real-world probability,

p  0.6, to calculate the value of A1 : 

 

r

r

qe if S S u
p

A
qe if S S d
p

e if S

e if S

if S
if S









    
 

  
 



  

1 0

1

1 0

0.03
1

0.03
1

1

1

1
1

0.51558 120
0.6

0.48442
85

0.4

0.8339 120
1.1752 85
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Note that: 

(a) if 1 1V   then: 

0 1[ 1] r
PV E A e    

This is not surprising.  If a derivative pays 1 in one period’s time regardless of the outcome of the 
share price, then, by no-arbitrage, the fair price to pay for this derivative is just the discounted 
value of 1. 

(b) if 1 1V S  then: 

0 1 1 0[ ]PV E A S S    

Again, this is not surprising.  If a derivative pays the value of the share in one period’s time 
regardless of what this turns out to be, then, by no-arbitrage, the fair price to pay for this 
derivative is the value of the share now. 

7.2 n-period case, binomial lattice 

We now extend the theory to the n-period case. 

Recall that, under the risk-neutral approach to pricing, we have: 

 n nV f S  

Now: 

 0
i n i

nS S u d   

where i  is the number of up-steps. 

Over n steps the share price will go up i  times and go down n i  times.  Each time it goes up, its 
price is multiplied by u  and each time it goes down its price is multiplied by d . 

So let us define: 

   0
i n i

nV i f S u d   

Then we have: 

0

0
0

[ ]

(1 ) ( )
( )

rn
Q n

n
rn k n k k n k

k

V e E V

ne q q f S u d
k n k



  






 

  
 

Although the algebra is heavier, this is the same form as before and is an expression in terms of 
the risk-neutral probability q.  In the same way as the one-period case, we now re-express this in 
terms of the real-world probability p. 
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0
0

0

1
(1 ) ( )

( ) 1

(1 ) ( ) ( )
( )

[ ]

k n kn
rn k n k

n
k

n
k n k

n n
k

P n n

n q qV e p p V k
k n k p p

n p p A k V k
k n k

E A V


 







    
           


 

  





  

where 
1

1

n nN n N
rn

n
q qA e
p p


    

       
 

and nN  is the number of up-steps up to time n . 

So, again, the discount factor nA  is random and so we call it a stochastic discount factor. 

nA  is again called the state price deflator.  An important property of nA  is that for all 

n = 1, 2, … we have: 

1

1
1

1

n nI I
r

n n
q qA A e
p p





   

        
  

where 1

1

1 if

0 if
n n

n
n n

S S u
I

S S d





  

 

It follows that: 

 1
1

n nI I
n nS S u d 

  and 

 
0

n

n k
k

N I


   

A very important point to note is that, for this model, the risk-neutral and the state price 
deflator approaches give the same price 0V .  Theoretically, they are the same; they only 

differ in the way that they present the calculation of a derivative price. 

One presents it using normal discount factors and the risk-neutral probability q and the other 
presents it using stochastic (random) discount factors and the real-world probability p. 

Finally, note that: 

[ ] rn
P nE A e  

If a derivative pays 1 in n periods’ time regardless of the outcome of the share price, then, by 
no-arbitrage, the fair price to pay for this derivative is just the discounted value of 1. 

We also have: 

 0[ ]P n nE A S S  

If a derivative pays the value of the share in n periods’ time regardless of what this turns out to 
be, then, by no-arbitrage, the fair price to pay for this derivative is the value of the share now. 
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The state price deflator approach can be adapted to price a derivative at any time t and it is 
straightforward to show that: 

[ ]P T T
t

t

E A VV
A

  

In words, the formula above is saying that the fair price for the derivative is the expected value of 
the derivative payoff at time T, discounted back to time t.  However, since we are taking that 
expectation with respect to the real-world probability P , the discount factor we use is the state 
price deflator A . 

T

t

A
A

 is analogous to the deterministic discount factor 
T

T t
t

v v
v

 , ie the ‘present value’ at time t of 

a payment at time T.  
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Chapter 14 Summary 

Binomial model assumptions 

 Assets may be bought and sold at integer times t  0,1,2,3,...  

 Assets may be held in any amount. 

 There are no taxes or transaction costs. 

 There are no arbitrage opportunities rd e u   . 

One-period model: replicating portfolio and risk-neutral valuation 

In the one-period model: 

 V0  S  0  

   r
u de q c q c  (1 )  

 r
Qe E C 1[ ]  

where: 

u dc c
S u d





0( )

  r d uc u c d
e

u d
   

   
 

re d
q

u d





  
ru e

q
u d


 


1   

The portfolio consisting of   shares and   cash is a replicating portfolio. 

Q is the risk-neutral probability measure, which gives the risk-neutral probability q to an 
upward move in prices and q1  to a downward move.   

The risk-neutral probabilities ensure that the underlying security yields an expected return 
equal to the risk-free rate. 

Finding the derivative price using the risk-neutral probabilities is referred to as risk-neutral 
valuation. 
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Two-period model: risk-neutral valuation

Here the value of the derivative is: 

 r
QV e E C F 2

0 2 0[ | ]  

So, the no-arbitrage value of the derivative at time 0, is equal to: 

 the expectation of the derivative payoff at time 2 

 calculated with respect to both the risk-neutral probability measure Q and the 
information set F0 , generated by the history of the stock price movements up to and 
including time 0 and 

 discounted at the continuously compounded risk-free rate of return.   

n-period model 

The results of the one-period and two-period binomial models generalise to the multi-period 
or n -period context.  In this case: 

 the risk-neutral up-step probability from State t j( , )  is: 

 
r

t
t

t t

e d j
q j

u j d j





( )
( )

( ) ( )
 

 the expectation of the stock price in n  periods’ time, calculated with respect to the 
risk-neutral measure Q, is equal to the current stock price, accumulated at the 
continuously compounded risk-free rate of return over those n  periods, 

ie rn
Q t n t tE S F S e [ | ]  

 the derivative price at time t is r n t
t Q n tV e E C F  ( ) [ | ]  

 the number of units of stock in the replicating portfolio when in State t j( , )  at time t 
is: 

  
 

t t
t

t t t

V j V j
j

S j u j d j
  


 



1 1

1
(2 1) (2 )

( )
( ) ( ) ( )

 

 the amount held in cash in the replicating portfolio when in State t j( , )at time t  is: 

  r t t t t
t

t t

V j u j V j d j
j e

u j d j
   


  

   
1 1

1
(2 ) ( ) (2 1) ( )

( )
( ) ( )
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Recombining binomial trees

A recombining binomial tree (or binomial lattice) is one in which values of u and d, and 
consequently the risk-neutral probabilities, are the same in all states. 

With such models: 

 the volume of computation required is greatly reduced 

 tN , the number of up-steps up to time t, has a binomial distribution with 
parameters t and q 

 t tN t N
tS S u d  0  

Calibrating binomial models 

If we assume that ud 1 , then a binomial tree model with steps of length t , and a 
continuous dividend rate  , can be calibrated to have the same mean and variance as a 
continuous-time model.  In this instance, we need: 

 r t d
q

u d
 




exp
           u t t   exp              d t t    exp  

The state price deflator approach in the one-period binomial tree 

The state price deflator is: 

r

r

qe S S u
p

A
qe S S d
p





    
 

1 0

1

1 0

if

1 if
1

 

Then the fair price for the derivative is: 

PV E A V0 1 1[ ]  

The state price deflator approach in the n-period binomial tree 

The state price deflator is: 

 
n nN n N

rn
n

q qA e
p p


    

       

1
1

 

where nN  is the number of up-steps up to time n .  The fair price for the derivative is then: 

P n nV E A V0 [ ]  
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The practice questions start on the next page so that you can 
keep the chapter summaries together for revision purposes. 
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Chapter 14 Practice Questions 

14.1 The market price of a security can be modelled by assuming that it will either increase by 12%  or 
decrease by 15%  each month, independently of the price movement in other months.  No 
dividends are payable during the next two months.  The continuously compounded monthly risk-
free rate of interest is 1%.  The current market price of the security is 127. 

(i) Use the binomial model to calculate the value of a two-month European put option on the 
security with a strike price of 125. [3] 

(ii) Calculate the value of a two-month American put option on the same security with the 
same strike price. [3] 

(iii) Calculate the value of a two-month American call option on the same security with the 
same strike price. [2] 

    [Total 8] 

14.2 A company share price is to be modelled using a 5-step recombining binomial tree, with each step 
in the tree representing one day.  Each day, it is assumed that the share price: 

 increases by 2%, or 

 decreases by 1%.  

Assume that the risk-free force of interest is   5.5% pa and that there are 365 days in a year.  
No dividends are to be paid over the next five days. 

(i) Calculate the risk-neutral probability of an up-step on any given day. [2] 

(ii) Calculate the fair price of a 5-day at-the-money call option on £10,000 worth of shares in 
this company.  [5] 

A special option is available where the payoff after 5 days is: 

   S K*
5max ,0  

where S*
5  is the arithmetic average share price recorded at the end of each of the 5 days and K is 

the strike price. 

(iii) Calculate the fair price of the special option (strike price K S 01.06 ) on £10,000 worth of 
shares in this company. [4] 

(iv) Explain whether an at-the-money special option is likely to have a higher value of vega 
than a standard call option. [3] 

    [Total 14] 

Exam style 

Exam style 
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14.3 In a one-step binomial tree model it is assumed that the initial share price of 260 will either 
increase to 285 or decrease to 250 at the end of one year.  Assume that the annual risk-free force 
of interest is 0.05 and that no dividends are payable. 

(i) Calculate the price of a one-year European call option with a strike price of 275, using 
each of the following: 

 (a) a replicating portfolio method 

 (b) risk-neutral valuation 

 (c) a risk-free portfolio method.  

(ii) Repeat your calculations in (i) for a one-year European put option with a strike price 
of 275.    

(iii) Verify numerically that the put-call parity relationship holds in this case.  

14.4 The market price of a non-dividend-paying security with current market price S  is being modelled 
using a one-step binomial tree in which the proportionate changes in the security price following 
an up- and a down-movement are denoted by u  and d . The risk-free force of interest over the 
period is r . 

Show that if an option on this security has a payoff of uz  following an up-movement and a payoff 

of dz  following a down-movement, then the option can be replicated exactly using a portfolio 

consisting of   securities, where u dz z
S

u d


 


, and an amount of cash,  , which you should 

specify.     

14.5 The increase in the price of a share over the next year is believed to have a mean of 10% and a 
standard deviation of 10%. 

(i) Determine the values of u  and d  for a one-step binomial tree model that are consistent 
with the mean and standard deviation of the return on the underlying share, assuming 
that the share price is twice as likely to go up than to go down.  

(ii) Hence calculate the value of each of the following options, given that the current share 
price is 250, the risk-free force of interest is 7½% per annum and dividends can be 
ignored: 

 (a) a one-year European call option with a strike price of 275 

 (b) a one-year European put option with a strike price of 300.  
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14.6 (i) Show that in a one-step binomial tree model of the price of a non-dividend-paying share, 
 the risk-neutral probability q  of an up movement is given by: 

  
r te dq
u d

 



 

 where d , u , r  and t  are quantities you should define. 

(ii) Explain briefly why it must be assumed that r td e u  . 

(iii) Write down a formula for  , the expected one-step rate of return on the share based on 
the real-world probability p  of an up-movement. 

(iv) Show that the real-world variance,  2 , of the one-step rate of return on the share is 

p p u d  2(1 )( ) .  

(v) Show that p q  if and only if r te  1  and interpret this result. 

14.7 The movement of a share price over the next two months is to be modelled using a two-period 
recombining binomial model.  Over each month, it is assumed that the share price will either 
increase or decrease by 10%.  

(i) Over each month, the risk-neutral probability of an up-step is q  0.55 .  Calculate the 
monthly risk-free force of interest r  that has been used to arrive at this figure. [1] 

(ii) The current share price is 1.  The annualised expected force of return on the share is 
  30% .  Calculate the state-price deflators in each of the three possible final states of 
the share price.  [4] 

(iii) Calculate the value of each of the following two-month derivatives: 

 (a)  a derivative with payoff profile  1,0,0  

 (b) a derivative with payoff profile  0,1,0  

 (c) a derivative with payoff profile  0,0,1  

 (d) a European call option with a strike price of K  0.95  

 (e) a European put option with a strike price of K 1.05  

 (f) a derivative whose payoff is S 2 0.98  , where S  is the share price at the 

  end of the two months. [5] 

A payoff profile of  x y z, ,  means that the derivative returns x  if the share price goes up twice, y  
if the share price goes up once and down once, and z  if the share price goes down twice. 
   [Total 10] 
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14.8 (i) Explain the difference between a recombining and a non-recombining binomial tree. [2] 

(ii) A researcher is using a two-step binomial tree to determine the value of a 6-month 
European put option on a non-dividend-paying share.  The put option has a strike price of 
450. 

 During the first 3 months it is assumed that the share price of 400 will either increase by 
10% or decrease by 5% and that the continuously compounded risk-free rate (per 3 
months) is 0.01.  During the following 3 months it is assumed that the share price will 
either increase by 20% or decrease by 10% and that the continuously compounded 
risk-free rate is 0.015 (per 3 months). 

 Calculate the value of the put option. [6] 

(iii) The researcher is considering subdividing the option term into months.  Explain the 
advantages and disadvantages of this modification of the model and suggest an 
alternative model based on months that might be more efficient numerically. [5] 

    [Total 13]

Exam style 
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Chapter 14 Solutions 

14.1 (i) Calculate the value of the European put option 

We are given u 1.12 , d  0.85  and r  0.01  in the question.  The risk-neutral probability under 
the binomial model is: 

 
re d eq

u d
 

  
 

0.01 0.85
0.5928

1.12 0.85
 [½] 

The possible values for the security price after two months are: 

 

uu

ud du

dd

S

S S

S

  

    

  

2

2

1.12 127 159.3088

1.12 0.85 127 120.904

0.85 127 91.7575  [1] 

Therefore the possible payoffs of the put option after two months are: 

 

uu

ud

dd

p

p

p



  

  

0

125 120.904 4.096

125 91.7575 33.2425  [½] 

The up and down steps are the same over each month, so this binomial tree is recombining.   

The binomial tree of security prices looks like this, with the final put payoffs in italics. 

  

 127.00
120.904
 (4.096)

 142.24

159.3088
(0)

107.95

91.7575
(33.2425)
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We can discount the expected value of the payoff under the risk-neutral probability to find the 
initial value of the European put option: 

 

 
 

r
uu ud dde q p q q p q p

e





   

      



2 2 2

0.02 2

2 (1 ) (1 )

0 2 0.5928 0.4072 4.096 0.4072 33.2425

7.342  [1] 
    [Total 3] 

(ii) Calculate the value of the American put option 

The only difference from part (i) is that with an American option, it may be beneficial to exercise 
the option early, after one month.   [½] 

If the security price rises over the first month then there would be no point in exercising the put 
option because the payoff would be zero.  However, if the security price falls during the first 
month, the payoff from exercising the option early is: 

   125 127 0.85 17.05  [½] 

Using the risk-neutral probability we can calculate the value of holding on to the put option: 

  V e q q     0.01
1(2) 4.096 (1 ) 33.2425 15.8062  [½] 

Since this is less than 17.05, if the security price falls, it would be advantageous to exercise after 
one month.  The extra value at time 0 of having this option after one month is: 

 e q    0.01(1 ) (17.05 15.8062) 0.5015  [½] 

Finally the value of the American option is the value of the European option plus the extra value 
of the option to exercise after one month: 

 V   0 7.342 0.5015 7.843 [1] 
    [Total 3] 

(iii) Calculate the value of the American call option 

It is never optimal to exercise an American call option early on a non-dividend-paying security, so 
the value of the American call option is the same as that of a European call option. [1] 

Using put-call parity we can derive this value from the value of the European put option in part (i): 

 rTc p S Ke e        0.01 2
0 0 0 7.342 127 125 11.817   [1] 

    [Total 2] 

Alternative methods are valid, eg: 

 c e q   0.02 2
0 (159.3088 125) 11.817  
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14.2 (i) Risk-neutral probability 

Using the formula for the risk-neutral up-step probability on page 45 of the Tables, we have: 

 eq 
 



0.055 365 0.99
0.338357

1.02 0.99
 [2] 

(ii) Call option value 

For simplicity, we can assume that we are valuing one call option on a share worth £10,000.  We 
can use the up and down steps to calculate the six possible final share prices in this binomial tree: 

 

S

S

S

S

S

   

   

   

   

 

5 0
5

4 1
5

3 2
5

2 3
5

5

£10,000 1.02 0.99 £11,040.81 for 5 up jumps

£10,000 1.02 0.99 £10,716.08 for 4 up jumps

£10,000 1.02 0.99 £10,400.90 for 3 up  jumps

£10,000 1.02 0.99 £10,094.99 for 2 up jumps

£10,000

S

 

   

1 4

0 5
5

1.02 0.99 £9,798.08 for 1 up jump

£10,000 1.02 0.99 £9,509.90 for 0 up jumps  [2] 

Since the option is at-the-money, K  £10,000 , so the payoffs from the call option are: 

 

£1,040.81 for 5 up jumps
£716.08 for 4 up jumps
£400.90 for 3 up jumps
£94.99 for 2 up jumps

£0 for 1 up jump
£0 for 0 up jumps  [1] 

So, the fair price of the call option is: 

 
 

   

q q q
V e

q q q q

 
      
       

5 4
5 0.055 365

0
2 33 2

1,040.81 716.08 5 1

400.90 10 1 94.99 10 1
 [1] 

Substituting in the value of q , this is: 

 

 V    



0 0.999247 4.62 31.05 67.98 31.50

£135.05  [1] 
    [Total 5] 
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(iii) Special option value 

Again, for simplicity, we can assume that we are valuing one special option on a share worth 
£10,000.  By investigation, we find that the average share price only exceeds £10,600 if the share 
price goes up on all 5 days.  If we try 4 up jumps and 1 down jump, we get: 

     
 

2 3 4 41.02 1.02 1.02 1.02 1.02 0.99 1.055 1.06
5

 [1] 

The average share price over the 5 days, if it goes up every day, is: 

    
 

2 3 4 51.02 1.02 1.02 1.02 1.02£10,000 £10,616.24
5

 [1] 

The payoff of the special option in this case is: 

   max 10,616.24 10,600,0 £16.24  [1] 

So, the fair price of the special option is: 

 

V e q  



5 0.055 365 5
0 16.24

£0.07  [1] 
    [Total 4] 

(iv) Value of vega 

Vega is the rate of change of an option value f  with respect to the volatility   of the underlying 
asset, ie the shares in the company: 

 
f






  [1] 

The special option’s payoff is dependent on the average share price, which is a much smoother 
process than the current share price.  So, because the special option’s final payoff is less 
dependent on the current share price, its value will vary less with changes in the volatility of the 
share price.   [1] 

So, the special option will have a lower value of vega. [1] 
    [Total 3] 

This observation is reinforced by noting that the payoff from the standard call option in part (ii) 
with strike £10,600 lies in the range  0,440.81  according to this model, whereas the payoff for 

the special option lies in the much narrower range  0,16.24 . 
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14.3 (i)(a) Price of call option using a replicating portfolio method 

The diagram for this call option (with the option values / payoffs inside the circles and the share 
prices on the top) is: 

260

285

250c

10

0
 

A replicating portfolio, consisting of 1  shares and 1  invested in cash, is set up at t  0  to give 
the same payoff as the derivative at t 1, irrespective of whether the share price increases or 
decreases over the year. 

If the share price increases: 

 e  0.05
1 1285 10                                                                                         (1) 

and if the share price decreases: 

 e  0.05
1 1250 0                                                                                            (2)   

Solving equations (1) and (2) simultaneously gives: 

   2
1 7     and    e      0.052

1 7250 67.945   

This portfolio gives the same payoff as the call option at t 1, so assuming no arbitrage, the value 
of the call option at t  0 , c , must equal the value of the portfolio at t  0 .  So: 

 c    1 1260 6.34   

(i)(b) Price of call option using a risk-neutral valuation 

The risk-neutral probability of an up-movement is: 

 
e

q


 


0.05 250 260
0.66659

285 260 250 260
  

So the value of the call option is: 

 

 c e      



0.0510 0.66659 0 1 0.66659

6.34   
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(i)(c) Price of call option using a risk-free portfolio method 

A risk-free portfolio, consisting of 1 call option and x  shares, is set up at t  0  so that the value of 
the portfolio at t 1 will be the same irrespective of whether the share price increases or 
decreases over the year. 

Considering the possibilities at t 1, this means that: 

 x x x      2
710 285 0 250   

The value of this portfolio at t 1 is: 

           5002 2
7 7 710 285 0 250   

This portfolio has been set up to be risk-free (it has the same value at t 1 no matter what 
happens to the share price), so we can use the risk-free force of interest to calculate its value at 
t  0 : 

 e 0.05500
7  

Since this is the cost of setting up the risk-free portfolio at t  0 : 

  c e c     0.055002
7 7260 6.34  

Note that we obtain the same value of the call option, whichever approach we take. 

(ii)(a) Price of put option using a replicating portfolio method 

The diagram for this put option (with the option values / payoffs inside the circles and the share 
prices on the top) is: 

260

285

250p

25

0

 

A replicating portfolio, consisting of 2  shares and 2  invested in cash, is set up at t  0  to give 
the same payoff as the derivative at t 1, irrespective of whether the share price increases or 
decreases over the year. 
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If the share price increases: 

 e  0.05
2 2285 0                                                                                        (3) 

and if the share price decreases: 

 e  0.05
2 2250 25                                                                                      (4) 

Solving equations (3) and (4) simultaneously gives: 

    5
2 7     and    e    0.055

2 7285 193.643   

This portfolio gives the same payoff as the put option at t 1, so assuming no arbitrage, the value 
of the put option at t  0 , p , must equal the value of the portfolio at t  0 .  So: 

 p    2 2260 7.93   

(ii)(b) Price of put option using a risk-neutral valuation 

The risk-neutral probability of an up-movement is: 

 
e

q


 


0.05 250 260
0.66659

285 260 250 260
  

This is the same as for the call option in (i). 

So the value of the put option is: 

 

 p e      



0.050 0.66659 25 1 0.66659

7.93   

(ii)(c) Price of put option using a risk-free portfolio method 

A risk-free portfolio, consisting of 1 put option and y  shares, is set up at t  0  so that the value of 
the portfolio at t 1 will be the same irrespective of whether the share price increases or 
decreases over the year. 

Considering the possibilities at t 1, this means that: 

 y y y     5
70 285 25 250   

The value of this portfolio at t 1 is: 

       5 5 1425
7 7 70 285 25 250   

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 58 CM2-14: The binomial model 

© IFE: 2019 Examinations The Actuarial Education Company 

This portfolio has been set up to be risk-free (it has the same value at t 1 no matter what 
happens to the share price), so we can use the risk-free force of interest to calculate its value at 
t  0 : 

 e0.051425
7  

Since this is the cost of setting up the risk-free portfolio at t  0 : 

  p e p   0.055 1425
7 7260 7.93   

Note that we obtain the same value of the put option, whichever approach we take. 

(iii) Verify put-call parity 

The put-call parity relationship states that: 

 value of put + share price = value of call + discounted strike price  

The LHS is:   7.93 260 267.93   

The RHS is:  e   0.056.34 275 6.34 261.59 267.93   

Since these are equal, the put-call parity relationship holds in this case.  

14.4 Suppose the portfolio consists of   securities and an initial amount of cash  . 

If the security price moves up, the value of the portfolio will be: 

 r r u dz z
e Su e u

u d
 


  


  

We want this to equal the payoff following an upward movement in the security price: 

ie  r u d
u

z z
e u z

u d



 


 

So: r ru d d u
u

z z uz dz
e z u e

u d u d
               

  

If the security price moves down, the value of the portfolio will be: 

 r r u d d u u d
d

z z uz dz z z
e Sd e d d z

u d u d u d
 

            
  

So, with an initial cash holding of r d uuz dz
e

u d
      

, the portfolio replicates the derivative 

payoff, irrespective of the actual price movement.  
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Note that   here is calculated as the proportionate change in the derivative price relative to the 
price of the underlying security.  This corresponds to the definition of the ‘Greek’ delta, namely 

V
S


 


. 

14.5 (i) Values of u and d 

Equating the mean and variance of the returns gives: 

 u d 2 1
3 3 1.1     d u  3.3 2   

and u d  2 2 2 22 1
3 3 1.1 0.1     u d  2 22 3.66   

Eliminating d  from these simultaneous equations gives: 

 u u  2 22 (3.3 2 ) 3.66  

ie u u  26 13.2 7.23 0  

Solving this using the quadratic formula gives: 

 u
  

 
213.2 13.2 4(6)(7.23) 13.2 0.72

2(6) 12
  

So: 

 u 1.17071   and  d  0.95858   

or: 

 u 1.02929   and  d 1.24142   

Since we need u d , we can eliminate the second pair of values and conclude that the 
appropriate parameter values are u 1.17071  and d  0.95858 .  

(ii)(a) Call option 

The risk-neutral probability of an up-movement is: 

 eq 
 



0.075 0.95858 0.56241
1.17071 0.95858
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The tree diagram for the call option looks like this: 

9.224

17.678

0

239.645

292.678

250

 

So the value of the call option is: 

 e  0.075(0.56241 17.678 0) 9.224   

(ii)(b) Put option 

The tree diagram for the put option looks like this: 

28.323

7.322

60.355

239.645

292.678

250

 

So the value of the put option is: 

 e   0.075(0.56241 7.322 0.43759 60.355) 28.323    

14.6 (i) Risk-neutral probability 

Let u  and d  be the assumed proportionate changes in the price of the underlying share if it goes 
up and down respectively, and let r  be the risk-free interest rate (continuously compounded).  

t  is the length of the one-step time period.  

Let S  be the current price of the share. 

If q  and q1  are the risk-neutral probabilities for the tree, the expected final value of the share 
should be the same as if it had been invested in risk-free cash.  

So we need: 

 r tqSu q Sd Se   (1 )   

Cancelling the S ’s gives: 

 r tqu q d e   (1 )  
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Rearranging gives: 

 r tq u d d e   ( )   
r te dq
u d

 
 


   

(ii) Explain the inequality 

The condition r td e u   is needed to ensure that the market is arbitrage-free.  Otherwise we 
could make a guaranteed profit.  

For example, if r td u e   , the cash investment would outperform the share in all circumstances.  
So we could make a guaranteed profit by selling the share at the start and investing the proceeds 
in cash.  When we buy back the share at the end, we would have a positive profit of either 

r tSe Su   or r tSe Sd  .  

(iii) Formula for   

Let R  be the one-step return on the share.  Then 

 
u p

R
d p

  


with probability
1

with probability 1
 

So: 

 E R pu p d E R pu p d         (1 ) (1 ) ( ) (1 ) 1   

(iv) Real-world variance, 2  

Similarly, the variance of the rate of return is: 

 
 

R

R

E R E R

pu p d pu p d

 

 

     

     

2

22

2 2 2

var( )

var(1 )

(1 ) [1 ]

(1 ) [ (1 ) ]
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If we collect the p ’s together, expand and simplify, we get: 

 

p u d d p u d d

p u d p u d pd u d

p u d u d p u d d

p u d u d p u d

p u d p

p p u d

      

     

     

    

  

  

2 2 2 2 2

2 2 2 2

2

2

( ) [ ( ) ]

( ) ( ) 2 ( )

( )[( ) ( ) 2 ]

( )[( ) ( )]

( ) [1 ]

(1 )( )   

(v) Show the inequality 

Since u d  by definition, the inequality p q  is equivalent to: 

 p u d d q u d d    ( ) ( )  

ie 
r t

r t r te d u d d e d d e
u d


  

       


1 ( )   

In words, this says that the real-world probability of an up movement is greater than the 
risk-neutral probability whenever the expected increase in the value of the underlying security 
exceeds the risk-free interest rate, ie whenever the underlying security is risky.  

14.7 (i) The risk-free force of interest r  

Under the risk-neutral probability measure we have: 

   r
QE S S e1 0  

    rq S q S S e    0 0 01.1 1 0.9  [½] 

Dividing through by S0 , substituting in the given value of q  and solving for r  gives: 

 

 r    

 

log 0.55 1.1 0.45 0.9

log(1.01) 0.995%
    [½] 
    [Total 1] 
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(ii) State price deflators 

The state price deflators for each of the three final possible states can be derived from the 
formulae: 

      
     

 
r r rq q qqA e A e A e

p pp p
   

  
 

22
2 2 2

2 2 22 2
2 1 1

1 2 3
2 1 1

 [1] 

We can use the annualised expected force of return on the share,  , to calculate the real-world 
probability of an up-step p : 

  PE S S e 12
1 0  

   p p e e     12 0.3 121.1 1 0.9  

  ep 
 



0.3 12 0.9 0.62658
1.1 0.9

 [1] 

Using this value of p , and noting that, since r  log(1.01) , the monthly effective risk-free interest 
rate is 1%, the state price deflators are: 

 

 

 

 

A

A

A

 

 
 

 

 

2

2 2 2

2 2

2

2 2 2

1 0.551 0.75533
1.01 0.62658

1 2 0.55 0.452 1.03695
2 0.62658 0.373421.01

1 0.453 1.42356
1.01 0.37342

 [2] 

    [Total 4] 

(iii)(a) Payoff  1,0,0  

 re q  
2

2 2
2

0.55 0.2965
1.01

 [½] 

(iii)(b) Payoff  0,1,0  

  re q q  
  2

2
2 0.55 0.45

2 1 0.4852
1.01

 [½] 

(iii)(c) Payoff  0,0,1  

  re q   
2

22
2

0.451 0.1985
1.01

 [½] 
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Note that the values calculated in parts (a), (b) and (c) are known as ‘state prices’.  We can use 
them to calculate the value of more complicated derivatives as we now do for the rest of part (iii). 

We could alternatively have calculated the values in (a), (b) and (c) using: 

 A p A p p A p    2 2
2 2 2(1) , (2) 2 (1 ) , (3) (1 )  

(iii)(d) Call option, strike price K 0.95  

Depending on the final price of the share, the payoff for this option will be: 

   2max(1 1.1 0.95,0) 0.26 , 

    max(1 1.1 0.9 0.95,0) 0.04 , or 

   2max(1 0.9 0.95,0) 0 . 

So, the value is: 

    0.26 0.2965 0.04 0.4852 0.0965  [1] 

(iii)(e) Put option, strike price K 1.05  

Depending on the final price of the share, the payoff for this option will be: 

   2max(1.05 1 1.1 ,0) 0 , 

    max(1.05 1 1.1 0.9,0) 0.06 , or 

   2max(1.05 1 0.9 ,0) 0.24 . 

 So, the value is: 

    0.06 0.4852 0.24 0.1985 0.0768  [1] 

(iii)(f) Payoff S2 0.98   

Depending on the final price of the share, the payoff for this option will be: 

    22 1 1.1 0.98 0.46 , 

     2 1 1.1 0.9 0.98 0.02 , or 

    22 1 0.9 0.98 0.34 .  

So, the value is: 

      0.46 0.2965 0.02 0.4852 0.34 0.1985 0.2136  [1½] 
    [Total 5] 
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14.8 (i) Explain the difference 

In a recombining binomial tree u  and d , the proportionate increase and decrease in the 
underlying security price at each step, are assumed constant throughout the tree.  As a result, the 
security price after a specified number of up- and down- movements is the same, irrespective of 
the order in which the movements occurred. [1] 

In a non-recombining binomial tree the values of u  and d  can change at each stage.  As a result, 
each node in the tree will in general generate two new nodes, making the tree much larger than a 

recombining tree.  Consequently, an n -period tree will have n2 , rather than just n1 , possible 
states at time n .  [1] 
    [Total 2]  

(ii) Calculate the value of the put option 

The risk-neutral probabilities of an up-movement at the first and second step are: 

 eq 
 



0.01

1
0.95 0.40033

1.10 0.95
      and      eq 

 


0.015

2
0.90 0.38371

1.20 0.90
 [2] 

The put option payoffs at each of the four possible states at expiry are 0, 54, 0 and 108.   [1] 

Working backwards through the tree, we can then find the option value V1(1)  following an up-
step over the first 3 months from: 

 V e     0.015
1(1) 0.38371 0 (1 0.38371) 54  

ie V 1(1) 32.784   [1] 

Similarly, the option value V1(2)  following a down-step over the first 3 months is found from: 

 V e     0.015
1(2) 0.38371 0 (1 0.38371) 108  

ie V 1(2) 65.568   [1] 

Finally, the current value V0  of the put option is found from: 

 V e     0.01
0 0.40033 32.784 (1 0.40033) 65.568  

ie V 0 51.922   

So the value of the put option is 51.922. [1] 
    [Total 6] 
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In fact, the tree diagram looks like this: 

51.922

32.784

65.568

400

440

380

528

396

456

342

q1 = 0.40033

q2 = 0.38371 0

54

0

108

 

(iii) Suggest an alternative model 

The researcher is proposing using a 6-step non-recombining tree. 

This would result in a model that was much less crude than the two-step tree and should be 
capable of producing a more accurate valuation. [1] 

However, there would be a lot more parameter values to specify (although some of these may be 
assumed to be equal).  Appropriate values of u  and d  would be required for each branch of the 
tree and values of r  for each month. [2] 

The new tree would be big, having 62 64  nodes in the expiry column.  This would make the 
calculations prohibitive to do manually and would require more programming and calculation 
time on a computer.  [1] 

An alternative model that might be more efficient numerically would be a 6-step recombining tree 
(lattice), which would have only 7 nodes in the final column. [1] 
    [Total 5] 
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The Black-Scholes option  

pricing formula 
 

 

   

Syllabus objectives 

6.1  Option pricing and valuations 

6.1.8 Demonstrate an understanding of the Black-Scholes derivative-pricing 
model: 

 Derive the Black-Scholes partial differential equation both in its basic 
and Garman-Kohlhagen forms.  (part) 

6.1.9 Show how to use the Black-Scholes model in valuing options and solve 
simple examples. 

6.1.10 Discuss the validity of the assumptions underlying the Black-Scholes model. 
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0 Introduction 

In the previous chapter we developed a simple binomial model to price derivatives in discrete 
time with a discrete state space.  The assumed share price process was a geometric random walk.  
We now extend our analysis to continuous time and a continuous state space, in an attempt to 
more realistically model the processes driving stock prices.  Since a random walk becomes 
Brownian motion in the continuous-time limit, we assume our share price follows a geometric 
Brownian motion or lognormal model. 

We will discuss two methods of pricing derivatives in the continuous-time case – these are 
basically alternative proofs of the same result, the Black-Scholes pricing formula.  Both methods 
can be described as no-arbitrage approaches.  In this chapter we focus primarily on the risk-free 
construction or partial differential equation (PDE) approach.  The proof allows us to set up a PDE 
for the value of the derivative.  It can then be shown that the Garman-Kohlhagen formula (see 
page 47 of the Tables) is a solution of this equation, and also satisfies the boundary conditions for 
a call or put option.  In later chapters we turn our attention to the development of a derivative 
pricing approach based on the use of replicating strategies, as in the discrete-time case. 

Section 2.4 sets up the PDE by applying Ito’s Lemma, which you will recall from the chapter on 
stochastic calculus.  The boundary conditions are also given.  In principle, it is straightforward to 
differentiate the Garman-Kohlhagen formula and show that it does satisfy the PDE and boundary 
conditions.  However, to do so we need to calculate the Greeks.  We will return to our intuitive 
interpretation of delta, gamma and theta within the context of the Black-Scholes PDE. 

The Black-Scholes analysis of option prices is underpinned by a number of key assumptions.  We 
discuss these first in Section 1 and consider how realistic they are in practice.  Even though the 
assumptions do not all hold in practice, this does not prevent the Black-Scholes model providing a 
good approximation to reality.  The approach offers valuable insight into option pricing and is 
widely used in practice. 
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1 The assumptions underlying the Black-Scholes model 

1.1 The assumptions 

The assumptions underlying the Black-Scholes model are as follows:  

1. The price of the underlying share follows a geometric Brownian motion.   

ie the share price changes continuously through time according to the stochastic 
differential equation: 

   t t tdS S dt dZ  

 This is the same as the lognormal model discussed in an earlier chapter and therefore has 
the same properties. 

2. There are no risk-free arbitrage opportunities. 

3. The risk-free rate of interest is constant, the same for all maturities and the same for 
borrowing or lending.   

 In fact, this simplifying assumption is not critical and can be relaxed. 

4. Unlimited short selling (that is, negative holdings) is allowed. 

 So, we are allowed to sell unlimited amounts of securities that we do not own.  This is 
necessary because, in order to hedge a derivative whose price is positively correlated with 
that of the underlying asset – eg a call option, which will have a positive delta – we need 
to hold a negative quantity of the underlying asset. 

5. There are no taxes or transaction costs.   

 This is important since we will need to continuously rebalance some risk-free portfolios. 

6. The underlying asset can be traded continuously and in infinitesimally small 
numbers of units. 

Infinite divisibility of securities is necessary to ensure that perfect hedges can be achieved.  
Continuous trading requires that security markets are open 24 hours a day, every day, and 
this is necessary so that the hedging portfolio can be rebalanced continuously. 

The key general implication of the underlying assumptions is that the market in the 
underlying share is complete: that is, all derivative securities have payoffs which can be 
replicated.  This consequence is at odds with the real world and implies problems with the 
underlying assumptions. 
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1.2 How realistic are the assumptions? 

Question 

List the seven main defects of the lognormal model of security prices discussed earlier in the 
course. 

Solution 

The continuous-time lognormal model may be inappropriate for modelling investment returns 
because: 

 The volatility parameter   may not be constant over time.  Estimates of volatility from 
past data are critically dependent on the time period chosen for the data and also how 
often the price history is sampled 

 The long-term drift parameter   may not be constant over time.  In particular, interest 
rates will impact the drift. 

 There is evidence in real markets of mean-reverting behaviour, which is inconsistent with 
the independent increments assumption. 

 There is evidence in real markets of momentum effects, which is inconsistent with the 
independent increments assumption. 

 The distribution of security returns  log u tS S  has a taller peak in reality than that 

implied by the normal distribution.  This is because there are more days of little or no 
movement in the share price. 

 The distribution of security returns  log u tS S  has fatter tails in reality than that implied 

by the normal distribution.  This is because there are more extreme movements in 
security prices. 

 The sample paths of security prices are not continuous, but instead appear to jump 
occasionally. 

 
It is clear that each of these assumptions is unrealistic to some degree, for example:  

 Share prices can jump.  This invalidates assumption 1 since geometric Brownian 
motion has continuous sample paths.   

An important consequence of discontinuous share prices is that it is not possible to 
rebalance the risk-free portfolio at each moment so as to eliminate movements in the 
value of the portfolio.  Hence, the portfolio is not entirely risk-free. 

 However, hedging strategies can still be constructed which substantially reduce the 
level of risk.   
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 The risk-free rate of interest does vary and in an unpredictable way. 

We might, for example, assume that the risk-free rate is either the base rate set by the 
central bank or the yield on Treasury bills, both of which can vary over time. 

However, over the short term of a typical derivative, the assumption of a constant 
risk-free rate of interest is not far from reality.  (More specifically the model can be 
adapted in a simple way to allow for a stochastic risk-free rate, provided this is a 
predictable process.)  

In addition, different rates may apply for borrowing and lending. 

 Unlimited short selling may not be allowed, except perhaps at penal rates of interest.  
These problems can be mitigated by holding mixtures of derivatives which reduce 
the need for short selling.  This is part of a suitable risk management strategy as 
discussed in Section 2 below. 

Individual investors probably have to pay a higher interest rate on an overdraft than they 
receive on savings.  So too do financial institutions.  

 Shares can normally only be dealt in integer multiples of one unit, not continuously, 
and dealings attract transaction costs: invalidating assumptions 4, 5 and 6.  Again 
we are still able to construct suitable hedging strategies which substantially reduce 
risk. 

Transactions costs do arise in practice, their impact depending upon their size.  Several 
extensions to the standard Black-Scholes model have been developed to allow for the 
effect of transactions costs on option prices. 

 Distributions of share returns tend to have fatter tails than suggested by the 
lognormal model, invalidating assumption 1. 

The assumption that share prices follow a geometric Brownian motion of the form 
   t t tdS S dt dZ  implies that the future share price TS , T > t, is lognormally 

distributed.  Actual share prices, however, experience large up and down movements 
more commonly than suggested by a lognormal distribution.  A particular consequence of 
this is that large jumps make it more difficult to maintain a delta-neutral portfolio. 

Despite all of the potential flaws in the model assumptions, analyses of market derivative 
prices indicate that the Black-Scholes model does give a very good approximation to the 
market.   

It is worth stressing here that all models are only approximations to reality.  It is always 
possible to take a model and show that its underlying assumptions do not hold in practice. 

This does not mean that a model has no use.  A model is useful if, for a specified problem, it 
provides answers which are a good approximation to reality or if it provides insight into 
underlying processes. 

A model is a stylised representation of a more complex situation and as such aims to characterise 
the most important features of that situation in a way that enables it to be analysed.  It thereby 
provides useful insight into that situation.  More complex models often provide greater insight, 
but at the cost of greater complexity and perhaps reduced tractability. 
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In this respect the Black-Scholes model is a good model, since it gives us prices which are 
close to what we observe in the market (despite the fact that we can criticise quite easily the 
individual assumptions) and because it provides insight into the usefulness of dynamic 
hedging. 

In addition, it is widely used by derivative traders, who can make adjustments to allow for its 
known deficiencies.  The model can be calibrated to reproduce observable market prices and it is 
valuable in understanding the sensitivity of option prices to the various factors that affect them. 
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2 The Black-Scholes model 

2.1 Introduction 

In this section we will show how to derive the price of a European call or put option using a 
model under which share prices evolve in continuous time and are characterised at any 
point in time by a continuous distribution rather than a discrete distribution. 

2.2 The underlying SDE 

Suppose that we have a European call option on a non-dividend-paying share tS  which is 

governed by the stochastic differential equation (SDE):  

 ( )t t tdS S dt dZ    

where tZ  is a standard Brownian motion. 

The share price process is therefore being modelled as a geometric Brownian motion or 
lognormal model, as discussed previously.  The constants   and   are referred to as the drift 
and volatility parameters respectively. 

Investors are allowed to invest positive or negative amounts in this share.  Investors can 
also have holdings in a risk-free cash bond with price tB  at time t .   

This is governed by the ordinary differential equation:  

 t tdB rB dt  

where r  is the (assumed-to-be) constant risk-free rate of interest.  Hence: 

 

2
0

0

1
exp ( )

2

exp( )

t t

t

S S t Z

B B rt

  
 
 
  

  



 

To check this solution, we define the function 21
0 2

( ) exp[( ) ]t tg t Z S t Z       so that 

( )t tS g t Z  .  Note that this is a function of t  and tZ . 

Recall that the Ito process for standard Brownian motion is: 

 1 0t tdZ dZ dt   

Now apply Ito’s Lemma to ( )tg t Z , which we write as g for notational ease.  That is:  

 

2 21 1
0

2 2t

t

dg gdZ g g dt

gdt gdZ

   

 

        
  

 

 

Replacing ( , )tg g t Z  with tS , we have the original SDE and the check is complete: 

 t t t tdS S dt S dZ    
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Since tZ  is normally distributed, tS  is lognormally distributed with all of the usual 

properties of that distribution. 

From the formula given for tS  we can deduce that: 

                 
2 2 2

0 0log log ½ log ½ ,t tS S t Z N S t t  

So tS  has a lognormal distribution with parameters     2
0log ½S t  and  2t .   

This price process is sometimes called a lognormal process, geometric Brownian motion or 
exponential Brownian motion. 

2.3 The Black-Scholes formula 

Let ( )f t s  be the price at time t  of a call option given:  

 the current share price is tS s  

 the time of maturity is T t  

 the exercise price is K . 

Proposition 15.1  (The Black-Scholes formula) 

For such a call option:  

( )
1 2( ) ( ) ( )r T t

t tf t S S d Ke d       

where: 

 

21
2

1

log ( )tS
K r T t

d
T t





 
 
 

  



  

and:   

2 1d d T t    

and ( )z  is the cumulative distribution function of the standard normal distribution. 

This formula is the Garman-Kohlhagen formula found on page 47 of the Tables.  Here the dividend 
rate q is equal to zero. 

For a put option we also have ( )
2 1( ) ( ) ( )r T t

t tf t S Ke d S d         where 1d  and 2d  are as 

defined above.   

Question 

Starting from the formula for the price of a call option given in Proposition 15.1, use put-call 
parity to derive the formula just given for the price of a put option. 
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Solution 

Using put-call parity and the result from Proposition 15.1, we have: 

     

 

 

        

   

     

( ) ( ) ( )
1 2

( )
2 1

( )
2 1

( ) ( )

(1 ( )) (1 ( ))

( ) ( )

r T t r T t r T t
t t t t t

r T t
t

r T t
t

p Ke S c Ke S S d Ke d

Ke d S d

Ke d S d

 

Notice that the bottom line answer is also given on page 47 of the Tables.  Again  0q . 

 
We will give two proofs of this result, one here using the partial differential equation (PDE) 
approach and the other in a later chapter using the martingale approach. 

2.4 The PDE approach 

Here we use Ito’s Lemma to derive an expression for the price of the derivative as a function, ,f  
of the underlying share price process tS .  Here tS  again refers to the share price excluding any 
dividends received.  This method involves the construction of a risk-free portfolio, which in an 
arbitrage-free world must yield a return equal to the risk-free rate of return.   

An expression for df(t,St) 

We first use Ito’s Lemma to write a stochastic differential equation (SDE) for the change in the 
derivative price as a function of the change in the share price.  Here ( , )tdf t S  means the change in 
the value of the derivative over a very small time period. 

Given the Ito process: 

 t t t tdS S dt S dZ    

which is the SDE for geometric Brownian motion, with drift and volatility functions for tS  of  tS  
and  tS  respectively, 

then applying Ito’s Lemma to the function ( , )tf t S , we have:  

 
2

2 2
2

1
( )

2t t t t t
f f f fdf t S S dZ S S dt
s t s s
  

    
     

     
 

On grounds of notational compactness we have used the notation f
t



 to mean ( )t
f t St
 


, 

and f
s



 to mean ( )t
f t Ss
 


 etc.  In some textbooks you will see the alternative form 
t

f
S



 to 

represent ( )t
f t Ss
 


.  However, this is slightly too casual and can lead to confusion.  The 

correct way to apply Ito’s Lemma is thus to derive the partial derivatives of the deterministic 
function ( )f t s  and then evaluate these at the random point ( )tt S .   
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The risk-free portfolio 

Suppose that at any time t , 0 t T  , we hold the following portfolio: 

 minus one derivative 

 plus ( )t
f t Ss
 


 shares. 

Let ( )tV t S  be the value of this portfolio.  That is: 

 ( ) ( )t t t
fV t S f t S S
s


    


 

The pure investment gain over the period ( ]t t dt   is the change in the value of the minus 

one derivative plus the change in the value of the holding of f s    units of the share.  That 
is: 

 ( )t t
fdf t S dS
s


  


 

Note that 


f
s

, which represents the number of shares held in the portfolio over the time interval 

[ , )t t dt , is constant.  Therefore: 

 
2

2 2
2

1
( )

2t t t t t t

t t t

f f f f fdf t S dS S dZ S S dt
s s t s s

f S dt S dZ
s

  

 

                        


   

 

After cancelling some terms on the right-hand side of the equation we are left with: 

 
2

2 2
2

1
( )

2t t t
f f fdf t S dS S dt
s t s


 
 
  
 

  
     

  
 

We are assuming here that there is no net investment into or out of the portfolio. 

Note that this portfolio strategy is not self-financing.  That is, the pure investment gain 
derived above is not equal to the instantaneous change in the value of the portfolio, 

( )tdV t S . 

Self-financing portfolios are defined formally later in the course. 

Note also that the right-hand side of the above expression, which represents the pure investment 
gain over the interval [ , )t t dt , involves the share price, which is random.  However, the value of 

tS  is known at time t.  Likewise, if we know the relevant functions, then the values of the 

derivatives 


f
t

 and 


2

2
f

s
 are also known at time t.  So, the expression on the right-hand side 

involves no terms whose values are unknown at time t.   
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Now note that the expression for ( ) f
t tsdf t S dS

    involves dt  but not tdZ  so that the 

instantaneous investment gain over the short interval t  to t dt  is risk-free. 

Given that the market is assumed to be arbitrage-free, this rate of interest must be the same 
as the risk-free rate of interest on the cash bond.  (If this was not true then arbitrage 
opportunities would arise by going long in cash and short in the portfolio (or vice versa) 
with zero cost initially and a certain, risk-free profit an instant later.)   

Therefore we must have, for all t  and 0tS  , the alternative expression: 

( ) ( )t t t
fdf t S dS rV t S dt
s


    


 

Question 

Derive the right-hand side of this equation. 

Solution 

We can derive the right-hand side of the equation  rVdt  as follows.  The value of the portfolio 

must accumulate to rdt
te V  during the short time interval dt.  If we expand the exponential as a 

series, and ignore second-order and higher-order terms (because dt is infinitesimal), then we see 
that the accumulated value is    1t t tV rdt V rV dt .  The change in the value must therefore be 

trV dt . 

This is analogous to the equation for the cash bond, which was t tdB rB dt . 

 

Recall that 
   


( , ) ( )t t t

fV t S f t S S
s

 is the value of the portfolio.  We now have two different 

expressions for 
  


( )t t

fdf t S dS
s

.  If we equate these, we get: 

 
2

2 2
2

1

2 t t
f f fS dt r f S dt
t ss


             

  
    
 

 

  
2

2 2
2

1

2t t
f f frS S rf
t s s

  
  

  
 

This is known as the Black-Scholes PDE. 

So, we have a non-stochastic partial differential equation (PDE) that can be solved to determine 
the value of the derivative. 

The value of the derivative is found by specifying appropriate boundary conditions and 
solving the PDE.   
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The boundary conditions are: 

 
( ) max{ 0} for a call option

( ) max{ 0} for a put option

T T

T T

f T S S K

f T S K S

   

   
 

We have now constructed a partial differential equation that the value of any fairly priced 
derivative based on the underlying share must satisfy.  This means that if a proposed model for 
the fair price of a derivative does not satisfy the PDE it is not an accurate model. 

Finally, we can try out the solutions given in the proposition for the value of a call and a put 
option.  We find that they satisfy the relevant boundary conditions and the PDE. 

As an example we could check that the Black-Scholes formula for the fair price of a European call 
option: 

 satisfies the Black-Scholes PDE and 

 satisfies the boundary condition   ( , ) max ,0T Tf T S S K  

Intuitive interpretation of the PDE 

We now return to the intuitive interpretation of the Greeks, this time within the context of the 
Black-Scholes PDE. 

From the Black-Scholes PDE, we have: 

 
2

2 2
2

1

2t t
f f frS S rf
t s s

  
  

  
 

or 2 21

2t trS S rf       

Recall that a portfolio for which the weighted sum of the deltas of the individual assets is equal to 
zero is sometimes described as delta-neutral.  Also recall that if   is small, then   will change 
only slowly over time and so the adjustments needed to keep a portfolio delta-neutral will be 
minimal. 

So, if the delta and gamma of a portfolio are both zero then   is the risk-free rate of growth 
of the portfolio. 

Question 

A forward contract is arranged where an investor agrees to buy a share at time T  for an amount 
K .  It is proposed that the fair price for this contract at time t  is: 

    ( )( , ) r T t
t tf t S S Ke  

Show that this: 

(i) satisfies the boundary condition 

(ii) satisfies the Black-Scholes PDE. 
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Solution 

(i) Boundary condition  

At expiry:  

  ( , )T Tf T S S K  

which is what we would expect.  The investor will pay K  and receive a share worth TS . 

(ii) Black-Scholes PDE 

We first differentiate ( , )tf t S  with respect to tS  and t  to find the Greeks: 

 
  


1

t

f
S

 
  


0

tS
  

   


( )r T tf rKe
t

 

Using these Greeks we see that: 

 

 



 

 

  

    

 



2 2

( )

( )

1
2

1 0

( , )

t t

r T t
t

r T t
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t

rS S

rKe rS

r S Ke

rf S t

 

and so the PDE is satisfied. 
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3 The Black-Scholes model for dividend-paying shares 

3.1 Introduction 

In previous sections we assumed that the underlying asset produced no income, so that the 
price of the underlying asset would give us the total return directly. 

So far we have considered only non-dividend-paying shares and, in doing so, we have treated the 
share as a non-dividend-paying pure asset, ie an asset that provides an investment return only via 
capital growth.  In practice, of course, most shares do pay a stream of dividends and so we must 
modify our previous analysis to allow for this possibility.   

We now, essentially, repeat Section 2 in the case that the underlying security has income payable 
continuously at a rate q.  This leads to the Garman-Kohlhagen formula for the value of a call 
option on a dividend-paying share in a continuous-time framework. 

3.2 The underlying SDE with dividends 

Suppose instead that dividends are payable continuously at the constant rate of q  per 

annum per share.  That is, the dividend payable over the interval ( ]t t dt   is: 

tqS dt  

Note that the dividend amount is proportional to the value of the share at that time.  Note also 
that this q has nothing to do with the risk-neutral probability measure discussed earlier in the 
course. 

Suppose that tS  is subject to the same stochastic differential equation as before: 

 t t tdS S dt dZ    

although   may be different from the rate of growth on the non-dividend-paying asset 

described before. 

Recall that the total return on a share is the sum of the growth rate and the dividend rate. 

Modification due to dividends 

Once we introduce dividends into our model, the problem we face is that the share price process 

tS  no longer represents the whole value of the asset.  More specifically, if we buy the share for 

0S  at time 0, then by time T the total value of what we have bought is equal to: 

 TS , the share price at time T 

 plus the total of the accumulated dividends received to date. 

Moreover, we have defined the dividend payable over the interval (t, t + dt] to be tqS dt  – ie it 
depends on tS .  So, the total of the accumulated dividends received to date must depend on the 
share price at every instant over the interval 0 to T. 
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We therefore need to construct a new process, tS  say, that is closely related to tS  and that does 
represent the entire value of the asset we purchase by buying the share – ie the total of the past 
dividend income and the capital growth.  This is achieved by considering the following 
investment. 

Suppose that we start with one unit of the share worth 0S  at time 0.  Subsequently, any dividends 
that we receive are assumed to be reinvested instantaneously, by purchasing additional units of 
the same share.  Note that as the dividends are assumed to be received continuously, the 
reinvestment process will itself be continuous.  Over any time interval [ , )t t dt  the dividend 
payout on one share is equal to tqS dt , which can be reinvested at time t dt  to purchase an 
additional qdt  units of the share. 

Question 

How many units of the share will we hold at time t? 

Solution 

Given that we started with one unit of share at time 0, if we purchase additional shares 
continuously at the rate of q – ie we purchase qdt  over the interval ( , ]t t dt  for each share that 

we already hold – then by time t our total holding will be qte . 

 
It is the value of this portfolio, allowing for the continuous reinvestment of dividends, that we 
define as the process of interest and that we denote by tS .  Many unit-linked savings funds offer 
a facility where investors can choose either to receive dividends as cash or to reinvest them in the 
fund.  In the first case the value of the fund corresponds to tS , in the second case tS . 

Let tS  be the value of an investment of 0 0S S  at time 0 in the underlying asset, assuming 

that all dividends are reinvested in the same asset at the time of payment of the dividend.  

Sometimes  
0tS S  is described as the total return on the asset from time 0 to time t .   

It is important to note that tS  is the tradable asset and not tS  in the following sense.  If we 

pay 0S  at time 0 for the asset, then we are buying the right to future dividends as well as 

future growth of the capital.  In other words, the value of the asset at time t  should account 
for the accumulated value of the dividends as well as the value of the capital at time t .   

It is straightforward to see that the stochastic differential equation for tS  is:  

    ( )t t tdS S q dt dZ     

As the dividends are received continuously at the rate of q per annum and are reinvested 
immediately, so the growth rate or drift of the total value of the share asset at time t must be the 
drift in the share price alone,  , plus the instantaneous income yield, q. 
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Solving this we find that: 

   2
0

1
exp ( )

2t tS S q t Z  
 
 
  

     

Question 

Show that      t t tdS S q dt dZ   is the corresponding SDE to the above equation. 

Solution 

If: 

          
2

0 exp ½t tS S q t Z   

then the SDE for tS  can be found by Ito’s Lemma. 

Let  t tS f X  where       2½t tX q t Z  and    0
xf x S e .  Then we have: 

        t t tf X f X f X  and       2½t tdX q dt dZ  

It follows that: 

      

  
 

   

 

   

    

  

2

2 2

½

½ ½

( )

t t t t t t

t t

t t

dS df X f X dX f X dX

S q dt dZ dt

S q dt dZ







 

Alternatively, if we consider t  as an explicit variable and think of   ,t tS g t Z  then we need an 

extra 


tS
t


 term: 

  

   

   

 

  
  

  

      

      

  

2
2

2

2 2 2

2 2

1( , ) ( )
2

½ ½ ( )

½ ½

t t t
t t t t

t t t t t

t t t t

t t

S S SdS t Z dt dZ dZ
t z z

q S dt S dZ S dZ

q S dt S dZ S dt

S q dt dZ

  

  

  



 

as required. 
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Effectively, the tradable asset tS  is just the share price process accumulated at the fixed rate q, 
where tS  follows the geometric Brownian motion as we assumed earlier. 

Question 

How are tS  and tS  related? 

Solution 

We can see from the last Core Reading equation that: 

           
2

0
1exp
2

qt
t tS S t Z e  

As the tradable asset tS  is just the share price process accumulated at the fixed rate q, it must be 
the case that: 

 qt
t tS e S  

 
Note that if the model is assumed to start at time zero then 0S  and 0S  are the same. 

3.3 The Garman-Kohlhagen formula 

Let us consider a European call option on the underlying asset tS  with strike price K  and 

time of maturity T .  The payoff on this option will be max{ 0}tS K   as before.  However, in 

valuing the option we must take account of the fact that dividends are payable on the 
underlying asset which do not feed through to the holder of the option.  Let us denote the 
value of this option at time t  by ( )tf t S .   

Proposition 15.2 (The Garman-Kohlhagen formula for a call option on a 
dividend-paying share) 

For such a call option: 

 ( ) ( )
1 2( ) ( ) ( )q T t r T t

t tf t S S e d Ke d         

where: 

 

21
2

1

log ( )tS
K r q T t

d
T t





 
 
 

   



, 2 1d d T t    

and ( )z  is the cumulative distribution function of the standard normal distribution. 

This formula is given on page 47 of the Tables. 

For a put option we also have ( ) ( )
2 1( ) ( ) ( )r T t q T t

t tf t S Ke d S e d           where 1d  and 2d  

are as defined above.   
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As before we will give two proofs of this result, one here using the partial differential 
equation (PDE) approach and the other in a later chapter using the martingale approach. 

3.4 The PDE approach 

An expression for df(t,St) 

Given the Ito process: 

 t t t tdS S dt S dZ    

then applying Ito’s Lemma to the function ( , )tf t S we have:  

 
2

2 2
2

1
( )

2t t t t t
f f f fdf t S S dZ S S dt
s t s s
  

    
          

 

The risk-free portfolio 

Suppose that at any time t , 0 t T  , we hold the following portfolio:  

 minus one derivative 

 plus ( )t
f t Ss
 


 shares. 

Let ( )tV t S  be the value of this portfolio: 

ie ( ) ( )t t t
fV t S f t S S
s


    


 

The pure investment gain over the period ( ]t t dt   is the change in the value of the minus 

one derivative plus the change in the value of the holding of f s    units of the share 
including the dividend payment.  That is: 

 

  

2
2 2

2

2
2 2

2

1
( ) ( )

2

1

2

t t t t t t t

t t t t

t t

f f f f fdf t S dS qS dt S dZ S S dt
s s t s s

f S dt S dZ qS dt
s

f f fqS S dt
t s s

  

 


 
 
  
 

                         


  


  
   

  

 

So, the difference here from before is that the change in the value of the portfolio also includes 
the dividend income tqS dt . 

Now note that the expression for ( ) ( )t t t
fdf t S dS qS dt
s


   


 involves dt  but not tdZ , so 

that the investment gain over the next instant is risk-free. 
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Given that the market is assumed to be arbitrage-free, this rate of interest must be the same 
as the risk-free rate of interest on the cash bond.  Therefore we must have the alternative 
expression: 

  ( ) ( ) ( )t t t t
fdf t S dS qS dt rV t S dt
s


     


 

So, equating the two expressions we have for pure investment gain and remembering that 


    


( ) ( )t t t
fV t S f t S S
s

 gives: 

 
2

2 2
2

1

2t t t
f f f fqS S dt r f S dt
t s ss


             

   
     
  

 

  
2

2 2
2

1
( )

2t t
f f fr q S S rf
t s s

  
   

  
 

Notice that the only difference from before is that dividends are now included.  The r factor on 
the LHS is replaced by r q . 

The value of the derivative is found by specifying appropriate boundary conditions and 
solving the PDE. 

The boundary conditions are: 

 
( ) max{ 0} for a call option

( ) max{ 0} for a put option

T T

T T

f T S S K

f T S K S

   

   
 

Question  

Verify that the Garman-Kohlhagen formula for a European call option on a dividend-paying share 
satisfies the above boundary condition. 

Solution 

We need to check that: 

  


 lim ( , ) max ,0t T
t T

f t S S K  

Because   2 1d d T t , the limit of 1d  and 2d  are equal: 

 

          


1 2

0
0lim lim

0
0

T

t T t T
T

ve if S K
d d

ve if S K
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If TS K , and writing 1d  as: 




 
  



21
2

1
( )ln( / )t r qS Kd T t

T t
 

we see that: 

 


  1lim 0 0 0
t T

d  

Finally, noting that   ( ) 1 ,   ( ) 0  and  (0) 0.5 , we have: 

  

 



  
 
    

 

lim ( , ) 0
0.5 0

max ,0

T T

t T
t T

T T

T

S K if S K
f t S if S K

S K if S K

S K

  

 
Finally, we can try out the solutions given in the proposition for the value of a call and a put 
option.  We find that they satisfy the relevant boundary conditions and the PDE. 

3.5 Summary 

Note that the Black-Scholes formula is simply the Garman-Kohlhagen formula with q = 0 and so by 
verifying that the Garman-Kohlhagen formula satisfies the above PDE, we will implicitly verify that 
the Black-Scholes formula satisfies the same PDE with q = 0. 

Delta 

It is worth noting the following results relating to delta,  , as this may help with exam questions.  
The following results are derived by differentiating the Black-Scholes and Garman-Kohlhagen 
formulae with respect to tS : 

 For a European call option on a non-dividend-paying share,   1( )d . 
 For a European put option on a non-dividend-paying share,     1( )d . 
 For a European call option on a dividend-paying share, with a continuously-compounded 

dividend yield, q,    ( )
1( )q T te d . 

 For a European put option on a dividend-paying share, with a continuously-compounded 

dividend yield, q,      ( )
1( )q T te d . 
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4 Implied volatility 

Both the standard Black-Scholes formula and the Garman-Kohlhagen formula for a 
dividend-paying share require knowledge of  , the volatility of the price of the underlying asset.  
Unlike the other parameters in these formulae, the volatility cannot be observed directly in the 
market.  It must therefore be estimated if either formula is to be used to price a derivative in 
practice.   

One way of doing this is to use an observed option price from the market and derive the volatility 
that is consistent with this price.  This is possible because we can observe the values of the 
current price of the underlying asset, the risk-free rate of interest and the dividend yield on the 
underlying asset.  This information is added to the strike price and the maturity date leaving the 
volatility as the only unknown quantity in the Black-Scholes formula.  The resulting estimate is 
known as the implied volatility. 

We observed in an earlier chapter that the higher the volatility of the underlying share price, the 
greater the chance that the underlying share price can move significantly in favour of the holder 
of the option before expiry.  So higher volatility will be associated with higher option prices, and 
lower volatility with lower option prices. 

Suppose we know that the price of an option is 6.87.  It is not possible for us to write down a nice 
formula for   in terms of the other parameters.  However, it is straightforward to find the value 
of   working backwards by trial and error.  Since the option price is a strictly increasing function 
of  , the solution to this problem is unique.   

Suppose we find that with   = 0.17, Black-Scholes implies that the corresponding option price 
would be 6.841 and with   = 0.18, the price would be 7.006.  Using linear interpolation we can 
then estimate the volatility as   = 0.17176.  This estimate is called the implied volatility. 
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Chapter 15 Summary 

Assumptions of Black-Scholes 

 The underlying share price follows geometric Brownian motion. 

 The market is arbitrage-free. 

 The risk-free rate r is constant, the same for all maturities and the same for 
borrowing and lending. 

 Assets may be bought and sold at any time  0t . 

 Assets may be held in any amount, including negative holdings. 

 There are no taxes or transaction costs. 

An implication of these is that the market in the underlying share is complete.  The validity of 
each assumption can be questioned. 

Black Scholes PDE 

 
    

2
2( ) ( )

2t t trf S r q S S  

For any derivative to be fairly priced, it must: 

 satisfy the boundary conditions, ie have the correct payoff at expiry and 

 satisfy the above PDE. 

Garman-Kohlhagen formulae for options on a dividend-paying share 

European call 

       ( ) ( )
1 2( ) ( ) ( )q T t r T t

t tf S S d e Ke d  

European put  

         ( ) ( )
2 1( ) ( ) ( )r T t q T t

t tf S Ke d S d e  

where: 

  

   




2

1
ln ( ½ )( )tS K r q T t

d
T t

 ,    2 1d d T t  

The Black-Scholes formula for a non-dividend-paying share is the same but with q = 0. 
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keep the chapter summaries together for revision purposes. 
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Chapter 15 Practice Questions 

15.1 A building society issues a one-year bond that entitles the holder to the return on a 
weighted-average share index (ABC500) up to a maximum level of 30% growth over the year.  The 
bond has a guaranteed minimum level of return so that investors will receive at least %x  of their 
initial investment back.  Investors cannot redeem their bonds prior to the end of the year. 

(i) Explain how the building society can use a combination of call and put options to prevent 
making a loss on these bonds. [4] 

(ii) The volatility of the ABC500 index is 30% pa and the continuously compounded risk-free 
rate of return is 4% pa.  Assuming no dividends, use the Black-Scholes pricing formulae to 
determine the value of x  (to the nearest 1%) that the building society should choose to 
make neither a profit nor a loss. [6] 

    [Total 10] 

15.2 A company’s directors have decided to provide senior managers with a performance bonus 
scheme.  The bonus scheme entitles the managers to a cash payment of £10,000 should the 
company share price have increased by more than 20% at the end of the next 6 months.  In 
addition, the managers will be entitled to 5,000 free shares each, should the share price have 
increased by more than 10% at the end of the next 6 months.   

You are given the following data: 

Current share price   £7.81 

Risk-free rate    5% pa (continuously compounded) 

Share price volatility  25% pa 

No dividends to be paid over the next 6 months. 

(i) By considering the terms of the Black-Scholes call option pricing formula, calculate the 
value of the bonus scheme to one manager. [6] 

(ii) Explain the main disadvantages of this bonus scheme as an incentive for managers to 
perform.  [2] 

(iii) Some shareholders are concerned that this scheme might cause an undesirable distortion 
to the managers’ behaviour.  Suggest some modifications to the scheme that will ensure 
that the managers’ aims coincide with the long-term objectives of the shareholders. [3] 

    [Total 11] 

15.3 (i) One of the assumptions underlying the Black-Scholes model is that the price of the 
underlying follows a geometric Brownian motion.  Explain briefly what this means and 
why this assumption may not be valid in practice.  

(ii) State the other assumptions underlying the Black-Scholes model.  

Exam style 

Exam style 
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15.4 One form of the Black-Scholes partial differential equation is: 

      2 21
2rs s rf  

(i) State the context in which this formula applies, indicating what s  and f  represent.  (You 
are not required to state the Black-Scholes assumptions.)  

(ii) What do r  and   represent?  What assumptions are made about these quantities in this 
equation?   

(iii) State the names and give the mathematical definitions of the ‘Greeks’ that appear in this 
equation.   

(iv) What boundary condition would you need to use in order to solve this equation when 
applied to a European call option with a strike price K ?  

15.5 An investor buys, for a premium of 187.06, a call option on a non-dividend-paying stock whose 
current price is 5,000.  The strike price of the call is 5,250 and the time to expiry is 6 months.  The 
risk-free rate of return is 5% pa continuously compounded. 

The Black-Scholes formula for the price of a call option on a non-dividend-paying share is assumed 
to hold. 

(i) Calculate the price of a put option with the same time to maturity and strike price as the 
call.   [2] 

(ii) The investor buys a put option with strike price 4,750 with the same time to maturity.  
Calculate the price of the put option if the implied volatility were the same as that in (i). 

 [You need to estimate the implied volatility to within 1% pa of the correct value.] [7] 
    [Total 9] 

15.6 The solution to the Black-Scholes equation for the price V  (assuming a risk-free force of 
interest r ) of a European put option maturing u  years from now with strike price K on a stock 
that pays dividends at force q  whose current spot price is S  is:  

       2 1( ) ( )ru quV Ke d Se d  

where 

  


2

1 2
log( / ) ( ½ ), S K r q ud d

u
. 

(i) Show that the hedge ratio 
 


V
S

 is given by      1( )que d . [8] 

(ii) Hence find a formula for 
 



2

2
V

S
. [2] 

    [Total 10] 

Exam style 

Exam style 
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15.7 An investment bank has issued a special derivative security which provides a payoff in one year of: 

  1 0( 15)S S  if    0 1 015 5S S S   

 10  if    0 1 05 5S S S  

  0 1( 15)S S  if    0 1 05 15S S S   

 0  otherwise 

where tS  is the price of the underlying share at time t . 

An investor purchases one of these special derivatives on a share with initial price £50. 

(i) Write down the investor’s payoff from this special derivative in one year’s time. [1] 

(ii) Explain how this payoff can be written in terms of two long and two short call options 
with different strike prices. [4] 

(iii) Calculate the fair price for this special derivative paid by the investor, using the following 
basis: 

 volatility of the share price,  15% pa  

 risk-free interest rate,  3%r pa (continuously compounded) 

 no dividends are paid on the underlying share. [5] 
    [Total 10] 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 15 Solutions 

15.1 (i) Preventing a loss 

A helpful way of tackling tricky Black-Scholes questions such as this is to draw a graph comparing 
the payoff on the bond at expiry with the value of the underlying asset at expiry.  In the diagram 
below, S(t) is the value of the initial investment. 

S(t)
Share value at 

expiryxS(t) 1.3S(t)

Payoff on 
bond at expiry

xS(t)

1.3S(t)

 

We can compare the shape of this graph against graphs for the payoffs on call and put options, 
and on the underlying shares. 

Share price at 
expiryK

Payoff on a long call 
at expiry

Share price at 
expiry

K

Payoff on a long 
put at expiry

Share price at 
expiryK

Payoff on a short call 
at expiry

Share price at 
expiry

K

Payoff on a short 
put at expiry

max(S(T) - K,0) max(K - S(T),0)

- max(S(T) - K,0) - max(K - S(T),0)
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Share price at 
expiry

S(t)

Payoff on share at 
expiry

 

The graphs demonstrate that a combination of the underlying shares, a long put with exercise 
price txS  and a short call with exercise price 1.3 tS  will replicate the graph and hence the payoff 
on the bond.   

If an investor buys a bond the building society can invest the money in the ABC500 so that it is not 
exposed to movements in the ABC500 index.  However, the building society is guaranteeing that 
investors will receive at least %x  of their initial investment back.  The building society can hedge 
this loss by buying a put option on the index with a strike price of x% of the current share price.  
This put option will cost money – let’s say p . [2] 

The building society is also limiting the investors’ return to 130% of their initial investment.  They 
can do this by selling call options with a strike price of 130% of the current share price.  This call 
option will be priced at c , say.  If c p  then the building society will not make a loss. [2] 
    [Total 4] 

(ii) No profit or loss 

If c p  then the building society will not make a profit or a loss.  So the problem requires us to 
work out the price of the call option c  and then work out the value of x  such that c p . 

We will be using the Black-Scholes formula to price the options and, because the numbers are all 
relative, we can assume that the initial index price is 100, say.   

Using the formulae on page 47 of the Tables, we can calculate the price of a call option: 

 

  



 
    
 



              

2

1

2

ln ( )
2

100 0.3ln 0.04 1
130 2

0.5912
0.3 1

tS K r T t

d
T t

 

        2 1 0.5912 0.3 1 0.8912d d T t  [1] 
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( )
1 2

0.04

0.04

( ) ( )

100 ( 0.5912) 130 ( 0.8912)

100 0.277 130 0.186

4.44

r T t
tc S d K d e

e

e

 [1] 

We now need to work out the value of x  so that  4.44p .  We will try  90K  to begin with: 

 

  



 
    
 



             

2

1

2

ln ( )
2

100 0.3ln 0.04 1
90 2

0.6345
0.3 1

tS K r T t

d
T t

 

      2 1 0.6345 0.3 1 0.3345d d T t  [1] 

 

 





     

     

   



( )
2 1

0.04

0.04

( ) ( )

90 ( 0.3345) 100 ( 0.6345)

90 0.369 100 0.263

5.62

r T t
tp K d e S d

e

e
 [1] 

This is higher than the required value, and so we try a lower value for the strike price, say  80K : 

  



 
    
 



             

2

1

2

ln ( )
2

100 0.3ln 0.04 1
80 2

1.0271
0.3 1

tS K r T t

d
T t

  

     2 1 1.0271 0.3 1 0.7271d d T t  

 





     

     

   



( )
2 1

0.04

0.04

( ) ( )

80 ( 0.7271) 100 ( 1.0271)

80 0.234 100 0.152

2.74

r T t
tp K d e S d

e

e

 [1] 
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We require a put option with a premium of  4.44p .  So we linearly interpolate to find the value 
of K  that will give us this: 

 
    


4.44 2.7480 (90 80) 85.90
5.62 2.74

K  [1] 

So  86%x  approximately.  So, the building society can use  86%x  and the discussed hedging 
portfolio to avoid making a loss.  

In fact, the exact figure is 86.43%, which is still 86% to the nearest 1%. 
    [Total 6] 

15.2 (i) Value of the bonus scheme 

First, consider the share options.  The manager will receive 5,000 shares if the share price in 
6 months’ time is greater than: 

  £7.81 1.1 £8.59  [½] 

This is like having 5,000 call options on the share with a strike price of £8.59, except that no 
payment is actually required.  We can use the Black-Scholes formula for one call option, which is 
on page 47 of the Tables (the Garman-Kohlhagen formula with  0q ): 

       
    0.05 6 12

1 28.59 7.81 8.59KC d e d  [1] 

But the manager will not need to pay the £8.59 so the second term is not required.  So, the value 
of each share option is: 

 

 
    

   

 

 





   
    
  

   
   
  

  

 



2

1

2

ln 2
7.81 7.81

ln 1 1.1 0.05 0.25 2 0.5
7.81

0.25 0.5

7.81 0.30935

7.81 1 0.6215

£2.96

S K r T t
d

T t

 [1] 

So, the share options for each manager are worth  5,000 £2.96 £14,800 . [½] 

Next, consider the £10,000 cash bonus.  The managers will receive this if the share price is greater 
than: 

  £7.81 1.2 £9.37  [½] 
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The value of a call option here would be: 

  
 

    0.05 6 12
1 29.37 7.81 ( ) 9.37 ( )KC d e d  [½] 

The second term here corresponds to the value of the strike price £9.37 that would be paid if the 
share price is greater than £9.37 in 6 months’ time.  

The cash bonus is made in the same circumstances as this.  However, the amount is £10,000 
rather than £9.37.  [½] 

So the value of the cash bonus is: 

 

 
    

   

 

 





     
     
  

   
   
  

  

 



260.05
12 2

2

ln 2
10,000 10,000 0.97531

ln 7.81 9.37 0.05 0.25 2 0.5
9,753.1

0.25 0.5

9,753.1 0.97833

9,753.1 1 0.8360

£1,600

S K r T t
e d

T t

 [1] 

Finally, the total value of the bonus scheme is: 

  £14,800 £1,600 £16,400  [½] 
    [Total 6] 

(ii) Incentive for managers to perform? 

Both the £10,000 cash bonus and the share options do not give managers any incentive to help 
the company share price once the 6-month period is over.   [½] 

Managers may be able to sell their free shares, add the proceeds to the £10,000 and may have 
little interest in how the company subsequently performs. [½] 

In addition, because the managers do not receive any bonus at all whether the share price 
increases by 9%, or decreases by 50%, say, they may be tempted to undertake a riskier 
business/investment strategy that is not in the best interests of the shareholders. [½] 

Any increase above 20% is not further rewarded.   [½] 
    [Total 2] 

(iii) Improvements to the scheme 

The share options will provide managers more of a long-term incentive if they are restricted from 
selling the shares for a fixed time period after they are awarded, 3 years say. [½] 
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In addition, a condition may be imposed that the shares will only be awarded provided the 
manager continues to work for the company for a fixed time period, 3 years say.   [½] 

These will ensure the managers have an interest in how the company performs after the 6-month 
period is over.   [½] 

Instead of a cash bonus, the managers could be given the equivalent amount in more bonus 
shares, again with the restrictions mentioned above. [½] 

The number of free shares issued could be made to depend more gradually on the company’s 
share price performance, eg 100 free shares for each percentage point performance above a 
specified benchmark level.   [½] 

This may stop any manager being tempted to employ an all-or-nothing approach in their 
business/investment strategy. [½] 

It may be possible to pay the managers’ salaries almost entirely in shares so that their interests 
are the same as that of the shareholders. [½] 
    [Maximum 3] 

15.3 (i) Explain why the assumption might not be valid 

This means that tS , the share price at time t , can be considered to be a random variable that 
obeys the stochastic differential equation: 

   ( )t t tdS S dt dZ  

where tZ  represents a standard Brownian motion. 

Another way of expressing this is to say that the distribution of 
0

log tS
S

 is     2 21
2( ) ,N t t  and 

that movements in tS  in non-overlapping time intervals are statistically independent.  

This will not be realistic in practice for any underlying asset that experiences sudden changes 
(discontinuous jumps) in price or whose drift or volatility is not constant.  

(ii) Other assumptions 

The other Black-Scholes assumptions are: 

 There are no risk-free arbitrage opportunities. 

 The risk-free interest rate is constant, the same for all maturity dates and the same for 
borrowing or lending. 

 Unlimited short selling (ie having a negative holding) is allowed. 

 There are no taxes or transaction costs. 

 The underlying asset can be traded continuously and in arbitrarily small amounts. 
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15.4 (i) State the context, and indicate what s  and f  represent 

This PDE describes the relationship between the theoretical price f  of a derivative and the 
current price s  of the underlying stock (which does not pay dividends) on whose value the 
derivative payoff depends.  

(ii) What do r  and   represent? 

r  represents the force of interest earned on a risk-free asset (usually expressed as an annualised 
rate).     

  represents the volatility of the underlying stock, ie the standard deviation of the log of the 
price ratio movements (again usually expressed as an annualised rate).  

This PDE assumes that r  and   are constant.  

(iii) Names of the Greeks 

Theta is defined as 
 


f
t

.  

Delta is defined as 
 

 t

f
S

.  

Gamma is defined as 
 



2

2
t

f
S

.  

(iv) Boundary condition 

The boundary condition would specify the payoff at the end of the contract (time T ): 

  ( , ) max( ,0)T Tf T S S K   

15.5 (i) Calculate the price of a put option with strike price 5,250 

The put-call parity relationship states that: 

    ( )r T t
t t tc Ke p S  [1] 

Substituting in the values given: 

    0.05 ½187.06 5,250 5,000te p  

   307.44tp   [1] 
    [Total 2] 
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(ii) Calculate the price of a put option with strike price 4,750 

We first need to estimate the implied volatility of the stock using the information given in the 
question.  This can be done by trial and improvement.  We start by substituting the parameter 
values into the Black-Scholes formula: 

        0.05 ½
1 25,000 5,250tc d e d  

where  
 



     
 

2

1

5,000log 0.05 ½ ½
5,250

½
d  and    2 1 ½d d  [1] 

In most instances,   0.2  is a reasonable starting point for the interpolation.  If   0.2 , then 
substituting both this value and the other parameter values into the Black-Scholes formula gives: 

  1 0.0975d   and   2 0.2389d  [½] 

            0.05 ½

0.4612 0.4056

5,000 0.0975 5,250 0.2389 229.18tc e   [1] 

This is above the actual price of 187.06, so we need to try a lower value of  .  If we try   0.1 , 
then we obtain: 

  1 0.3011d   and   2 0.3718d  [½] 

            0.05 ½

0.3817 0.3550

5,000 0.3011 5,250 0.3718 90.77tc e   [1] 

As the two call option prices straddle the actual price of 187.06, we can interpolate between the 
two values of   to obtain an estimate for the implied volatility: 

   
 

 
187.06 90.77 0.1 17%
229.18 90.77 0.2 0.1

  [1] 

We can now use this estimate of   to determine the price of a put option with a strike price of 
4,750: 

 
       

  


2

1

5,000log 0.05 ½ 0.17 ½
4,750 0.6948

0.17 ½
d  [½] 

and: 

    2 1 0.17 ½ 0.5746d d  [½] 

So the price of the 4,750 put option is: 

           0.05 ½4,750 0.5746 5,000 0.6948 92.11tp e  [1] 

    [Total 7] 
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15.6 (i) Formula for delta 

Differentiating the formula given for V  with respect to S , using the product rule for the second 
term, we get: 

    
         

 2 1 1( ) ( ) ( )ru qu quKe d e d Se d
S S

 [1] 

Using the chain rule, this can be written as: 

     
        

 
2 1

2 1 1( ) ( ) ( )ru qu qud dKe d e d Se d
S S

 [1] 

Here ( )  denotes the derivative of ( )  ie it is the probability density function of the standard 
normal distribution, which is: 

 



2½1( )

2
zz e  [½] 

From the definitions of 1d  and 2d , we find that: 

 


 
 

 
1 2 1d d
S S S u

 [½] 

Putting these together and regrouping gives: 

 
 

  
 

    
2 2
2 1½ ½

1( )
2

d dru qu
quKe e Se e e d

S u
 [1] 

In fact, the first term is zero.  To show this, we add and subtract the definitions of 1d  and 2d  to 
get: 

 


 
 1 2

2log( / ) 2( )S K r q ud d
u

 [½] 

and  


  
2

1 2
ud d u
u

 [½] 

Multiplying these two equations gives us a difference of two squares: 

    2 2
1 2 2log( / ) 2( )d d S K r q u  [1] 

Halving gives: 

    2 21 1
1 22 2 log( / ) ( )d d S K r q u  
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Exponentiating gives: 

   
2 2
1 2½ ½d d ru quSe e e e

K
 

Rearranging then gives: 

   
2 2
2 1½ ½d dru quKe e Se e  [1] 

ie the numerator in the expression for   is zero. 

So:      1( )que d  [1] 
    [Total 8] 

It would not be acceptable here to differentiate the expression for V ignoring the fact that  1d  and 

2d  are functions of S.  Although this happens to give the correct answer, it is not a valid method. 

(ii) Formula for gamma 

Finding the second derivative, starting from the formula in (i), is more straightforward: 

             

2

12 ( )quV e d
S SS

 [½] 

So: 

 



   

 

  


 
      

 

 
2 2
1 1

1
1 1

½ ½

( ) ( )

1
2 2

qu qu

d d qu
qu

de d e d
S S

e ee
S u S u

 [1½] 

    [Total 2] 

15.7 (i) Investor’s payoff 

If 0 50S , then the payoff is: 

 1 35S   if  135 45S   

 10  if  145 55S  

  165 S   if  155 65S   

 0  otherwise [1] 
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Alternatively, this may be expressed: 

 0  if 1 35S  

 1 35S   if  135 45S   

 10  if  145 55S  

  165 S   if  155 65S   

 0  if 1 65S  

(ii) Express the payoff in terms of call options 

The payoff from the special derivative can be replicated with the following combination of call 
options: 

 a long call option with strike price £35 [1] 

 a short call option with strike price £45 [1] 

 a short call option with strike price £55 [1] 

 a long call option with strike price £65 [1] 
 [Total 4] 

With this combination of options the overall payoff is: 

       1 1 1 1max( 35,0) max( 45,0) max( 55,0) max( 65,0)S S S S  

We can check that this combination of options does indeed give the same payoff as the special 
derivative, by considering the payoff for different ranges of the share price. 

If 1 35S , no option is exercised, so the payoff is 0. 

If  135 45S , only the call option with strike price £35 is exercised, so the payoff is: 

 1 35S  

If  145 55S , the call options with strike prices £35 and £45 will be exercised, giving a payoff of: 

    1 135 ( 45) 10S S   

If  155 65S , the call options with strike prices £35, £45 and £55 will be exercised, giving a 
payoff of: 

       1 1 1 135 ( 45) ( 55) 65S S S S  

If 1 65S , all call options will be exercised, giving a payoff of: 

        1 1 1 135 ( 45) ( 55) 65 0S S S S  

So, in all cases, this combination of call options gives the same payoff as the special derivative. 
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Alternatively, it may help to consider the graph of the payoff from the special derivative: 

 

55 Share value at expiry35 65

Payoff on special 
derivative at expiry

10

45
0

( S1)
 

 
This can be replicated by superimposing the following four payoff graphs relating to the four call 
options: 

Share price at 
expiry35

Payoff on a long call, 
strike price £35

Share price at 
expiry

45

Share price at 
expiry

55

Payoff on a short call, 
strike price £55

Share price at 
expiry65

Payoff on a short call, 
strike price £45

Payoff on a long call, 
strike price £65

 

(iii) Cost of special derivative 

To work out the cost of the special derivative, we can calculate the total cost of the combination 
of the four call options that replicate its payoff. 
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In this case we have     0 50, 15%, 3%, 1S r T t  and  0q , so the Black-Scholes formula for 
the price of a call option is: 

   0.03
1 250 ( ) ( )d Ke d  

where: 

 
   


21

2
1

50ln 0.03 (0.15)

0.15
Kd       and       2 1 0.15d d  

For the call option with strike price £35: 

 
   

   

1 1

2 2

2.6528 ( ) 0.99601

2.5028 ( ) 0.99384

d d

d d
 

So, the first call option has value: 

     0.03
1 50 0.99601 35 0.99384 £16.04c e  [1] 

For the call option with strike price £45: 

 
   

   

1 1

2 2

0.9774 ( ) 0.83582

0.8274 ( ) 0.79600

d d

d d
 

So, the second call option has value: 

     0.03
2 50 0.83582 45 0.79600 £7.03c e  [1] 

For the call option with strike price £55: 

 
    

    

1 1

2 2

0.3604 ( ) 0.35927

0.5104 ( ) 0.30489

d d

d d
 

So, the third call option has value: 

     0.03
3 50 0.35927 55 0.30489 £1.69c e  [1] 

For the call option with strike price £65: 

 
    

    

1 1

2 2

1.4741 ( ) 0.07023

1.6241 ( ) 0.05218

d d

d d
 

So, the fourth call option has value: 

     0.03
4 50 0.07023 65 0.05218 £0.22c e  [1] 
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The overall cost of the special derivative is therefore: 

    16.04 7.03 1.69 0.22 £7.54  [1] 
    [Total 5] w
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The 5-step method in  

discrete time 
 

 

Syllabus objectives 

6.1  Option pricing and valuations 

6.1.8 Demonstrate an understanding of the Black-Scholes derivative-pricing 
model: 

 Explain what is meant by a complete market. 

 Explain what is meant by risk-neutral pricing and the equivalent 
martingale measure. 

 Demonstrate how to price and hedge a simple derivative contract 
using the martingale approach.  (part) 
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0 Introduction 

This chapter centres on the development of a derivative pricing approach based on the use of 
replicating strategies.  It is referred to here as the 5-step method.  Before presenting the 5-step 
method in the continuous case, in this chapter we will demonstrate the structure of the proof in 
the simpler discrete case, ie for the binomial model. 

The approach in the binomial case involves constructing a replicating portfolio.  In other words, at 
a given time 1t  we need to be able to set up a portfolio of shares and cash that will evolve by 
time t  to be worth the same as the derivative at that time, no matter how the share price moves.  
In the binomial case there are only two possibilities for the share price movement over each time 
step.  This will allow us to calculate the correct amounts of shares t  and cash  t  simply by 
solving two simultaneous equations. 

However, there is a problem in continuous time with such a replicating strategy.  In the 
continuous case the number of possible share price movements is infinite, in fact they form a 
continuum, and so this simple method might seem doomed to failure. 

The solution lies in recognising that the concepts underlying the replication method can be 
formulated in terms of martingales.  A powerful theorem known as the martingale representation 
theorem then comes to the rescue.  An application of this theorem confirms the existence of the 
  and   we need for replication.  This forms the basis of the martingale approach to pricing or 
risk-neutral valuation. 

The formula we end up with is the general derivative pricing formula: 

  ( ) [ | ]r n t
t Q n tV e E C F  

We will see in a later chapter that this same formula can be used to derive the Black-Scholes and 
Garman-Kohlhagen formulae for the call and put options, which we met previously. 

Some of the material in this chapter and the following chapter is quite technical.  
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1 Preliminary concepts 

It is helpful to recognise that the basic set-up for the continuous case is analogous to the one used 
in the discrete-time framework outlined in the chapter on the binomial model.  Consequently, we 
will on occasion refer back to the binomial model.  First of all, however, we introduce some 
preliminary concepts. 

Suppose that we are given some probability triple ( )F P   where P  is a real-world 

probability measure (sometimes also referred to as the physical or natural or objective 
measure).  

Here   is the sample space, ie the set of all possible outcomes. 

Question 

What is represented by F? 

Solution 

F represents the set of all information concerning the stock price process tS  that could 
(eventually) be known. 

 
1.1 Background 

The share price process and the filtration 

We will make use in this and subsequent sections of a stochastic process tS  for prices, 

where tS  is measurable with respect to tF  (that is, given tF  we know the value of uS  for all 

u t ).  Let tF  be the sigma-algebra generated by uS  (and uB  if this is stochastic) for 

0 u t  ; that is, tF  gives the history of the process up to time t . 

uB  is the value of a risk-free bond, and is introduced below. 

So, tS  will be used to denote the value of the share at time t.  Because share prices are random, 
this is not known before time t, and so we model it with a stochastic process.  As mentioned in 
the chapter on Brownian motion, where it was called a filtration, we think of tF  as meaning that 
we are at time t, and we know the history of the share value up to and including time t. 

The real-world probability measure, P 

The real-world probability measure P  can be interpreted in the following way.  Let A  be 
some event contained in F  (for example, suppose that A  is the event that 1S  is greater 

than or equal to 100).  Then ( )P A  is the actual probability that the event A  will occur. 

On a more intuitive level, with m  independent realisations of the future instead of one, we 
would find that the event A  occurs on approximately a proportion ( )P A  occasions (with the 

approximation getting better as m  gets larger and larger).   
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So at time 0 we may think that the probability that the share price will be greater than or equal to 
100 at time t is 0.2.  Another way of saying this is that, if we could run the future up until time t 
lots of times, we would expect the share price to be greater than or equal to 100 about one fifth 
of the time. 

In practice we can only ever estimate the real-world probabilities, using a mathematical model of 
a situation, since it is impossible for us to ‘replay’ the real world. 

Cash 

Suppose also that we have a risk-free cash bond which has a value at time t  of tB . 

We will refer to this as either the cash bond or simply as cash. 

Sometimes the risk-free rate of interest will itself follow a stochastic process, but in the 
sections which follow we will assume that the risk-free rate of interest is constant. That is, 

tB  is deterministic and equal to 0
rtB e  for some constant r . 

Assuming that  r > 0, we have the following properties: 

 0B  = 1 is the value of cash at t = 0 

  0tB B  = 1 and  1t tB B  for t > 0 

 tB  increases in an entirely predictable manner as we move through time – ie at the 
continuously compounding rate of r per time period. 

Be careful not to confuse this with when tB  is used as the notation for Brownian motion.  It 

should be clear from the context in which tB  is being used but we will add comments in sections 
where the distinction is not so obvious. 

1.2 Tradeable assets 

In the basic form of the Black-Scholes model that we will see in the next section, we will 
assume that tS  represents the price of a non-dividend-paying share.  This means that if we 

invest 0S  at time 0, tS  represents the total return on the investment up to time t , assuming 

that we hold onto the share until that time. 

This, as well as the cash bond tB , is an example of a tradeable asset.  Such an asset is one 

where its price at time t  is equal to the total return on that investment up to time t  with no 
dividend income payable or inputs of cash required.   
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1.3 Self-financing strategies 

We now consider the properties that are necessary for a replicating portfolio. 

The portfolio 

Suppose that at time t  we hold the portfolio ( )t t  , where: 

 t  represents the number of units of tS  held at time t  

 t  is the number of units of the cash bond held at time t . 

So a portfolio is an ordered pair of processes t  and  t  that describes the number of units of 
each security held at time t.  Note that: 

 we do not constrain the values of t  and  t  to be non-negative – ie short selling of 
securities is permitted. 

 the choice of the portfolio  ( , )t t  at time t represents a dynamic strategy, as the values 

of t  and  t  can change continuously through time. 

We assume that tS  is a tradeable asset as described above. 

Previsible processes 

The only significant requirement on ( )t t   is that they are previsible; that is, 

tF  -measurable (so t  and t  are known based upon information up to but not including 

time )t . 

So, t  and  t  are dependent only on the history of stock prices up to but not including time t.  

This is sometimes referred to as the history of stock prices up to time t  and the corresponding 
filtration is written as tF .  In the binomial case,   1ttF F . 

The reason we require t  and  t  to be previsible is that we want to be able to replicate the 
portfolio in advance.  Consider the binomial case again.  At time 1t  we need to be able to set up 
a portfolio that replicates the value of the derivative at time t , no matter what happens to the 
share price.  It is no use being able to do this in retrospect. 

In continuous time we would need to continuously change the holdings t  and  t .  This is 
obviously not possible in practice, but we should be able to approximate the theoretical ideal by 
rebalancing the portfolio on a regular basis. 

Changes in the value of the portfolio 

Let ( )V t  be the value at time t  of this portfolio: that is: 

( ) t t t tV t S B    
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Now consider the instantaneous pure investment gain in the value of this portfolio over the 
period from time t  up to t dt : that is, assuming that there is no inflow or outflow of cash 

during the period [ )t t dt  . 

Any increase or decrease in the value of the portfolio is therefore due entirely to capital gains or 
losses generated within the fund.  We are assuming that the stock does not pay dividends.  There 
is no net investment/new money injected into or withdrawn from the fund. 

This instantaneous pure investment gain is equal to: 

 t t t tdS dB   

Question 

Why is the pure investment gain equal to  t t t tdS dB ? 

Solution 

In this equation, tdB  represents the infinitesimal change in the value of one unit of cash during 

the time interval [t, t + dt).  tdS   represents the corresponding change in the stock price, which is 
a random variable. 

The absence of any new net investment into or out of the portfolio means that there are no new 
purchases or sales of either the stock or the cash bond.  Hence, t  and  t  remain unchanged 
over this short time interval.  Consequently, any changes to the value of the portfolio over the 
time interval [t, t + dt) must arise solely through changes in the stock price tdS  and /or the 

increase in the value of cash tdB . 

 
Let’s see what the change in the value would be if we did have inflows or outflows, ie if we were 
to buy td  new shares and pay in td  units of the cash bond. 

The instantaneous change in the value of the portfolio, allowing for cash inflows and 
outflows, is given by: 

                   t t t t t t t t t t t t tdV d S dS d B dB S B  

which simplifies to: 

 ( ) ( ) ( ) t t t t t t t t t t t tdV t V t dt V t dS S d d dS B d dB d dB               

If    0t td d , this simplifies to: 

   t t t t tdV dS dB  
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Self-financing 

The portfolio strategy is described as self-financing if ( )dV t  is equal to t t t tdS dB  .  That 

is, at t dt  there is no inflow or outflow of money necessary to make the value of the 

portfolio back up to ( )V t dt . 

ie   ,t t  is self-financing     t t t t tdV dS dB  

So, the required change in the value of a self-financing portfolio is equal to the pure investment 
gain.  The significance of being self-financing will become clearer once we talk about replicating 
strategies. 

1.4 Replicating strategies and complete markets 

Let X  be any derivative payment contingent upon UF  where U  is the time of payment of 

.X   That is, X  is UF -measurable and, therefore, depends upon the path of tS  up to time 

.U   The time of payment U  may be fixed or it may be a random stopping time. 

‘X is UF -measurable’ means that if we know the history of stock prices up to and including time U, 

then we know the value of X.  In this particular instance, UF  tells us the value of US , the stock 

price at time U, and hence the value of X, the derivative payment contingent upon US . 

Question 

For which types of derivative is the time of payment U fixed?  For which type is it not fixed? 

Solution 

The time of payment U is fixed for: 

 a European option, which can be exercised only at the fixed exercise or expiry date 

 a future or a forward, both of which have a fixed delivery date. 

The time of payment is not fixed for an American option, where the holder can choose to exercise 
the option at any time on or before the exercise date. 

 
Replicating strategy 

A replicating strategy is a self-financing strategy ( )t t  , defined for 0 t U  , such that: 

( ) U U U UV U S B X     

In other words, for an initial investment of (0)V  at time 0, if we follow the self-financing 

portfolio strategy ( )t t   we will be able to reproduce the derivative payment without risk. 
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‘Following the self-financing portfolio strategy  ( , )t t ’ means that we rebalance our portfolio 

continuously so that we have t  units of stock and  t  units of cash at time t, and we do this 
without any inflow or outflow of funds. 

Hence, the self-financing portfolio strategy  ( , )t t  replicates the derivative payment X at the 

time of payment U, irrespective of what US , the stock price at time U, and hence the value of X, 

actually turns out to be.  Moreover, if we choose the initial portfolio  0 0( , )  at time 0, then we 
can replicate the derivative payment at time U without the need for any further cash injections 
into the portfolio. 

This is because the change in the value of the portfolio  ( , )t t  over any time interval will be such 
that its value at the end of that time interval will exactly equal the cost of the portfolio that must 
then be purchased to maintain the replicating strategy over the next time interval. 

Complete market 

The market is complete if for any such contingent claims X  there is a replicating strategy 
( )t t  . 

This is important because it means that, in a complete market, we will always be able to price a 
contingent claim X, such as a derivative, based on the arbitrage-free approach and using a 
replicating strategy  ( , )t t . 

We have already seen one example of a complete market: the binomial model.  In that model 
we saw that we could replicate any derivative payment contingent on the history of the 
underlying asset price. 

To replicate a call option or put option we needed shares and cash, which were both available 
assets.  We will see shortly that to replicate these derivatives in continuous time we can use these 
same assets. 

Another example of a complete market is the continuous-time lognormal model for share 
prices. 

The form of the lognormal model used in the Black-Scholes framework is: 

 2
0 exp ( ½ )t tS S t Z        

where tZ  is a standard Brownian motion.   

1.5 Equivalent measures 

Two measures P  and Q  which apply to the same sigma-algebra F  are said to be equivalent 
if for any event E  in F : 

( ) 0P E   if and only if ( ) 0Q E   

where ( )P E  and ( )Q E  are the probabilities of E  under P  and Q  respectively.   

We have already seen equivalent measures when we looked at the binomial model. 
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We can think of this intuitively as meaning that any event E that is possible/impossible under 
probability measure P is also possible/impossible under probability measure Q.  However, 
remember that when infinite sequences of events are involved, any particular sequence we 
specify will normally have probability zero. 

Here we will be using P to denote the real-world probabilities and Q for the risk-neutral 
probabilities. 

From the above definition of equivalence, the only constraint on the real-world measure P  
is that at any point in the binomial tree the probability of an up-move lies strictly between 0 
and 1.  The only constraint on Q  is the same but this can be equated to the requirement that 
the risk-free return must lie strictly between the return on a down-move and the return on an 
up-move. 

Question 

Why is this? 

Solution 

As was the case in the binomial model chapter, this restriction is required in order to avoid any 
violation of the no-arbitrage condition – as we are pricing the derivative using an arbitrage-free 
approach.  If arbitrage opportunities were present, then the value of our replicating portfolio 
might differ from that of the derivative claim that we are trying to price. 

Recall that in order to avoid arbitrage we must have d < er < u, where u and d are the up-step and 
down-step factors respectively in our binomial tree.  Recall from the binomial model chapter that: 






re dq
u d

 

If 0 < q < 1, then: 


  


0 1

re dq
u d

 

Multiplying this through by u d  gives: 

    0 re d u d  

ie  rd e u  

 
This gives us considerable flexibility in the range of possible equivalent measures. 

We could, if we wanted to, come up with a whole range of other probability measures, but we will 
mostly be interested in the real-world and the risk-neutral ones. 
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1.6 Sample paths problem 

In the binomial model, up to a given finite time horizon each sample path has a probability 
greater than zero – so equivalence is straightforward to prove. 

This is because there are only two paths that the share price process can take at each individual 
node.  The share price goes up with probability  0p  or down with probability  1 0p . 

In many continuous-time models (for example, Brownian motion) all individual sample paths 
have zero probability. 

Question 

Why do all the sample paths have zero probability? 

Solution 

The probability that a continuous random variable takes an exact value is zero,  ie  [ ] 0P X x .  
We can think of a sample path as the realisation of a ‘series of random outcomes up to a certain 
point’, so the random variable logic applies equally to sample paths. 

 
This makes equivalence more difficult to establish. 

Remember that, for equivalence, the probabilities for any event (ie set of sample paths) have to 
either both equal zero or be strictly positive together. 

Continuous-time example 

Suppose that tZ  is a standard Brownian motion under P : 

~ (0, )tZ N t  for all t  

Let t tX t Z    be a Brownian motion with drift under P .   

Is there a measure Q  under which tX  is a standard Brownian motion and which is 

equivalent to P ? 

The answer is yes if 1   but no if 1   (but we do not give a proof here).  So we can 
change the drift of the Brownian motion but not the volatility.   

This example can be expressed more formally in the following theorem.   

1.7 The Cameron-Martin-Girsanov theorem 

Suppose that tZ  is a standard Brownian motion under P .  Furthermore suppose that t  is 

a previsible process.  Then there exists a measure Q  equivalent to P  and where: 


0

t
t t sZ Z ds    

is a standard Brownian motion under Q .   
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Conversely, if tZ  is a standard Brownian motion under P  and if Q  is equivalent to P  then 

there exists a previsible process t  such that: 


0

t
t t sZ Z ds    

is a standard Brownian motion under Q . 

Note that the converse of the Cameron-Martin-Girsanov theorem tells us that we can change 
the drift but not the volatility of the Brownian motion. 

Geometric Brownian motion 

As we saw in the chapter on stochastic calculus, the process 21
0 2

exp[( ) ]t tS S t Z      

where tZ  is a standard Brownian motion under P  is sometimes called geometric Brownian 
motion. 

Let us consider the discounted asset price rt
te S .  We have: 

( )
0[ ]rt r t

P tE e S S e    

So rt
te S  is not a martingale under P  (unless r  ). 

Question 

Show that     
( )

0
rt r t

P tE e S S e  

Solution 

We know that: 

      2
0log log ( ½ )t tS S t Z  

So      
2 2

0log log ( ½ ) ,tS N S t t  

This means that tS  has a lognormal distribution with the same parameters.  Using the formula in 

the Tables, the mean of tS  is: 

         2 2
0 0[ ] exp log ( ½ ) ½ t

tE S S t t S e  

Since r is a constant, we then have: 

      ( )
0 0[ ]rt rt t r t

tE e S e S e S e  

 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 12 CM2-16: The 5-step method in discrete time 

© IFE: 2019 Examinations The Actuarial Education Company 

Now take t
r 




  , and define: 

 
0

( )t
t t s t

rZ Z ds Z t



     

Then:  

 

  

  

    

      

2
0

2
0

exp ( ½ )

exp ( ½ )

t t

t

S S t Z

S r t Z t rt
  

 



2
0

2
0

exp ( ½ )

exp ( ½ )

t

t

rS r t Z t

S r t Z

 


 

       
  

    

 

Also by the Cameron-Martin-Girsanov theorem there exists a measure Q  equivalent to P  

and where tZ  is a standard Brownian motion under Q . 

Furthermore, we find, for u t , that: 

 

 

2 21 1
2 2

2

( )( ) ( )

[ ] [exp{( ½ )( ) ( )}]rt rt
Q t u u Q t u

r t u t urt
u

ru
u

E e S F e S E r t u Z Z

e S e

e S

 

  

   



     





 

So rt
te S  is a martingale under Q .   
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2 The martingale representation theorem 

Our ability to replicate the derivative payoff relies on setting up a self-financing, previsible 
portfolio.  In the binomial model this was straightforward, but as mentioned above, in the 
continuous case it isn’t.  Here we need to use the martingale representation theorem. 

2.1 Theorem 

Suppose that tX  is a martingale with respect to a measure P .  That is: 

 for any t s ,  [ ]P s t tE X F X   

Suppose also that tY  is another martingale with respect to P .  The martingale 
representation theorem states that there exists a unique previsible process t  such that (in 

continuous time): 

0 0

t
t s sY Y dX    

or t t tdY dX  

if and only if there is no other measure equivalent to P  under which tX  is a martingale.   

Recall that a measure P  is equivalent to P  (written P P )  if    0 0P A P A    . 

The theorem also holds when tX  is a vector of martingales. 

Note that the integral in the equation for tY  above is a stochastic integral.  The subsequent 
equation is the same relationship expressed as a stochastic differential equation. 

It will turn out that in the continuous case, t  is the amount of stock to be held in the replicating 

portfolio.  As mentioned before, it is therefore essential that t  be a previsible process.  This is 
what the theorem guarantees. 

The proof of the martingale representation theorem is beyond the syllabus, but we will show why 
such a result might hold by analogy with the discrete case.  In the discrete case, we have finite 
differences,  ,t tX Y  so that the theorem essentially becomes: 

 the process  



t
t

t

Y
X

 is previsible. 

Note that t  would not be well-defined here if  tX  was zero. 

2.2 Proof of the martingale representation theorem in discrete time  

We can illustrate the proof of the martingale representation theorem in the context of a 
discrete-time random walk.  Note that this is slightly different to the binomial model because the 
process in the binomial model was assumed to be a geometric random walk, ie we multiplied by a 
random factor each time, rather than adding a random term. 
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If we apply this to the discrete-time binomial model we might have: 

 1
  ( ) with probability

( ) with probability 1
t t

t
t t

X u t X q
X

X d t X q
 

    
 

Note that    1 1t t tX X X  where  1tX  is a random variable which takes the value ( , )tu t X  

with probability q and the value ( , )td t X  with probability 1 – q.  Here u is a positive quantity and d 
is a negative quantity. 

If tX  is a martingale with respect to the implied measure Q  (ie the probabilities q and 1 q ) 

then: 

   ( , ) (1 ) ( , ) 0t tqu t X q d t X  

  
dq

u d





 

Notice that this uniquely specifies Q.   

Question 

Find an expression for ( , )td t X  in terms of q and ( , )tu t X . 

Solution 

We have just seen that: 

 



( , )

( , ) ( , )
t

t t

d t Xq
u t X d t X

  

Rearranging this gives: 





( , )( , )

1
t

t
qu t Xd t X

q
 

 
Now if tY  is also a martingale with respect to Q  (ie based on the same probabilities q and 

1 q ) then, first, tY  must also follow a binomial model with: 

 


1

( ) with probability

( ) with probability 1

t t
t

t t

Y u t Y q
Y

Y d t Y q


  
  

 

since both tX  and tY  must be measurable with respect to the same sigma-algebra tF  for 

all t . 

It is important to realise that the fact that the processes are measurable with respect to the same 
filtration, implies that   1 ,t tX u t X  if and only if   1 ,t tY u t Y . 
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Second, since tY  is a martingale with respect to Q , we must have: 

  1|Q t t tE Y F Y  

ie ( ) (1 ) ( ) 0t tqu t Y q d t Y      

or 
 ( )

( )
1

t
t

qu t Yd t Y
q

 
 


 

so that the one-step martingale property is satisfied. 

Now consider  








1
1

1

t
t

t

Y
X

.  Since the denominator and numerator are both random white noise 

terms, it would appear that  1t  will also be random, and not known until time 1t .  However, 

consider the outcomes for  1t . 

One possibility is: 

 
 

 





 


1
1

1

,
,

tt
t

t t

d t YY
X d t X


 

On the other hand, we might have: 

 
 

 





 


1
1

1

,
,

tt
t

t t

u t YY
X u t X


 

Now we know that: 

 




( , )( , )

1
t

t
qu t Xd t X

q
      and 





( , )( , )

1
t

t
qu t Yd t Y

q
  

So dividing these gives: 

 
 

 
 


, ,
, ,

t t

t t

u t Y d t Y
u t X d t X


 

So, at time t there is actually only one possible outcome.  Hence  1t  is known at time t and 
therefore previsible. 

Then if 1 ( ) ( )t t tu t Y u t X       (so t  is previsible: that is tF   or 1tF   measurable) we have: 

0
1

t

t s s
s

Y Y X


    

where 1s s sX X X     

or t t tY X    
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What we have done here is to calculate the total change in Y between time 0 and time t, which is 
found by adding up the steps: 

     0 1 2 ...t tY Y Y Y Y  

If Y experiences an up-movement at time s then    1( 1, )s sY u s Y , which from the definition of 

s  is equal to   1( 1, )s su s X .  Since  1( 1, )su s X  is the size of the up-movement in X at time s, 

this corresponds to  s sX  when there is an up-movement.  (Down-movements are connected in 
a similar way.) 

So   t t tY X , and we can write: 

         0 1 1 2 2 ...t t tY Y X X X  

ie 


  0
1

t
t s s

s
Y Y X  

So, one Q-martingale, tY  say, can be represented in terms of a different but equivalent 

Q-martingale, tX . 

More specifically, the change in tY  over any interval [t–1, t] is equal to the corresponding change 

in tX ,  tX , scaled up by the ratio of the relative sizes of the up-steps in the respective binomial 
trees.   

So, the actual value of tY  can be represented in terms of its initial value 0Y  and the  sX ’s. 

Question 

Explain how t  is related to the two martingale processes tX  and tY . 

Solution 

t  is equal to the ratio of the changes in the two martingale processes, and it reflects the relative 
volatilities of the two processes. 

 
2.3 Diffusion models 

Our proof in continuous time will be based on a diffusion model for the share price. 

Diffusion models are characterised by their stochastic differential equation: 

( ) ( )t X t X t tdX t X dt t X dZ      

where tZ  is a standard Brownian motion with respect to a measure P . 

Recall that   represents the drift and   the volatility. 
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If tX  is a martingale with respect to P  then we must have: 

( ) 0X tt X    for all t , tX  

So, the process tX  has no drift. 

If tY  is also a martingale then we have: 

 ( ) ( )t Y t t t X t t t tdY t Y dZ t X dZ dX         

where 
( )

( )
Y t

t
X t

t Y
t X










 provided ( ) 0X tt X    with probability 1.   
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3 Another look at the binomial model 

3.1 Introduction 

We are now going to use the definitions and theorems we’ve built up to put together a proof of 

the formula    ( ) |r n t
t Q n tV e E C F  for the fair price for a derivative.  First, we should give a 

worded description of how we are going to use various results.  We start by working backwards 
from what we are trying to show, in order to give an intuitive idea of why the proof involves the 
steps that it does. 

 The aim of the 5-step proof is to show that a certain portfolio replicates the derivative at 
all times. 

 Looking at the definition of a replicating strategy we see that we first need a self-financing 
portfolio. 

 Looking at the definition of a self-financing strategy we see that we need the holdings in 
the portfolio to be previsible. 

 To show a process is previsible, we have the martingale representation theorem to help 
us. 

 However, the martingale representation theorem requires that we have two martingales. 

 The discounted share price process is a Q-martingale but we do need one more. 

 The other martingale is constructed from the derivative payoff, discounting this all the 
way back (past the current time t) to time 0. 

You should refer back to this section to help you understand the purpose of any of the steps in 
the 5-step method, whether the method is in the discrete-time case (as here), or for the 
continuous-time case. 

3.2 The 5-step method 

Before we look at the continuous-time model, let us apply some of these results to the 
binomial model. 

The 5-step proof in the next chapter has exactly the same structure as the one given in this 
section. 

We work through a series of steps which can be used to solve the problems of pricing and 
hedging of derivatives.   

The idea of this section is to reformulate the risk-neutral pricing method of the binomial model in 
a way that can be applied to the continuous-time case.  In so doing, we show that the fair price for 
a derivative contract is the discounted value of the expected payoff, where the expectation is 
taken with respect to the risk-neutral probability measure.  This probability measure is defined as 
the assignment of probabilities that make the discounted share price process a martingale. 
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The proof relies on constructing a self-financing, replicating portfolio, made out of shares and 
cash.  The martingale representation theorem can be used to guarantee that this portfolio is 
previsible. 

When working through the 5 steps, bear in mind that we are reformulating the replicating proof 
from scratch.  For example, we don’t yet know what q is.  We will help illustrate the proof by 
reference to the numerical example of a 2-period binomial tree discussed in the binomial model 
chapter. 

Step 1 

Establish the equivalent measure Q  under which the discounted asset price process 
rt

t tD e S  is a martingale. 

In fact, we found such a measure for the binomial model. 

Question 

Find the measure Q (according to this definition) when the share price process is a geometric 
random walk (ie it increases by a factor of u or decreases by a factor of d at each step), as in the 
binomial model. 

Solution 

Recall that the martingale condition requires that: 

 1[ | ]Q t t tE D F D  

ie   
 ( 1)

1[ | ]r t rt
Q t t tE e S F e S  

   (1 ) r
t t tquS q d S S e  

   (1 ) rqu q d e  

 




re dq
u d

 

 
Note that this definition is equivalent to finding a measure with respect to which the expected 
share price evolves at the risk-free rate, ie it is a risk-neutral probability measure.   
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Question 

Recall the numerical example of a 2-period binomial tree discussed in the binomial model 
chapter.  In that example we used the tree to find (amongst other things) the value of the call 
option at time 1  1(1) 17.195V  when the share price was 60.  In the example: 

 the risk-free rate was 5% per period 

 the risk-neutral probability for the up-step was q = 0.43588 

 the share price either went up to 80 or down to 50 at time 2 (the exercise date) 

 the call option had a strike price of 45. 

Find the corresponding value of 1D , the discounted asset process, and show that the martingale 
property is satisfied. 

Solution 

Using the definition of 1D  we have: 

       1 0.05 1
1 1 60 57.074rD e S e  

We can also find the two possible values of tD  at time 2.  If the share price goes up to 80, then: 

      2 0.05 2
2 2 80 72.387rD e S e  

If the share price goes down to 50, then: 

      2 0.05 2
2 2 50 45.242rD e S e  

Thus, using the probability measure with  0.43588q : 

       2 1| 72.387 0.43588 45.242(1 0.43588) 57.074E D F  

ie the martingale property is satisfied. 

 
Step 2 (proposition) 

Define ( ) [ ]r n t
t Q n tV e E C F   , where the random variable nC  is the derivative payoff at time 

n .  It is proposed that this is the fair price of the derivative and we will prove this over the 
next few steps. 

This is what the 5-step method is trying to show, ie that the fair price for the derivative is the 
discounted value of the expected payoff, where the expectation is taken with respect to Q found 
in Step 1.  This formula is exactly the same as the one that we saw in the chapter on the binomial 
model. 
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Question 

Recall again the numerical example in the binomial model chapter.  Show that the value of the call 
option at time 1 when the share price is 60 can be calculated using the above formula. 

Solution 

Applying the formula in Step 2 of the proof gives: 

             (2 1) 0.05 1
1 2 1| 35 0.43588 5 (1 0.43588) 17.195r

QV e E C F e  

This agrees with the value that we found in the earlier chapter. 

 
The quantity tV  is the value at time t of the replicating portfolio we will be using. 

Step 3  

Let 1 [ ] rt
t n Q n t tE B E C F e V    . 

This is the definition of a new process tE .  It is the discounted value of the replicating portfolio, 
which will turn out to be the same as the discounted value of the derivative process. 

1
tB  is sometimes referred to as the discount process.  It is equal to the inverse of the value of an 

initial unit of cash at time t.  Hence: 

 1 rt
tB e  

In particular  1 rn
nB e  and so we have: 

             1 ( )| | |rn rt r n t rt
t n Q n t Q n t Q n t tE B E C F e E C F e e E C F e V  

using the definition of tV  from Step 2. 

Question 

Recall again the numerical example in the binomial model chapter.  Calculate the value of 1E  
when the share price is 60 at time 1. 

Solution 

Applying the formula just given, we get: 

            1 0.05 2
1 2 2 1| 35 0.43588 5 (1 0.43588) 16.356QE B E C F e  
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Alternatively, we can calculate it by discounting the value of 1V , which we found in the previous 
question: 

     0.05
1 1 17.195 16.356rE e V e  

 
Under Q , tE  is a martingale.  That is, for 0s  : 

1 1[ ] [ { } ] [ ]Q t s t Q n Q n t s t n Q n t tE E F E B E C F F B E C F E 
         

by the tower property of conditional expectation. 

Step 4  

Steps 1 and 3 have given us two martingales with respect to the equivalent martingale measure 
Q, namely tD  and tE . 

Since the measure Q is the unique martingale measure, by the martingale representation 
theorem there exists a previsible process t  (that is, t  is 1tF  -measurable) such that: 

 

1

1( )

t t t

t t t

t t

E E E

D D

D









  

 

 

 

The next few equations use the binomial tree notation introduced in the binomial model chapter, 
where the number in brackets shows the position, counting from the top of the tree.  It is 
assumed that the share price is in state j at time 1t . 

Let us see if we can establish what t  is.  Now: 

 

( 1)
1

( 1)
1

(2 1) ( ) if up

(2 ) ( ) if down

rt r t
t t

t
rt r t

t t

e V j e V j
E

e V j e V j

  


  


    
 

 

and 

( 1)
1 1 1

( 1)
1 1 1

( ) ( ) ( ) if up

( ) ( ) ( ) if down

rt r t
t t t

t
rt r t

t t t

e S j u j e S j
D

e S j d j e S j

  
  

  
  

   
 

 

In fact, we found the relationship between the derivative values in the binomial model chapter, 
which we derived using a replicating portfolio. 

Recall that  1 1 1( ) ( ) (2 1) (1 ( )) (2 )r
t t t t tV j e q j V j q j V j
      . 

We can substitute this expression for 1( )tV j  and simplify. 

Then we can see that: 

 
   
   

1

1

(2 1) (2 ) 1 ( )

(2 1) (2 ) ( )

rt
t t t

t rt
t t t

e V j V j q j
E

e V j V j q j
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We also had a formula for the risk-neutral probability q. 

Furthermore, since 1
1

1 1

( )
( )

( ) ( )

r
t

t
t t

e d jq j
u j d j




 





, we can also see that: 

 
   
   

1 1 1 1

1 1 1 1

( ) ( ) ( ) 1 ( )

( ) ( ) ( ) ( )

rt
t t t t

t rt
t t t t

e S j u j d j q j
D

e S j u j d j q j


   


   

    
 

 

Therefore t t tE D    where: 

 

   
 

   
   

           
           
   
   

   
     

 



 

 

  

  
 
  

    


    

 


 

 


  

1

1

1 1

1 1

1 1 1

2 1
2 1

2 1 2 1 1 2

2 1 2 1 1 2

2 1 2
2 1 2

2 1 2

t t t
t

t t t

t t t t t

t t t t t

t t

t t

t t

t t t

E j E j E j
j

D j D j D j

E j q j E j q j E j

D j q j D j q j D j

E j E j
D j D j

V j V j
S j u j d j

 

ie 
 1 1 1

(2 1) (2 )

( ) ( ) ( )
t t

t
t t t

V j V j
S j u j d j


  

 



 

Note that we’ve used  t j  to emphasise the fact that t  does depend on j in general. 

So we’ve shown that the martingale representation theorem does work in this case. 

As we expected, this is what we found in the chapter on the binomial model. 

Question 

Recall again the numerical example in the binomial model chapter.  Calculate the value of 2  
when the share price is 60 at time 1.  

Solution 

Applying the formula in the Core Reading gives: 

 
 

2
35 5 1

80 50
 

 A value of 1 is obtained here because the option is in-the-money whether the share price goes up 
or down. 
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 So, we define  



 
 
 

1

1

t t t
t

t t t

E E E
D D D

 and the martingale representation theorem guarantees us 

that this is previsible.  t  will be the number of shares in our replicating portfolio. 

Step 5 

Let 1 1t t t tE D    .   

Note that  t , which is previsible, will be the number of units of the cash bond in our replicating 
portfolio. 

In this final step we need to show that we can construct a previsible, self-financing, replicating 
portfolio. 

Between times 1t   and t  suppose that we hold the portfolio consisting of: 

 t  units of the underlying asset tS   

 t  units of the cash account tB . 

So we hold the portfolio        1 1( , )t t t t t t tE D E D . 

The value of this portfolio at time 1t   is: 

 ( 1) ( 1)
1 1 1 1 1

r t r t
t t t t t t t t tS B e D e E V    

          

At time t , the value of the portfolio will be: 

  rt
t t t t t t tS B e D       

Writing tD  as  1t tD D  gives: 

  1
rt

t t t t te D D       

Then using    1 1t t t tE D  and   t t tE D  gives: 

 

 1
rt

t t

rt
t

t

e E E

e E

V

  





 

In other words, the accumulated value of this portfolio is exactly equal to the value, or cost, of the 
‘new’ portfolio that will be purchased at time t. 

Therefore the portfolio is self-financing.   

Furthermore, n nV C , the derivative payoff at time n . 

The formula in Step 2 above gives,    ( ) |r n n
n Q n n nV e E C F C . 
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Therefore the hedging strategy ( )t t   is replicating, implying that: 

( ) [ ]r n t
t Q n tV e E C F    

is the fair price at time t  for this contract. 

This completes the proof, ie that the formula proposed in Step 2 is correct, which therefore 
proves the result we derived using the binomial tree approach earlier. 

Question 

Describe what the above formula says about the fair price for the derivative at time t. 

Solution 

The expression is: 

    ( ) |r n t
t Q n tV e E C F  

It says that: 

 the value of the derivative at time t is equal to the expectation of the derivative payoff at 
time n 

 taken with respect to both the risk-neutral probability measure Q and the filtration tF , 
generated by the history of the stock price movements up to and including time t 

 discounted at the continuously compounded risk-free rate of return r. 

Question 

Recall again the numerical example in the binomial model chapter.  Calculate the value of 2  
when the share price is 60 at time 1 and use it to calculate the corresponding option price. 

 
Solution 

Here: 

        2 1 2 1 16.356 1 57.074 40.718E D  

So the value of the call option at time 1 when the share price is 60 is given by: 

       0.05
2 1 2 1 1 60 40.718 17.195S B e  

This value again agrees with the answer found earlier. 
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3.3 Summary 

Let us summarise here what we have done, because we will repeat the steps when we look 
at the continuous-time model in the next chapter.  

 We have established the equivalent martingale measure Q . 

 We have proposed a fair price, tV , for a derivative and its discounted value 

rt
t tE e V . 

 We have used the martingale representation theorem to construct a hedging 
strategy ( )t t  . 

 We have shown that this hedging strategy replicates the derivative payoff at time n . 

 Therefore tV  is the fair value of the derivative at time t . 

Here ‘hedging’ is used as a synonym for ‘replicating’. 

Students should understand this proof, but they will not be expected to reproduce the 
algebra in the examinations. 

Question 

Have we assumed in this proof that the markets are arbitrage-free? 

Solution 

Yes.  Otherwise, it would not necessarily follow that the replicating portfolio has the same value 
as the derivative. 
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Chapter 16 Summary 

Preliminary concepts 

t  is previsible if it is known based on information up to but not including time t. 

A portfolio  ( , )t t  is self-financing if  ,t t  are previsible and   t t t t tdV dS dB , 

ie the required change in the value of the portfolio over each instant of time is equal to the 
pure instantaneous investment gain. 

Consider a derivative with random variable payoff X  at time T .  A self-financing portfolio 

tV  is a replicating portfolio for X if TV X . 

So, for an initial investment of 0V  at time 0, if we follow the self-financing portfolio strategy 
we will be able to reproduce the derivative payment exactly and without risk. 

An investment market is complete if for every derivative in that market, there exists a 
replicating strategy for that derivative. 

tX  is a Q -martingale if [ | ]Q u t tE X F X  whenever t u . 

The Cameron-Martin-Girsanov theorem 

Suppose that tZ  is a standard Brownian motion under P .  Furthermore suppose that  t  is a 
previsible process.  Then there exists a measure Q  equivalent to P  and where: 

  0
t

t t sZ Z ds  

is a standard Brownian motion under Q . 

Conversely, if tZ  is a standard Brownian motion under P  and if Q  is equivalent to P  then 

there exists a previsible process  t  such that: 

  0
t

t t sZ Z ds  

is a standard Brownian motion under Q . 
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Martingale representation theorem (discrete-time version) 

Let tX  be a P -martingale and let tY  be a second P -martingale.  Then there exists a unique 

previsible process t  such that: 




  0
1

t
t s s

s
Y Y X     where       1s s sX X X  

or   t t tY X  

if and only if there is no other measure equivalent to P  under which tX  is a martingale. 

Martingale representation theorem (continuous-time version) 

Let tX  be a P -martingale and let tY  be a second P -martingale.  Then there exists a unique 

previsible process t  such that: 

  0 0
t

t s sY Y dX  

or t t tdY dX  

if and only if there is no other measure equivalent to P  under which tX  is a martingale. 

The 5-step approach 

The binomial model result can be proved using the martingale approach, which consists of 
five steps: 

Step 1 

Find the equivalent martingale measure Q  under which  rt
t tD e S  is a martingale. 

Step 2 

Let    ( ) |r n t
t Q n tV e E C F  where nC  is the derivative payoff at time n.  This is proposed as 

the fair price of the derivative at time t. 

Step 3 

Let    |rn rt
t Q n t tE e E C F e V .  This is a martingale under Q . 
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Step 4 

By the martingale representation theorem, there exists a previsible process t  such that 

  t t tE D . 

Step 5 

Let    1 1t t t tE D  and at time t  hold the portfolio: 

 t  units of the tradeable asset tS  

  t  units of the cash account. 

At time 1t  the value of this portfolio is equal to 1tV .  At time t the value of this portfolio is 

equal to tV .  Also n nV C .  Therefore, the hedging strategy  ( , )t t  is replicating and so, by 

no arbitrage, tV  is the fair price of the derivative at time t. 
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Chapter 16 Practice Questions 

16.1 (i) A risky asset has value tA  at time t.  A probability measure R  is defined so that t
tA v  is an 

R -martingale, where v  is calculated using the risk-free interest rate.  Explain why R  can 
be described as a risk-neutral probability measure. [2] 

(ii) Let    
T

t R tX v E C F , where C  is a discrete random variable occurring at time T t . 

Prove that tX  is an R -martingale. [2] 

 Hint: if X  is a discrete random variable and Y  is a vector of random variables,  

 then      E E X Y =E X . 

(iii) Stating any results that you use, deduce that t  is previsible, where t t tdX dD  and 

 t
t tD A v .  [2] 

    [Total 6] 

16.2 (i) Explain what is meant by a ‘complete market’.  

(ii) Give two reasons why in practice financial markets may not be complete. 

(iii) State the relevance of the concept of complete markets in derivative pricing. 

16.3 tS  denotes the price of a security at time t .  The discounted security process rt
te S , where r  

denotes the continuously compounded risk-free interest rate, is a martingale under the 
risk-neutral measure Q .  

(i) Express mathematically the fact that the discounted security process is a Q -martingale. 

tB  denotes the accumulated value at time t  of an initial investment of 1 unit of cash. 

(ii) (a) Write down an expression for tB . 

 (b) Show that the discounted cash process is also a Q -martingale. 

(c) Deduce that the discounted value of any self-financing portfolio (where 
transactions are made only by switching funds between the security and cash, 
with no injections or withdrawals of funds from the portfolio) will also be a  
Q -martingale. 

tV  is a process defined by   ( ) [ | ]r T t
t Q tV e E X F , where X  is a function of TS , T  is a fixed time, 

and tF  denotes the filtration representing the history of the security price up to and including 
time t . 

(iii) Show that the discounted process rt
te V  is also a Q -martingale. 

(iv) Explain the significance of these results in derivative pricing. 
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16.4 The diagram shows a two-step non-recombining binomial tree.  The numerical values shown are 

iX , the possible values of a particular derivative at times  0,1,2i , based on a probability 

measure P  that attributes equal probability to the two branches at each step.  iF  denotes the 
filtration of the derivative value process at time i . 

 
(i) (a) If 1 20X , what are the realised values of 0F  and 1F ? 

 (b) What is the value of 2 1( | )PE X F  in this case? 

 (c) What is the value of 2 1( | )PE X F  in the case where 1 6X ? 

 (d) Hence calculate 2 1 0[ ( | )| ]P PE E X F F . 

 (e) Calculate 2 0( | )PE X F  and comment on your answer. 

(ii) The risk-neutral probability measure Q  attributes probabilities of 0.4 and 0.6 to the 
up-paths and down-paths at each branch of this tree. 

(a) Does your conclusion in (i)(e) still apply when the probability measure Q  is used 
in place of P ? 

 (b) State briefly why this type of result is useful. 

(c) Calculate the value of the derivative at time 0, presenting your calculations in the 
form of a tree.  Ignore interest. 

 

  

13

6

0

i = 0 = 1 = 2i i 

15

12

20

25
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Chapter 16 Solutions 

16.1 (i) Risk-neutral probability measure 

 If t
tA v  is an R-martingale then we have: 

     
t s

R t s sE A v F A v   

         (1 )s t t s
R t s s sE A F A v A i  [1] 

So, using R  as our probability measure we see that, statistically speaking, we expect tA  to ‘act 
like cash’, ie to increase at the risk-free rate.  The riskiness within it has been ‘neutralised’ and 
therefore R  is the risk-neutral probability measure. [1] 
    [Total 2] 

(ii) Prove that tX  is a martingale 

For a martingale we need: 

    R t s sE X F X   [½] 

The LHS is: 

           
T

R t s R R t sE X F E v E C F F  [½] 

By analogy with the hint in the question, we have: 

         R R t s R sE E C F F E C F  [½] 

ie the tower law.  So, we can simplify the RHS of the previous equation to give: 

          
T T

R R t s R s sv E E C F F v E C F X  [½] 

    [Total 2] 

(iii) Previsible t  

We make use of the martingale representation theorem in the following form: 

Let tD  and tX  be R -martingales.  Then there exists a unique process t  such that t t tdX dD .  

Furthermore, t  is previsible. [1] 

Since t  satisfies this equation and the conditions for the theorem to apply, we conclude that t  
is previsible.   [1] 
    [Total 2] 
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16.2 (i) Explain what is meant by a ‘complete market’ 

A financial market is said to be complete if any contingent claim (ie derivative payoff) can be 
replicated using the underlying asset and cash. 

For example, we can replicate the payoff from a call option on a share using a long holding in the 
underlying share and a short holding of cash. 

(ii) Give two reasons why markets might not be complete in practice 

A replicating strategy will typically involve holding fractions of shares and fractions of units of 
cash.  Since these are indivisible it will not be possible to replicate exactly. 

A replicating strategy for a put option will require a short holding of the underlying security.  If the 
financial markets do not allow short selling (or if there are restrictions on it), then replication may 
not be possible.   

(iii) Relevance for derivative pricing 

Although it is usually just a technicality, the concept of a complete market is important because, 
without it, we could not be sure that we could replicate the payoff from a derivative.  This means 
that the steps in the derivation of the risk-neutral pricing formula cannot be applied.  So we could 
not use this formula to price the derivative. 

16.3 (i) Express the martingale property mathematically 

The martingale property tells us that, whenever t T : 

      
rT rt

Q T t tE e S F e S  

(ii)(a) Expression for tB  

tB  is the accumulated value at time t  of an initial investment of 1 unit of cash. 

So:  rt
tB e  

(ii)(b) Show that the discounted cash process is a martingale 

The discounted cash process is therefore: 

   1rt rt rt
te B e e  

which trivially satisfies the martingale equation      
rT rt

Q T t tE e B F e B . 

(ii)(c) Deduce that any self-financing portfolio is also a martingale 

We have established that the discounted values of both of the components (the shares and the 
cash) of such a portfolio are martingales.  So any multiple of these will also be a martingale.  
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Also, if we ‘rebalance’ the portfolio by making switches from cash to shares or vice versa, this will 
not affect the martingale property.  

A good intuitive way to think of martingales here is that, on average, they don’t drift up or down.  
So, if our (discounted) cash and shares are not drifting up or down, neither will any combination of 
them. 

(iii) Show that rt
te V  is also a martingale 

To show that the process rt
te V  is a martingale, we need to prove that, if 1 2t t  then: 

      
2 1

2 1 1
rt rt

Q t t tE e V F e V                                  (1) 

We’ve used 1t  and 2t  here, rather than t  and T , to avoid confusion, because there’s already a T  
in the definition of tV . 

Substituting the definition of 
2tV  into the left-hand side (LHS) of (1), we have: 

 

  



    

   

2 2
2 1

2 1

( ) ( | )

( | )

rt r T t
Q Q t t

rT
Q Q t t

LHS E e e E X F F

e E E X F F  

We can simplify this nested expectation using the tower law to get: 

 
1

( | )rT
Q tLHS e E X F  

From the definition of 
1tV , the right-hand side (RHS) of (1) equals: 

     1 1
1 1

( ) ( | ) ( | )rt r T t rT
Q t Q tRHS e e E X F e E X F  

So: LHS RHS  

This shows that rt
te V  is also a Q -martingale. 

(iv) Explain the significance 

We have shown that, if we have a self-financing portfolio consisting of shares and cash, its 
discounted value will be a Q -martingale, ie it will have no drift. 

If it is possible to rebalance such a portfolio so that it will always replicate over the next instant 
the value of a derivative based on the share, then the discounted value of the derivative must 
equal the discounted value of this portfolio. 

It turns out that such a replicating strategy is possible.  The Martingale Representation Theorem 
guarantees this.  
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But the discounted process rt
te V  behaves in precisely this way, and gives the correct payoff X  

when t T .   

So tV  must equal the value of the derivative. 

This gives us the derivative pricing formula   ( ) [ | ]r T t
t Q tV e E X F . 

16.4 (i)(a) The filtration iF  is just the set of values representing the path followed up to time i .  So, 
 in this case (where we are told what has happened up to time 1), we have: 

  0 {13}F     and    1 {13,20}F  

(i)(b) If 1 {13,20}F , there are two possible values for 2X , namely 25 and 15, which we are 
assuming are equally likely. 

 So:     1 1
2 1 2 2( | ) 25 15 20PE X F  

 This figure has already been written in on the tree in the question at time 1. 

(i)(c) If 1 6X , then 1 {13,6}F . 

 Here:     1 1
2 1 2 2( | ) 12 0 6PE X F  

 Again, this matches the figure shown in the tree at time 1. 

(i)(d) We have established that, if we start at the ‘13’ node (corresponding to the only possible 
value of 0F ), the conditional expectation 2 1( | )PE X F  can take two possible values, and 
these are equally likely under the probability measure P . 

 So:     1 1
2 1 0 2 2[ ( | )| ] 20 6 13P PE E X F F  

 This matches the figure shown in the tree at time 0. 

(i)(e) If we start at the ‘13’ node, 2X  can take four possible values (25, 15, 12 or 0), each with 

probability  1 1 1
2 2 4 . 

 So:         1 1 1 1
2 0 4 4 4 4( | ) 25 15 12 0 13PE X F  

This expectation is the same as the expectation in (i)(d), ie 2 1 0 2 0[ ( | )| ] ( | )P P PE E X F F E X F .  
This is an example of the ‘tower property’ of conditional expectations. 

(ii)(a) Yes.  The tower property applies equally well in this case, ie it is also true that: 

  2 1 0 2 0[ ( | )| ] ( | )Q Q QE E X F F E X F  
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(ii)(b) Equalities of the form  1 1( | ) [ ( | )| ]Q n i Q Q n i iE X F E E X F F  are useful because they enable us 

to work backwards through a binomial tree, calculating the value of the derivative at time 
1i  from the values at time i . 

(ii)(c) We need to calculate 2 0( | )QE X F .  Calculating the values of the conditional expectations 

by working backwards using the risk-neutral probability measure Q, leads to the following 
tree: 

  

19

25

15

12

0

10.48

i= 0 ii = 1 = 2

4.8

 

 So the value of the derivative at time 0 is 10.48. 
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The 5-step method in  

continuous time 
 

 

      

Syllabus objectives 

6.1  Option pricing and valuations 

1. Demonstrate an understanding of the Black-Scholes derivative-pricing 
model: 

 Derive the Black-Scholes partial differential equation both in its 
basic and Garman-Kohlhagen forms.  (part) 

 Demonstrate how to price and hedge a simple derivative contract 
using the martingale approach (part). 

11. Describe and apply in simple models, including the binomial model and the 
Black-Scholes model, the approach to pricing using deflators and 
demonstrate its equivalence to the risk-neutral pricing approach. 
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0 Introduction 

In the last chapter we built up the theory required for an alternative proof, known as the 5-step 
method, of the derivative pricing formula.  We also showed how the structure of this proof works 
by proving the formula for the binomial model once more.  You should remember the main steps 
we performed. 

Question 

What were the five main steps? 

Solution 

 We established the equivalent martingale measure Q . 

 We proposed a fair price, tV , for a derivative and its discounted value rt
t tE e V . 

 We used the martingale representation theorem to construct a hedging strategy t t ( ) . 

 We then showed that this hedging strategy replicates the derivative payoff at time n . 

 So tV  was the fair value of the derivative at time t . 

 
In this chapter we will use the 5-step method again to prove the formula r T t

t Q tV e E X F  ( ) [ | ].  

We will then use this to derive the Black-Scholes formula, which we met in an earlier chapter.  
Later in this chapter we will extend the theory to incorporate dividends and hence prove the 
Garman-Kohlhagen formula, which appears on page 47 of the Tables.   

Although some of the theory may appear abstract and purely mathematical, in this chapter we 
also see how delta-hedging can give the martingale approach a more intuitive appeal.  
Specifically, we will see that the   component of the replicating portfolio turns out to equal  .  
As a by-product we will deduce the Black-Scholes PDE by an alternative method. 

We will also discuss the advantages and disadvantages of the 5-step method as compared to the 
PDE method from the Black-Scholes model chapter, and look briefly at the state price deflator 
approach. 
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1 The 5-step method in continuous time 

1.1 Introduction 

Having seen the structure of the 5-step method in the previous chapter, we now repeat the steps 
of the proof in continuous time.  To make the theory easier to follow, you should recall, also from 
the previous chapter, the purpose of the steps in the proof, ie recall the worded description of 
what we are trying to achieve: 

 The aim of the 5-step proof is to show that a certain portfolio replicates the derivative at 
all times. 

 Looking at the definition of a replicating strategy we see that we first need a self-financing 
portfolio. 

 Looking at the definition of a self-financing strategy we see that we need the holdings in 
the portfolio to be previsible. 

 To show a process is previsible, we have the martingale representation theorem to help 
us. 

 However, the martingale representation theorem requires that we have two martingales. 

 The discounted share price process is a Q-martingale but we do need one more. 

 The other martingale is constructed from the derivative payoff, discounting this all the 
way back (past the current time t) to time 0. 

Remember that, in continuous time, the share price process is being modelled as a geometric 
Brownian motion or lognormal model, which we discussed previously. 

Question 

Fully describe what it means for a share price to follow geometric Brownian motion. 

Solution 

Geometric Brownian motion means that we are modelling the share price using the 
continuous-time lognormal model.  Alternatively, we can express this in terms of the stochastic 
differential equation: 

 t t tdS dt dZ S    

This can be seen on page 46 of the Tables. 
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1.2 The martingale approach (the 5-step method) 

When we looked at the binomial model in the previous chapter we demonstrated how the 
value of a derivative could be expressed as: 

 ( ) [ ]r T t
t Q tV e E X F    

where X  is the value of the derivative at maturity and Q  is the equivalent martingale 
measure.  This was shown for a discrete-time process with a finite state space.  Here we are 
working in continuous time and with continuous state spaces (that is, tS  can take any value 

greater than zero). 

At this stage we do not introduce dividends.  So, we are looking at a non-dividend-paying share in 
continuous time. 

However, the binomial result can be extended in the obvious way to give the following 
result:  

Proposition 

Let X  be any derivative payment contingent on TF , payable at some fixed future time T , 

where TF  is the sigma-algebra generated by uS  for 0 u T  .   

So TF  is the history of tS  up to and including time T. 

Then the value of this derivative payment at time t T  is: 

  ( ) [ ]r T t
t Q tV e E X F     

Proof 

We follow the same sequence of steps described in the previous chapter. 

Step 1 

Establish the unique equivalent measure Q  under which the discounted asset price process 
rt

t tD e S  is a martingale. 

It can be shown that this measure exists, is unique and that under Q: 

2

0 exp
2t t

tD D Z 

 

   
 

  

where tZ  is a Brownian motion under Q. 

This is the same idea as in the discrete case.  We want to construct the measure that assigns 
probabilities to the possible asset price paths in such a way that the discounted asset price is a 
martingale.  In discrete time this was easy because we only had to find a single probability for 
each branch of the tree.  In the continuous case we have a whole continuum of possible paths and 
the problem is not so straightforward. 
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It is beyond the syllabus to actually construct the probability measure.  We can say something 
about it, however, based on the result of the following question. 

Question 

Let tZ  be a standard Brownian motion.  By considering the stochastic differential equation or 

otherwise, prove that tZ te  2½  is a martingale. 

Solution 

We’ve already seen that the process tZ t
tX e 

2½  satisfies the stochastic differential equation: 

 t t t t tdX X dt dZ X dZ          
2 2½ ½  

It follows that the process tX  has no drift and hence must be a martingale.   

Alternatively: 

 
 

   

t s

s t s s

s t s s

E t Z F

E t Z Z Z F

t Z E Z Z F

 

  

  

    

       

     

2

2

2

exp ½ |

exp ½ ( ) |

exp ½ exp ( ) |

 

since  st Z  2exp ½  is a constant given sF . 

Now, t sZ Z N t s  (0, ) , so we can use the moment generating function of a normal distribution 
to note that: 

    t s s N t sE Z Z F M t s       
2

(0, )exp ( | ( ) exp ½ ( )  

Together with the above, this gives: 

    t s sE t Z F s Z          
2 2exp ½ | exp ½  

ie t s sE X F X[ | ]  and the process tX  satisfies the definition of a martingale.   
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Since: 

 t tS S t Z    2
0 exp ( ½ )   

it follows that: 

  rt
t t tD e S S r t Z      2

0 exp ( ½ )  

Now in order to be a martingale with respect to Q, we could assign probabilities to 
 t tZ r t Z      that make tZ  a standard Brownian motion.  We saw in the previous chapter 

that the Cameron-Martin-Girsanov theorem can be used to achieve this.  So, with respect to the 
real-world probabilities P, the random process tZ  is a Brownian motion with drift.  But, when we 
assign new probabilities, using the measure Q, we remove this drift. 

We then have: 

 t tD S t Z     
2

0 exp ½  

where tZ  is a standard Brownian motion under Q, so that tD  is a martingale with respect to Q by 
using the previous question. 

Hence we can write: 

  t tS S r t Z      
2

0 exp ½  

where t t
rZ t Z


   

 
  

Step 2 (proposition) 

Define: 

( ) [ ]r T t
t Q tV e E X F    

We propose that this is the fair price of the derivative.   

Step 3 

Let: 

[ ]rT rt
t Q t tE e E X F e V     

Under Q, tE  is a martingale. 
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Recall that, as in the previous chapter: 

 

 

 

t n Q n t

rn
Q n t

rt r n t
Q n t

rt
t

E B E C F

e E C F

e e E C F

e V





  











1

( )

|

|

|
 

where nC  is the claim amount at time n, here denoted by X.   

Question 

Why is tE  a Q-martingale? 

Solution 

tE  is a martingale with respect to Q, since for s > 0: 

       Q t s t Q T Q T t s t T Q T t tE E F E B E C F F B E C F E 
 

    
1 1| | | |  

 
Step 4  

By the martingale representation theorem there exists a previsible process t  (that is t  is 

tF  -measurable) such that: 

 t t tdE dD  

As in the discrete case, this application of the martingale representation theorem guarantees that 
the stock process t  is previsible. 

Step 5  

Let: 

t t t tE D    

We will again see that this is just the right holding of the cash bond that makes the value of the 
portfolio held equal to the value of the derivative at that time. 

Suppose that at time t  we hold the portfolio: 

 t  units of the underlying asset tS  

 t  units of the cash account tB  

where t t tdD dE   and t t t tE D   . 
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Remembering that rt
t te S D   and rt

t tE e V  we can examine the change in the value of this 
portfolio over the very short time period t t dt[ , ] . 

At time t , the portfolio has value: 

 ( )rt rt
t t t t t t t t tS B e D e E V         

At time t dt , the portfolio has value: 

 

( )

( )

( )

( )

( )

( )

( )

r t dt
t t dt t t dt t t dt t

r t dt
t t t t t

r t dt
t t

r t dt
t dt t dt

S B e D

e D dD

e E dE

e E V

   

  


  






 

  

  

 

 

 

Therefore, the change in the value of the portfolio over t  up to t dt  is: 

  
   

   

t t dt t

t t dt t t dt t t t t

t t dt t t t dt t

t t t t

dV V V

S B S B

S S B B

dS dB

   

 

 



 

 

 

   

   

 

 

So the change in the value of the portfolio over the period t  up to t dt  is the pure 
investment gain: 

t t t tdS dB   

Hence, the hedging strategy ( )t t   is self-financing. 

We need to check that the portfolio has the correct value at the expiry date. 

Furthermore: 

[ ]T Q TV E X F X   .   

Therefore the hedging strategy is replicating, so that ( ) [ ]r T t
t Q tV e E X F    is the fair price 

at time t  for this derivative contract. 

As before, tV , the proposed no-arbitrage value of the derivative at time t < T, is equal to: 

 the time-t expectation of the claim amount paid at time T 

 calculated with respect to the probability measure Q and 

 the filtration tF  generated by the history of the stock price up to and including time t and 

 discounted at the continuously compounded risk-free rate of return, r. 
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The formula: 

 r T t
t Q tV e E X F  ( ) |  

is a general formula that applies to any derivative on a dividend-paying share.  In order to find an 
expression for any specific derivative we would need to specify the derivative payoff X and then 
calculate the expectation in the above formula. 

1.3 Delta hedging and the martingale approach 

Recall an earlier chapter where we defined the delta of a derivative as one of the Greeks. 

Question 

(i) What is the definition of delta? 

(ii) In what numerical range would you expect delta to be for: 

 (a) a call option 

(b) a put option? 

Solution 

(i) Definition of delta 

Delta is the rate of change of the value of the derivative with respect to the share price: 

t

f
S


 


 

(ii)(a) Call option 

The delta of a call option can be written as d  1( ) , therefore 0 1 . 

(ii)(b) Put option 

The delta of a put option can be written as d    1( ) , therefore 1 0 . 

 
It is important to mention delta hedging at this stage.  In the martingale approach we 
showed that there exists a portfolio strategy ( )t t   which would replicate the derivative 

payoff.   

We did not say what t  actually is or how we work it out.  This is quite straightforward.    

In fact it turns out to be delta. 

First, we can evaluate directly the price of the derivative ( ) [ ]r T t
t Q tV e E X F    either 

analytically (as in the Black-Scholes formula) or using numerical techniques.   
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In general, if tS  represents the price of a tradeable asset: 

 ( )t t
V t S
s




 


   

t  is usually called the delta   of the derivative. 

Recall that t  is the change in the discounted derivative process relative to the change in the 
discounted share process.  If we ignored the discount factors up to the current time then this 
would be the change in the derivative process relative to the change in the share process, ie delta. 

The martingale approach tells us that provided we: 

 start at time 0 with 0V  invested in cash and shares 

 follow a self-financing portfolio strategy  

 continually rebalance the portfolio to hold exactly t  (delta) units of tS  with the rest 

in cash 

then we will precisely replicate the derivative payoff. 

This replication is achieved without any risk, and is a form of delta-hedging. 

1.4 Example: the Black-Scholes formula for a call option 

The 5-step method has shown us that the fair price at time t for a derivative contract that pays a 

(random) amount X  at time T is  r T t
t Q tV e E X F  ( ) | .  We now want to evaluate this 

expression in the case where the derivative is a European call option on a non-dividend-paying 
share. 

Question 

What is the payoff function for a European call option? 

Solution 

  T Tf S T S K ( , ) max ,0  

 
Proposition 

The Black-Scholes formula for a call option on a share with no dividends is: 

 ( )
1 2( ) ( )r T t

t tV S d Ke d      

where 

21
2

1

log ( )tS
K r T t

d
T t





  
 

  



    and 2 1d d T t    

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-17: The 5-step method in continuous time Page 11 

The Actuarial Education Company  © IFE: 2019 Examinations 

Proof 

Using risk-neutral valuation, the fair price of the derivative with payoff function TX  is: 

 ( ) |r T t
t Q T tV e E X F      

This is the general risk-neutral pricing formula, which we derived using the 5-step method. 

The payoff function for a European call option is max , 0TS K   . 

We therefore need to substitute this payoff function into the general risk-neutral pricing formula 
and work out the resulting expression.  To do this, we also need to know the risk-neutral 
probability of each possible value that this payoff function might take at the expiry date T, 
conditioned on the current share price tS .   

Question 

Why do we not need to condition on the full past history of the share price process tF ? 

Solution 

The assumption of independent increments for Brownian motion means that future values of the 
share price depend only on the current share price tS  and not the past history of how we arrived 
at it.   

Hence, the share price at the maturity date T, TS , and likewise the derivative payoff at time T, 

depends only on tS .  

 
So: 

  r T t
t Q T tV e E S K S     

( ) max , 0 |  

The process tS  is assumed to be a geometric Brownian motion and so has a continuous state 
space.  This means we need to use integration to work out the expected value of the payoff 
function.  Hence: 

  r T t
t T T t TV e S K f S S dS


  ( )

0
max ,0 ( | )  

where T tf S S( | )  is the (conditional) probability density function for TS , given tS , and we are 

summing over all the possible values of TS  from zero to infinity. 
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This expression can be simplified to give: 

 ( ) ( ) ( | )r T t
t T T t T

K
V e S K f S S dS


     

which can be written in terms of two integrals as follows: 

 ( ) ( )( | ) 1 ( | )r T t r T t
t T T t T T t T

K K
V e S f S S dS Ke f S S dS

 
        

Under the risk-neutral measure Q: 

 2exp ( ½ )( ) ( )T t T tS S r T t Z Z       
   

The above expression for TS  in terms of tS  can be derived from the stochastic differential 
equation for the share price under Q, which is: 

 t t t tdS rS dt S dZ    

where r  is the risk-free rate and tZ  is a standard Brownian motion process under Q. 

Thus: 

 2 2log | ~ log ( ½ )( ), ( )T t tS S N S r T t T t        

which tells us the distribution of TS  given the current share price tS , ie it has a lognormal 
distribution. 

So, we can use the formula for the truncated moments of a lognormal distribution on 
page 18 in the Tables. 

Recall that in general the share price can take any value from zero to infinity.  However, in the 
above integrals, we are only summing from K to infinity, ie we need to evaluate truncated 
moments of the share price. 

When applying the formula from the Tables, note that the power of TS  in the first integral is one, 

whereas that in the second integral is zero – as TS  to the power of zero is equal to one. 

Thus: 

 
 

 

2 2log ( ½ )( ) ½ ( )( )
1 1

( ) 0
0 0

( ) ( )

( ) ( )

tS r T t T tr T t
t

r T t

V e e U L

Ke e U L

      

 

      

     

 

which after some cancelling becomes: 

    ( )
1 1 0 0( ) ( ) ( ) ( )r T t

t tV S U L Ke U L          
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Finally, we just need to evaluate the U L U  1 1 0( ), ( ), ( )  and L 0( )  terms. 

Now: 

 1U    

 0U    

 
2 2

1 1
log log ( ½ )( ) ( )tK S r T t T tL d

T t
 


     

  


 

 
2

0 2
log log ( ½ )( )tK S r T tL d

T t



   

  


 

These are obtained using the formulae on page 18 in the Tables.   

Question 

Explain why U 0 . 

Solution 

Using the formula for kU  with k 0  gives: 

 tS r T t
U

T t



    




2

0
log( ) log ( ½ )( )

 

As x  , x log( ) .  So, the log term is much bigger than the other terms in the numerator, 
which can therefore be ignored.  In addition, we can argue that dividing infinity by a finite term, 
such as T t  , still gives us infinity. 

Hence: 

 U 0   

Note that a similar argument can be used for U1 , where the subtraction of T t   does not 
affect the end result. 

 
Thus: 

 U U    1 0( ) ( ) ( ) 1  

Hence: 

 
   ( )

1 2

( )
1 2

1 ( ) 1 ( )

( ) ( )

r T t
t t

r T t
t

V S d K e d

S d K e d

 

 

       

   
  

This is the Black-Scholes formula for the value of a call option on a non-dividend-paying share. 
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1.5 Example: deriving the Black-Scholes PDE using the martingale approach 

Let’s now find an actual formula for t  and look at an alternative method of deriving the 
Black-Scholes PDE using martingales. 

We define: 

rt
t tE e V  and rt

t tD e S  

which are both martingales under Q .  Then: 

 t t tdD D dZ   

 ( )t t t tdS B rD dt dD   and 

 ( )rt rt rt
t t t t tdE re V dt e dV e rV dt dV        . 

Question 

Derive these three relationships. 

Solution 

First equation 

Since tr t Z
tS S e   

2( ½ )
0 , we have: 

 t tr t Z t Zrt rt
t tD e S e S e S e         

 2 2( ½ ) ½
0 0  

Let t tX t Z    2½ , so that t tdX dt dZ    2½  and tX
tD S e 0 . 

Now apply Ito’s Lemma: 

  t t tX X X
t t t tdD S e e dt S e dZ D dZ        2 2

0 0½ ½  

Second equation 

 rt
t tD e S  

So: rt
t tS D e  

Provided that the processes tX  and tY  are not both stochastic, the product rule: 

 t t t t t td X Y X dY Y dX ( )  

applies.   
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We can use this in conjunction with the result from ordinary calculus that rt rtd e re
dt

  (or 

rt rtde re dt ) to get: 

 

rt rt rt
t t t t

rt rt
t t

rt
t t

t t t

dS d e D e dD D de

e dD D re dt

e dD rD dt

B rD dt dD

  

 

 

 

( )

( )

( )

 

Third equation 

 rt rt rt rt
t t t t t tdE d e V e dV V re dt e rV dt dV        ( ) ( )  

 
Applying Ito’s Lemma to the function  , tV t S : 

2
2

2

2
2 2

2

2
2 2

2

1
( )

2

1
( )

2

1

2

t t t

t t t t

t t t t

V V VdV dt dS dS
t s s

V V VS dt B rD dt dD
t ss

V V V VS rS dt B dD
t s ss





  
  

  

       
   

    
        

 

Hence: 

2
2 2

2

2
2 2

2

( )

1

2

1

2

rt
t t t

rt
t t t t t

rt
t t t t

dE e rV dt dV

V V V Ve rV dt S rS dt B dD
t s ss

V V V Ve rV dt S rS dt dD
t s ss











  

                  

                  

 

Now we know that tE  and tD  are both martingales under Q .  Therefore by the martingale 

representation theorem there exists some previsible process t  such that: 

t t t t t tdE dD D dZ      

This can be written as: 

 t t tdE dt dD 0  
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We can compare this with the SDE derived above: 

 rt
t t t t t

V V V VdE e rV S rS dt dD
t s ss

     
          

2
2 2

2
1
2

 

This means that: 

t
V
s







 

and 
2

2 2
2

1
0

2t t t
V V VrV rS S
t s s


  

    
  

 

  t t t
V V VrV rS S
t s s

  
  
  

2
2 2

2
1
2

 

(otherwise tE  would not be a martingale under Q ). 

We recognise the last equation as the Black-Scholes PDE. 

This can be found on page 46 in the Tables. 

It can be shown that: 

  1
V d
s


 


 

So this martingale approach has provided an alternative derivation of the Black-Scholes PDE and it 
has also given us an explicit formula for t , in case we wanted to set up a replicating portfolio in 
real life. 

1.6 Advantages of the martingale approach 

We have now seen two ways of deriving the Black-Scholes formula for a call option 
r T t

t tc S d Ke d    ( )
1 2( ) ( ) .  One method involved evaluating the martingale formula 

r T t
Q te E X F ( ) [ | ] .  The other method involved ‘solving’ the PDE with the correct boundary 

condition. 

The main advantage of the martingale approach is that it gives us much more clarity in the 
process of pricing derivatives.  Under the PDE approach we derived a PDE and had to 
‘guess’ the solution for a given set of boundary conditions.  

Of course, we ourselves did not have to literally guess the solution, we just had to look it up on 
page 47 of the Tables! 

Under the martingale approach we have an expectation which can be evaluated explicitly in 
some cases and in a straightforward numerical way in other cases.  

So, the point is that, without knowing the formula on page 47 of the Tables there is no easy way 
we could work it out using the PDE approach, whereas it can be worked out using the martingale 
approach without knowing it beforehand. 
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Furthermore the martingale approach also gives us the replicating strategy for the 
derivative. 

Question 

What is the replicating strategy for a European call option? 

Solution 

Hold: 

 t
V d
S

 
 
 1( )  shares and 

 rt
t t t t t t tE D e V S     ( )  units of the cash bond (ie an actual cash amount of 

t t tV S ). 

 
Question 

You are trying to replicate a 6-month European call option with strike price 500, which you 
purchased 4 months ago.  If r 0.05,  0.2 , and the current share price is 475, what portfolio 
should you be holding, assuming that no dividends are expected before the expiry date? 

Solution 

Here T 
6

12
, t  4

12
, r 0.05,  0.2 , K 500  and tS  475 .  So you need:  

t d
    

     

2

1
ln(475 500) (0.05 0.2 2) (6 4) 12

( ) 0.314
0.2 (6 4) 12

 shares 

and:  t t tV S d e d         

 

0.05 2 12
1 1475 ( ) 500 ( 0.2 2 12) 0.314 475

142 cash

 

 
Finally, the martingale approach can be applied to any TF -measurable derivative payment, 

including path-dependent options (for example, Asian options), whereas the PDE approach, 
in general, cannot. 

An Asian option is one where the payoff depends on the average share price up to expiry. 

Question 

What would you say is the main disadvantage of the martingale approach as compared to the PDE 
approach? 
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Solution 

The PDE approach is quicker and easier to describe, and more easily understood. 

 
1.7 Risk-neutral pricing 

This martingale approach is often referred to as risk-neutral pricing.   

In this approach, the measure Q  is commonly called the risk-neutral measure.  However, Q  
is also referred to as the equivalent martingale measure because the discounted price 

processes rt
tS e  and rt

tV e  are both martingales under Q .   
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2 The state price deflator approach 

Recall that we have: 

 [ ]t t tdS S dt dZ    under P 

and: 

 [ ]t t tdS S rdt dZ    under Q 

where: 

 t tdZ dZ dt   and 
r





  

Corollary to the Cameron-Martin-Girsanov Theorem 

There exists a process t  such that, for any TF -measurable derivative payoff X  at time T :  

 [ ] T
Q t P t

t
E X F E X F



 
 
 
 

   

We do not prove this corollary in this subject. 

In the present case, where tZ  is a Q -Brownian motion, tZ  is a P -Brownian motion and 

t tdZ dZ dt  , we have: 

 
21

2tZ t
t e      

Question 

What interesting property does t  have? 

Solution 

It’s a martingale.  
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Now if we further define: 

rt
t tA e   

the price at time t  for the derivative X  payable at time T  is then: 

 ( ) [ ]r T t
t Q tV e E X F    

under the martingale approach and: 

 

( )

[ ]

[ ]

r T t T
t P t

t

rT
P T t

rt
t

P T t

t

V e E X F

E e X F
e

E A X F
A








 
   

 
 













 

under the new approach. 

The process tA  is called a state price deflator (also deflator, state price density, pricing 
kernel or stochastic discount factor).   

Note that tA  is defined in terms of t , which is a function of tZ .  So tA  is a stochastic process 
linked to the random behaviour of the share price. 

Question 

Use Ito’s Lemma to show that the SDE for tA  is: 

  t t tdA A rdt dZ    

Solution 

We have that: 

 tZ r trt
t tA e e      

2( ½ )  

If we let t tX Z r t     2( ½ ) , so that tdX dZ r dtt     2( ½ ) , then: 

 tX
tA e  

We can then apply Ito’s Lemma to get: 

 

t t tX X X
t t

t t t

t t

dA r e e dt e dZ

rA dt A dZ

A rdt dZ

  





      

  

  

2 2( ½ ) ½

( )
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This shows that tA  is just a ‘randomised’ version of the ordinary discount factor rte , for which 
rt rtd e e rdt  ( ) ( ) . 

 
A very important point to note is that, for this model, the risk-neutral and the state price 
deflator approaches give the same price tV .  Theoretically they are the same.  They only 

differ in the way that they present the calculation of a derivative price. 
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3 The 5-step approach with dividends 

3.1 Introduction 

We now extend the theory involved in the 5-step method so that it can deal with an underlying 
asset that pays dividends.  It may be useful to review the Black-Scholes option pricing formula 
chapter at this stage, where we discussed how the share price process must be modified to 
incorporate dividends. 

Recall that the solution to the modified SDE was: 

  t tS S q t Z        
 2

0 exp ½  

The cash process will stay the same: 

 rt
tB e  

3.2 The martingale approach 

We have already mentioned that for a continuous-dividend-paying asset tS , the tradeable 

asset is: 

 2
0 exp[( ½ ) ]t tS S q t Z        

rather than just tS . 

To price a derivative contingent on this underlying asset we can repeat the steps which 
allow us to price and replicate the derivative.   

Step 1 

Find the unique equivalent martingale measure Q  under which: 

rt
t tD e S   

is a martingale. 

Again, it is beyond the syllabus to actually construct the probability measure. 

ie 21
0 2

exp[ ]t tD S t Z      

where tZ  is a standard Brownian motion under Q . 

Hence we can write: 

21
0 2

exp[( ) ]t tS S r q t Z       
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Step 2 (proposition) 

Let: 

( ) [ ]r T t
t Q tV e E X F    

where X  is the derivative payoff at time T .  We propose that this is the fair price of the 
derivative at t . 

Note that this is exactly the same formula as before, except that the risk-neutral measure used to 
calculate the expectation is now the one for a dividend-paying share. 

Step 3  

Let: 

[ ]rT rt
t Q t tE e E X F e V     

This is a martingale under Q .   

Step 4  

By the martingale representation theorem there exists a previsible process t  such that 

t ttdE dD  . 

As before without dividends, this application of the martingale representation theorem 
guarantees that the stock process t  is previsible. 

Step 5 

Let: 

t t t tE D     

At time t  we hold the portfolio: 

 t  units of the tradeable asset tS   

(This is equivalent to qt
t te    units of tS .) 

 t  units of the cash account 

where t t tdD dE    and t t t tE D    . 

Remembering that rt
t te S D    and rt

t tE e V  we examine the change in the value of this 
portfolio over the very small time period t t dt[ , ] . 

At time t , the value of this portfolio is equal to: 

  rt rt rt
t t t t t t t t t tS B e D e E D e E             tV  
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At time t dt the value of this portfolio is equal to: 

r t dt
t t dt t t dt t t dt t

r t dt
t t t t t

r t dt
t t

r t dt
t dt t dt

S B e D

e D dD

e E dE

e E V

   

  


  






 

  

  

 

 

  

  

( )

( )

( )

( )

( )

( )

( )
 

So the change in the value of the portfolio over the same period is: 

t dt t t t t t t

t t tt

t t tt

V V dV B dE E dB

B dD rE dt

dS dB





    

   

 





 

The pure investment gain over the period t  up to t dt  is: 

 t t t t t t t t t tdS dB B dD r D dt         
      

So the change in the value of the portfolio is the same as the pure investment gain.  

Hence the portfolio is self-financing.   

Also, TV X . 

So, the hedging strategy ( )t t   is replicating and tV  is the fair price at time t . 

Yet again, tV , the proposed no-arbitrage value of the derivative at time t < T, is equal to: 

 the time-t expectation of the claim amount paid at time T 

 calculated with respect to the probability measure Q and 

 the filtration tF  generated by the history of the stock price up to and including time t and  

 discounted at the continuously compounded risk-free rate of return r. 

3.3 Example: the price of a European call option on a share with dividends  

The idea in this section is that we can use the Black-Scholes formula we have already derived for a 
call option on a non-dividend-paying share to derive the corresponding (Garman-Kohlhagen) 
formula when there are dividends. 

In the absence of dividends, we know from the derivative pricing formula and the Black-Scholes 
formula that: 

 r T t r T t
t Q T tc e E S K S d Ke d        ( ) ( )

1 2[max( ,0)] ( ) ( )  

where Q  is the risk-neutral probability measure for tS . 
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In the presence of dividends, we need to work out: 

 r T t
t TQV e E S K  

( ) [max( ,0)]  

where Q  is the risk-neutral probability measure for tS .  Note that the payoff is still based on TS ,  

not TS , because if the option is exercised, the option holder will just receive the basic share 
without the accumulated dividends. 

If we use the relationship qT
T TS S e  and we define qTK Ke , we can write: 

 

r T t qT qT
t TQ

qT r T t
TQ

V e E S e Ke

e e E S K

   

  

 

  





 

 

( )

( )

[max( ,0)]

[max( ,0)]
 

The part of this expression after the multiplication sign looks exactly like the pricing formula for a 
call option, except that we have put squiggles on the TS , K  and Q .  (Note also that Q  is the 

correct risk-neutral probability measure for tS .) 

This means that we can calculate this part using the Black-Scholes formula, provided that we 
replace all the S ’s and K ’s with S ’s and K ’s.  This gives us: 

 qT r T t
t tV e S d Ke d        ( )

1 2[ ( ) ( )]  

where d1  and d2  are now calculated based on S  and K . 

Suppose that: 

max{ 0} max{ 0}qT
T TX S K e S K        

where qTK Ke . 

By analogy with the non-dividend-paying stock:  

 

( )

( )
1 2

[ ]

( ) ( )

r T t
t tQ

qT r T t
t

V e E X F

e S d Ke d

 

  

 

     



 
 

where: 

 

21
2

1

log ( )( )tS
K

r T t
d

T t





  







 

      

qt
t

qT

t

e S
e K

S
K

r T t

T t

q T t r T t

T t









  




    




21
2

21
2

log ( )( )

log ( ) ( )( )
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21

2log ( )( )tS
K r q T t

T t




   



 

and 2 1d d T t    

Also: 

 ( )qT q T t
t te S S e    

and: 

qTe K K   

  ( ) ( )
1 2( ) ( )q T t r T t

t tV S e d Ke d        

So the difference when dividends are present is that we have to ‘strip out’ the dividends with an 
q T te ( )  factor, and change r  to r q  in the calculation of d1  and d2 .  The formula for a put 

option works in the same way. 

By looking at this formula we can see that it may be optimal to exercise early an American 
call option on a continuous-dividend-paying stock.  This is because the value of the 
equivalent European call option can be less than the option’s intrinsic value.  In particular, 
for any t T , as tS  gets large (relative to K), tV  is approximately equal to: 

( ) ( )q T t r T t
t tS e Ke S K       

for large enough tS . 

This is because d1  and d2  would be large, so that d 1( )  and d 2( )  are approximately equal to 1. 

Question 

According to this approximation, how large would tS  need to be? 

Solution 

If we rearrange this inequality, we have: 

    r T t q T t
tK e S e     ( ) ( )1 1  

So we would need to have: 

 
r T t

t q T t
eS K
e

 

 





( )

( )
1
1
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Question 

Can you spot any other situations where this ‘reverse’ situation could apply? 

Solution 

One example would be if r is close to zero, but q is high.  However, for economic reasons this 
situation is less likely to occur with the shares of major companies. 

 
We can equally derive the price of a European put option on a dividend-paying stock: 

ie ( ) ( )
2 1( ) ( )r T t q T t

t tV Ke d S e d          

where 1d  and 2d  are defined above. 
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The chapter summary starts on the next page so that you can 
keep all the chapter summaries together for revision purposes. 
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Chapter 17 Summary 

The martingale (5-step) approach (with dividends) 

The derivative pricing formula r T t
t Q tV e E X F  ( ) [ | ] can be derived using the martingale 

approach, which consists of five steps: 

Step 1 

Find the unique equivalent martingale measure Q under which rt
t tD e S   is a martingale. 

Step 2 

Let  r T t
t Q tV e E X F  ( ) |  where X is the derivative payoff at time T.  This is proposed as the 

fair price of the derivative at time t. 

Step 3 

Let  rT rt
t Q t tE e E X F e V  | .  This is a martingale under Q. 

Step 4 

By the martingale representation theorem, there exists a previsible process t  such that 

t t tdE dD   . 

Step 5 

Let t t t tE D      and at time t hold the portfolio consisting of: 

 t  units of the tradeable tS  

 t  units of the cash account. 
 
At time t the value of this portfolio is equal to tV .  Also TV  = X.  Therefore, the hedging 

strategy t t ( , )  is replicating and so, by no arbitrage, tV  is the fair price of the derivative at 
time t. 
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Garman-Kohlhagen formula for a European option on a 
dividend-paying share 

Call option 

 q T t r T t
t tf S S d e Ke d      ( ) ( )

1 2( ) ( ) ( )  
 
Put option 

 r T t q T t
t tf S Ke d S d e        ( ) ( )

2 1( ) ( ) ( )  
where: 

 
tS

r q T t
Kd

T t





   




2

1

ln ( ½ )( )
  

 d d T t  2 1  

The Black-Scholes formulae for a non-dividend-paying share are the same but using q  0 .  
These formulae can be derived by direct evaluation of the expected value using the general 
option pricing formula found using the 5-step method. 

Delta hedging 

t t
V t S
s

 
 


( )   

 We start at time 0 with V0  invested in cash and shares. 

 We follow a self-financing portfolio strategy. 

 We continually rebalance the portfolio to hold exactly t  units of tS  with the rest in 
cash. 

By following these steps, we precisely replicate the derivative payoff, without risk. 
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The martingale approach vs the PDE approach

 In the PDE approach we have to ‘guess’ the solution, whereas with the martingale 
approach we do not. 

 The martingale approach provides an expectation that can be evaluated explicitly in 
some cases and in a straightforward numerical way in other cases.   

 The martingale approach also gives the replicating strategy for the derivative. 

 The martingale approach can be applied to any TF -measurable derivative payment, 
whereas the PDE approach cannot always. 

 However, the PDE approach is much quicker and easier to construct, and more easily 
understood. 

State price deflator approach 

Corollary to the Cameron-Martin-Girsanov Theorem 

There exists a process t  such that, for any TF -measurable derivative payoff TX  at time T , 
we have:  

 T
Q T t P T t

t
E X F E X F




 
 
 
 

 [ ]  

The state price deflator tA  is defined by: 

 rt
t tA e   

where tZ t
t e    

2½ , which is a martingale under P. 

Derivative prices can be calculated using the state price deflator formula: 

P T T t
t

t

E A X F
V

A


[ | ]  
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Chapter 17 Practice Questions 

17.1 You are given that the fair price to pay at time t  for a derivative paying X  at time T  is 
 r T t

t Q tV e E X F      , where Q  is the risk-neutral probability measure and tF  is the filtration 

with respect to the underlying process.  The price movements of a non-dividend-paying share are 
governed by the stochastic differential equation  t t tdS S rdt dB  , where tB  is standard 

Brownian motion under the risk-neutral probability measure. 

(i) Solve the above stochastic differential equation. [4] 

(ii) Determine the probability distribution of T tS S . [2] 

(iii) Hence show that the fair price to pay at time t  for a forward on this share, with forward 
price K  and time to expiry T t , is: 

   r T t
t tV S Ke    [4] 

    [Total 10] 

17.2 The process tS  is defined by tt W
tS S e    

2( ½ )
0 , where tW  is standard Brownian motion under 

a probability measure P , and   and  2  are constants. 

(i) (a) State the name given to the process tS . 

(b) Give two real-world quantities that are commonly modelled using such a 
process. [3] 

(ii) (a) State what is meant by ‘equivalent probability measures’. 

 (b) State how the Cameron-Martin-Girsanov Theorem could be applied here if we 

wished to work with a process of the form tr t W
tS S e   

2( ½ )
0 , where tW  is 

standard Brownian motion and r  is the risk-free rate of interest. [3] 

(iii) (a) Determine the stochastic differential equation for tdS  in terms of dt  
  and tdW . 

 (b) State the drift of the process in (iii)(a) and comment on your answer. [5] 
    [Total 11] 
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17.3 The random variable TS  is defined by Tr T Z
TS S e   

2( ½ )
0 , where TZ N T  (0, )  under a 

probability measure Q .  The random variable X  is defined by TX S K max( ,0) , where K  is a 
positive constant. 

(i) Show that: 

     rT
QE X F S e d T K d    0 0 2 2[ ]  

 where 
S K r T

d
T



 


2

0
2

log( ) ( ½ )
. [7] 

 Hint: You may wish to use the lognormal integral formulae given on page 18 of the Tables. 

(ii) Explain carefully the relevance of this result in financial mathematics. [3] 
    [Total 10] 

17.4 (i) State the general risk-neutral pricing formula for the price of a derivative at time t  in 
 terms of the derivative payoff TX  at the maturity date T  and the constant risk-free force 

of interest r .  [1] 

Assume that the price of a share, which pays a constant force of dividend yield q , follows 
geometric Brownian motion. 

(ii) (a) Derive the formula for the price at time t  of Derivative 1, which pays one at time 
T  provided the share price at that time is less than K . 

 (b) Derive the formula for the price at time t  of Derivative 2, which pays the share 
price at time T  provided the share price at that time is less than K . 

 (c) Hence derive the formula for the price of a European put option with strike 
price K . [12] 

 Hint for (ii)(a) and (ii)(b): You may wish to use the lognormal integral formulae given on 
page 18 of the Tables. 

(iii) An exotic forward contract provides a payoff equal to the value of the square of the share 
price at the maturity date T  in return for a payment equal to the square of the forward 
price.  Derive the formula for the value of this contract at time t . [3] 

    [Total 16] 
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17.5 An exotic forward provides a payoff equal to the square root of the share price at maturity time T  
less the square root of the delivery price, K. 

(i) (a) Assuming that the Black-Scholes assumptions apply, use risk-neutral pricing to 
derive a formula for the price at time t  of the forward on a non-dividend-paying 
share. 

 (b) Derive the corresponding formula for the vega of the forward. [6] 

(ii) (a) Explain why an investor might want to vega hedge their portfolio. 

 (b) Use the result that r T t
tS d Ke d   ( )

1 2( ) ( ) 0 , where d1  and d2  are defined as 
on page 47 in the Tables, to show that the formula for the vega of a European call 
option is call tS d T t  1( ) . [6] 

The current price of the share is $1, which is also the delivery price of the forward.  The risk-free 
force of interest is 5%, the volatility of the underlying share, which pays no dividends, is 20% and 
the forward has one year to delivery. 

(iii) An investor has a long position in 1,000 exotic forwards.  Find the vega-hedged portfolio 
for this position involving standard European call options on the underlying share and also 
the underlying share itself. [8] 

    [Total 20] 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 17 Solutions 

17.1 (i) Solving the SDE 

The process is geometric Brownian motion.  To solve it we consider the function  t tf S S log . 

Applying the Taylor's series formula to the above function, we get: 

 

 t t t t
t t

t t t t t t
t t

t

t

df S d S dS dS
S S

rS dt S dB rS dt S dB
S S

r dt dB dt

r dt dB

 

 

 

 
    

 
 

   

  

  

2
2

2
2

21
2

21
2

1 1 1(log ) ( )
2

1 1( ) ( )
2

( )  [2] 

Changing the t ’s to s ’s and integrating this equation between limits of s 0  and s t , we get: 

 
t t

s t
s ssS r ds dB 

    21
20

0 0
log ( )   

  t tS S r t B    21
0 2log log ( )  

  tr t B
tS S e   

2( ½ )
0  [2] 

  [Total 4] 

(ii) Probability distribution 

From part (i), we know that, under the risk-neutral probability measure Q , 

 t tS S r t B    21
0 2log log ( )  

Since tB N t (0, )  then: 

 tS S N r t t   2 2
0log log ( ½ ) ,  [1] 
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Replacing 0 and t with t and T t  we get: 

 
 
 

T t

T t t

T t t

S S N r T t T t

S S N S r T t T t

S S N S r T t T t

 

 

 

   

    

    







2 2

2 2

2 2

log log ( ½ )( ), ( )

log log ( ½ )( ), ( )

log log ( ½ )( ), ( )  [1] 

 [Total 2] 

(iii) Fair price for a forward 

We are given that the fair price to pay at time t  for a derivative paying X  at time T  is 
 r T t

t Q tV e E X F      , where Q  is the risk-neutral probability measure.   

The random variable payoff of a forward on a non-dividend-paying share is: 

 TX S K    

Substituting this into the fair price formula, we get: 

 

   

   

r T t r T t
t Q t Q T t

r T t
Q T t

V e E X F e E S K F

e E S F K

   

 

       

     [2] 

Now Q T tE S F    is the conditional mean of the random variable TS , and from part (ii), we know 

that  T t tS S N S r T t T t     2 2log log ( ½ )( ), ( ) . 

Using the formula for the expectation of the lognormal distribution on page 14 of the Tables: 

 
 tS r T t T t

Q T t

r T t
t

E S F

S e

     



   



2 21 1
2 2log ( )( ) ( )

( )

e
 [1] 

So: 

      
 

r T t r T t
t Q t Q T t

r T t
t

V e E X F e E S F K

S Ke

   

 

       

 

 [1] 

  [Total 4] 
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17.2 (i)(a) Name of the process 

This process is geometric Brownian motion (also known as the continuous-time lognormal 
model).    [1] 

(i)(b) Two real-world quantities 

This process is commonly used to model share prices (with or without dividends) and currency 
exchange rates.   [2] 
    [Total 3]  

(ii)(a) State what is meant by ‘equivalent probability measures’ 

In words, two probability measures are equivalent if they are defined on the same sample space 
and have the same null sets (ie sets that have probability zero). 

Mathematically, P  and Q  are equivalent if P A ( ) 0    Q A ( ) 0 , where P A( )  denotes the 
probability under measure P  and Q A( )  denotes the probability under measure Q . [1] 

This is sometimes expressed as ‘Equivalent measures agree on what is possible’. 

(ii)(b) State how the CMG Theorem could be applied 

The CMG Theorem tells us that, for any  , there is a probability measure Q  (equivalent to P ) 

such that t tW W t   is standard Brownian motion under Q . 

So we could change probability measures and work with Q . 

Since t tW W t  , under the measure Q , the formula for tS  in terms of tW  becomes: 

 t tt W t t W
tS S e S e             

 2 2( ½ ) ( ) ( ½ )
0 0  

If we want this to equal tr t WS e    2( ½ )
0 , we need to set r   , ie r




 . [2] 

    [Total 3]  

(iii)(a) SDE for dSt 

We can write the equation tr t W
tS S e   

2( ½ )
0  in the form: 

 t tS f X ( )  

where t tX r t W    2( ½ )  and xf x S e 0( )  

So: t tdX r dt dW    2( ½ )    and  xf x f x S e   0( ) ( )  
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Using a Taylor Series expansion, we can write: 

  

 

t

t t t t t t

X
t t

t t t

dS df X f X dX f X dX

S e dX dX

S dX dX

   

 

 

21
2

21
0 2

21
2

( ) ( ) ( )( )

( )

( )

 

Substituting the SDE for tX  gives: 

  t t t tdS S r dt dW r dt dW         2 2 21
2[( ½ ) ] [( ½ ) ]  

Simplifying using the 2 2  multiplication grid, we get: 

 

 t t t

t t

dS S r dt dW dt

S rdt dW

  



   

 





2 21
2[( ½ ) ]

( )  [3] 

(iii)(b) SDE for dSt 

The drift in this equation is trS , or just r , if we’re thinking in units of tS . [1] 

Since tW  is standard Brownian motion, the increment tdW  has mean zero.  This means that the 

expected value of tdS  under the measure Q  is trS dt , ie the share price is drifting upwards at the 

risk-free rate.  This means that Q  is the risk-neutral probability measure for the process tS .  [1] 
    [Total 5] 

17.3 (i) Formula for QE X[ ]  

If we take logs of the equation given, we get: 

 T TS S r T Z     2
0log log ( ½ )  

Since TZ N T  (0, ) , we see that the distribution of TS  given F0  under the probability measure Q  
is: 

 TS F logN S r T T   2 2
0 0[log ( ½ ) , ]  [1] 
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The expectation we require is: 

 

Q Q T

K

K K

E X F E S K F

x K f x dx

x f x dx K f x dx



 

 

 

 



 

0 0[ ] [max( ,0) ]

( ) ( )

( ) ( )  [1] 

where f x( )  is the density function of the above lognormal distribution. 

We can evaluate these integrals using the formula on page 18 of the Tables, with L K  and 

U ,  and with   and  2  replaced with S r T  2
0log ( ½ )  and T 2 . 

If we put k 1 , we get: 

 

S r T T
K

rT

K S r T
xf x dx e T

T

K S r T
S e T

T

  









   
    
      

    

    
    

    


2 2

0
2

log ( ½ ) ½ 0

2
0

0

log [log ( ½ ) ]
( ) ( )

log [log ( ½ ) ]
1

 

We can simplify this using the identity x x  1 ( ) ( )  to get: 

  

rT
K

rT

rT

K S r T
xf x dx S e T

T

S K r T
S e T

T

S e d T













     
   

 
 

  
   

 
 

  


2

0
0

2
0

0

0 2

log log ( ½ )
( )

log( ) ( ½ )

 [3] 

where d2  is as defined in the question. 

Similarly, if we put k 0 , we get: 

  K
f x dx d


 2( )  [1] 

So the expectation is: 

    rT
QE X F S e d T K d    0 0 2 2[ ]  [1] 

    [Total 7]  
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(ii) Relevance of result 

If TS  denotes the value of a share at time T , and Q  denotes the risk-neutral measure for this 
share, this formula allows us to work out the fair price of a European call option on the share with 
strike price K  and time to expiry T . [1] 

This price would be calculated as the discounted value of the expectation in part (i), namely: 

 

   

   

rT rT rT
Q

rT

e E X F e S e d T K d

S d Ke d

 



      

   

0 0 2 2

0 1 2

[ ]

 [1] 

where d d T 1 2 . 

This matches the Black-Scholes formula for valuing a call option on a non-dividend-paying 
share.    [1] 
    [Total 3] 

17.4 (i) State the general risk-neutral pricing formula 

 r T t
t Q T tV e E X F     

( )  [1] 

where: 

r  = constant risk-free force of interest 

T  = maturity date of the derivative 

t  = today’s date 

TX  = derivative payoff at maturity date T  

Q  = risk-neutral probability measure 

tF  = filtration at time t  

(ii)(a) Derive the formula for the price of Derivative 1 

The payoff function of this non-standard derivative is: 

 T
T

T

S K
X

S K


  
1

1
0

 [½] 
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To derive the pricing formula of the derivative, we substitute the payoff function into the general 
risk-neutral pricing formula in part (i), ie: 

 r T t
t Q T tV e E X F     

( )
1 1  

which, as the derivative pays 1 provided the share price is between 0 and the strike price K , is 
equal to: 

 
K

r T t
t T t TV e f S S dS  ( )

1
0

1 ( )                                     (1) [1] 

where T tf S S( )  is the probability density function of the share price at the maturity date, TS , 

given the current share price, tS .   

Note that as the share price is assumed to follow geometric Brownian motion, the independence 
of increments means we do not have to condition on the full past history of the share price – only 
the current share price, tS .  

The distribution of TS  given tS  is: 

 T t tS S N S r q T t T t        2 2log ln ( ½ )( ), ( )    [½] 

We can simply state this result or obtain it using the following reasoning: 

Under the risk-neutral probability measure, Q , the tradeable asset is expected to grow at the 
risk-free force of interest, r .  Here, the tradeable asset is the share plus the dividends earned.  
Assuming the dividends are immediately reinvested in the asset, they will give a rate of growth of 
the tradeable asset of q .  So this means the share price alone must grow at a rate r q .   

Therefore, if tS  denotes the share price at time t , then it has SDE: 

  t t tdS S r q dt dZ  ( )  

where tZ  denotes standard Brownian motion.  This has solution: 

   T t T tS S r q T t Z Z      2exp ½ ( ) ( )  

giving the distribution: 

 
T t t

T t t

S S N S r q T t T t

S S N S r q T t T t

 

 

      

       





2 2

2 2

ln ln ( ½ )( ), ( )

log ln ( ½ )( ), ( )
  

To work out the integral (1) above, we need to use the formula for evaluating the truncated 
moments of a lognormal distribution, which appears on page 18 of the Tables. 
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We have TS 01 ( )  and so k 0  in the formula on page 18 of the Tables.   

Thus, (1) above is equal to: 

  r T t
tV e e U L      

( ) 0
1 0 0( ) ( )                                             (2) [½] 

where: 

 

 t

t

K S r q T t
U

T t

S K r q T t
T t

d








    
 



    
  

  

 

2

0

2

2

ln ln ( ½ )( )
0

ln( ) ( ½ )( )

 [1] 

 
 tS r q T t

L
T t





    
   



2

0

ln0 ln ( ½ )( )
0  [½] 

So, (2) above becomes: 

 

 

 

r T t
t

r T t

r T t

V e d

e d

e d

 

 

 

    

   

  

( )
1 2

( )
2

( )
2

( ) ( )

( ) 0

( )  [1] 

(ii)(b) Derive the formula for the price of Derivative 2 

The payoff function of this non-standard derivative is: 

 T T
T

T

S S K
X

S K


  
2 0

         [½] 

To derive the pricing formula of this derivative, we substitute the payoff function into the 
risk-neutral pricing formula in part (i), ie: 

 r T t
t Q T tV e E X F     

( )
2 2  

Substituting in for TX2  gives: 

 
K

r T t
t T T t TV e S f S S dS  ( )

2
0

( )                                     (3) [1] 
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To evaluate this, we again use the formula for evaluating the truncated moments of a lognormal 
distribution on page 18 of the Tables, where: 

 T t tS S N S r q T t T t        2 2log ln ( ½ )( ), ( )    [½] 

In this instance, T TS S 1( ) , so k 1  in the formula on page 18 of the Tables.  Thus, (3) above is 
equal to: 

  tS r q T t T tr T t
tV e e U L             

2 2ln ( ½ )( ) ½ ( )( )
2 1 1( ) ( )                           (4) [½] 

where: 

 

 t

t

t

t

K S r q T t
U T t

T t

K S r q T t T t
T t

K S r q T t
T t

S K r q T t
T t

d






 








    
  



      




    




    
  

  

 

2

1

2 2

2

2

1

ln ln ( ½ )( )

ln ln ( ½ )( ) ( )

ln ln ( ½ )( )

ln( ) ( ½ )( )

 [1] 

 
 tS r q T t

L T t
T t






    
    



2

1

ln0 ln ( ½ )( )
 [½] 

So, after some cancelling of terms involving r  and  2 , (4) above becomes: 

 

 

 

q T t
t t

q T t
t

q T t
t

V S e d

S e d

S e d

 

 

 

    

   

  

( )
2 1

( )
1

( )
1

( ) ( )

( ) 0

( )  [1] 

(ii)(c) Derive the pricing formula for a European put option 

The payoff function for a European put option can be written as: 

 T T
PT

T

K S S K
X

S K
 

  0
 [½] 

This payoff function can be replicated using a combination of + K  of the derivatives in part (ii)(a) 
and –1 of the derivatives in part (ii)(b). [½] 
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Consequently, and assuming that markets are arbitrage-free, the price of a European put option 
must be given by: 

 

t t t

r T t q T t
t

p K V V

Ke d S e d   

  

     

1 2

( ) ( )
2 1( ) ( )  [1] 

    [Total 12] 

(iii) Price of exotic forward contract 

Here the payoff function is equal to: 

 T TX S K 2 2       [1] 

So, once again substituting this into the general risk-neutral pricing formula in part (i) gives: 

 

 

r T t
t Q T t

r T t
Q T t

V e E S K F

e E S F K

 

 

   

   

( ) 2 2

( ) 2 2
  

where: 

 T t tS S N S r q T t T t        2 2log ln ( ½ )( ), ( )  [1] 

As this derivative contract provides a non-zero payoff regardless of the share price at maturity, we 

can evaluate Q T tE S F 
 

2  using the formula for the moments of a non-truncated lognormal 

distribution on page 14 of the Tables, ie: 

 

tS r q T t T tr T t
t

r q T t r T t
t

V e e K

S e K e

 



       

    

    

 

2 2

2

2(ln ( ½ )( )) ½ 4 ( )( ) 2

2 ( 2 )( ) 2 ( )  [1] 
    [Total 3] 

17.5 (i)(a) Derive formula for price of forward 

The general risk-neutral formula for pricing a derivative at time t T  is: 

 r T t
t Q T tV e E X F     

( )  [½] 

In this instance, the payoff function of the derivative is: 

 T TX S K ½ ½   

So, the price will be given by: 

 r T t
t Q T tV e E S K F     

( ) ½ ½  [1] 
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Black-Scholes assumes that under the risk-neutral measure Q , the underlying share price follows 
geometric Brownian motion with drift r  and volatility   and so: 

  T t tS S N S r T t T t       
 2 2log log ½ ( ), ( )  [½] 

Hence, using the formula for the moments of a lognormal distribution from page 14 in the Tables, 
with r ½, the price will be given by: 

  tS r T t T tr T t
tV e e K

         
  

  

2 2 2½ log ( ½ )( ) ½ ½ ( )( ) ½  [1] 

Note that the formula in the Tables also works for non-integer values of r.  

This simplifies to: 

  r T t r T t
t tV S e K e

     
2½ ¼ ( )½ ½ ( )  [1] 

    [Total 4] 

(i)(b) Formula for the vega of the forward 

The vega of a derivative with price f based on an underlying share with volatility   is defined as: 

 f






   [½] 

So, here: 

  r T t
tT t S e


 

  
  

2½ ¼ ( )½¼ ( )  [1½] 
    [Total 2] 

(ii)(a) Why vega hedge a portfolio? 

A vega-hedged portfolio is one whose overall vega, which is equal to the sum of the vegas of the 
constituent securities, is close to zero. [½] 

Consequently, the value of such a portfolio will be relatively insensitive to changes in the volatility 
of the underlying share. [½] 

An investor might therefore wish to vega hedge in order to: 

 protect the value of a portfolio against (small) changes in the volatility of the underlying 
share.   [½] 

 compensate for the fact that the volatility of the share is unknown, as it cannot be 
observed directly.  It is less important to have an accurate estimate of the volatility if vega 
is low and hence has little effect on the portfolio’s value. [½] 

    [Total 2] 
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(ii)(b) Show that vega of European call option is call tS d T t  1( )  

Differentiating the Black-Scholes formula for a European call option with respect to   using the 
product and chain rules for differentiation gives: 

 r T t
call t

d dS d Ke d 
 

   
 

 
( )1 2

1 2( ) ( )   

where  x x


   21 1
22

( ) exp  is the probability density function of the standard normal 

distribution (from page 11 of the Tables). [1] 

Now: 

 d d T t  2 1  

Thus: 

 d d T t
 

 
  

 
2 1  [½] 

Hence: 

 

r T t
call t

r T t r T t
t

d d
S d Ke d T t

d
S d Ke d Ke d T t

 
 

  


  

   

         

      

( )1 1
1 2

( ) ( )1
1 2 2

( ) ( )

( ) ( ) ( )  [1] 

So, using the result that: 

 r T t
tS d Ke d   ( )

1 2( ) ( ) 0   

we have: 

 

r T t
call

r T t

d
Ke d T t

Ke d T t






  

 


   


 

( )1
2

( )
2

0 ( )

( )  [1] 

Or equally, given that: 

 r T t
tS d Ke d   ( )

1 2( ) ( )  

this can be written as: 

 call tS d T t  1( )  [½] 
    [Total 4] 
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(iii) Find vega-hedged portfolio 

Using the information given in the question, together with the formulae found earlier in the 
question, the price and vega of the forward are: 

 

 

 

r T t r T t
t tV S e K e

e e

    

     

 

   



2

2

½ ¼ ( )½ ½ ( )

½ 0.05 ¼ 0.2 1 0.05 11 1

0.019216  [1]  

 

 

 

r T t
tT t S e

e


 

  

   

  

     

 

2

2

½ ¼ ( )½

½ 0.05 ¼ 0.2 1

¼ ( )

¼ 0.2 1 1

0.048522  [1] 

Using the Black-Scholes formula on page 47 in the Tables: 

  
   

d
   

 


2

1

log 1 0.05 ½ 0.2 1
0.35

0.2 1
 [½] 

 d    2 0.35 0.2 1 0.15  [½] 

So, the price of the European call option is: 

 

tc e     

  



0.05 11 (0.35) 1 (0.15)

0.63683 0.951229 0.55962

0.104503  [1] 

and its vega is equal to: 

 

call tS d T t

e







 

 

  



2

1

½ 0.35

( )

11 1
2

0.375240  [1] 

Finally, the vega of a share is equal to zero. [½] 

So, to vega hedge the long position in 1,000 forwards, we need to find the number of European 
calls x and shares y such that: 

 x y   1,000 0.019216 0.104503 1  [½] 

 x y    1,000 0.048522 0.375240 0  [½] 
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Solving these equations gives: 

 x 129.31   [½] 

 y  32.729   [½] 

ie we need to short sell 129.31 calls and buy 32.729 shares. [½] 

This portfolio will respond in a similar way to the exotic forward to (small) changes in the volatility 
of the underlying share.  Strictly speaking, in order to vega hedge the exotic forward we need to 
take the opposite positions to those found above, ie buy 129.31 calls and short sell 32.729 
shares.    [1] 
    [Maximum 8] 
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End of Part 3 

What next?   

1. Briefly review the key areas of Part 3 and/or re-read the summaries at the end of 
Chapters 13 to 17. 

2. Ensure you have attempted some of the Practice Questions at the end of each chapter in 
Part 3.  If you don’t have time to do them all, you could save the remainder for use as part 
of your revision. 

3. Attempt Assignment X3. 
  

 

Time to consider …  
 … ‘revision and rehearsal’ products 

Revision Notes – Each booklet covers one main theme of the course and includes 
integrated questions testing Core Reading, relevant past exam questions and other useful 
revision aids.  One student said: 

‘Revision books are the most useful ActEd resource.’ 

ASET – This contains past exam papers with detailed solutions and explanations, plus lots of 
comments about exam technique.  One student said: 

‘ASET is the single most useful tool ActEd produces.  The answers do go 
into far more detail than necessary for the exams, but this is a good 
source of learning and I am sure it has helped me gain extra marks in 
the exam.’ 

You can find lots more information, including samples, on our website at www.ActEd.co.uk. 

Buy online at www.ActEd.co.uk/estore 
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All study material produced by ActEd is copyright and is sold 
for the exclusive use of the purchaser.  The copyright is 

owned by Institute and Faculty Education Limited, a 
subsidiary of the Institute and Faculty of Actuaries. 

 

Unless prior authority is granted by ActEd, you may not hire 
out, lend, give out, sell, store or transmit electronically or 

photocopy any part of the study material. 

 

You must take care of your study material to ensure that it 
is not used or copied by anybody else. 

 

Legal action will be taken if these terms are infringed.  In 
addition, we may seek to take disciplinary action through 

the profession or through your employer. 

 

These conditions remain in force after you have finished 
using the course. 
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The term structure of  

interest rates 
 

Syllabus objectives 

4.5 Models of the term structures of interest rates 

1. Explain the principal concepts and terms underlying the theory of a term 
structure of interest rates. 

2. Describe the desirable characteristics of models for the term structure of 
interest rates. 

3. Apply the term structure of interest rates to modelling various cash flows, 
including calculating the sensitivity of the value to changes in the term 
structure. 

4. Describe, as a computational tool, the risk-neutral approach to the pricing 
of zero-coupon bonds and interest rate derivatives for a general 
one-factor diffusion model for the risk-free rate of interest. 

5. Describe, as a computational tool, the approach using state price deflators 
to the pricing of zero-coupon bonds and interest rate derivatives for a 
general one-factor diffusion model for the risk-free rate of interest. 

6. Demonstrate an awareness of the Vasicek, Cox-Ingersoll-Ross and 
Hull-White models for the term structure of interest rates. 

7. Discuss the limitations of these one-factor models and show an awareness 
of how these issues can be addressed. 
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0 Introduction 

In this chapter we will look at stochastic models for the term structure of interest rates.  In 
particular, we will focus on models that are framed in continuous time and which are 
arbitrage-free.   

Continuous-time models are generally used for their greater tractability compared to 
discrete-time ones.  An arbitrage-free model of the term structure is one that generates arbitrage-
free bond prices. 

There are two main types of models used to describe interest rates mathematically: 

1. The Heath-Jarrow-Morton approach uses an Ito process to model the forward rate for an 
investment with a fixed maturity.  We will not consider this approach here. 

2. Short-rate models use an Ito process to model the short rate.  We will look at three 
specific models of this type: the Vasicek model, the Cox-Ingersoll-Ross model and the 
Hull-White model. 

Ito processes are a key feature of these models, so it might be helpful to review the topics of 
Brownian motion, Ito’s Lemma and stochastic differential equations from earlier in the course. 

Interest rate modelling is the most important topic in derivative pricing.  Interest rate 
derivatives account for around 80% of the value of derivative contracts outstanding, mainly 
swaps and credit derivatives used to support the securitisation of debt portfolios.  More 
philosophically, is the fact that at any one time there will be a multitude of contracts (bonds) 
written on the same underlying (an interest rate), and derivative pricing is principally 
concerned with pricing derivatives coherently. 

The Core Reading in this chapter is adapted from the course notes written by Timothy 
Johnson. 
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1 Notation and preliminaries 

1.1 Zero-coupon bonds 

The multitude of traded instruments leads to the first challenge in interest rate modelling: 
the multitude of definitions of interest rates. 

Modelling interest rates is more complicated than modelling share prices because interest rates 
depend not only on the current time (which we will denote by t ), but also on the term of the 
investment.  For example, an investor with a 10-year bond will normally earn a different rate of 
interest than an investor with a 5-year bond. 

The basic debt instrument is the discount bond (or, equivalently, the zero-coupon bond).  
This is an asset that will pay one unit of currency at time T and is traded at time t T .  If the 
interest rate, R, is constant between t and T then we can say that the price of the discount 
bond purchased at t and maturing at T is given by ( , )P t T  where: 

 
( )

1
( , )

(1 ( , )) T tP t T
R t T 




 

The spot rate ( , )R t T  is the effective rate of interest applicable over the period from time t  to 
time T  that is implied by the market prices at time t . 

Observe that ( , ) 1P T T   and for all t T , ( , ) ( , ) 1P t T P T T  .  We define T t    in what 

follows. 

The discrete bond yield calculated from discount bond prices is: 

 
1/

1
( , ) 1

( , )
R t t

P t t 


  


 

Alternatively we could write this as: 

 
 1/( )

1( , ) 1
( , ) T tR t T

P t T
 

If a ‘spot’ rate is paid m times a year, then: 

 
1

1
(0, )

nmR
P n m

   
 

 

The limit as m    is a continuously compounded rate, ( , )r t T  (‘force of interest’), such 

that: 

 ( , ) 1
( , )

(1 ( , ))
r t Te P t T

R t T



  


 

The continuously compounded bond yield is calculated as: 

 
ln ( , )

( , )
P t Tr t T
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The spot rate ( , )r t T  is the continuously compounded rate of interest applicable over the period 
from time t  to time T  that is implied by the market prices at time t . 

1.2 Yield curves 

Fixing 0t   and plotting yield, (0, )R T  or (0, )r T , against maturity, T, gives the yield curve 

which gives information on the term structure, how interest rates for different maturities are 
related.  Typically, the yield curve increases with maturity, reflecting uncertainty about 
far-future rates.  However, if current rates are unusually high, the yield curve can be 
downward sloping, and is inverted. 

There are various theories explaining the shape of the yield curve.  The expectations theory 
argues that the long-term rate is determined purely by current and future expected 
short-term rates, so that the expected final value of investing in a sequence of short-term 
bonds equals the final value of wealth from investing in long-term bonds. 

The market segmentation theory argues that different agents in the market have different 
objectives: pension funds determine longer-term rates, market makers determine short-term 
rates, and businesses determine medium-term rates, which are all determined by the supply 
and demand of debt for these different market segments. 

The liquidity preference theory argues that lenders want to lend short term while borrowers 
wish to borrow long term, and so forward rates are higher than expected future zero rates 
(and yield curves are upward sloping). 

Zero rate is another name for the spot rate. 

The figure below shows the yield curve for the UK Government bond market on 31 December 
2003.  The ‘term’ plotted on the x -axis corresponds to T t . 

 

UK yield curves 31 December 2003 
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The circles show the remaining term and the gross redemption yield for each of the available 
bonds.  These approximate to the spot rates ( , )r t T  for zero-coupon bonds with corresponding 
terms.  A mathematical curve has been fitted to these points.  At this particular time the yield 
curve had a humped shape. 

The other curve shown is the forward rate curve (0, , )f t T , which is defined in the next section. 

1.3 Short rate and forward rates 

The short or instantaneous rate, ( )r t , is the interest rate charged today for a very short 

period (ie overnight).  This is defined (equivalently) as: 

 ( ) ( , ) ( , )r t r t t R t t      

where   is a small positive quantity.  So the short rate ( )r t  is the force of interest that applies in 
the market at time t  for an infinitesimally small period of time  .  Using the relationship 
developed in the opening section we have: 

 ( ) ln ( , )r t P t t 



  


 

The short rate is often the basis of some interest rate models; however, it will not generate, 
on its own, discount bond prices. 

The forward rate, (0, , )F t T  if discretely compounded and (0, , )f t T  if continuously 

compounded, relates to a loan starting at time t, for the fixed forward rate, the forward rate, 
repaid at maturity, T.  It involves three times, the time at which the forward rate agreement is 
entered into (typically 0), the start time of the forward rate, t and the maturity of the forward 
rate agreement, T. 

The law of one-price/the no-arbitrage principle, implies: 

1

(0, )
(0, , ) 1

(0, )

T tP tF t T
P T

 
  
 

 

At time t  we can consider the market prices of two investments, one maturing at time t  and one 
at a later time T .  These two prices will imply a certain rate of interest applicable between time t  
and time T .  This is (0, , )F t T .  In an arbitrage-free market, it represents the rate of interest at 
which we can agree at time 0  to borrow or lend over the period from t  to T . 

 

0 t T 

F(0,t,T) 
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Question 

Suppose that the current time corresponds to  5t  and that the force of interest has been a 
constant 4% pa over the last 5 years.  Suppose also that the force of interest implied by current 
market prices is a constant 4% pa for the next 2 years and a constant 6% pa thereafter. 

If  10T  and 15S , write down or calculate each of the four quantities ( , )P t T , ( )r t , ( , , )f t T S  
and ( , )r t T  using the notation above. 

Solution 

 

       (2 0.04 3 0.06) 0.26(5,10) 0.771P e e  

 (5) 0.04r  

 (5,10,15) 0.06f  

     
1(5,10) (2 0.04 3 0.06) 0.052
5

r  

 
For continuously compounded forward rates: 

 

(0, ) (0, )
(0, , )

( (0, ) (0, ))
(0, )

r T T r t tf t T
T t

r T r t Tr t
T t







 



 

The forward rate is related to the zero-coupon bond price as follows: 

 
  

 
1 (0 )(0 ) log

(0 )
P tf t T

T t P T
  for t T  

Question 

Derive this relationship. 

t=5 T=10 S=15

4% 6%
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Solution 

One way to see this is to say that the price for a bond purchased at time 0 and maturing at time T  
should equal the price for a similar bond maturing at the earlier time t  but discounted for the 
extra period T t  at the forward rate applicable over that period.  In other words: 

       (0 ) (0 )exp (0 )( )P T P t f t T T t  

Rearranging this equation gives the required result: 


  

 
1 (0 )(0 ) log

(0 )
P tf t T

T t P T
 

Alternatively we could use the Core Reading results from above: 

 






   













 

(0, ) (0, )(0, , )

log (0, ) log (0, )

log (0, ) log (0, )

1 (0 )log
(0 )

r T T r t tf t T
T t

P T T P t t
T t

T t

P t P T
T t

P t
T t P T

 

 
The instantaneous rate (0, )f T  is defined as 


lim (0, , )
t T

f t T .   

From the Core Reading above we have that: 


 


( (0, ) (0, ))(0, , ) (0, ) r T r t Tf t T r t

T t
 

So, in the limit t T , we get the instantaneous forward rate: 

 

(0, )
(0, ) (0, )

ln( (0, ))

r Tf T r T T
T

P T
T


 




 



 

Question 

Show that           

1(0 ) log (0 ) (0 )r T P T r T
T T T

. 
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Solution 

By applying the product rule to the equation    
1(0 ) log (0 )r T P T
T

, we have: 

 

 

 

          

            

          

       

2

1(0 ) log (0 )

1 1log (0 ) log (0 )

1 1log (0 ) log (0 )

1 log (0 ) (0 )

r T P T
T T T

P T P T
T T T T

P T P T
T T T

P T r T
T T

 

 
So (0, )f T  , the instantaneous forward rate, is the force of interest at future time T  implied by the 
current market prices at time 0.  Then the short rate ( )r T  is given by ( ) ( , )r T f T T . 

We can generalise 



  


lim (0, , ) (0, ) ln( (0, ))
t T

f t T f T P T
T

 to give: 

 


  


( , , ) ( , ) ln( ( , ))f t T T f t T P t T
T

 

Hence, the fundamental theorem of calculus tells us that: 

 ( , ) exp ( , , )
T

t
P t T f t u u du

    
  
  

           
    
  
exp ( , )
T

t
f t u du  

We can also deduce the following relationship, which shows that the spot rate is an average of 
the forward rates: 

      
  
1 1( ) log ( ) ( , )

T
t

r t T P t T f t u u du
T t T t

 

Question 

Under one particular term structure model: 

       0.1( ) 0.1( )( , ) 0.03 0.06(1 )T t T tf t T e e .   

Sketch a graph of ( , )f t T  as a function of T , and derive expressions for ( , )P t T  and ( , )r t T . 
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Solution 

The factor  0.1( )T te  equals 1 when T t , but then decreases exponentially to zero as T .  
So ( , )f t T  is a weighted average of 0.03 and 0.06, and its graph will increase from 0.03 (ie a force 
of interest of 3%) to 0.06. 

 

We can find ( , )P t T  from the relationship       ( ) exp ( )
T
t

P t T f t u du : 

 

 

 

 

   

 

 

 

      

      

     

       

    







0.1( ) 0.1( )

0.1( )

0.1( )

0.1( )

( ) exp ( )

exp 0.03 0.06(1 )

exp 0.06 0.03

exp 0.06 0.3

exp 0.06( ) 0.3 0.3

T
t

T u t u t
t

T u t
t

Tu t
t

T t

P t T f t u du

e e du

e du

u e

T t e

 

We can then find ( , )r t T  from the relationship 


  

1( ) log ( )r t T P t T

T t
: 

   

 


  




    



 
   

  

0.1( )

0.1( )

1( ) log ( )

1 0.06( ) 0.3 0.3

10.06 0.3

T t

T t

r t T P t T
T t

T t e
T t

e
T t
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2 Desirable characteristics of a term structure model  

Question 

What do you think term structure models are used for? 

Solution 

The main uses of term structure (interest rate) models are: 

 by bond traders looking to identify and exploit price inconsistencies 

 for calculating the price of interest rate derivatives 

 by investors with a portfolio involving bonds or loans who want to set up a hedged 
position 

 for asset-liability modelling. 

 
Equilibrium models start with a theory about the economy, such that interest rates revert to 
some long-run average, are positive or their volatility is constant or geometric.  Based on 
the model for (typically) the short rate, the implications for the pricing of assets is worked 
out.  Examples of equilibrium models are Rendleman and Bartter, Vasicek and Cox-
Ingersoll-Ross. 

Being based on ‘economic fundamentals’, equilibrium models rarely reproduce observed 
term structures.  This is unsatisfactory. 

No-arbitrage models use the term structure as an input and are formulated to adhere to the 
no-arbitrage principle.  An example of a no-arbitrage model is the Hull-White (one- and two-
factor). 

The implication here is that the Vasicek and the Cox-Ingersoll-Ross models permit arbitrage 
opportunities.  This is not actually true; both of these models result in no-arbitrage bond price 
formulae, even though their underlying construction principles are based in economic theory. 

We will now discuss characteristics of a term structure model that are regarded as desirable 
features. 

 The model should be arbitrage free. 

In very limited circumstances this is not essential, but in the majority of modern actuarial 
applications, it is essential.  Most obviously, anything involving dynamic hedging would 
immediately identify and exploit any arbitrage opportunities. 

The markets for government bonds and interest rate derivatives are generally assumed to 
be pretty much arbitrage-free in practice. 
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 Interest rates should ideally be positive.  Banks have to offer investors a positive return to 
prevent them from withdrawing paper cash and putting it ‘under the bed’.  This might be 
impractical for a large life office or pension fund but, nevertheless, it typically holds in 
practice.   

Some term structure models do allow interest rates to go negative. 

One such example is the Vasicek model we will see later in this chapter. 

Whether or not this is a problem depends on the probability of negative interest rates 
within the timescale of the problem in hand and their likely magnitude if they can go 
negative.  It also depends on the economy being modelled, as negative interest rates have 
been seen in some countries. 

 ( )r t  and other interest rates should exhibit some form of mean-reverting behaviour. 

Again this is because the empirical evidence suggests that interest rates do tend to mean 
revert in practice. 

This might not be particularly strong mean reversion but it is essential for many actuarial 
applications where the time horizon of a problem might be very long.   

 How easy is it to calculate the prices of bonds and certain derivative contracts? 

This is a computational issue.  It is no good in a modelling exercise to have a wonderful 
model if it is impossible to perform pricing or hedging calculations within a reasonable 
amount of time. 

This is because we need to act quickly to identify any potential arbitrage opportunities or 
to rebalance a hedged position. 

Thus we aim for models that either give rise to simple formulae for bond and option 
prices, or that make it straightforward to compute prices using numerical techniques.   

 Does the model produce realistic dynamics? 

For example, can it reproduce features that are similar to what we have seen in the past 
with reasonable probability?  Does it give rise to a full range of plausible yield curves, 
ie upward-sloping, downward-sloping and humped?  

 Does the model, with appropriate parameter estimates, fit historical interest rate data 
adequately?  

 Can the model be calibrated easily to current market data? 

If so, is this calibration perfect or just a good approximation?  This is an important point 
when we are attempting to establish the fair value of liabilities.  If the model cannot fit 
observed yield curves accurately then it has no chance of providing us with a reliable fair 
value for a set of liabilities. 

 Is the model flexible enough to cope properly with a range of derivative contracts? 
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3 Models for the term structure of interest rates 

3.1 The risk-neutral approach to pricing 

We will assume that the short rate is driven by an Ito diffusion: 

  ( , ) ( , )t t t tdr t r dt t r dW    

where: 

   , tt r  is the drift parameter 

   , tt r  is the volatility parameter 

 
tW  is a Wiener process under the martingale measure. 

In actuarial work we are used to assuming a fixed rate of interest in calculations.  However, in this 
chapter we are considering stochastic models where future interest rates behave randomly.  This 
means that we need to specify which probability measure we are using. 

If we are to have a model that is arbitrage-free then we need to consider the prices of tradeable 
assets, with the most natural of these being the zero-coupon bond prices ( , )P t T . 

Modelling the short rate ( )r t  does not tell us directly about the prices of the assets traded in the 
market.  To see whether arbitrage opportunities exist or not, we need to examine these prices. 

We can use an argument similar to the derivation of the Black-Scholes model using the martingale 
approach to demonstrate that: 

        
( ) exp

T
Q u tt

P t T E r du r  

where Q  is called the risk-neutral measure. 

Since we are considering Markov models, any information about the value of the short rate 
before time t  is irrelevant, and so we can replace tr  with its filtration tF .  We can then write this 
equation in the equivalent form: 

 
         

( ) exp 1
T

Q u tt
P t T E r du F  

Since the payoff from the bond at maturity is ( , ) 1P T T , we can see that this equation is 

analogous to the valuation formula      
( )r T t

t Q tV E e X F , which we met in an earlier chapter for 

derivatives based on shares. 
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If we had a derivative whose payoff X  was dependent on the future value of the bond, then its 
value at time t  would be: 

 
       

exp
T

t Q u tt
V E r du X F  

This formula is interesting because it tells us that, if we assume that the market is arbitrage-free, 
we can work out the value of the bond at the current time t  based on the current short rate tr  

and the possible future values of ur  for  t u T .  We don’t need to know the entire term 
structure, ie the values of ( , )f t u  for  t u T , at the current time. 

We define the bank, or money-market, account process as: 

t t tdB r B dt , 0 1B   

and: 

0

exp
t

t uB r du
    
  
  

According to the standard theory, all discounted assets must be martingales under the 
martingale measure, or: 

 
( , ) 1

Q t
t T

P t T E F
B B

 
  

 
 

Since tB  is known at time t, then we can re-write this as: 

 ( , ) t
Q t

T

BP t T E F
B
 

  
 

 

The martingale measure (ie the risk-neutral probability measure) is chosen so that this 
relationship holds by definition.  It is the set of probabilities such that the expected future value of 
the payout (which is guaranteed to be ( , ) 1P T T ) discounted from time T to time t (ie /t TB B ) is 
equal to the value of the contract at time t, ( , )P t T . 

Then we have: 

 ( , ) exp
T

Q u t
t

P t T E r du F
          

  

Compare with: 

( , ) exp ( , )
T

t
P t T f t u du

    
  
  

from earlier. 
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The difference between ( , )P t T  and tB  is captured by noting: 

( , ) exp ( , )
T

t
P t T f t u du

    
  
  while  

0

exp
t

t uB r du
    
  
  

So the value of tB , the cash account at time t, can be calculated using the known past short rates.  
In contrast, the price of the bond is the expectation of unknown future values of the short rate.  
However, given the known bond prices at time t, we can derive a set of consistent forward rates.  

By considering the price of the bond at time  0t  we can see that: 

0

(0, ) exp (0, )
t

P t f u du
    
  
  while  

0

exp
t

t uB r du
    
  
  and      ( , ) uf u u r  

We now assume that the discount bond price, ( , )P t T , is some deterministic function of the 

short-rate process, tr : 

 ( , ) ( , )tP t T g t r  

By using the stochastic product rule from the stochastic calculus chapter we have: 

 1( , )
( , )t t

t

P t Td d g t r B
B

 
 

 
 

      

   

 

 

 





 

           

           





1 1

1

0

1

0

( , ) ( , )

( , ) ( , ) exp

( , ) ( , ) exp

t t t t

t

t t t u

t

t t t t u

d g t r B g t r d B

d g t r B g t r d r du

d g t r B g t r r r du dt

 

       1 ( , ) ( , )t t t tB d g t r r g t r dt      

By applying Ito’s Lemma to the function ( , )tg t r  we have: 



2
1 2

2

1

( , ) ( , ) ( , )( , ) 1
( , ) ( , ) ( , )

2

( , )
( , )

t t t
t t t t t

t t t

t
t t t

t

g t r g t r g t rP t Td B t r t r r g t r dt
B t r r

g t rB t r dW
r

 







     
            






 

Question 

Verify the above result by using Taylor’s theorem. 
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Solution 

By Taylor’s theorem in two variables we have: 

        
            

2
21 1

2
( , ) ( , ) ( , )( , ) 1 ( , )

2
t t t

t t t t t t
t t t

g t r g t r g t rP t Td B dt dr dr B r g t r dt
B t r r

 

But   ( , ) ( , )t t t tdr t r dt t r dW  so   2 2( , )t tdr t r dt  and: 

 

   

 









     
            



   
        




2
1 2

2

1

2
1 2

2

1

( , ) ( , ) ( , )( , ) 1( , ) ( , ) ( , )
2

( , )

( , ) ( , ) ( , )1( , ) ( , ) ( , )
2

t t t
t t t t t

t t t

t t t

t t t
t t t t t

t t

t

g t r g t r g t rP t Td B dt t r dt t r dW t r dt
B t r r

B r g t r dt

g t r g t r g t rB t r t r r g t r dt
t r r

gB





( , ) ( , )t

t t
t

t r t r dW
r



 

 
In order for this to be a martingale, we require that: 

 
2

2
2

( , ) ( , ) ( , )1
( , ) ( , ) ( , ) 0

2
t t t

t t t t
t t

g t r g t r g t rt r t r r g t r
t r r

 
  

   
  

 

with the boundary condition that ( , ) ( , ) 1TP T T g T r   for all Tr . 

Question 

Why does the partial differential equation above need to equal zero in order for ( , )

t

P t T
B

 to be a 

martingale? 

Solution 

Martingale processes have zero drift.  In order for ( , )

t

P t T
B

 to have zero drift the coefficient of the 

dt term in the stochastic differential equation must be zero. 

 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 16 CM2-18: The term structure of interest rates 

© IFE: 2019 Examinations The Actuarial Education Company 

3.2 The Vasicek model (1977) 

Vasicek assumes that: 

 ( )t t tdr r dt dW      

for constants 0  ,   and,  . 

Here   represents the ‘mean’ level of the short rate.  If the short rate grows (driven by the 

stochastic term) the drift becomes negative, pulling the rate back to  .  The speed of the 

‘reversion’ is determined by .  If   is high, the reversion will be very quick. 

The graph below show a simulation of this process based on the parameter values   0.1 , 
  0.06  and   0.02 . 

 

Example simulation of short rate from the Vasicek model 

 
This yields the partial differential equation: 

 
2

2
2

( , ) ( , ) ( , )1
( ) ( , ) 0

2
t t t

t t t
t t

g t r g t r g t rr r g t r
t r r

  
  

    
  

 

by making the substitution    ( , ) ( )t tt r r  and letting  ( , )tt r  be constant. 

To establish the form of ( , ) ( , )tg t r P t T , recall that for the Ornstein-Uhlenbeck process: 

 ( )
0

0

( )
t

t t u
t ur r e e dW           

and so, integrating again: 

     ( )
0

0 0

1
( ) 1 1

T T
T T u

s ur ds T r e e dW  
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This implies that 
0

T

sr ds  is normally distributed with conditional mean: 

  0
0

1
( ) 1

T
T

sE r ds T r e  



 
     
  
  

Using Ito isometry: 

 2

0 0

( , ) ( , )
T T

Q t t tVar X t dW E X t dt 
 

       
   

we can see that: 

 
2

2
2

0

2 1
(1 ) (1 )

2

T
T T

Q sVar r ds T e e 
 

 
              
  

Since 
0

T

sr ds is normally distributed, using the moment generating function of a normal, 

 2,N   , random variable: 

 
2 21

2
t ttXE e e      

by putting 1t   , we can say that: 

 

 

0

2
2

0 2

(0, ) exp

1 1 2 1
exp ( ) 1 (1 ) (1 )

2 2

T

Q s

T T T

P T E r ds

T r e T e e   
  

  

  
   

  
  

                          


 

In general, by setting: 

  ( )1
( , ) 1 T tb t T e 


    

and: 

  
2 2

2
2

( , ) ( , ) ( , )
42

a t T b t T T t b t T 


 
      
 

 

we have: 

 ( , ) ( , )( , ) ta t T b t T rP t T e   
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By defining   T t , then equivalently we have: 

  ( ) ( )( , ) ta b rP t T e  

where: 

  


 
1( ) 1b e  

and: 

       


 
     
 

2 2
2

2( ) ( ) ( )
42

a b b  

Question 

Show that the instantaneous forward rate for the Vasicek model can be expressed as: 

     
 

    
       

 

2 2

2 2( , ) ( ) (1 ) (1 )
2 2

f t T r t e e e e  

where   T t . 

Solution 

We have a formula for ( , )P t T  under this model.  So the instantaneous forward rate can be 
derived from this using the relationship: 

 


   


( ) log ( )f t T P t T
T

 

By use of the chain rule, and noting that 




1

T
, this gives: 

 

 

  


    



   



 
  

 

        
 

( ) [ ( ) ( ) ( )]

[ ( ) ( ) ( )]

[ ( ) ( ) ( )] ( ) ( ) ( )

f t T a b r t
T

a b r t
T

a b r t a b r t
T
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From the definitions of ( )b  and ( )a , we find that: 

 



 


     

 

1( ) d eb e
d

 

and: 


 

  

     
 

    


 
 

 
 


 

  

  
          

 
       

 

   
         

   

 
       

 

2 2
2

2

2 2

2

2 2

2

2 2

2 2

( ) ( ( ) ) ( )
42

( ( ) 1) 2 ( ) ( )
42

1( 1)
22

(1 ) (1 )
2 2

da b b
d

b b b

ee e

e e e

 

Substituting these expressions into the general formula for ( , )f t T  gives the required answer. 

 
Question 

Write down an expression in terms of the model parameters for the long rate, ie the 
instantaneous forward rate corresponding to   T t , according to the Vasicek model. 

Solution 

Letting T  (and hence   ) in the equation for ( , )f t T  gives: 

   
  

 
            

 

2 2 2

2 2 2( , ) ( ) 0 (1 0) (1 0) 0
2 2 2

f t r t  

 
The curves shown on the graph of gilt yields in Section 1 were fitted using a Vasicek model with 
parameter values   0.131 ,   0.083  and   0.037 . 

Question 

‘The particular model used for the graph implies that interest rates are mean-reverting to the 
value   0.083 .’ 

True or false? 
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Solution 

The dynamics of ( )r t  for this particular Vasicek model are: 

   ( ) 0.131[ ( ) 0.083] 0.037 ( )dr t r t dt dW t  

under the risk-neutral probability measure Q .  Under this measure ( )W t  is standard Brownian 
motion and therefore has zero drift and the process mean-reverts to the value 0.083. 

However, under the real-world probability measure P , ( )W t  would have non-zero drift and the 
process will mean-revert to a different value.  In fact, although we will not prove it here, the long-
term rate in the real world can be found from the formula derived in the previous question, 
namely: 




 
2

2 0.0431
2

  ie  4.31% 

 
3.3 The Cox-Ingersoll-Ross (CIR) model (1985) 

In Vasicek’s model (and Hull-White, below) interest rates are not strictly positive.  This 
assumption is not ideal for a short-rate model.  CIR use the Feller, or square root mean 
reverting process which is positive (it can instantaneously touch 0 but immediately re-
bounds): 

 ( )t t t tdr r dt r dW      

for constants 0  , 0   and,  . 

We can see that the form of the drift of tr  is the same as for the Vasicek model.  The critical 
difference between the two models occurs in the volatility, which is increasing in line with the 

square root of tr .  Since this diminishes to zero as tr  approaches zero, and provided  2  
is not too 

large ( tr  will never hit zero provided  2 2 ), we can guarantee that tr  will not hit zero.  
Consequently all other interest rates will also remain strictly positive. 

The graph below shows a simulation of this process based on the parameter values   0.1 , 
  0.06  and   0.1 . 
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Simulation from Cox-Ingersoll-Ross model 

 

The associated PDE is: 

2
2

2

( , ) ( , ) ( , )1
( ) ( , ) 0

2
t t t

t t t t
t t

g t r g t r g t rr r r g t r
t r r

  
  

    
  

 

The only difference between this and the Vasicek PDE is the inclusion of an tr  in the second 
derivative term. 

Again, ( , ) ( , )( , ) ta t T b t T rP t T e  , with: 

 
2( 1)

( )
( )( 1) 2

eb
e




  




  
 

and: 

 

1
2
( )

2

2 2
( ) ln

( )( 1) 2

ea
e

  


 
   

 
 
    

 

       
  


 


 
 
  

1
2( )

2
2 ln ( )

( 1)
eb
e

 

where: 

 2 22     

It turns out that these values for a and b are not that different from those in Vasicek’s 
model. 

The distribution of tr  is given by a ‘non-central chi-squared’ distribution.  This is a 

‘fat-tailed’ distribution. 
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If 1 2, , , nX X X  are independent random variables, each with a (0,1)N  distribution, then 

   2 2 2
1 2 nY X X X  has a chi-square distribution with n  degrees of freedom. 

If 1 2, , , nX X X  are independent random variables and ( ,1)i iX N d , then    2 2 2
1 2d nY X X X  is 

said to have a non-central chi-squared distribution with n  degrees of freedom and non-centrality 

parameter 


  2

1

n
i

i
d d . 

So the non-central chi-squared distribution can be thought of as a lopsided version of the ordinary 
chi-square distribution. 

Question 

What is the mean of the non-central chi-squared distribution with n  degrees of freedom and 
non-centrality parameter d ? 

Solution 

Since ( ,1)i iX N d , we find that: 

    2 2 2[ ] ( ) [ ( )] 1i i i iE X Var X E X d  

It follows that: 


       2 2 2 2

1 2
1

[ ] [ ] (1 )
n

d n i
i

E Y E X X X d n d  

 
3.4 Vasicek and CIR yield curves 

Recall: 

ln ( , )
( , )

P t Tr t T
T t

 


 

and: 

  ( , ) ( , )( , ) ta t T b t T rP t T e  

so we have: 

 ( , ) ( , )
( , ) ta t T b t T rr t T

T t


 


 

Alternatively: 

 
 




 
( ) ( )( ) ta b rr  
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Then the yield curves coming out of the Vasicek model are of three (related) types: 

 

These yield curves are generally described as being: 

 normal, with short-term yields being lower than long-term yields 

 inverted, with short-term yields being higher than long-term yields 

 humped, ie a yield curve with a turning point. 

Recall that the duration, D, of an asset, whose interest rate dependent price is given by B, is 
defined by: 

 
B D y

B


   

where y is the instrument’s yield.  In the context of interest rate models, this is equivalent 
to: 

 
( , )

( , ) ( , ) ( , )
t

P t T DP t T b t T P t T
r


   


 

and there is a connection between this duration D , and the function b. 

The relationship above comes from the fact that: 

 


 
    

B BD y BD
B y

 

and 

B

y
 is the rate at which the bond price changes with respect to a change in its yield, ie 



( , )

t

P t T
r

.   

As  ( , ) ( , )( , ) ta t T b t T rP t T e , then: 

   
    

 
( , ) ( , ) ( , ) ( , )( , ) ( , ) ( , ) ( , )t ta t T b t T r a t T b t T r

t t

P t T e b t T e b t T P t T
r r
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3.5 The Hull-White model (1990) 

The Hull-White model is an extension of Vasicek where the mean-reversion level,  , is a 

deterministic function of time: 

 ( ( ) )t t tdr t r dt dW      

for constants 0   and  . 

In some representations, the parameter   is also allowed to be a function of time.  This is known 
as the extended Vasicek model. 

This yields a PDE similar to Vasicek, and so we can start by ‘guessing’ that 
( , ) ( , )( , ) ( , )ta t T b t T r

tP t T e g t r   and so: 

 
2

2
2

( , ) ( , ) ( , )1
( ( ) ) ( , ) 0

2
t t t

t t t
t t

g t r g t r g t rt r r g t r
t r r

  
  

    
  

 

By noting that: 

         

( , ) ( , ) ( , )( , )t
t t

g t r a t T b t Tg t r r
t t t

 


 


( , ) ( , ) ( , )t

t
t

g t r g t r b t T
r

 






2
2

2
( , ) ( , ) ( , )t

t
t

g t r g t r b t T
r

 

Then the Hull-White PDE becomes: 

             
2 2( , ) ( , ) 1( , ) ( , ) ( , )( ( ) ) ( , ) ( , ) ( , ) 0

2t t t t t t t
a t T b t Tg t r r g t r b t T t r g t r b t T r g t r

t t
 

              
2 2( , ) ( , ) 1( , ) ( , )( ( ) ) ( , ) 0

2t t t t
a t T b t Tg t r r b t T t r b t T r

t t
 

                  
2 2( , ) ( , ) 1( , ) ( , ) 1 ( , ) ( ) ( , ) 0

2t t
b t T a t Tg t r r b t T b t T t b t T

t t
 

By letting 
 

( , )( , ) a t Ta t T
t

 and 
 

( , )( , ) b t Tb t T
t

 then we have: 

   2 21
( , ) ( , ) ( , ) 1 ( , ) ( , ) ( ) ( , ) 0

2t tg t r r b t T b t T a t T b t T t b t T           
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This is essentially Vasicek but we have: 

( , ) exp ( )
T s

t t
b t T u du ds

 
  
 
 

   

As   has been taken as a constant in the model above we have: 

   

  






 

 
  
 
 

  

 

 



( , ) exp

exp

1 1

T s

t t

T

t

T t

b t T du ds

s t ds

e

 

So ( , )b t T  is the same as for the Vasicek model. 

 2 21
2

( , ) ( ) ( , ) ( , )
T

t
a t T s b s T b s T ds     

Question 

Show that ( , )a t T  and ( , )b t T  satisfy the equation 

             
 

2 21( , ) ( , ) ( , ) 1 ( , ) ( , ) ( ) ( , ) 0
2t tg t r r b t T b t T a t T b t T t b t T  

Solution 

By differentiating ( , )a t T  and ( , )b t T  we have: 

    


2 21
2

( , )( , ) ( ) ( , ) ( , )a t Ta t T t b t T b t T
t

 

and 

      

( , )( , ) T tb t Tb t T e
t
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Substituting these into the given equation gives: 

  
  

 



   

 

   

 

     

    
  

    

  



2 21
2

2 2 2 21 1
2 2

( , ) ( , ) ( , ) 1 ( , ) ( , ) ( ) ( , )

( , ) 1 ( ) ( , )
( , )

( , ) ( , ) ( ) ( , )

( , ) 0 0

0

t t

T t
t

t

t t

g t r r b t T b t T a t T b t T t b t T

r b t T e t b t T
g t r

b t T b t T t b t T

g t r r

 

as required. 

 
The advantage of this model over Vasicek is that ( )t  can be chosen to reproduce (as 

closely as possible) the exact yield curve, rather than the restricted forms of the Vasicek 
model. 
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4 Summary of short-rate modelling 

4.1 Summary of models 

The properties of these models are summarised below: 

Model Dynamics 0tr   for all t Distribution of tr  

Vasicek ( )t t tdr r dt dW      No Normal 

CIR ( )t t t tdr r dt r dW      Yes 
Non-central chi-
squared 

Hull-White – 
Vasicek  

( ( ) )t t tdr t r dt dW      No Normal 

Hull-White – CIR ( ( ) )t t t tdr t r dt r dW     Yes 
Non-central chi-
squared 

 
The last row of the table introduces an alternative form of the Hull-White model that extends the 
CIR model. 

There are analytic solutions for ( , )P t T  and option prices for each of these four models. 

4.2 Limitations 

Question 

What is a one-factor term structure model? 

Solution 

A one-factor model is a model in which interest rates are assumed to be influenced by a single 
source of randomness. 

 
Bearing in mind that the purpose of interest rate models is to price interest rate derivatives, 
there are some short-comings of short-rate models: 

 Single factor short-rate models mean that all maturities behave in the same way - 
there is no independence.  This essentially means they are useless for pricing 
swaptions (but OK for caps/floors). 

 There is little consistency in valuation between the models. 

 They are difficult to calibrate. 

One-factor models, such as Vasicek and CIR, have certain limitations with which it is 
important to be familiar.   
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First, if we look at historical interest rate data we can see that changes in the prices of 
bonds with different terms to maturity are not perfectly correlated as one would expect to 
see if a one-factor model was correct.  Sometimes we even see, for example, that 
short-dated bonds fall in price while long-dated bonds go up.  Recent research has 
suggested that around three factors, rather than one, are required to capture most of the 
randomness in bonds of different durations. 

Second, if we look at the long run of historical data we find that there have been sustained 
periods of both high and low interest rates with periods of both high and low volatility.  
Again, these are features which are difficult to capture without introducing more random 
factors into a model. 

This issue is especially important for two types of problem in insurance: the pricing and 
hedging of long-dated insurance contracts with interest rate guarantees; and asset-liability 
modelling and long-term risk management. 

One-factor models do, nevertheless have their place as tools for the valuation of simple 
liabilities with no option characteristics; or short-term, straightforward derivatives 
contracts. 

For other problems it is appropriate to make use of models which have more than one 
source of randomness: so-called multi-factor models.  Hull-White is not really a multi-factor 
model, the   and   parameters are deterministic and aid fitting.  A multi-factor version of 

Vasicek would involve a multidimensional driving Wiener process and possibly 
stochastic  . 

Question 

Summarise the characteristics of the Vasicek, Cox-Ingersoll-Ross and Hull-White models. 
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Solution 

The following table summarises the characteristics of the Vasicek, Cox-Ingersoll-Ross (CIR) and 
Hull-White models. 

 Vasicek CIR Hull-White 

Arbitrage-free Yes Yes Yes 

Positive interest rates No Yes No 

Mean-reverting interest rates Yes Yes Yes 

Easy to price bonds and derivatives Yes Yes(1) Yes 

Realistic dynamics No(2) No(2) No(2) 

Adequate fit to historical data No No Yes 

Easy to calibrate to current data No No Yes(3) 

Can price a wide range of derivatives No(4) No(4) No(4) 

 
Notes: 

(1) Although the CIR model is harder to use than the other two models, it is more tractable 
than models with two or more factors. 

(2) All three models produce perfectly correlated changes in bond prices, which is inconsistent 
with the empirical evidence, and fail to model periods of high and low interest rates and 
high and low volatility.   

(3) Whilst one-factor models are generally difficult to calibrate, the Hull-White model is easier 
than the other two because its time-varying mean-reversion function aids fitting. 

(4) All three models can be used to price short-term, straightforward derivatives, but not 
complex derivatives. 
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5 State-price deflator approach to pricing 

5.1 Short-rate models 

Other modellers prefer to take a different approach to model-building using state price deflators.   

With this approach we first specify a strictly positive diffusion process ( )A t  with SDE under P :  

   ( ) ( ) ( ) ( ) ( )A AdA t A t t dt t dW t  

where  ( )A t  and  ( )A t  will be stochastic. 

Note that, with this approach, the dynamics of the state price deflator ( )A t  are defined in terms 
of the real-world probability measure. 

We define zero-coupon bond prices according to the formula  

 
 

( )
( )

( )
P tE A T F

P t T
A t

 

It can be shown, although it isn’t done here, that this method gives rise to an arbitrage-free model 
for bond prices.  

Question 

Check that this formula works when t T . 

Solution 

When t T  we have: 

  
 

( )
( )

( )
P TE A T F

P T T
A T

 

The expectation here is conditional on the history of the process ( )A t  up to time T .  
Consequently, there is no additional randomness in ( )A T , which can be considered to be a known 
value.  So we have: 

   
( )

( ) 1
( )

A TP T T
A T

 

This is exactly what we would expect, since the bond matures at time T  and has a value of 1 at 
that time. 
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Question 

Suppose that ( )A t  is a deterministic process with   ( )A t  and  ( ) 0A t , where   is a 

constant.  Show that ( ) tA t ke  and evaluate ( , )P t T . 

Solution 

Here the SDE for ( )A t  becomes  ( ) ( )dA t A t dt , which is an ordinary differential equation.  This 
can be written in the form: 

  
1 ( )
( )

dA t
A t dt

  or   log ( )d A t
dt

 

Integrating gives: 

   log ( )A t t constant 

So: ( ) tA t ke , where k  is a constant. 

( , )P t T  can now be calculated from the formula  
 

( )
( )

( )
P tE A T F

P t T
A t

, ie: 

 








   ( )
T

P t
t

E ke F
P t T

ke
 

Since ( )A t  is not random here, we can simplify this to get: 

 






 

   ( )( )
T

T t
t

keP t T e
ke

 

This question illustrates that the process ( )A t  acts like a discount factor that applies to payments 

at time t .  It is a generalisation of the familiar tv  factor. 

 
The formula for ( , )P t T  is a very simple looking formula, but any potential difficulty comes in 

working out  ( )P tE A T F  as we need ‘interesting’ models for ( )A t  in order to get interesting and 

useful models for ( )r t  and ( , )P t T . 

Question 

Suppose that   ( )A t  and  ( )A t , where   and   are constants. 

Show that     
2( ½ )( ) (0) tt WA t A e  and    ( )( ) T tP t T e . 
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Solution 

The SDE for ( )A t  now becomes: 

     ( ) ( ) tdA t A t dt dW  

This has the same form as the SDE for the lognormal model for share prices.  So its solution is: 

     
2( ½ )( ) (0) tt WA t A e  

( , )P t T  can now be calculated from the formula  
 

( )
( )

( )
P tE A T F

P t T
A t

: 

 

  

  

 




 

  

  

  

  

    

   

   

2

2

2

2

( ½ )

( ½ )

( ½ )( )

( )( ½ )( )

(0)
( )

(0)

T

t

T
t

T t

T W
P t

t W

T t
W

P tW

W WT t
P t

E A e F
P t T

A e

e E e F
e

e E e F

 

This expectation is conditional on the history up to time t .  But T tW W  relates to the ‘future’ 
time interval ( , )t T , and so is statistically independent.  So we can write: 

          
2 ( )( ½ )( )( ) T tW WT t

PP t T e E e  

Since  (0, )T tW W N T t , the expectation is now just the MGF of a normal distribution, so that: 

 
  



   

 

 



2 2( ½ )( ) ½ ( )

( )

( ) T t T t

T t

P t T e e

e
 

 
Using the state price deflator approach the risk-free rate of interest can be shown to be simply: 

 ( ) ( )Ar t t  

Again, this result is not derived here. 

It follows that our model will have positive interest rates if and only if  ( )A t  is negative for all t  
with probability 1.  This means that ( )A t  must be a strictly positive supermartingale (that is, 

  ( ) ( )P tE A T F A t  for all t , T ). 

Recall that martingales have the property that   |t s sE X F X  whenever t s , ie the process has 

zero drift.  A supermartingale has the property that   |t s sE X F X , ie the drift is negative or zero. 
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Question 

How do we know that ( )A t  is a supermartingale? 

Solution 

( )A t  takes positive values and  ( )A t  is negative.  Therefore the drift coefficient ( ) ( )AA t t  in the 
SDE for ( )A t  is negative.  So the expected value of ( )dA t  is negative, ie the process has negative 
drift, which means that it is a supermartingale. 

 
The state price deflator approach looks like it is quite different from the risk-neutral approach to 
pricing.  However, the two approaches are, in fact, exactly equivalent: any model developed in 
one framework has an equivalent form under the other framework. 

5.2 Market models 

Today, ‘market models’ have superseded short-rate models for situations where the 
correlation between different maturity rates is critical, such as the pricing of swaptions.  
These treat each maturity instrument (such as forward rate) as a distinct object, correlated 
to other similar assets using a multi-dimensional Wiener process in a no-arbitrage set-up 
based on the ‘state price deflator’ approach. 

Define a traded asset, based on the (traded) discount bonds ( , )P s t  and ( , )P s T : 

  1
( ) ( , ) ( , )X s P s t P s T


   

The price of a traded asset divided by another traded asset must be a martingale under the 
measure associated with the numeraire. 

A numeraire is a quantity whose values are used as the units for expressing the price of a security.  
Commonly used numeraires are: 

 the accumulated value of a risk-free cash account 

 the price of a zero-coupon bond 

 the price of a foreign currency. 

So, labelling TQ  as the measure associated with using ( , )P s T  as the numeraire, we have: 

  ( ) ( )
( , , ) ( , , )

( , ) ( , )
T TQ Q

X s X tF s t T E E F t t T
P s T P t T

 
   

 
 

Under TQ , the forward rates, ( , , )F s t T  are martingales, and: 

 ( , , ) ( , ) ( , , )
TQ

sdF s t T s t F s t T dW  

Note that we use t as the parameter for the volatility, rather than T, because the forward 
matures at t and does not exist in ( , ]t T . 
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Chapter 18 Summary 

Notation 

 t   current time 

 ( , )P t T   zero-coupon bond price 

 ( )r t   instantaneous risk-free rate 

 ( , , )f t T S  continuously compounded forward rate for the period ( , )T S  

 ( , )f t T   instantaneous forward rate 

 ( , )r t T   continuously compounded spot rate 

Relationships 

       
  
1 1( ) log ( ) ( )

T
t

r t T P t T f t u du
T t T t

 

    ( , ) exp[ ( , )( )]P t T r t T T t  

  


  
 
1 ( )( ) log

( )
P t Tf t T S

S T P t S
 

  



  


( , ) lim ( , , ) log ( , )

T S
f t T F t T S P t T

T
 

      ( , ) exp ( , )
T
t

P t T f t u du  

Desirable characteristics of a term structure model 

 The model should be arbitrage-free. 

 Interest rates should ideally be positive. 

  Interest rates should be mean-reverting. 

 Bonds and derivative contracts should be easy to price. 

 It should produce realistic interest rate dynamics. 

 It should fit historical interest rate data adequately. 

 It should be easy to calibrate to current market data. 

 It should be flexible enough to cope with a range of derivatives. 
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Examples of one-factor models 

Vasicek model 

      ( ) ( ) ( )dr t r t dt dW t   under Q  

Cox-Ingersoll-Ross model 

      ( ) ( ) ( ) ( )dr t r t dt r t dW t   under Q  

Hull-White model 

      ( ) ( ) ( ) ( )dr t t r t dt dW t   under Q  

where ( )t  is a deterministic function. 
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Chapter 18 Practice Questions 

18.1 Explain the similarities and differences in the following three interest rate models: 

 the Hull-White model  

 the Cox-Ingersoll-Ross model 

 the Vasicek model 

18.2 Explain the following formulae as they are used in interest rate modelling: 

(a) 
       

( , ) exp ( ) ( )
T

Q t
P t T E r u du r t  

(b) 
1( , ) [ ( )| ]
( ) P tP t T E A T F

A t
  

18.3 The stochastic differential equations defining the short-rate process assumed in three commonly 
used models for the term structure of interest rates are shown below: 

 Model 1:     ( ) [ ( )] ( )dr t r t dt dW t  

 Model 2:     ( ) [ ( )] ( ) ( )dr t r t dt r t dW t  

 Model 3:     ( ) [ ( ) ( )] ( )dr t t r t dt dW t  

In each case, ( )W t  denotes a standard Brownian motion under the risk-neutral probability 
measure. 

(i) Identify these three models. 

(ii) Outline the key statistical properties of the short-rate processes for each of these 
models.  

The dynamics of a fourth model are defined by: 

 Model 4:   ( ) ( )dr t dt dW t  

where   and   are constants. 

(iii) State the limitations of this model. 
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18.4 (i) List the desirable characteristics of interest rate models. [4] 

(ii) Discuss the limitations of one-factor models of interest rates. [5] 

(iii) The short rate of interest is governed by the stochastic differential equation (SDE): 

     0.6 0.04 0.006t t tdr r dt dB  

 where tB  is a standard Brownian motion. 

 By considering the function    0.6, t
t tf r t r e , or otherwise, solve this SDE. [5] 

    [Total 14] 

18.5 A bond trader assumes that ( , )f t T , the instantaneous forward rate of interest at time T  implied 
by the market prices of bonds at the current time t , can be modelled by: 

           0.2 0.2 0.2 0.2( , ) 0.04 0.06(1 ) 0.1(1 )f t T e e e e  

where   T t . 

(i) Sketch a graph of ( , )f t T  as a function of  . [3] 

(ii) Calculate the following quantities using this model: 

 (a) the instantaneous forward rate of interest in two years’ time 

 (b) the current price of a 10-year zero-coupon bond 

 (c) the current 10-year spot rate. 

 You should express your answers to (a) and (c) as annualised continuously compounded 
rates.   [6] 

    [Total 9] 

18.6 If ( )A t  is a strictly positive supermartingale, then zero-coupon bond prices can be modelled using 

the formula 
[ ( )| ]( , )

( )
P tE A T FB t T

A t
, where P  is a suitably-chosen probability measure. 

(i) (a) Express mathematically the fact that ( )A t  is a strictly positive supermartingale. 

 (b) Verify that the function   0.05 0.02 ( )( ) t W tA t e , where ( )W t  denotes standard 
Brownian motion, satisfies the properties in (i)(a). 

 (c) State why the supermartingale property is required. 

 (d) Write down the name given to this type of process. [7] 

(ii) By writing ( )A t  in the form  ( )( ) X tA t e , or otherwise, show that ( )A t  satisfies a stochastic 
differential equation of the form: 

    ( ) ( )[ ( ) ( ) ( )]A AdA t A t t dt t dW t  

 State the forms of the functions  ( )A t  and  ( )A t . [4] 

Exam style 

Exam style 

Exam style 
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(iii) (a) Write down or derive a formula for ( , )P t T  based on the process ( )A t  specified in 
(i)(b). 

 (b) Write down expressions for the instantaneous forward rate ( , )f t T  and the spot 
rate ( , )r t T  based on this model. 

 (c) State one problem that this model of interest rates has. [4] 

(iv) Calculate the prices at time 5 according to the model in (ii) of the following risk-free 
bonds: 

 (a) a 10-year zero-coupon bond 

 (b) a 10-year bond that pays a coupon of 5% at the end of each year. [4] 
    [Total 19] 

18.7 (i) Explain what is meant by a short rate model of interest rates and how such models can be 
used to price interest rate derivatives.  

(ii)  Explain what is meant by a one-factor short rate model of interest rates. 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 18 Solutions 

18.1 These three models are all one-factor models used for modelling the short rate of interest ( ).r t  

All three models assume that ( )r t  has the dynamics of an Ito process under the risk-neutral 
probability measure Q .  

The equations defining the three models are: 

 Vasicek:     ( ) [ ( )] ( )dr t r t dt dW t  

 Cox-Ingersoll-Ross:     ( ) [ ( )] ( ) ( )dr t r t dt r t dW t  

 Hull-White:      ( ) [ ( ) ( )] ( )dr t t r t dt dW t  

All three models are mean reverting to  , where… 

…   is time-dependent for the Hull-White model, but constant for the other two. 

The Hull-White model is easier to fit to past and current data than the Vasicek or Cox-Ingersoll-
Ross models due to the fact that there is more choice of parameters (since   is 
time-dependent).   

All three models generate arbitrage-free zero-coupon bond prices. 

All three models can be used to price simple options on zero-coupon bonds. 

The Cox-Ingersoll-Ross model includes the factor ( )r t  in the volatility coefficient.  This prevents 
( )r t  taking negative values. 

The Vasicek model is more tractable mathematically than the other two. 

Over long periods the distribution of ( )r t  under the Cox-Ingersoll-Ross model involves the 
non-central chi-square distribution, whereas the distribution under the other two models is 
normal.    

Since these are all one-factor models: 

 they cannot be used to price derivatives whose payoffs depend on more than one interest 
rate.   

 there will be positive correlation between bond prices of all durations, which is 
unrealistic.  

18.2 (a) 
       

( , ) exp ( ) ( )
T

Q t
P t T E r u du r t  

This formula is used to find the price at time t  of a zero-coupon bond maturing at time T  when a 
short rate model is used. 
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Q  denotes the risk-neutral probability measure for this process. 

(b) 
1( , ) [ ( )| ]
( ) P tP t T E A T F

A t
 

This formula is used to find the price at time t  of a zero-coupon bond maturing at time T  when a 
state-price deflator model is used. 

( )A t  is the state-price deflator, which is a stochastic process. 

( )A t  must be a strictly positive supermartingale. 

P  denotes a suitably chosen probability measure. 

The stochastic differential equation for ( )A t  has the following form under P : 

   ( ) ( )[ ( ) ( ) ( )]A AdA t A t t dt t dW t  

where  ( )A t  and  ( )A t  are appropriately chosen stochastic processes. 

18.3 (i) Identify the models 

These are the Vasicek, Cox-Ingersoll-Ross and Hull-White models, respectively.  

(ii) Key statistical properties 

In each case the short rate of interest ( )r t  is modelled as an Ito process.  

The process therefore operates in continuous time and has normally-distributed increments over 
short time intervals.   

The volatility parameter   controls the size of the random movements.  

The coefficient of dt  represents the expected annual drift under the risk-neutral probability 
measure (since the increments ( )dW t  have zero mean under this measure).  But under the 
real-world probability measure the drift will have a different value.  

All three models exhibit mean reversion. 

In Model 1 and Model 2 the long-term “target” rate   is constant, while in Model 3 it is a 
function of the time t .   

With Model 1 and Model 3 it is possible to get a negative value for ( )r t , which is unrealistic.  

The inclusion of the ( )r t  factor in Model 2 prevents ( )r t  taking negative values. 

Over longer periods the distribution of ( )r t  under Model 2 involves the non-central chi-square 
distribution, whereas the distribution under the other two models is normal. 

Model 3 is easier to fit to past and current data than the other models due to the fact that there is 
more choice of parameters (since   is time-dependent). 
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(iii) Limitations of Model 4 

Model 4 does not exhibit mean reversion. 

If   is non-zero, the trend value of ( )r t  will increase or decrease steadily, which is unrealistic.  

The model allows negative interest rates, which is not necessarily realistic.  

The model involves only two parameters,   and  , and so may be difficult to calibrate to past 
and current data.  

Since this is a one-factor model: 

 it cannot be used to price derivatives whose payoffs depend on more than one interest 
rate.    

 there will be positive correlation between bond prices of all durations, which is 
unrealistic.   

18.4 (i) Desirable characteristics of interest rate models 

The model should be arbitrage-free. 

Interest rates should ideally be positive. 

Interest rates should be mean-reverting over the long term. 

Bonds and derivative contracts should be easy to price. 

The model should produce realistic interest rate dynamics. 

It should fit historical interest rate data adequately. 

It should be easy to calibrate to current market data. 

It should be flexible enough to cope with a range of derivatives. 

    [½ each, Total 4] 

(ii) Limitations of one-factor models 

A result of one-factor models is that yields on bonds of different durations are perfectly 
correlated.  This is not realistic. [1] 

In fact, they need not even be positively correlated.  Sometimes we see, for example, that 
short-dated bonds fall in price while long-dated bonds increase in price. [½] 

If we look at the long run of historical data we find that there have been sustained periods of both 
high and low interest rates with periods of both high and low volatility.  These are features that 
are difficult to capture in one-factor models.  [1] 
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This issue is especially important for two types of problem in insurance: 

 the pricing and hedging of long-dated insurance contracts with interest rate 
guarantees  [½] 

 asset-liability modelling and long-term risk management.  [½] 

One-factor models struggle to cope with valuing derivative contracts.   We need more complex 
models to deal effectively with these.  For example, any contract that makes reference to more 
than one interest rate should allow these rates to be less than perfectly correlated. [1½] 
    [Total 5] 

(iii) Short rate of interest 

Using a Taylor Series expansion for the given function we get: 

 

   

 

   



  
  
 

         

   

 

0.6

2
2

2

20.6 0.6

0.6 0.6 0.6 0.6

0.6 0.6

,

1
2

10.6 0.04 0.006 0 0.6
2

0.024 0.006 0.6 0.6

0.024 0.006

t
t t

t t
t t

t t
t t t t

t t t t
t t t

t t
t

d r e df r t

f f fdr dr dt
r tr

e r dt dB dr r e dt

e dt e dB r e dt r e dt

e dt e dB  [2] 

Alternatively, you can use the general form of Ito’s Lemma, the product rule or an integrating 
factor to derive this equation. 

Substituting s  for t  and integrating between 0 and t  we get: 

      0.6 0.6 0.6

0 0 0

0.024 0.006
t t t

s s s
s sd r e e ds e dB  

          0.6 0.6 0.6
0 0

0

0.04 0.006
tt ts s s

s sr e e e dB  [2] 

       0.6 0.6 0.6
0

0

0.04 1 0.006
t

t t s
t sr e r e e dB  

We can then rearrange to get the required solution: 

            0.60.6 0.6
0

0

0.04 1 0.006
t

t st t
t sr r e e e dB  [1] 

    [Total 5] 

Note that this is an example of the Vasicek model, which is also an Ornstein-Uhlenbeck process. 
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18.5 (i) Graph 

The factor 0.2e  reduces from 1 to zero as the term   increases from zero to infinity.  So the first 
two terms represent a weighted average of 0.04 (the short rate) and 0.06 (the long rate). [½] 

The final term is zero when   0  or    , but positive in between.  So this adds a ‘hump’ to the 
graph.    [½] 

In fact, if you differentiate the function given, you will find that the maximum occurs when 
 0.2 0.4e , which corresponds to the point where   4.58  and  7.6%f . 

The graph looks like this: 

 [2] 
    [Total 3] 

(ii)(a) Calculate the instantaneous forward rate in 2 years’ time 

This is: 

              0.2 2 0.2 2 0.2 2 0.2 2( , 2) 0.04 0.06(1 ) 0.1(1 ) 0.0687f t t e e e e  

ie 6.87%   [1] 

(ii)(b) Calculate the price of a 10-year zero-coupon bond 

This is: 

 
     

10
( , 10) exp ( , )

t
t

P t t f t u du  

0%

2%

4%

6%

8%

f(t
,T

)
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The integral, using the substitution   u t , is: 

 

   

 

 







    

 

 

    

  

    

   

 



10 10 0.2 0.2 0.2 0.4
0

10 0.2 0.4
0

100.2 0.4
0

( , ) [0.04 0.06(1 ) 0.1( )]

[0.06 0.08 0.1 ]

0.06 0.4 0.25

0.55044 ( 0.15) 0.70044

t
t

f t u du e e e e d

e e d

e e

 

So:   0.70044( , 10) 0.4964P t t e  

ie £49.64 per £100 nominal [3] 

(ii)(c) Calculate the 10-year spot rate 

This can be calculated as the average of the forward rates: 

 


    
101 1( , 10) ( , ) 0.70044 0.070044

10 10
t
t

r t t f t u du  

ie 7.00%   [2] 

Alternatively, we could solve: 

      0.70044 10 ( , 10)( , 10) 1 R t tP t t e e  
    [Total 6]  

18.6 (i)(a) Express these properties mathematically 

‘Strictly positive’ simply means that: 

 ( ) 0A t  for all times t  [1] 

The ‘supermartingale’ property means that, whenever t T : 

 [ ( )| ] ( )P tE A T F A t  [1] 

(i)(b) Verify that this function has these properties 

The presence of the exponential function ensures that this function is strictly positive. [½] 

Since ( )A t  is strictly positive, the supermartingale property is equivalent to: 

 
[ ( )| ] 1

( )
P tE A T F

A t
  [½] 
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With the definition given for ( )A t , the left-hand side is: 

 

  

  



    

    

0.05 0.02 ( ) 0.05 0.02 ( )

0.05( ) 0.02[ ( ) ( )]

[ ( )| ]
( )

P t

t W t T W T
P t

T t W T W t
P t

E A T FLHS
A t

e E e F

e E e F  [1] 

Because of the independent increments property of Brownian motion, we can drop the tF .  We 
can then use the fact that  ( ) ( ) (0, )W T W t N T t  under P  to evaluate the expectation on the 
right-hand side, which corresponds to an MGF based on a normal distribution.  Using the formula 
given on page 11 of the Tables, we get: 

      
20.05( ) ½(0.02) ( ) 0.0498( )T t T t T tLHS e e e  [½] 

When t T  (which we have assumed throughout), this is indeed less than 1.  So the 
supermartingale property is satisfied. [½] 

(i)(c) State why the supermartingale property is required 

The supermartingale property is equivalent to: 

 
[ ( )| ] 1

( )
P tE A T F

A t
 

The left-hand side matches the formula for the bond price ( , )B t T .  So this property ensures that 
the price of a zero-coupon bond is always less than 1.  This is equivalent to prohibiting negative 
interest rates.   [1] 

(i)(d) Name of the process 

The process ( )A t  is a state price deflator. [1] 
    [Total 7]  

(ii) Stochastic differential equation for A(t) 

We can write: 

  ( )( ) X tA t e  

where   ( ) 0.05 0.02 ( )X t t W t , so that   ( ) 0.05 0.02 ( )dX t dt dW t . [1] 

So, using a Taylor Series expansion, we can write: 

  

    

 

( ) ( ) ( ) 21
2

21
2

( ) ( ) [ ( )]

( ) ( ) [ ( )]

X t X t X tdA t d e e dX t e dX t

A t dX t dX t  [1] 
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Substituting the SDE for ( )X t  gives: 

        21
2( ) ( ) 0.05 0.02 ( ) [ 0.05 0.02 ( )]dA t A t dt dW t dt dW t  

Simplifying using the 2 2  multiplication grid, we get: 

 

 
 

   

  

21
2( ) ( ) 0.05 0.02 ( ) (0.02)

( ) 0.0498 0.02 ( )

dA t A t dt dW t dt

A t dt dW t  [1] 

So, in this case, the drift and volatility coefficients are: 

   ( ) 0.0498A t   and   ( ) 0.02A t  [1] 
    [Total 4]  

(iii)(a) Formula for ( , )P t T  

We have already evaluated the formula for ( , )P t T  in part (i)(b), which gave: 

    0.0498( )[ ( ) ]
( , )

( )
P t T tE A T F

P t T e
A t

 [1] 

(iii)(b) Expressions for ( , )f t T  and ( , )r t T  

The instantaneous forward rate is: 

 
 

      
 

( , ) log ( , ) [ 0.0498( )] 0.0498f t T P t T T t
T T

 

ie a constant rate of 4.98%. [1] 

The spot rate therefore also takes a constant value of 4.98%. [1] 

(iii)(c) One problem with this model 

A model with constant interest rates over all terms is not arbitrage-free.  This would be a serious 
problem if the model was used in practical applications.  [1] 
    [Total 4] 

(iv)(a) Price of a zero-coupon bond 

According to this model, the price at time 5 (or indeed, at any time) of a 10-year zero-coupon 
bond is: 

     0.0498(15 5) 0.498(5,15) 0.6077P e e  

ie 60.77 per 100 nominal. [2] 
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(iv)(b) Price of a 5% annual coupon bond 

The price of a 5% annual coupon bond per 100 nominal is: 

     2 10 105[ ] 100P v v v v  

where  0.0498 0.95142v e . 

Evaluating the sum as a geometric progression, we get: 

 
 

       

1015 60.77 5(7.682) 60.77 99.18
1

vP v
v

 [2] 

    [Total 4] 

18.7 (i) Short rate model of interest rates 

Short rate models are used to model the term structure of interest rates as a function of the short 
rate ( )r t .     

In theory, this is the interest rate that applies over the next instant of time, of length dt .  

In practice, the short rate is an overnight rate, ie the force of interest earned when money is lent 
today and received back with interest the following day. 

r(t) itself is usually assumed to be an Ito process, with a stochastic differential equation of the 
form: 

  ( ) ( , ( )) ( , ( )) tdr t a t r t dt b t r t dW  

where tW  is a standard Brownian motion under the risk-neutral probability measure, Q. 

The price at time t of an interest rate derivative that pays TX  at maturity date T t  can then be 
found from: 

 
       

exp ( )
T

t Q T tt
V E r u du X F  

(ii)  Explain what is meant by a one-factor short rate model 

A one-factor short rate model is one in which the short rate, and hence the term structure as a 
whole, is assumed to be influenced by a single source of randomness. 

The prices of all bonds (of all maturities) and interest-rate derivatives must therefore move 
together.   

The single source of randomness is typically assumed to be a standard Brownian motion 
process.   

The short rate is therefore usually modelled as an Ito process. 
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Credit risk 

 

 

  

Syllabus objectives 

4.6 Simple models for credit risk 

4.6.1 Define the terms credit event and recovery rate. 

4.6.2 Describe the different approaches to modelling credit risk: 

 structural models 

 reduced-form models 

 intensity-based models. 

4.6.3 Demonstrate a knowledge and understanding of the Merton model. 

4.6.4 Demonstrate a knowledge and understanding of a two-state model for 
credit ratings with a constant transition intensity. 

4.6.5 Describe how the two-state model can be generalised to the Jarrow-Lando-
Turnbull model for credit ratings. 

4.6.6 Describe how the two-state model can be generalised to incorporate a 
stochastic transition intensity. 
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0 Introduction 

This chapter addresses credit risk – the risk that a person or an organisation will fail to make a 
payment they have promised.  This is quite a new area (eg the Jarrow-Lando-Turnbull (JLT) model 
was only published in 1997) that has grown in importance with the introduction of credit 
derivatives (which are covered in some later subjects, not in this course). 

We start with some definitions to set the scene, then go on to look at the Merton model, which is 
a simple model that relates the price of a bond subject to default to the price of an option.  We 
then look at two models that are applications of the theory of continuous-time jump processes.  
The first model is a two-state model.  The second is the JLT model, which is a more general 
multi-state model. 

The Core Reading in this chapter is adapted from course notes written by Timothy Johnson. 
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1 Credit events and recovery rates 

In earlier chapters it has been assumed that bonds are default-free.   

Question 

Explain what it means for a bond to be default-free. 

Solution 

A bond is default-free if the stream of payments due from the bond will definitely be paid in full 
and on time. 

 
Credit risk exists when a party may default on its obligations.  Credit risk is usually ignored 
with respect to payments by a sovereign government in its own currency, but needs to be 
accommodated for if an obligation is met in a currency issued by a third-party (such as 
corporate obligations, obligations by a government in a currency it does not control).  

Corporate entities issuing bonds consist mainly of large companies and banks.  For example, in 
May 2014, Barclays had a 5¾% bond redeemable in September 2026 and Tesco had a 5½% bond 
redeemable in December 2019.  These companies entered into a contract to make interest 
payments on set dates to the bondholders and to repay the face value of the bond on the 
redemption date.  Failure to do this would result in the bonds being in default. 

A credit loss only exists if the counter-party defaults and the contract has value.  In a 
forward or swap contract, both long/receiving and short/paying parties are exposed to a 
credit risk, since either party could default if the market moves against them.  For options 
and bonds, the purchaser of the option/bond is exposed to default by the writer/issuer, but 
they do not have an obligation to the writer/issuer. 

Credit risk is calculated as an expected loss: 

 Expected Loss = Exposure  Probability of Default  Loss Given Default 

All the parameters have an implicit time dependence.  The Loss Given Default (LGD) is the 
percentage of the exposure that will be lost on a default, the recovery rate is the reciprocal 
of the LGD (Recovery Rate = 100%-LGD).  Usually some value can be recovered when a 
counter-party defaults. 

Credit risk changes with the market and good practice is to assess both current and 
potential exposure.  The current exposure is the current market value of the asset, the 
future exposure should be based on a wide range of future scenarios, with different default 
probabilities. 

For the remainder of the chapter we’ll only be considering credit risk with respect to bonds. 
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The outcome of a default may be that the contracted payment stream: 

 is rescheduled 

 is cancelled by the payment of an amount which is less than the default-free value of the 
original contract 

 continued but at a reduced rate 

 is totally wiped out. 

An example of cancellation would be where the bondholders agree to accept a reduced one-off 
cash payment of 75% of the face value instead of the contractual payments. 

Credit events, which might result in a failure to meet an obligation (defined for the purposes 
of credit derivatives), include: 

 actions that are associated with bankruptcy or insolvency laws 

ie the bond issuer becomes insolvent. 

 downgrade by ‘Nationally Recognised Statistical Rating Organisations’, (NRSROs 
such as Moody’s, S&P and Fitch) 

This is of particular concern when a bond is issued with a guaranteed minimum credit 
rating. 

 failure to pay 

ie either a coupon or the capital amount is not paid in full and on time. 

 repudiation / moratorium 

ie the validity of the contract is disputed or a temporary suspension of activity is imposed 
on the issuer. 

 restructuring – when the terms of the obligation are altered so as to make the new 
terms less attractive to the debt holder, such as a reduction in the interest rate, re-
scheduling, change in principal, change in the level of seniority. 
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2 Approaches to modelling credit risk 

2.1 Structural models 

Structural models are explicit models for a corporate entity issuing both equity and debt.  They 
aim to link default events explicitly to the fortunes of the issuing corporate entity.   

Structural, or firm-value, models are used to represent a firm’s assets and liabilities and 
define a mechanism for default.  Typically, default occurs when a stochastic variable (or 
process) hits a barrier representing default.  The main example of a structural model is the 
Merton model. 

These models deliver an explicit link between a firm’s default and the economic conditions 
and provide a sound basis for estimating default correlations amongst different firms.  The 
disadvantage is identifying the correct model and estimating its parameters. 

These models are called ‘structural’ because they focus on the financial structure – the split 
between debt and equity – of the company issuing the bond.  We will discuss the Merton model 
in the next section. 

2.2 Reduced-form models 

Reduced-form models do not attempt to deliver a representation of a firm, like structural 
models do.  Rather they are statistical models that use observed data, both macro and 
micro, and so can usually be ‘fitted’ to data. 

The market statistics most commonly used are the credit ratings issued by NRSROs.  The 
credit rating agencies will have used detailed data specific to the issuing corporate entity 
when setting their rating.  They will also regularly review the data to ensure that the rating 
remains appropriate and will re-rate the bond either up or down as necessary. 

Default is no longer tied to the firm value falling below a threshold-level, as in structural 
models.  Rather, default occurs according to some exogenous hazard rate process.   

These models are called ‘reduced-form’ because they do not attempt to model the inner financial 
workings of the particular company issuing the bond.  Instead, they model the different levels of 
creditworthiness and how companies move from one status to another.   

2.3 Intensity-based models 

An intensity-based model is a particular type of continuous-time reduced-form model.  It 
typically models the jumps between different states (usually credit ratings) using transition 
intensities.  The disadvantage of reduced-form models is that they sometimes lack the 
clarity of structural models. 

This approach uses a continuous-time multiple state model (jump process) where the states 
correspond to the creditworthiness of the company.  The ‘intensities’ (denoted by  ) are the 
rates driving the company to switch from one state to another as time passes.  Intensity-based 
models are an example of a reduced-form model. 
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3 The Merton model 

The Merton model is a simple example of a structural model. 

Classical finance defines the value of a firm  F t  as the sum of its debt,  B t  and equity 

 E t , so: 

      F t B t E t   

Merton’s model assumes that a corporate entity has issued both equity and debt such that its 
total value at time t  is  F t .  This value varies over time as a result of actions by the corporate 

entity, which does not pay dividends on its equity or coupons on its bonds. 

For example, the value of a company will change along with investors’ perceptions of the future 
prospects of that company. 

Assume a firm has issued a single zero-coupon bond with face value of L which matures at 
time T.   

Debt holders rank above shareholders in the wind-up of a company.  So, provided the company 
has sufficient funds to pay the debt, the shareholders will receive ( )F T L . 

t T

Debt Debt

Equity

Equity

F(T)

F(t)

L

F(T)-L

 

The corporate entity will default if the total value of its assets,  F T , is less than the promised 

debt repayment at time T : 

ie   F T L  

In this situation, the bondholders will receive  F T  instead of L  and the shareholders will receive 

nothing. 

Combining these two cases, we see that the shareholders will receive a payoff of  max ( ) ,0F T L  

at time T . 
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This can be regarded as treating the shareholders of the corporate entity as having a European 
call option on the assets of the company with maturity T  and a strike price equal to the value of 
the debt.  The Merton model can be used to estimate either the risk-neutral probability that the 
company will default or the credit spread on the debt. 

Since debt is senior to equity, the value of equity at maturity: 

    max ( ) ,0E T F T L   

and so the value of a firm’s equity is a call option on the value of the firm with a strike of the 
debt. 

Credit spread is a measure of the excess of the yield on a risky security over a risk-free yield.  It 
largely relates to the expected cost of default.  However, in practice it will also typically reflect 
other factors, such as a risk premium relating to the risk of default and a liquidity premium. 

Because of the risk of default, a bond issued by a company will have a lower market price than a 
similar bond issued by a government.  So the yield on the company bond will be higher than the 
yield on the government bond.  The credit spread refers to the difference between these two 
rates. 

Question 

Suggest how this model could be used to calculate the value of the risky corporate bonds at 
time t. 

Solution 

Since we are viewing the equity as a call option on the total value of the company, we could use 
an option pricing method, such as the Black-Scholes option pricing formula, to calculate how 
much the equity at time T  is worth now (ie at time t ). 

The value of the bonds could then be found by subtracting this from the current value of the 
company ( )F t , ie: 

 ( ) ( ) ( )B t F t E t . 

where ( )B t  and ( )E t  are the current value of the company’s risky corporate bonds and the equity 
respectively. 
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Consequently, 

   ( )
1 2( ) ( ) ( )r T tE t F t d Le d            (1) 

with: 

 
  21

2
1

log ( ) / ( )( )F

F

F t L r T t
d

T t




  



,  2 1 Fd d T t    

where F  is the volatility of the firm value. 

The value of the debt today is ( ) ( )F t E t . 

Unfortunately, ( )F t  (and F ) are unobservable, since they depend on the market’s 

assessment of ( )B t .  However, if we assume that the value of the firm and the equity both 

follow geometric Brownian motion, and ( ) ( ( ))E t f F t  then by Ito: 

 
2

2 2
2

( ) 1 ( ) ( )
( ) ( ) ( ) ( )

( ) 2 ( )( )
F F F t

E t E t E tdE t F t F t dt F t dW
F t F tF t

  
   

   
   

   

where the values F  and F come from the stochastic differential equation for ( )F t : 

    ( ) ( ) F F tdF t F t dt dW  

However, ( )E t  also has its own stochastic differential equation: 

  ( ) ( ) E E tdE t E t dt dW    

Comparing terms leaves: 

  1
( )

( ) ( ) ( )
( )E F F

E tE t F t F t d
F t

  
  


       (2) 

Now ( )E t  and E  can be observed from market data. 

Using equations (1) and (2) we have: 

 
 

  
1

( )
2

( ) ( )

( )

E F

r T t
F

E t F t d

E t Le d

 

  

 

  
 

  
( )

2

( )

( ) ( )
E

F r T t
E t

E t Le d

 


 

 

This is not trivial since F  is used to calculate 2d . 
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Recall that, in the Black-Scholes world, 2( )d  is the risk-neutral probability that a call 

option will be exercised, that is it expires in the money.  In this context, this means that: 

 2 21 ( ) ( )d d      

is the risk-neutral probability that the firm is in default at time T (but not that it has defaulted 
in [0, )T  and then recovered).  This method provides a rough estimate of the probability of 

default. 

In general it may be possible for default bonds to ‘recover’, ie to re-start coupon payments.  
However, the Merton model is only concerned with the state of the bond at time T.  In the next 
section it is assumed that once a bond defaults then it always remains in such a state. 

One limitation is that the default probability is given in the abstract risk-neutral world.  The 
real-world probability can be derived using: 

 
  21

2
1

log ( ) / ( )( )F F

F

F t L T t
d

T t
 



  



,  2 1 Fd d T t    

where the real-world drift, F , replaces the risk-less drift.  However, F  is not observable. 

The pricing equation (1) uses the risk-neutral probability measure, under which ( )F t  is expected 
to grow at the risk-free rate.  This is the reason why the unobservable quantity F  is not required, 
and the above calculations have been to find only F  (which is used in (1)). 
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4 Two-state models for credit risk 

4.1 Interest rates as hazard rates 

In Europe, before the Reformation of the Catholic Church in the sixteenth century, the 
charging of interest was only permissible as a compensation for the risk that the lender 
took on; this is captured in the opening observation of the Black-Scholes paper: 

It should not be possible to make a risk-less profit. 

We will now consider a two-state intensity-based model, which is the simplest continuous-time 
reduced-form model. 

A model can be set up, in continuous time, with two states: 

1. N = not previously defaulted 

2. D  = defaulted. 

If the transition intensity, under the risk-neutral measure Q , from N  to D  at time t  is denoted 
by ( )t , this model can be represented as: 
 

and D  is an absorbing state. 

This is a two-state continuous-time Markov model.  It has the same structure as the two-state 
mortality model, with ‘No default’ corresponding to ‘Alive’, ‘Default’ corresponding to ‘Dead’ and 
( )t  corresponding to the force of mortality. 

Question 

Write down a formula for the probability (under Q ) that a company that is in state N at time t  
will remain in state N until time T . 

Hint: Use the survival probability formula  
   
 0exp

t
t x x sp ds  for the corresponding 

two-state mortality model from page 32 of the Tables. 

Solution 

The probability we are interested in can be written as   ( ) " "| ( ) " "Q X T N X t N . 

The formula given in the hint tells us the probability that a person who is alive at age x  will still be 
alive t  years later. 

( )t
No default, N Default, D
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So the corresponding formula here is: 

        
 ( ) " "| ( ) " " exp ( )

T
t

Q X T N X t N s ds  

 
Consider a lender lending a sum of money, L.  The lender is concerned that the borrower 
will not default, a hopefully rare event, and will eventually pay back the loan.  Poisson 
worked out that if the rate of a rare event occurring was   then the chance of there being k 
rare events in n time periods was given by: 

 
( )

(  wins in  rounds)
!

k nn eP k n
k

 
  

Say the lender assesses that the borrower will default at a rate of   defaults a day – known 
as the hazard rate – and the loan will last T days.  The lender might also assume that they 
will get all their money back, providing the borrower makes no defaults in the T days, and 
nothing if the borrower makes one or more defaults. 

In this model the borrower can make at most one default. 

On this basis the lender’s mathematical expectation of the value of the loan is: 

  value of loan (No default)  + (Default) 0E P L P    

Using the Law of Rare Events, the probability of no defaults is given when 0k  , so: 

  
0( )

value of loan  + (Default) 0
0!

TT eE L P
 

    

We can ignore the second expression, since it is zero, then: 

  value of loan TE Le   

So, the lender is handing over L with the expectation of only getting TLe L   back.  To 
make the loan equal the expected repayment, the banker needs to inflate the expected 

repayment by Te : 

  T TLe e L    

Another way to view this is to keep the payout L the same, and to reduce the amount the lender 

is prepared to give for it, ie:  TLe .  This discounting can be viewed as the interest rate obtained 
on the debt. 

4.2 Incorporating recovery rates 

Consider a simple situation whereby an asset is due to pay-out at some time T, but is 
subject to credit-risk and may default at a time  .  In the event of default, the investor 
recovers a fraction   at time T.  
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So, for a zero-coupon bond that is due to pay 1 at time T , the actual payment at time T  will be: 

 


 


  

1 if
payment

if
T

T
 

For example, if   0.9 , we are assuming that, once the company has gone into default, all future 
interest payments and the redemption payment will be reduced by 10% (since  1 0.1) .  So 
bondholders will receive 90% (the recovery rate) of the full amounts. 

Question 

Write down a single formula (ie one without if’s) for the payment at time T . 

Solution 

We can use the indicator variables  1 T   and   1 T to do this.  The correct formula for the 

payment is: 

     1 1T T . 

If default has not occurred by time T , (ie T ) then   1 1T  and    1 0T , and the formula 

gives 1, ie the full payment will be made. 

If default has occurred (ie  T ), then   1 0T  and    1 1T  and the formula gives  , ie the 

reduced or ‘recovered’ payment of   will be made. 

 
So a bond with credit risk can be viewed as a derivative, whose future payout is uncertain.  This 
allows the use of the general risk-neutral pricing formula: 

    ( )value of the loan at time payout | r T t
Q tt e E F  

assuming a constant risk-free rate of interest r, and a risk-neutral probability measure Q. 

More generally, let tC  represent a money market cash account which is a unit of currency 
invested at time 0 and accumulated at the (possibly varying) risk-free rate.  In the case of a 

constant risk-free rate we have  rt
tC e .  Then we have: 

 
 

  
 

payout | value of the loan at time t
t Q

T

Ft C E
C

 

The value, at time t, of this asset to its holder is: 

 

 

 

 



 
 

 

   

 
  

 

( )
{ } { }

{ } { }

( , ) 1 1 |

1 1 |

r T t
Q T T t

T T t
t Q

T

t T e E F

F
C E

C
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This implies that: 

{ } { }1 1( , )
|T T

Q t
t T

t T E F
C C

    
  

 
 

Assume that the probability of default is independent of the money market account. 

This means that the TC  doesn’t need to be inside the expectation operator.  Let ( , )P t T  be the 
price at time t of a risk-free zero-coupon bond that pays out 1 at future time T. 

Question 

Write ( , )P t T  in terms of the money market cash account. 

Solution 

( , ) t

T

CP t T
C

 

 
Then the value of the credit-risky asset can be written as: 

      { } { }( , ) 1 1 |t
Q T T t

T

Ct T E F
C

 

            ( , ) 1 ( , ) ( , )P t T q t T q t T    

where q is the probability, in the risk-neutral measure, that default occurs before T, ie: 
( )Q T  . 

This is algebraically equivalent to: 

     ( , ) ( , ) 1 (1 ) ( , )t T P t T q t T  

where ( , )q t T  is the risk-neutral probability of default.  We saw earlier that the risk-neutral 

probability of not defaulting (ie surviving) is   
 exp ( )

T
t

s ds .  So we have: 

                
( , ) ( , ) 1 (1 ) 1 exp ( )

T
t

t T P t T s ds  

This expression implies that the probability of default, q, is given by: 

 
1 ( , )

( , ) 1
1 ( , )

t Tq t T
P t T



 

    
 

Employing this model is not as straightforward as it appears because it is practically 
difficult to identify the risk-less bond, ( , )P t T , pertaining to the credit-risky asset, ( , )t T , and 

the recovery rate,  , at some specific maturity, T. 
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To get around this, credit ratings are employed, and it is assumed that the same yield curve 
is applied to firms in the same credit rating.  This allows bonds issued by different firms in 
the same risky class to be considered as if there were a single issuer. 

Dividing companies into just two states – ‘No default’ (N) and ‘Default’ (D) – is a rather crude, 
black and white approach.  In reality, the ‘N’ state is a heterogeneous category and we can 
improve this model by introducing some shades of grey.  This involves subdividing the ‘N’ state. 

In the next section we will extend the two-state model to cover multiple credit ratings. 
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5 The Jarrow-Lando-Turnbull (JLT) model 

There are several established credit rating agencies, such as Standard & Poor’s and Moody’s, who 
publish credit ratings for all the major companies.  On Standard & Poor’s scale, companies that 
have already defaulted are Grade D.  Companies that have not defaulted are given one of the 
seven grades: AAA, AA, A, BBB, BB, B, CCC (which can be fine-tuned further with +’s and –’s).  For 
example, in September 2014, the Barclays bond mentioned earlier had a credit rating of BBB– 
with Standard & Poor’s. 

Using credit ratings develops the two-state (default/no default) model into an n-state model.  
The state dynamics are represented by a time-homogenous Markov chain.  The probability 
of going from one state to another depends only on the two states themselves (the Markov 
property) and this transition probability is assumed to be independent of time (time 
homogeneity). 

The first state is the best credit quality and the n th state represents default, which is an 
absorbing state – there is no chance of recovering from default – and a payment of   is 

made at maturity.  The n n  transition matrix, ( , )Q t T , of the Markov chain, can be obtained 

from credit-ratings agencies along with information on recovery rates. 

So, for example, we could model the Standard & Poor’s rating system if we used  8n .  This 
would give  1 7n  credit ratings, from AAA (= State 1) down to CCC (= State 7), for companies 
that are not already in default.  The n th state (= State 8) would be for companies that are already 
in default (which we assume they stay in for ever). 

The following Core Reading table gives an example of a transition matrix, showing the 
probabilities (%) of jumping from one credit rating to another (and ultimately into ‘default’). 

 AAA AA A BBB BB B CCC Default 

AAA 90.81 8.33 0.6 0.06 0.12 0.08 0.00 0.00 

AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0.00 

A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06 

BBB 0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18 

BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06 

B 0.00 0.12 0.24 0.43 6.48 83.46 4.07 5.20 

CCC 0.22 0.00 0.22 1.30 2.38 11.24 64.86 19.78 

 
This means that the value of a credit-risky asset issued by a firm with rating i is given by: 

 ( , ) ( , ) 1 ( , ) ( , )i
in int T P t T q t T q t T     

where inq  is the risk-neutral probability of a bond in State i at time t being in State n at time T (ie 
having defaulted).  So bonds with the same credit rating and term are equally priced. 
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We define the transition intensity, under the risk-neutral measure Q , from State i  to State j  at 

time t  to be  ij t .  If the transition intensities  ij t  are assumed to be deterministic, then this 

model for default risk can be represented by the following diagram: 

 

In this n-state model, transfer is possible between all states except for the default State n, which 
is absorbing.  The  ’s here correspond to the entries in the generator matrix.  As shorthand we 
write: 

     


 ii ij
j i

t t  

The value of   when the two subscripts are equal (ie ii ) does not correspond to an actual 
transition – if the process starts and ends in State i , it hasn’t actually made a jump.  However, 
defining ii  to equal minus the sum of all the actual transition rates out of State i  allows us to 
write the set of equations for this process in a compact form. 

Question 

For a particular 4-state version of the JLT model: 

  12 21 0.1 ,  23 0.2 ,  24 0.1 ,  32 0.1 ,  34 0.4 ,     13 14 31 0  

Construct the complete generator matrix. 

Solution 

Entering the values we’ve been given, we get: 

 
 
 
 
 
 
 

1 2 3 4
1 ? 0.1 0 0
2 0.1 ? 0.2 0.1
3 0 0.1 ? 0.4
4 ? ? ? ?
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We know that State 4 (the default state) is absorbing.  So the first three entries along the bottom 
row will be zero. 

The entries down the diagonal are equal to minus the sum of the other entries for that row.  For 
example,       22 (0.1 0.2 0.1) 0.4 . 

So the final generator matrix looks like this: 

 
 
  
 
 
 

1 2 3 4
1 0.1 0.1 0 0
2 0.1 0.4 0.2 0.1
3 0 0.1 0.5 0.4
4 0 0 0 0

 

 
The generator matrix can be used to write down a set of differential equations (the Kolmogorov 
differential equations), which can then be solved to find the probabilities of making specified 
transitions over specified periods. 

In fact it is possible to calculate the transition probabilities directly from the generator matrix, 
using a method involving matrix calculations, which we will describe now. 

We introduce the following notation: 

   t  is an n n  generator matrix,     


 
, 1

n
ij i j

t t  

          ,ijq s t P X t j X s i  for t s  

      


, 1
, ,

n
ij i j

Q s t q s t  is the matrix of transition probabilities 

Question 

State in words what ( )t , ( , )ijq s t  and ( , )Q s t  represent. 

Solution 

( )t  is the generator matrix at time t .  The positive entries in this matrix represent the transition 
rates (intensities) from one state to another at that time.  The negative entries on the main 
diagonal are notional values equal to minus the sum of the other entries in the same row (which 
means that the entries in each row add up to zero). 

( , )ijq s t  is the probability that a company that is in State i  at a particular time s  will be in State j  

at a specified future time t .  If s  is the current time and t  is the time a bond payment is due, this 
probability tells us how likely it is that the company (currently in State i ) will be in each state – 
and hence how likely it is to default.  So these are what we want to use the model to work out. 
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( , )Q s t  is a matrix showing the complete set of n n  transition probabilities for the period from 
time s  to time t .  It gives us the same information as working out all the individual probabilities. 

 
It can be shown that: 

    
 

   
  
, exp
t

s
Q s t u du  

where, for an n n  matrix M , we define: 

 



  

1

1
!

M k

k
e I M

k
 

The proof of this is not required for this course. 

The xe  function on your calculator can be generalised to an exponential function for matrices, 

written as exp( )M  or Me .  You can see that its definition corresponds to the familiar series 

   21
2!1xe x x  . 

In the matrix version, 

 
 
 
 
 
 

1 0 0
0 1

0
0 0 1

I


 

  


 is the identity matrix, which has 1’s down the main 

diagonal and zeros everywhere else.  The matrix exponential function shares most of the familiar 
properties of the scalar version, such as exp( ) I0 , where 0  is a matrix consisting entirely of 
zeros, and exp( )exp( ) exp(2 )A A A . 

Question 

In a particular two-state intensity-based model with constant transition intensities, the integrated 

generator matrix   ( )
t
s

M u du  has the form 
 

   

a a
M

b b
, where  0.2( )a t s  and 

 0.1( )b t s . 

(i) Show that, in this case,   2 ( )M a b M . 

(ii) Hence deduce an explicit formula for Me  in terms of a  and b . 

(iii) Hence deduce a set of formulae for the transition probabilities ( , )ijq s t . 
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Solution 

(i) If 
 

   

a a
M

b b
, we find that: 

 

   
      

      
        

   
 
    

   
     

 
     

  

2

2 2

2 2

( )( ) ( ) ( )
( ) ( ) ( )( )

( ) ( )
( ) ( )

( )

( )

a a a a
M

b b b b

a a ab a a a b
b a b b ba b b

a ab a ab

ba b ba b

a a b a a b
b a b b a b

a a
a b

b b

a b M

 

(ii) Extending this to higher powers, we see that: 

          3 2 2 2( ) ( ) ( )M M M a b MM a b M a b M  

and    1[ ( )]k kM a b M  

 So, in this case, the exponential function is: 

  














   

 

   

 
       

    
             







1

1

1

1

( ) ( )

1exp( )
!

1 [ ( )]
!

1 1 [ ( )]
!

1 1

k

k

k

k

k

k

a b a b

M I M
k

I a b M
k

I a b M
a b k

e eI M I M
a b a b
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(iii) We can then substitute the values of a  and b  to find the matrix of transition 
probabilities: 

 

 

 

 

   

   

 
     

     
            

     
            

  
 
   

( )

( )

0.3( )

0.3( ) 0.3( )1 2 2 2
3 3 3 3

0.3( ) 0.3( )1 1 2 1
3 3 3 3

1( , )

1 0 1
0 1

1 0 0.2 0.21
0 1 0.1 0.10.3

a b

a b

t s

t s t s

t s t s

eQ s t I M
a b

a ae
b ba b

e

e e

e e

 

So the transition probabilities are: 

    0.3( )1 2
11 3 3( , ) t sq s t e ,    0.3( )2 2

12 3 3( , ) t sq s t e  

    0.3( )1 1
21 3 3( , ) t sq s t e ,    0.3( )2 1

22 3 3( , ) t sq s t e  

 
This seems rather trivial, however the approach can be enhanced if it is assumed, as in 
Jarrow-Lando-Turnbull, that the transition matrix, ( , )Q t T , obeys the following relationship: 

 ( )( , ) T tQ t T e   

In addition, assume that  , a hazard rate, is the generator matrix and is ‘diagonalisable’, 
meaning it can be written: 

 1D      

where D is a diagonal matrix of the eigenvalues of   and   is a matrix whose columns are 
the eigenvectors of  .  This means: 

 ( ) 1( , ) D T tQ t T e      

The elements, ij  of   have the following properties: 

 0ij   

 
1

0
n

ij
j




  

 0nj   

 state 1i   is always more risky that state i 

So  in jn  for all i j . 
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As a result: 

  
1

( )

1

ˆ( , ) 1j
n d T t

in ij jn
j

q t T e 






  , 1 1i n    

where: 

 ij  is an element of   

 ˆ jn is an element of 1  

 jd  is an eigenvalue of  . 
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6 Stochastic transition probabilities 

The Jarrow-Lando-Turnbull approach assumes that the transition intensities between states are 
deterministic. 

Although we have allowed the values of the transition intensities ( )t  between any two states to 
vary over time, we have assumed that the functions involved are known with certainty at the 
outset.  In real life, however, economic conditions can change unpredictably.  If, for example, a 
recession struck, we would expect the ( )t ’s corresponding to jumps to a higher-numbered state 
(ie a state closer to the default State n ) to increase significantly, as companies struggled to 
remain profitable. 

An alternative approach would be to assume that the transition intensity between states,   t , is 

stochastic and dependent on a separate state variable process  U t . 

By using a stochastic approach,   t , can be allowed to vary with company fortunes and other 

economic factors.  For example, a rise in interest rates may make default more likely, so  U t  

could include appropriate allowance for changes in interest rates.  This approach can be used to 
develop models for credit risk that combine the structural modelling and intensity-based 
approaches. 

In the previous section we had a generator matrix of the form: 

     1D  

The approach now is to allow this matrix to vary in a stochastic way. 

This additional level of complexity means that Λ  can be made stochastic: 

1( )DU t      

where ( )U t  is a stochastic process.  This means that the transition probabilities can be 

conditioned on ( )U t : 

( )1

1

ˆ( , ) | ( ) 1

T

j
t

d U s dsn

in ij jn
j

q t T U t E e 




  
  

   
     

 , 1 1i n    

The process ( )U t  can be made as complex as required, generating multi-factor credit-risk 

models. 

Question 

In the trivial case where    1U t  for all t, show that the above result recovers the deterministic 

version of ( , )inq t T  found in the previous section. 
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Solution 

 

 

 

 





 



 



  
  

    
     

       

 







11

1

1 ( )

1

1 ( )

1

ˆ( , )|( ( ) 1) 1

ˆ 1

ˆ 1

T

j
t

j

j

d dsn

in ij jn
j

n d T t
ij jn

j

n d T t
ij jn

j

q t T U t E e

E e

e
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Chapter 19 Summary 

Credit events and recovery rates 

A credit event is an event that will trigger the default of a bond.  In the event of a default, the 
fraction   of the defaulted amount that can be recovered through bankruptcy proceedings 
or some other form of settlement is known as the recovery rate. 

Modelling credit risk 

Structural models are models for a company issuing both shares and bonds, which aim to link 
default events explicitly to the fortunes of the issuing company. 

Reduced-form models are statistical models that use observed market statistics such as 
credit ratings. 

Intensity-based models are a particular type of continuous-time reduced-form models.  They 
typically model the ‘jumps’ between different states (usually credit ratings) using transition 
intensities. 

The Merton model 

Merton’s model is a structural model.  It assumes that a company has issued both equity and 
debt such that its total value at time t  is  F t .  The total value of the bonds issued and the 

shareholders’ interests equals  F t . 

The shareholders of the company can be regarded as having a European call option on the 
assets of the company with maturity T  and a strike price equal to the face value ( L ) of the 
debt. 

The Merton model is tractable and gives us some insight into the nature of default and the 
interaction between bondholders and shareholders.  It can be used to estimate either the 
risk-neutral probability that the company will default or the credit spread on the debt. 
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The two-state model for credit ratings

 State N  = not previously defaulted 

 State D  = previously defaulted 

 
 

Let   ,t T  be the price at time t  of a risky zero-coupon bond that matures at time T .  

Then: 

 

   

 
   

 

 





 

 

 
 

 

   

    

             


, payoffattime

1 1

1 (1 ) 1 exp ( )

r T t
Q t

r T t
Q tT T

Tr T t
t

t T e E T F

e E F

e s ds

 

where: 

●   is the recovery rate 

● {}1  is the indicator function 

●   s  is the risk-neutral transition rate or intensity. 

The Jarrow-Lando-Turnbull (JLT) model 
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If a zero-coupon bond maturing at time T  pays: 

 1 if default has not yet occurred 

   if default has occurred  

and the credit rating of the underlying corporate entity is i , the fair price of the bond is: 

                  , , , 1 1 ( )QB t T X t i P t T P X T n X t i  

Two-state models with stochastic transition intensity 

The transition intensity   t  can be allowed to vary stochastically to reflect other economic 

factors, such as the level of interest rates.  This is done by introducing a separate state 
variable process ( )X t . 

This approach can be used to develop models for credit risk that combine the structural 
modelling and intensity-based approaches. 

In this n -state model, transfer is possible between all states except for State n  (default), 
which is absorbing.  If  X t  is the state or credit rating at time t , then, for  1, 2,..., 1i n , 

the transition probabilities over the time interval ( , )s t  are: 

        ,ijq s t Q X t j X s i  for t s  

The matrix of transition probabilities is: 

      


, 1
, ,

n
ij i j

Q s t q s t  

then: 

 
 

   
  
, exp ( )
t

s
Q s t u du  

where: 

     


 
, 1

n
ij i j

t t  is the matrix of transition intensities. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 28 CM2-19: Credit risk 

© IFE: 2019 Examinations The Actuarial Education Company 

 

 

 

 

 

 

 

 

This page has been left blank so that you can keep the chapter 
summaries together for revision purposes. 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-19: Credit risk Page 29 

The Actuarial Education Company  © IFE: 2019 Examinations 

Chapter 19 Practice Questions 

19.1 To fund an expansion in its operations, a company has just issued 5-year zero-coupon bonds with 
a total face value of £10 million, taking its total asset value up to £15 million. 

(i) Explain how the value of the bonds can be expressed in terms of a European put 
option.   [3] 

(ii) Hence calculate the fair price of a holding of the company bonds with a face value of £100 
using the Black-Scholes model, given that the price of a 5-year zero-coupon government 
bond is £77.88.  Assume that the annualised volatility of the company’s assets over the 
5-year period is 25%.   [4] 

(iii) Explain what is meant by a credit spread and calculate its value for the company 
bonds.   [3] 

    [Total 10] 

19.2 Company X has just issued some 5-year zero-coupon bonds.  A continuous-time two-state model 
is to be used to model the status of the company and to calculate the fair price of the bonds.  It is 
believed that the risk-neutral transition rate for failure of the company is    0.002t t , where t  

is the time in years since the issue of the bonds.  The 5-year risk-free spot yield is 5.25% expressed 
as an annual effective rate. 

(i) Calculate the risk-neutral probability that the company will have failed by the end of 5 
years.   [2] 

(ii) In the event of failure of the company, the bonds will make a reduced payment at the 
maturity date.  The recovery rate for a payment due at time t  is: 

     1 0.05t t  

 Calculate the fair price to pay for £100 nominal of a Company X bond, taking into account 
the possibility of company failure. [3] 

(iii) An analyst is concerned that the estimate of   t  may be too simplistic.  Explain the 

possible reasons for his concern and how the model could be developed to deal with 
this.   [3] 

    [Total 8] 

19.3 (i) Explain what is meant by a default-free bond. 

(ii) State the possible outcomes of a default. 

(iii) List five types of credit event. 

(iv) Explain what is meant by the recovery rate for a bond. 

Exam style 

Exam style 
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19.4 Company X  has the following financial structure at time 0: 

 Debt £3m  (current book value) 

 Equity £6m  (issued share capital) 

The debt is a zero-coupon bond with face value £5m that is repayable at par at time 10. 

There are 400,000 shares in circulation. 

(i) Explain how the Merton model could be used to value shares in Company X. 

(ii) Assuming that the debt is repaid directly from the company’s funds at that time, state the 
share price at time 10 if the total value of Company X at that time is: 

 (a) £15m 

 (b) £4m  

19.5 A two-state model is to be used to model the probability that a bond defaults: 

where    


25 20
500

t tt ,  0 20t . 

(i) Calculate the probability that the bond does not default between times 5 and 10. 

(ii) Explain how the model may be modified to allow the default intensity   t  to depend on 

future unforeseen events such as a sudden downturn in the economy. 

19.6 A company has just issued 4-year zero-coupon bonds with a nominal value of £4 million.  The total 
value of the company now stands at £7.5 million.  A constant risk-free rate of return of 2% pa 
continuously-compounded is available in the market. 

(i) Use the Merton model to calculate the theoretical price of £100 nominal of the 
company’s bonds, assuming that the annual volatility of the value of the company’s assets 
is 30%.   [4] 

(ii) Estimate the risk-neutral probability of default on the company’s bonds. [3] 
    [Total 7] 

  

Exam style 

( )t
No default, N Default, D
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19.7 An analyst is using a two-state continuous-time model to study the credit risk of zero-coupon 
bonds issued by different companies.  

The risk-neutral transition intensity function is: 

  ( ) 0.0148A s  for Company A, and 

   2( ) 0.01B s s  for Company B 

where s  measures time in years from now. 

The analyst observes that the credit spread on a 3-year zero-coupon bond just issued by Company 
B is twice that on a 3-year zero-coupon bond just issued by Company A. 

(i) Given that the risk-free force of interest is 5% pa, and that the average recovery rate in 
the event of default,  , where  0 1 , is the same for both companies, calculate  . 
   [7] 

(ii) Explain how the two-state model for credit risk can be generalised to give the Jarrow-
Lando-Turnbull model. [2] 

    [Total 9] 

19.8 The credit-worthiness of debt issued by companies is assessed at the end of each year by a credit 
rating agency.  The ratings are A (the most credit-worthy), B and D (debt defaulted).  Historical 
evidence supports the view that the credit rating of a debt can be modelled as a Markov chain 
with the following matrix of one-year transition probabilities: 

 
 
   
 
 

0.92 0.05 0.03
0.05 0.85 0.1

0 0 1
Χ  

(i) Determine the probability that a company rated A will never be rated B in the future. [2] 

(ii) (a) Calculate the two-year transition probabilities of the Markov chain.  

 (b) Hence calculate the expected number of defaults within the next two years from a 
group of 100 companies, all initially rated A. [2] 

The manager of a portfolio investing in company debt follows a “downgrade trigger” strategy.  
Under this strategy, any debt in a company whose rating has fallen to B at the end of a year is sold 
and replaced with debt in an A-rated company. 

(iii) Calculate the expected number of defaults for this investment manager over the next two 
years, given that the portfolio initially consists of 100 A-rated bonds. [2] 

(iv) Comment on the suggestion that the downgrade trigger strategy will improve the return 
on the portfolio. [2] 

    [Total 8] 

Exam style 

Exam style 
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19.9 A bond analyst is going to use a two-state intensity-based model to derive risk-neutral transition 
intensities. 

(i) State the general risk-neutral pricing formula for a ZCB subject to default risk in a 
two-state intensity-based model with a deterministic transition intensity.  Define all 
notation used.  

(ii) Starting from the formula in (i), derive the corresponding formula for the risk-neutral 
transition intensity function in terms of the ZCB price. 
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Chapter 19 Solutions 

19.1 (i) Expressing the bond value as an option 

This is the Merton model.  After the bond issue the total current value of the company will be 
(0) 15F  (working in £million).  In 5 years’ time the company will have an unknown value of (5).F

    [1] 

The bondholders have first call on the company’s assets at that time.  So they will receive 10 if 
(5) 10F  and (5)F  if (5) 10F . [1] 

So the redemption payment from the bonds is min[ (5),10]F , which can be written as 
 10 max[10 (5),0]F .  The function max[10 (5),0]F  is the payoff for a European put option on 

( )F t  maturing at time 5 with strike price 10. [1] 
    [Total 3] 

(ii) Calculate the fair price of the bonds 

The parameters for valuing the put option with payoff max[10 (5),0]F  using the Black-Scholes 
formula are: 

   0(0) 15 ( )F S ,  10K ,    5T t ,    0.25   (and  0q ) [1] 

The risk-free interest rate is found from the equation: 

  5100 77.88re     0.050r  [½] 

Using page 47 of the Tables, we find that: 

 1 1.45204d ,  2 0.89302d  [½] 

 

     

    

0.2510 ( 0.89302) 15 ( 1.45204)

7.788 0.18592 15 0.07325 0.349

p e

 [1] 

So the total value of the bonds now (remembering that the 10 in the payoff function is a future 
payment and needs to be discounted) is: 

      ( ) 7.788 0.349 7.439r T tKe p   ie £7.439 million [½] 

So the fair price is £74.39 per £100 face value. [½] 
    [Total 4] 

(iii) Credit spread 

The price of the company bonds (£74.39) is less than the price of the government bonds (£77.88) 
because of the risk of default, ie the company may not make the redemption payment in full on 
the due date.   [1] 
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As a result, the yield Br  (assuming full payment) will be slightly higher.  It can be found from the 
equation: 

  5100 74.39Bre     0.0592r  [1] 

The difference between the bond yield of 5.92% and the default-free rate of 5% is called the 
credit spread.  So here the credit spread is 0.92% (per annum, continuously compounded). [1] 
    [Total 3] 

19.2 (i) Probability of company failure 

The risk-neutral probability of company failure, by time n , can be expressed in terms of the 
transition rate   t : 

       
 01 exp ( )

n
p n t dt  [½] 

With the transition rate given, we have: 

  

 



    
 

    

 



2

0

2
0

0.001

1 exp 0.002

1 exp 0.001

1

n

n

n

p n tdt

t

e  [1] 

For  5n  this is: 

      
20.001 55 1 0.02469p e  [½] 

    [Total 2] 

(ii) Fair price of a Company X bond 

The recovery rate at time 5 is: 

    (5) 1 0.05(5) 0.75  [1] 

The risk-neutral expected payment at maturity can then be found using the probability calculated 
in part (i): 

     0.02469 0.75 (1 0.02469) 1 0.99383  [1] 

We can discount this using the 5-year spot rate to get the fair price of the bond: 

   50.99383 1.0525 0.7695  

ie £76.95 per £100 nominal. [1] 
    [Total 3] 
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(iii) Stochastic transition rates 

The analyst may be concerned because the fair price of the bond is critically dependent on an 
accurate assessment of the default transition intensity.  If this assessment is incorrect then the 
bond could be mispriced. [1] 

An alternative approach would be to assume that the transition intensity   t  is stochastic and 

dependent on a separate state variable process,  X t  say. [½] 

By using a stochastic approach,   t  can be allowed to vary with company fortunes and other 

economic factors.  [½] 

For example, a rise in interest rates may make default more likely and so  X t  could include 

appropriate allowance for changes in interest rates.  This approach can be used to develop 
models for credit risk that combine the structural modelling and intensity-based approaches. [1] 
    [Total 3] 

19.3 (i) Meaning of default-free 

A bond is default-free if the stream of payments due from the bond will definitely be paid in full 
and on time.    

(ii) Outcomes of a default 

The outcome of a default may be that the contracted payment stream is: 

 rescheduled   

 cancelled by the payment of an amount which is less than the default-free value of the 
original contract  

 continued but at a reduced rate  

 totally wiped out.  

(iii) Types of credit events 

A credit event is an event that will trigger the default of a bond and includes the following: 

 actions that are associated with bankruptcy or insolvency laws  

 rating downgrade of the bond by a rating agency such as Standard & Poor’s or Moody’s  

 failure to pay 

 repudiation/moratorium 

 restructuring – where the terms are changed to become less favourable to the bond 
holder. 

(iv) Meaning of recovery rate 

In the event of a default, the fraction of the defaulted amount that can be recovered through 
bankruptcy proceedings or some other form of settlement is known as the recovery rate.  
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19.4 (i) Expressing the equity as a call option 

The Merton model values shares as call options on the company’s assets with a strike price equal 
to the face value of Company X’s debt. 

The equity value at time 10 will be: 

  max (10) 5,0F  

where (10)F  total value of Company X at time 10. 

Company X  will default on payment of the debt if the total value of its assets at time 10 is less 
than the promised debt repayment at that time. 

There are 400,000 shares, so the (theoretical) share price at time 10 in £m will be: 

  max (10) 5,0
400,000

F
 

An appropriate option pricing formula can then be used to value this ‘call option’ at time 0. 

(ii) Share price at time 10 

The share price at time 10 will be: 

(a)  
 

max 15 5,0 £10m £25
400,000 400,000

 per share 

(b) Here the share price at time 10 will be 0 because the value of the outstanding debt 
exceeds the total value of the company. 

19.5 (i) Probability the bond does not default between times 5 and 10 

The probability that the bond does not default between times 5 and 10 is: 

 

   



             
      

        
    

       

 

 
10 10

2

5 5

103
2

5

2 1
3 3

0.9667

1exp exp 5 20
500

1exp 5 10
500 3

1exp 716 233
500

0.3803

t dt t t dt

tt t

e  

(ii) Incorporating unforeseen events 

Unforeseen events can be considered as random and so a stochastic approach would be 
needed.   
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By using a stochastic approach,   t  can be allowed to vary with company fortunes and other 

economic factors.  

This is done by introducing an additional stochastic process ( )X t , which models a suitable 
economic indicator, such as interest rates. 

For example, a downturn in the economy may make default more likely and so   t  could 

include appropriate allowance for this possibility. 

19.6 (i) Theoretical price of the bonds 

The approach we will take is to value the shareholders’ funds and then subtract this from the total 
value of the company to determine the bondholders’ funds. 

Under the Merton model, the shareholders in the company receive a payoff after 4 years 
equivalent to that from a call option with strike price equal to the amount to be repaid to the 
bondholders.   [1] 

The current value of the shareholding can be assessed using the Black-Scholes formula for the 
value of a call option, with parameters: 

       0 7.5, 4, 30%, 2%, 4, 0S K r T t q  [½] 

Letting (0)E  represent the value of the shareholding at time 0: 

     0.02 4
1 2(0) 7.5 ( ) 4 ( )E d e d  

where: 

 
     

    


21
2

1 1

7.5ln 0.02 (0.3) 44 1.4810 ( ) 0.93069
0.3 2

d d  

and:       2 1 20.3 2 0.8810 ( ) 0.81084d d d  

So: 

      0.02 4(0) 7.5 0.93069 4 0.81084 £3.986 millionE e  [1½] 

Therefore the value of £4 million nominal of bonds at time 0, (0)B , is: 

   (0) 7.5 3.986 £3.514 millionB  [½] 

The theoretical price of £100 nominal of these bonds is: 

  
3.514 100 £87.85

4
 [½] 

    [Total 4] 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 38 CM2-19: Credit risk 

© IFE: 2019 Examinations The Actuarial Education Company 

Another way of doing this question is to note that the payoff on the bonds in 4 years’ time is: 

 min(4, (4))F  

where ( )F t  is the value of the company’s assets at time t .   

This can be re-expressed as: 

  4 max(4 (4),0)F  

where max(4 (4),0)F  is the payoff on a 4-year put option on the company’s assets with strike 
price of 4. 

The value of this payoff at time 0 is: 

   0.02 4
0(0) 4B e p  

where: 

       0.02 4
0 2 14 ( ) 7.5 ( )p e d d  

As before, 1 1.4810d  and 2 0.8810d , so: 

        1( ) ( 1.4810) 1 (1.4810) 0.06931d  

and: 

        2( ) ( 0.8810) 1 (0.8810) 0.18916d  

This gives: 

      0.02 4
0 4 0.18916 7.5 0.06931 0.17866p e  

so: 

    0.02 4(0) 4 0.17866 3.514B e  

as before. 

(ii) Risk-neutral probability of default 

In the standard Black-Scholes formula for the price of a call option,  2( )d  represents the 
risk-neutral probability that the option 2( )d  will be exercised, or, equivalently, the risk-neutral 
probability that the share price at expiry exceeds the strike price.  Under the Merton model 
approach, the call option replicates the shareholders’ position and is exercised if the shareholders 
repay the bondholders in full. [1] 

So,  is equal to the probability that the bondholders are repaid in full, or, equivalently, the 
probability that the company does not default.  This means that the probability of default is: 

  21 ( )d   [1] 
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In this case, the probability of default is: 

    1 (0.8810) 1 0.81084 0.18916  [1] 
    [Total 3] 

Alternatively, this can be derived from first principles. 

Under the assumptions of the Black-Scholes formula, the value of the company’s assets at time t, 
( )F t , given (0)F , follows a lognormal distribution: 

     2 21
2( ) (0) log ln (0) ( ) ,F t F N F r t t  

Here: 

 
 

 

   

 

2 21
2(4) (0) log ln7.5 (0.02 0.3 ) 4,0.3 4

(4) (0) log ln7.5 0.1,0.36

F F N

F F N




 

The company will default on the bonds if the value of the company at time 4, (4)F , is less than the 
amount to be repaid of £4 million.   

So, the probability of default is: 

 

  

    
 

  

 



( (4) 4) (ln (4) ln4)

ln4 (ln7.5 0.1)
0.36

( 0.8810)

1 (0.8810)

0.18916

P F P F

P Z

P Z  

19.7 (i) Value of   

The general formula for the price of a zero-coupon bond under the two-state model for credit risk 
using a risk-neutral probability measure is: 

    
   
       

      
( )( , ) 1 (1 ) 1 exp ( )
T

r T t

t
t T e s ds  [1] 

For the bond issued by Company A: 

  





 

 

   
       

      

      


3

0.05 3

0

0.15 0.0444

1 (1 ) 1 exp 0.0148

1 (1 ) 1

AB e ds

e e  [1] 
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For the bond issued by Company B: 

  







 



 

   
       

      

                   

      


3

0.05 3 2

0

3
0.15 3

0

0.15 0.09

1 (1 ) 1 exp 0.01

0.011 (1 ) 1 exp
3

1 (1 ) 1

BB e s ds

e s

e e  [1] 

The credit spread on a zero-coupon bond is the difference between the yield on the bond and the 
yield on a similar bond issued by the government, which we take here to be the risk-free force of 
interest of 5% pa.   

If iC  is the credit spread on the zero-coupon bond issued by Company i  and ir  is the 
continuously-compounded yield on the zero-coupon bond issued by Company i , then: 

 

    

     

0.05 0.05

0.05 2 2 0.05

A A A A

B B A B A

C r r C

C r C r C  [½] 

We can express the price of each zero-coupon bond in terms of the continuously-compounded 
yield on the bond, so: 

 

  

  

 

 

3 3( 0.05)

3 3(2 0.05)

A A

B A

r C
A

r C
B

B e e

B e e  [½] 

This gives the simultaneous equations: 

 
 
 





   

   

      

      

3( 0.05) 0.15 0.0444

3(2 0.05) 0.15 0.09

1 (1 ) 1

1 (1 ) 1

A

A

C

C

e e e

e e e
 

Cancelling the 0.15e  terms gives: 

 

 
 





 

 

   

   

3 0.0444

6 0.09

1 (1 ) 1 (1)

1 (1 ) 1 (2)

A

A

C

C

e e

e e  [1] 

Squaring Equation (1) and substituting it into Equation (2): 

             
20.0444 0.091 (1 ) 1 1 (1 ) 1e e  
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Expanding the left-hand side: 

 
     

     

  

  

  

  

         

          

20.0444 2 0.0444 0.09

20.0444 2 0.0444 0.09

1 2(1 ) 1 (1 ) 1 1 (1 ) 1

2(1 ) 1 (1 ) 1 (1 ) 1

e e e

e e e

 

Cancelling (1 )  on both sides, since  0 1 , and solving for  : 

 

     
   

 







  

 



       

  
    



 

20.0444 0.0444 0.09

0.0444 0.09

20.0444

2 1 (1 ) 1 1

2 1 1 0.00078871 0.418164
0.00188611

0.5818

e e e

e e

e

 [2] 
    [Total 7] 

(ii) Jarrow-Lando-Turnbull model 

Instead of the simple default / no default two-state model, a more general model has been 
developed by Jarrow, Lando and Turnbull, in which there are n  states.  The n  states relate to 
1n  possible credit ratings for a non-defaulted company, and one default state. [1½] 

Transitions are possible between all states, except for the default state, which is absorbing (ie 
once a company has entered the default state, it cannot leave it). [½] 
    [Total 2] 

19.8 (i) Probability A never rated B in the future 

We have the following diagram of the one-year transition probabilities: 

 

A B

D

0.05

0.05
0.85

0.92

0.100.03

1.00
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A company that is never rated B in the future will: 

(a) remain in State A for some period of time, and 

(b) will then move to State D and remain there. 

So we can sum over all the times at which the single transition from State A to State D can take 
place.  This gives us the following expression: 

       2 30.03 0.92 0.03 (0.92) 0.03 (0.92) 0.03   [1] 

This is an infinite geometric progression, whose sum is: 

 

0.03 0.375

1 0.92
 

So the probability that a company is never rated B in the future is 0.375. [1] 
    [Total 2] 

(ii)(a) Two-year transition probabilities 

The two-year transition probabilities are given by: 

 
    
         
    
    

2
0.92 0.05 0.03 0.92 0.05 0.03 0.8489 0.0885 0.0626
0.05 0.85 0.1 0.05 0.85 0.1 0.0885 0.7250 0.1865

0 0 1 0 0 1 0 0 1
X   [1] 

(ii)(b) Expected number of defaults 

The probability that a company rated A at time zero is in State D at time 2 is 0.0626.  So the 
expected number of companies in this state out of 100 is 6.26. [1] 
    [Total 2] 

(iii) Expected number of defaults 

For this manager we use the original matrix X .  After one year, the expected number of 
companies in each state will be: 

    
 
   
 
 

0.92 0.05 0.03
100 0 0 0.05 0.85 0.1 92 5 3

0 0 1
 [1] 

If the five state B’s are replaced with State A’s and the process repeated, we have: 

    
 
   
 
 

0.92 0.05 0.03
97 0 3 0.05 0.85 0.1 89.24 4.85 5.91

0 0 1
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So the expected number of defaults by the end of the second year under this arrangement 
is 5.91.    [1] 
    [Total 2] 
Alternatively we could have used the revised transition matrix: 

 
 
   
 
 

0.97 0 0.03
0 0 0
0 0 1

X  

and calculated 2X  as before. 

Note that the question does not say that the companies in default at the end of the first year are 
replaced by grade A companies in the second year.  If it had done so, then there would have been 
three expected defaults each year, and the answer would be 6. 

(iv) Comment 

The downgrade trigger strategy will reduce the expected number of defaults, as we have seen.  
However, the return on the portfolio will also be a function of the yields on the debt.  Companies 
rated B are likely to have bonds with a higher yield (because of the higher risk), so excluding these 
may in fact reduce the yield on the portfolio. [1½] 

Also, the actual number of defaults may not match the expected number.  The return depends on 
the actual progress of the portfolio, rather than the expected outcome.  [½] 
    [Total 2] 

19.9 (i) General risk-neutral pricing formula for a ZCB 

         
                 

( , ) 1 1 1 exp
T

r T t

t
t T e s ds  

where: 

 t  and T  are the current time and the maturity date of the ZCB 

 r  is the constant risk-free force of interest 

   is the assumed (constant) recovery rate  

 ( )s  is the risk-neutral transition intensity. 
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(ii) Derive formula for risk-neutral transition intensity function 

Multiplying both sides of the ZCB pricing formula by ( )r T te  and then multiplying out the 
right-hand side, gives: 

 

   

   

  

                   
      

          
   

     
 

 

 



( ) ( , ) 1 1 exp ( ) 1 exp ( )

exp ( ) exp ( )

(1 )exp ( )

T Tr T t
t t

T T
t t

T
t

e t T s ds s ds

s ds s ds

s ds  

Moving the constant   to the left-hand side, then taking logs, we get: 

          
 ( ) ( , ) (1 )exp ( )

Tr T t
t

e t T s ds  

          ( )log ( , ) log(1 ) ( )
Tr T t
t

e t T s ds  

Differentiating both sides with respect to T  then gives: 

        
( )log ( , ) ( )r T te t T T

T
 

Remember that differentiating an integral (with respect to the upper limit) takes you back to the 
original function. 

Finally, renaming the variable T  as s , swapping the two sides and flipping the signs gives: 

              
log ,r s ts e t s

s
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Ruin theory 

 

  

 

     

Syllabus objectives 

5.1 Ruin theory 

5.1.1 Explain what is meant by the aggregate claim process and the cash-flow 
process for a risk. 

5.1.2 Use the Poisson process and the distribution of inter-event times to 
calculate probabilities of the number of events in a given time interval and 
waiting times. 

5.1.3 Define a compound Poisson process and calculate probabilities using 
simulation. 

5.1.4 Define the probability of ruin in infinite/finite and continuous/discrete time 
and state and explain relationships between the different probabilities of 
ruin.   

5.1.5 Describe the effect on the probability of ruin, in both finite and infinite 
time, of changing parameter values by reasoning or simulation. 

5.1.6 Calculate probabilities of ruin by simulation. 
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0 Introduction 

In this chapter we consider the aggregate claims S t( )  arising up to time t.  If N t( )  is the number of 
claims arising by time t, and iX  is the amount of the i-th claim, then N tS t X X X   1 2 ( )( )  .  

N t( )  is called a Poisson process and S t( )  is called a compound Poisson process.  We can use S t( )  
to model claims received by an insurance company and hence consider the probability that this 
insurance company is ruined.   

We start with the notation and the other basic concepts before giving formal definitions of both 
the Poisson process and the compound Poisson process.  We will also introduce the concept of a 
premium security loading.  Briefly, this is an additional amount charged on an insurance premium 
to reduce the likelihood of an insurance company becoming ruined. 

Later we will introduce the adjustment coefficient, a parameter associated with risk, and 
Lundberg’s inequality.   

We will consider the effect of changing parameter values on the probability of ruin for an 
insurance company before finally considering the impact of introducing reinsurance. 
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1 Basic concepts 

1.1 Notation 

One technical point needed later in this chapter is that a function ( )f x  is described as being 

( )o x  as x  goes to zero, if: 

 
0

( )
lim 0
x

f x
x

  

You can use this notation to simplify your working.  For example, the function 

g x x x x  2 3( ) 3 0.5 0.004  can be rewritten as g x x o x ( ) 3 ( ) , since x x
x




2 30.5 0.004 0  as 

x  0 .  Note that o x( )  does not represent an actual number so that c o x ( )  ( c  is a constant), 
o x ( )  and o x( )  are all equivalent. 

Question 

Which of the following functions are o x( )  as x  0 ? 

(i) x2  (ii) xe  (iii) xe x  1  

Solution 

(i) Yes 

(ii) No 

(iii) Yes, because if we expand xe  as a power series and simplify, we get: 

 
x x xe x     

2 3
1

2! 3!
  

This gives 
xe x x

x

  
 

1 1
2

 terms in x2  and higher powers. 

 
In the actuarial literature, the word ‘risk’ is often used instead of the phrase ‘portfolio of 
policies’.  In this chapter both terms will be used, so that by a ‘risk’ will be meant either a 
single policy or a collection of policies.  This chapter will focus on claims generated by a 
portfolio over successive time periods.  Some notation is needed. 
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 ( )N t  the number of claims generated by the portfolio in the time interval [0, t], for 

all t  0 

 iX  the amount of the i-th claim, i = 1, 2, 3, ... 

 ( )S t  the aggregate claims in the time interval [0, t], for all t  0. 

  1i iX 


 is a sequence of random variables.    0
( ) tN t  and   0

( ) tS t   are both families of 

random variables, one for each time 0t  ; in other words   0
( ) tN t   and   0

( ) tS t   are 

stochastic processes. 

You can think of a stochastic process as being a whole family of different random variables.  
Consider a time line.  On the line there are an infinite number of different time intervals.  For each 
interval of time, there is a random variable that corresponds to the aggregate claim amount 
arising in that time interval.  This is what we mean here by a stochastic process. 

It can be seen that: 

 
( )

1

( )
N t

i
i

S t X


   

with the understanding that ( )S t  is zero if ( )N t  is zero. 

The stochastic process   0
( ) tS t   as defined above is known as the aggregate claims 

process for the risk.  The random variables (1)N  and (1)S  represent the number of claims 

and the aggregate claims respectively from the portfolio in the first unit of time.   

The insurer of this portfolio will receive premiums from the policyholders.  It is convenient 
at this stage to assume, as will be assumed throughout this chapter, that the premium 
income is received continuously and at a constant rate.  Here is some more notation: 

 c  = the rate of premium income per unit time 

so that the total premium income received in the time interval  0, t  is ct .  It will also be 

assumed that c  is strictly positive. 

1.2 The surplus process 

Suppose that at time 0 the insurer has an amount of money set aside for this portfolio.  This 
amount of money is called the initial surplus and is denoted by U .  It will always be 

assumed that 0U  .  The insurer needs this initial surplus because the future premium 
income on its own may not be sufficient to cover the future claims.  Here we are ignoring 

expenses.  The insurer’s surplus at any future time  0t   is a random variable since its 

value depends on the claims experience up to time t.  The insurer’s surplus at time t is 
denoted by ( )U t . 
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The following formula for ( )U t  can be written: 

 ( ) ( )U t U ct S t    

In words this formula says that the insurer’s surplus at time t is the initial surplus plus the 
premium income up to time t minus the aggregate claims up to time t.  Notice that the initial 
surplus and the premium income are not random variables since they are determined before 
the risk process starts.  The above formula is valid for t  0 with the understanding that U(0) 
is equal to U.  For a given value of t, U(t) is a random variable because S(t) is a random 

variable.  Hence   0
( ) tU t   is a stochastic process, which is known as the cash flow process 

or surplus process. 

 

      Figure 1 

Figure 1 shows one possible outcome of the surplus process.  Claims occur at times 

1 2 3 4, , ,T T T T  and 5T  and at these times the surplus immediately falls by the amount of the 

claim.  Between claims the surplus increases at constant rate c per unit time.  The model 
being used for the insurer’s surplus incorporates many simplifications, as will any model of 
a complex real-life operation.  Some important simplifications are that it is assumed that 
claims are settled as soon as they occur and that no interest is earned on the insurer’s 
surplus.  Despite its simplicity this model can give an interesting insight into the 
mathematics of an insurance operation. 

We are also assuming that there are no expenses associated with the process (or, equivalently, 
that S t( )  makes allowance for expense amounts as well as claim amounts), and that the insurer 
cannot vary the premium rate c . 

We are also ignoring the possibility of reinsurance.  Simple forms of reinsurance will be 
incorporated into the model later in this chapter. 
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1.3 The probability of ruin in continuous time 

It can be seen from Figure 1 that the insurer’s surplus falls below zero as a result of the 
claim at time 3T .  Speaking loosely for the moment, when the surplus falls below zero the 

insurer has run out of money and it is said that ruin has occurred.  In this simplified model, 
the insurer will want to keep the probability of this event, that is, the probability of ruin, as 
small as possible, or at least below a predetermined bound.  Still speaking loosely, ruin can 
be thought of as meaning insolvency, although determining whether or not an insurance 
company is insolvent is, in practice, a very complex problem.  Another way of looking at the 
probability of ruin is to think of it as the probability that, at some future time, the insurance 
company will need to provide more capital to finance this particular portfolio. 

Now to be more precise.  The following two probabilities are defined: 

 ( )  [ ( ) 0,  for some ,  0 ]U P U t t t       

 ( ,  )  [ ( ) 0,  for some ,  0 ]U t P U t        

( )U  is the probability of ultimate ruin (given initial surplus U) and ( , )U t  is the probability 

of ruin within time t (given initial surplus U).  These probabilities are sometimes referred to 
as the probability of ruin in infinite time and the probability of ruin in finite time.  Here are 
some important logical relationships between these probabilities for 0 < t1  t2 <  and 

for 0  U1  U2: 

    2 1, ,U t U t    (1.1) 

    2 1U U    (1.2) 

      1 2, ,U t U t U     (1.3) 

    lim ,
t

U t U 


   (1.4) 

The intuitive explanations for these relationships are as follows: 

The larger the initial surplus, the less likely it is that ruin will occur either in a finite time 
period, hence (1.1), or an unlimited time period, hence (1.2).   

For a given initial surplus U, the longer the period considered when checking for ruin, the 
more likely it is that ruin will occur, hence (1.3). 

Finally, the probability of ultimate ruin can be approximated by the probability of ruin within 
finite time t provided t is sufficiently large, hence (1.4). 

Question 

What is  
u

u t

lim , ? 
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Solution 

As the amount of initial surplus increases, ruin will become less and less likely.  So the limit is zero. 

 
You may be wondering whether it is possible to find numerical values for these ruin probabilities.  
In some very simple cases it is.  However, for most practical situations, finding an exact value for 
the probability of ruin is impossible.  In some cases there are useful approximations to u ( ) , even 
if calculation of an exact value is not possible. 

1.4 The probability of ruin in discrete time 

The two probabilities of ruin considered so far have been continuous time probabilities of 
ruin, so-called because they check for ruin in continuous time.  In practice it may be 
possible (or even desirable) to check for ruin only at discrete intervals of time. 

For a given interval of time, denoted h, the following two discrete time probabilities of ruin 
are defined: 

   ( ) < 0, for some ,  = , 2 , 3 ,Uh P U t t t h h h      

   ( , )  < 0, for some ,  = , 2 , , ,U th P U h h t h t        

Note that it is assumed for convenience in the definition of ( , )h U t  that t is an integer 

multiple of h.  Figure 2 shows the same realisation of the surplus process as given in 
Figure 1 but assuming now that the process is checked only at discrete time intervals.  The 
black markers show the values of the surplus process at integer time intervals (ie h = 1); the 
black markers together with the white ones show the values of the surplus process at time 
intervals of length ½. 

 

 Figure 2 

It can be seen from Figure 2 that in discrete time with h = 1, ruin does not occur for this 
realisation of the surplus process before time 5, but ruin does occur (at time 2½) in discrete 
time with h = ½. 
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Listed below are five relationships between different discrete time probabilities of ruin for 

1 20 U U   and for 1 20 t t    .  Formulae (1.5), (1.6), (1.7) and (1.8) are the discrete time 

versions of formulae (1.1), (1.2), (1.3) and (1.4) above and their intuitive explanations are 
similar.  The intuitive explanation of (1.9) comes from Figure 2. 

 2 1( , ) ( , )h hU t U t    (1.5) 

 2 1( ) ( )h hU U    (1.6) 

 1 2( , ) ( , ) ( )h h hU t U t U     (1.7) 

 lim ( , ) ( )h ht
U t U 


   (1.8) 

 ( , ) ( , )h U t U t    (1.9) 

Question 

Explain why Equation 1.9 is true. 

Solution 

U t ( , )  involves checking for ruin at all possible times.  Since the more often we check for ruin, 

the more likely we are to find it, we would expect that U t ( , )  would be greater than h U t ( , ) . 

 
Intuitively, it is expected that the following two relationships are true since the probability of 
ruin in continuous time could be approximated by the probability of ruin in discrete time, 
with the same initial surplus, U, and time horizon, t, provided ruin is checked for sufficiently 
often, ie provided h is sufficiently small. 

 
0

lim ( , ) ( , )hh
U t U t 

 
   (1.10) 

 
0

lim ( ) ( )hh
U U 

 
   (1.11) 

Formulae (1.10) and (1.11) are true but the proofs are rather messy and will not be given 
here. 
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2 The Poisson and compound Poisson processes 

2.1 Introduction 

In this section some assumptions will be made about the claim number process,   0
( ) tN t  , 

and the claim amounts,   1i iX 


.  The claim number process will be assumed to be a 

Poisson process, leading to a compound Poisson process   0
( ) tS t   for aggregate claims.  

The assumptions made in this section will hold for the remainder of this chapter. 

2.2 The Poisson process 

We use the term “Poisson process” to describe the number of claims arising from a time period of 
length t.   

If the number of claims N arising from a single time period has a Poisson distribution with 
parameter   then the number of claims N t( )  which arise over a time period of length t is a 
Poisson process, ie N t( )  has a Poisson distribution with parameter t .   

The Poisson process is an example of a counting process.  Here the number of claims 
arising from a risk is of interest.  Since the number of claims is being counted over time, the 

claim number process   0
( ) tN t   must satisfy the following conditions: 

(i) (0) 0N  , ie there are no claims at time 0 

(ii) for any 0t  , ( )N t  must be integer valued 

(iii) when s t , ( ) ( )N s N t , ie the number of claims over time is non-decreasing 

(iv) when s t , ( ) ( )N t N s  represents the number of claims occurring in the time 

interval  ,s t . 

The claim number process   0
( ) tN t   is defined to be a Poisson process with parameter   if 

the following conditions are satisfied: 

(i) (0) 0N  , and ( ) ( )N s N t  when s t  

(ii)  ( ) | ( ) 1 ( )P N t h r N t r h o h       

  ( ) 1| ( ) ( )P N t h r N t r h o h       (2.1) 

  ( ) 1| ( ) ( )P N t h r N t r o h      

(iii) when s t , the number of claims in the time interval ( , ]s t  is independent of the 

number of claims up to time s . (2.2) 

Condition (ii) implies that there can be a maximum of one claim in a very short time interval h.  It 
also implies that the number of claims in a time interval of length h does not depend on when 
that time interval starts. 
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Question 

Explain how motor insurance claims could be represented by a Poisson process. 

Solution 

The events in this case are occurrences of claim events (ie accidents, fires, thefts etc) or claims 
reported to the insurer.  The parameter   represents the average rate of occurrence of claims 
(eg 50 per day), which we are assuming remains constant throughout the year and at different 
times of day.  The assumption that, in a sufficiently short time interval, there can be at most one 
claim is satisfied if we assume that claim events cannot lead to multiple claims (ie no motorway 
pile-ups etc). 

 
When studying a Poisson process the distribution of the time to the first claim and the times 
between claims is often of particular interest. 

Time to the first claim 

This section will show that the time to the first claim has an exponential distribution with 
parameter  . 

Let the random variable 1T  denote the time of the first claim.  Then, for a fixed value of t , if 

no claims have occurred by time t , 1T t .  Hence: 

    1 ( ) 0 exp{ }P T t P N t t      

This last step follows from the formula for the probability function of a Poisson t( )  distribution 
with x  0 . 

And: 

 1(   )  1 exp{ }P T t t     

so that 1T  has an exponential distribution with parameter     

This is because the RHS matches the formula for the distribution function of an exponential 
distribution. 

The time to the first claim in a Poisson process has an exponential distribution with parameter  . 

Time between claims 

This section will show that the time between claims has an exponential distribution with 
parameter  . 
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For 2,3,i  , let the random variable iT  denote the time between the  1i  th and the i th 

claims.  Then: 

     
      

1

1
1 1 1

0

n n n

n i i i
i i i

P T t T r P T t r T r

P N t r n N r n

P N t r N r N r n




  

   
        
   
   

   

    

  

 

Then we use the independence of claim numbers in different time periods to remove the 
conditioning. 

By condition (2.2): 

 ( ( ) ( ) 0 ( ) ) ( ( ) ( ) 0)P N t r N r N r n P N t r N r         

Finally: 

 ( ( ) ( ) 0) ( ( ) 0) exp{ }P N t r N r P N t t        

since the number of claims in a time interval of length r  does not depend on when that time 
interval starts (condition (2.1)).  Thus inter-event times also have an exponential distribution 
with parameter  . 

The time between claims in a Poisson process has an exponential distribution with parameter  . 

Note that the inter-event time is independent of the absolute time.  In other words the time until 
the next event has the same distribution, irrespective of the time since the last event or the 
number of events that have already occurred.  This is referred to as the memoryless property of 
the exponential distribution.   

Question 

If reported claims follow a Poisson process with rate 5 per day (and the insurer has a 24 hour 
hotline), calculate: 

(i) the probability that there will be fewer than 2 claims reported on a given day 

(ii) the probability that another claim will be reported during the next hour. 

Solution 

(i) The expected number of claims reported on a given day is 5.  So the number of claims 
reported on a given day has a Poisson(5)  distribution and the probability that there will 
be fewer than 2 claims is: 

P N P N P N e e        5 5( 2) ( 0) ( 1) 5 0.040  

Here we have used the formula for the Poisson probability, but alternatively, using page 
176 of the Tables, P N P N   ( 2) ( 1) 0.04043 . 
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(ii) The waiting time until the next event has an Exp(5)  distribution.  We need to find a 
probability using the exponential distribution.  To do this, we can use the cumulative 
distribution function: 

  tP T t e   ( ) 1  

So the probability that there will be a claim (or several claims) during the next hour ( 1
24  of 

a day) is: 

P T e   
5

241
24( ) 1 0.1881    

Note that it is unlikely that the rate would be constant over time in reality. 

 
2.3 The compound Poisson process 

In this section the Poisson process for the number of claims will be combined with a claim 
amount distribution to give a compound Poisson process for the aggregate claims. 

The following three important assumptions are made: 

 the random variables   1i iX 


 are independent and identically distributed 

 the random variables   1i iX 


 are independent of ( )N t  for all 0t   

 the stochastic process   0
( ) tN t   is a Poisson process whose parameter is 

denoted  . 

This last assumption means that for any 0t  , the random variable ( )N t  has a Poisson 

distribution with parameter t , so that: 

 ( )
[ ( ) ] exp{ }  for 0,1,2,

!

ktP N t k t k
k


     

With these assumptions the aggregate claims process,   0
( ) tS t  , is called a compound 

Poisson process with Poisson parameter  .  By comparing the assumptions above with the 
assumptions in Section 0, it can be seen that the connection between the two is that if 

  0
( ) tS t   is a compound Poisson process with Poisson parameter  , then, for a fixed value 

of t ( 0) , ( )S t  has a compound Poisson distribution with Poisson parameter t .   

Note the slight change in terminology here: ‘Poisson parameter  ’ becomes ‘Poisson 

parameter t ’ when a change is made from the process to the distribution. 

The common distribution function of the iX s will be denoted ( )F x  and it will be assumed 

for the remainder of this chapter that (0) 0F   so that all claims are for positive amounts. 
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F x( )  is defined to be P X x( ) .  In the continuous case we would find F x( )  by integrating the 
probability density function (PDF): 

  
x

F x f t dt


  ( )  

The probability density function of the iX s, if it exists, will be denoted ( )f x  and the kth 

moment about zero of the iX s, if it exists, will be denoted km , so that: 

  for 1, 2, 3,k
k im E X k     

Whenever the common moment generating function of the iX s exists, its value at the point 

r  will be denoted by ( )XM r . 

The definition of a moment generating function is: 

 rX
XM r E e( ) [ ]  

Note that we are using r  for the dummy variable to avoid confusion with time t . 

Since, for a fixed value of t , ( )S t  has a compound Poisson distribution, it follows from an 

earlier subject that the process 0{ ( )}tS t   has mean 1tm , variance 2tm , and moment 

generating function ( )SM r , where: 

 ( ) exp{ ( ( ) 1)}S XM r t M r   

Subject CS2 shows that if: 

 NS X X X   1 2   

where  N Poisson  , then: 

    E S E X m   1   Var S E X m    
2

2( )  

    S N XM r M M r   ln  

These formulae can be found on page 16 of the Tables. 

Here    N t Poisson t , therefore  E S t tm    1  and  Var S t tm 2( ) .  Also 

      r
N tM r t e exp 1 , so: 

     xM r
S t XM r t e t M r    ln ( )

( )( ) exp ( 1) exp ( ) 1  
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For the remainder of this chapter the following (intuitively reasonable) assumption will be 
made concerning the rate of premium income: 

 1>c m   (2.3) 

so that the insurer’s premium income (per unit time) is greater than the expected claims 
outgo (per unit time).   

Question 

Why is this intuitively reasonable? 

Solution 

Otherwise the insurer would be charging premiums that were less than the amount it expected to 
pay out in claims. 

In the real world this assumption may not always be true, especially during periods of competitive 
pressure when premium rates are soft. 

 
2.4 Probability of ruin in the short term 

If we know the distribution of the aggregate claims S t( ) , we can often determine the probability of 
ruin for the discrete model over a finite time horizon directly (without reference to the models), by 
looking at the cashflows involved. 

Question 

The claims arising during each year from a particular type of annual insurance policy are assumed 
to follow a normal distribution with mean P0.7  and standard deviation P2.0 , where P  is the 
annual premium.  Claims are assumed to arise independently.  Insurers assess their solvency 
position at the end of each year. 

A small insurer with an initial surplus of £0.1m expects to sell 100 policies at the beginning of the 
coming year in respect of identical risks for an annual premium of £5,000.  The insurer incurs 
expenses of P0.2  at the time of writing each policy.  Calculate the probability that the insurer will 
prove to be insolvent at the end of the coming year.  Ignore interest. 

Solution 

Using the information given, the insurer’s surplus at the end of the coming year will be: 

U

S

S

  

      

 

(1) initial surplus + premiums  expenses claims

0.1m 100 5,000 100 0.2 5,000 (1)

0.5m (1)
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The distribution of S(1)  is: 

   S N N             
2 2(1) 100 0.7 5,000, 100 2.0 5,000 0.35m, 0.1m  

So the probability that the surplus will be negative is: 

   

 

P U P S

P N

  

       

      
 

2

(1) 0 (1) 0.5m

0.35m, 0.1m 0.5m

0.5m 0.35m1 1 0.93319 0.067
0.1m

 

Question 

If the insurer expects to sell 200 policies during the second year for the same premium and 
expects to incur expenses at the same rate, calculate the probability that the insurer will prove to 
be insolvent at the end of the second year. 

Solution 

The insurer’s surplus at the end of the second year will be: 

 U

S

S

  

       

 

+
(2) initial surplus + premiums  expenses claims

0.1m (100 200) 5,000 (100 200) 0.2 5,000 (2)

1.3m (2)

 

The distribution of S(2)  is: 

S N N    2 2(2) (300 0.7 5,000, 300 (2.0 5,000) ) [1.05m,(0.173m) ]  

The probability that the surplus will be negative at the end of the second year is: 

P U P S

P N

  

 

   
 

  

2

[ (2) 0] [ (2) 1.3m]

( [1.05m,(0.173m) ] 1.3m)

1.3m 1.05m1
0.173m

1 (1.443) 0.074

 

The normal distribution is probably not a very realistic distribution to use for the claim amount 
distribution in most portfolios, as it is symmetrical, whereas many claim amount portfolios will 
have skewed underlying distributions.  However, it is commonly used in exam questions. 
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Question 

The number of claims from a portfolio of policies has a Poisson distribution with parameter 30 per 

year.  The individual claim amount distribution is lognormal with parameters  3  and  2 1.1 .  
The rate of premium income from the portfolio is 1,200 per year. 

If the insurer has an initial surplus of 1,000, estimate the probability that the insurer’s surplus at 
time 2 will be negative, by assuming that the aggregate claims distribution is approximately 
normal. 

Solution 

First we need the mean and variance of the aggregate claims in a two-year period.  The expected 
number of claims will be 60.  So the mean and variance are (using the formulae for the first two 
moments of a lognormal distribution): 

  E S e  3 0.55(2) 60 2,088.80  

and  Var S e  6 2.2(2) 60 218,457  

Ruin will occur if S(2)  is greater than the initial surplus plus premiums received.  So we want: 

 P S P N
 

        
 

3,400 2,088.80(2) 1,000 2 1,200 (0,1) 1 (2.8053) 0.0025
218,457

 

The probability of ruin is approximately 0.25%. 

 
2.5 Premium security loadings 

So far, we have used c  to denote the rate of premium income per unit time, independent of the 
claims outgo.  In some circumstances it is more useful to think of the rate of premium income as 
being related to the rate of claims outgo. 

For the insurer to survive, the rate at which premium income comes in needs to be greater than 
the rate at which claims are paid out.  If this is not true, the insurer is certain to be ruined at some 
point. 

Sometimes c  will be written as: 

   11c m    

where  0   is the premium loading factor. 
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The security loading is the percentage by which the rate of premium income exceeds the rate of 
claims outgo.  So, for the Poisson process outlined above, we have: 

      c E S m      11 1  

where   is the security loading.    is also sometimes called the ‘relative security loading’.  It 
might typically be a figure such as 0.2, ie 20%. 

The insurer will need to adopt a positive security loading when pricing policies, in order to cover 
expenses, profit, contingency margins and so on. 

Note that this does not mean that ruin is impossible.  It is quite possible for the actual claims 
outgo to exceed substantially its expected value.  So even in this situation the insurer’s probability 
of ruin is non-zero.  

Mean, variance and MGF of the total claim amount 

For a compound Poisson process S t( ) , the mean and variance of the total claim amount are given 
by: 

   E S t t E X       Var S t t E X    
2( )  

The moment generating function of the process is given by: 

      XS tM r t M r exp ( 1  

2.6 A technicality 

In the next section a technical result will be needed concerning  XM r  (the moment 

generating function of the individual claim amount distribution), which, for convenience, will 
be presented here.  It will be assumed throughout the remainder of this chapter that there is 

some number   (0 )    such that  XM r  is finite for all r   and: 

 lim X
r

M r
 

 
 

 (2.4) 

(For example, if the iX s have a range bounded above by some finite number, then   will 

be  ; if the iX s have an exponential distribution with parameter  , then   will be equal 

to .)  

Suppose for example that claim amounts have a continuous uniform distribution on the 
interval (0,10) , so that they are bounded above by 10.  Then the moment generating function of 
the claim distribution is (from the Tables): 

  
r

X
eM r

r



10 1
10
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This is defined for all positive values of r , and so in this case    .  We can see that as r  , 
the limit of the MGF is infinite.  If the claim distribution is Exp ( ) , the MGF (as stated in the 
Tables) is: 

 XM r r
r




  


1( ) (1 / )  

This tends to infinity as r  tends to   from below. 

In the next section the following result will be needed: 

   lim X
r

M r cr





    (2.5) 

If   is finite, (2.5) follows immediately from (2.4). 

This is because  , c  and r  would all have finite values in the limit. 

Now it will be shown that (2.5) holds when   is infinite.  This requires a little more care.  

First note that there is a positive number,   say, such that: 

 0iP X      

The reason for this is that all claim amounts are positive. 

So, if we pick a small enough number (  0.01  maybe), we’re bound to get a proportion of claims 
whose amount exceeds this. 

This probability will be denoted by  .  Then: 

 ( ) r
XM r e   

This follows by considering the claims below and above  : 

 
rX rX rX

X

r

M r E e E e X P X E e X P X

e 

   



                

 

( ) | ( ) | ( )

0
 

Hence: 

 lim ( ( ) ) lim ( )r
Xr r

M r cr e cr  
 

      

Here the re   term is tending to  , while the cr  term is tending to  .  Remember that in 
such cases the exponential term always ‘wins’.  So the limit is  . 
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3 The adjustment coefficient and Lundberg’s inequality 

This section will look at the probability of ruin and introduce the adjustment coefficient, a 
parameter associated with risk.  The letters R  and r  will be used interchangeably for the 
adjustment coefficient. 

3.1 Lundberg’s inequality 

Lundberg’s inequality states that: 

 ( ) exp{ }U RU    

where U  is the insurer’s initial surplus and ( )U  is the probability of ultimate ruin.  R  is a 

parameter associated with a surplus process known as the adjustment coefficient.  Its value 
depends upon the distribution of aggregate claims and on the rate of premium income.  
Before defining R  the importance of the result and some features of the adjustment 
coefficient will be illustrated. 

Don’t worry at this stage about what R  actually represents.  It will be defined shortly.  Until then 
just think of it as a parameter associated with the surplus process. 

Note that if we can find a value for R , then Lundberg’s inequality tells us that we can find an 
upper bound for the probability of ruin.  This is a very useful result. 

Figure 3 shows a graph of both exp{ }RU  and ( )U  against U  when claim amounts are 

exponentially distributed with mean 1, and when the premium loading factor is 10%.  (The 
solution for R  will be found in Section 3.2.  The formula for ( )U  is given in Section 4.2.) 

In fact it can be shown that the value of R  in this case is 
10
11

. 

 
Figure 3 – Exponentially distributed claims with mean 1 

and premium loading factor 10% 
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It can be seen that, for large values of U , ( )U  is very close to the upper bound, so that 

( ) exp{ }U RU   . 

In the actuarial literature, exp{ }RU  is often used as an approximation to ( )U . 

R  can be interpreted as measuring risk.  The larger the value of R , the smaller the upper 
bound for ( )U  will be.  Hence, ( )U  would be expected to decrease as R  increases.  R  is 

a function of the parameters that affect the probability of ruin, and R ’s behaviour as a 
function of these parameters can be observed. 

Note that R  is an inverse measure of risk.  Larger values of R  imply smaller ruin probabilities, and 
vice versa.   

Figure 4 shows a graph of R  as a function of the loading factor,  , when: 

(i) the claim amount distribution is exponential with mean 10, and 

(ii) all claims are of amount 10. 

 
Figure 4 – R by loading 

Note that in both cases, R  is an increasing function of  .  This is not surprising as ( )U  

would be expected to be a decreasing function of  , and since  ( ) expU RU   , any 

factor causing a decrease in ( )U  would cause R  to increase. 

Question 

Why would U ( )  be expected to be a decreasing function of  ? 

Solution 

  is the security loading, and U ( )  is the probability of ruin for a fixed level of surplus U .  If   
increases the premiums we charge will increase, and we should become more secure, ie the 
probability of ruin should fall. 
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Note also that the value of R  when claim amounts are exponentially distributed is less than 
the value of R  when all claim amounts are 10.  Again, this result is not surprising.  Both 
claim amount distributions have the same mean, but the exponential distribution has 
greater variability.  Greater variability is associated with greater risk, and hence a larger 
value of ( )U  would be expected for the exponential distribution, and a lower value of R .  

This example illustrates that R is affected by the premium loading factor and by the 
characteristics of the individual claim amount distribution.  R  is now defined and shown, in 
general, to encapsulate all the factors affecting a surplus process. 

3.2 The adjustment coefficient – compound Poisson processes 

The surplus process depends on the initial surplus, on the aggregate claims process and on 
the rate of premium income.  The adjustment coefficient is a parameter associated with a 
surplus process which takes account of two of these factors: aggregate claims and 
premium income.  The adjustment coefficient gives a measure of risk for a surplus process.  
When aggregate claims are a compound Poisson process, the adjustment coefficient is 
defined in terms of the Poisson parameter, the moment generating function of individual 
claim amounts and the premium income per unit time. 

The adjustment coefficient, denoted R , is defined to be the unique positive root of: 

 ( ) 0XM r cr       (3.1) 

So, R is given by: 

 ( )XM R cR      (3.2) 

Note that, although R  relates to the aggregate claims, the MGF used in the definition is for the 
individual claim amount. 

It is probably not at all obvious to you at this stage why R  is defined in this way.  The reason is 
bound up with the proof of Lundberg’s inequality, which you are not required to know.  Please 
accept the definition, so that you can find the value of R  in simple cases. 

Note that equation (3.1) implies that the value of the adjustment coefficient depends on the 
Poisson parameter, the individual claim amount distribution and the rate of premium 
income.  However, writing 1(1 )c m    gives: 

 1( ) 1 (1 )XM r m r    

so that R  is independent of the Poisson parameter and simply depends on the loading 
factor,  , and the individual claim amount distribution. 

You can see from this equation that all the  ’s have cancelled. 

Question 

An insurer knows from past experience that the number of claims received per month has a 
Poisson distribution with mean 15, and that claim amounts have an exponential distribution with 
mean 500.  The insurer uses a security loading of 30%.  Calculate the insurer’s adjustment 
coefficient and give an upper bound for the insurer’s probability of ruin, if the insurer sets aside 
an initial surplus of 1,000. 
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Solution 

The equation for the adjustment coefficient is: 

 XM r m r   1( ) 1 (1 )  

We have X Exp 
 
 

1
500

 , so that XM r r   1( ) (1 500 )  (this comes from the Tables),   0.3 , and 

m E X 1 [ ] 500 .  Substituting these into the equation: 

 r r r     1(1 500 ) 1 1.3 500 1 650  

Rearranging: 

 

r r

r r r

r

r

  

   

 

 

2

1 (1 500 )(1 650 )

1 1 500 650 325,000

0 150 325,000

0.000462

 

From Lundberg’s inequality, rUU e ( ) , so here: 

 U e   0.000462 1,000( ) 0.630  

Note that we didn’t use the Poisson parameter in our solution. 

 
We will see another example of finding the adjustment coefficient shortly. 

Question 

In the previous question we ignored the fact that r  could be 0.  Why? 

Solution 

The first reason is that Core Reading defines R  to be the unique positive root, so R  cannot be 
zero. 

The second reason is that R  0  should always be a solution to the equation.  Why?  Consider the 

LHS.  XM E e 0(0) [ ] 1 .  Consider the RHS.  m   11 (1 ) 0 1 .  So R  0  is always a solution, but 
why do we ignore it? 

Consider Lundberg’s inequality, RUU e ( ) .  If R  0 , we have an upper bound of 1 for the 
probability of ruin.  That should have been obvious! 

In practice, ignore R  0 , just as we have done here. 
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It may not be obvious to you why R  does not depend on the Poisson parameter.  The basic 
reason is that increasing the Poisson parameter speeds up the whole process, so that claims arise 
more quickly.  This means that ruin, if it is going to happen, will happen sooner, rather than later.  
However it does not affect the probability that ruin does actually occur, when we are considering 
ruin at any time in the future. 

It can be shown that there is indeed only one positive root of (3.1) as follows. 

Define ( ) ( )Xg r M r cr     and consider the graph of ( )g r  over the interval [0, ] .  Note 

first that (0) 0g  . 

This is what we discovered in the previous example. 

Further, ( )g r  is a decreasing function at 0r   since: 

 ( ) ( )X
d dg r M r c
dr dr

   

so that the derivative of ( )g r  at 0r   is 1m c   which is less than zero by assumption 

(2.3). 

XM (0)  gives the mean of X , which is E X[ ]  or m1 . 

It can also be shown that if the function ( )g r  has a turning point, it must be at the minimum 

of the function.  The second derivative is: 

 
2 2

2 2
( ) ( )X

d dg r M r
dr dr

  

which is always strictly positive. 

The second derivative can be written: 

 rX
XM r E X e    

2( )  

The function in this expectation is made up of two positive factors, and hence the expectation 
must have a positive value.   

Hence, there can only be one turning point, since any turning point is a minimum.  To show 
that there is a turning point, note from (2.5) that lim ( )

r
g r

 
  .  Since ( )g r  is a decreasing 

function at 0r  , it must have a minimum turning point and so the graph of ( )g r  is as 

shown in Figure 5. 
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Figure 5 

Thus there is a unique positive number R satisfying equation (3.1). 

Equation (3.2) is an implicit equation for R .  For some forms of ( )F x  it is possible to solve 

explicitly for R ; otherwise the equation has to be solved numerically. 

Consider the exponential distribution where ( ) 1 xF x e   . 

This is in the Tables, using   as the parameter for the exponential distribution, which avoids 
confusion with the Poisson parameter. 

For this distribution, ( )XM r
r







, so: 

 

2

2 0

cR
R

R cR cR

R R R
c c






   

 
 

 


    

        
 

   (3.3) 

since R is the positive root of (3.1). 

If 
(1 )c  




 , then 
(1 )

R 





. 

Question 

Write down the equation for the adjustment coefficient for personal accident claims if 90% of claims 
are for £10,000 and 10% of claims are for £25,000, assuming a proportional security loading of 20%. 

Show that this equation has a solution in the range R 0.00002599 0.00002601 . 
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Solution 

The adjustment coefficient satisfies:  

Xm R M R  11 (1 ) ( )  

The distribution of the individual claim sizes X  is: 

X


 


10,000 with probability 0.9
25,000 with probability 0.1

 

So E X xP X x      [ ) ( ) 0.9 10,000 0.1 25,000 11,500  

and RX Rx R R
XM R E e e P X x e e        10,000 25,000( ) ( ) 0.9 0.1  

The security loading is   0.2 . 

So the equation for the adjustment coefficient is: 

R RR e e   10,000 25,0001 1.2 11,500 0.9 0.1  

ie R RR e e  10,000 25,0001 13,800 0.9 0.1  

We can show that there is a solution in the range stated by looking at the values of LHS RHS : 

At R  0.00002599 : R RR e e   10,000 25,0001 13,800 (0.9 0.1 ) 0.000035  

At R  0.00002601 : R RR e e    10,000 25,0001 13,800 (0.9 0.1 ) 0.000018  

Since there is a reversal of signs (and we are dealing with a continuous function), the difference 
must be zero at some point between these two values, ie there is a solution of the equation in the 
range R 0.00002599 0.00002601 . 

 
If the equation for R  has to be solved numerically, it is useful to have a rough idea of R ’s 
value.  Equation (3.2) can be used to find a simple upper bound for R  as follows: 

 
0

2 21
2

0

21
1 22

( )

( )

(1 ) ( )

(1 )

X

Rx

cR M R

e f x dx

Rx R x f x dx

Rm R m

 











 



  

  




 

The inequality is true because all the terms in the series for Rxe  are positive.  So Rxe  must always 
be greater than the total of the first few terms. 
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Alternatively, we could present this proof as: 

 

RXcR E e

E RX R X

E E RX E R X

RE X R E X

 







 

      

         

     

2 2

2 2

2 2

[ ]

11
2

1[1] [ ]
2

11 [ ] [ ]
2




 

So that 21
1 22

( )c m R R m   , giving: 

 1 22( ) /R c m m    (3.4) 

so that 1 22 /R m m when 1(1 )c m   .  Notice that if the value of R  is small, then it 

should be very close to this upper bound since the approximation to Rxe  should be good. 

Question 

Find an upper limit for the adjustment coefficient in the previous question, and comment on your 
answer. 

Solution 

Here: 

 E X [ ] 11,500  

Also: 

 E X x P X x      2 2 2 2[ ] ( ) 0.9 10,000 0.1 25,000 152,500,000  

So: 

 
m

R
m
  

  1

2

2 2 0.2 11,500 0.0000302
152,500,000

 

So this is a reasonable initial estimate, compared with the correct value of approximately 
0.000026. 

R c m
M M

     1
1 1 1log( / ) log(1 ) log1.2 0.00000729

25,000
 

The steps used in the proof are equally valid for a discrete claims distribution.  However, note that 
the lower bound obtained here is not very close to the accurate value for R . 
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3.3 A lower bound for R 

A lower bound for R  can be derived when there is an upper limit, say M , to the amount of 
an individual claim.  For example, if individual claim amounts are uniformly distributed on 
(0,100) , then 100M  .  The result is proved in a similar fashion to Result (3.4).  The lower 

bound is found by applying the inequality: 

 exp( ) exp( ) 1
x xRx RM
M M

     for  0 x M      (3.5) 

The inequality is proved through the series expansion of exp( )RM : 

 

0

1

1

1

( )
exp( ) 1 1

!

1
!

( )
1       for 0

!

exp( )

j

j

j j

j

j

j

x x x RM xRM
M M M j M

R M x
j

Rx x M
j

Rx





 







    

 

   









 

since j jx M x 1  if x M 0 . 

Inequality (3.5) can be used to show that: 

 1
1

log( / )R c m
M

  

when individual claim amounts have a continuous distribution on (0, )M .   

This is the lower bound for R  that we are trying to find. 

The starting point is the equation defining R, 

ie Equation 3.2: 

  

0

0

1 1

exp( ) ( )

exp( ) 1 ( )

exp( )

M

M

cR Rx f x dx

x xRM f x dx
M M

RM m m
M M

 



 


 

    
 

  



  

Hence, rearranging: 

 
2

1

1 ( )
(exp( ) 1) 1

2 3!

c RM RMRM
m RM
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 RMRM

   
2

1
1! 2!

  

exp( )RM  

This gives 
1

1
log

cR
M m

 
  

 
as required. 

If c m   1(1 ) , this is just R
M

 
1 log(1 ) . 

Other approximations for R  can be found, particularly when R  is small, by truncating the 
series expansion of exp( )Rx . 

3.4 The adjustment coefficient – general aggregate claims processes 

In Section 3.2 the existence of the adjustment coefficient, R, was proved for a compound 
Poisson aggregate claims process.  In this section the existence of the adjustment 
coefficient for a general aggregate claims process is proved. 

Let 1{ }i iS 
  be a sequence of independent identically distributed random variables: 

 iS   aggregate claims from a risk in time period i . 

 c  is the constant premium charged to insure this risk 

The following assumptions are made: 

 [ ]ic E S      (3.6) 

There is some number 0   such that: 

  lim ir S c
r

E e




 

     
    (3.7) 

 iS  has density function ( )h x , x     (3.8) 

In the general situation the adjustment coefficient is the positive number R that can be 
shown to satisfy the following: 

 
( )[ ] 1iR S cE e    

The proof that there is one, and only one, positive number R to satisfy this is as follows. 

Let ( )( ) [ ]ir S cf r E e   for r    . 

Then (0) 1f  , (0) [ ] 0if E S c    , ( ) 0f x  , and: 

 lim ( )
r

f r
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We then use the same argument as for the compound Poisson case, based on the graph below.  
This graph forms part of the Core Reading. 

 

 

 

 

 

 

 

 

Figure 6 – f(r) by r 

Suppose iS  has a compound Poisson distribution with Poisson parameter   and claim size 

random variable X . 

Then: 

( ) 1iR S cE e      

  iRS RcE e e     

  Rc
SM R e( )  

  ( ( ) 1)XM R Rce e    

  ( )XM R Rc    

which is the same as (3.2). 

R  

f(r) 

0 

1 

r 
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4 The effect of changing parameter values on ruin probabilities 

4.1 Introduction 

Recall that U ( )  was defined to be  P U   ( ) 0, 0 , and U t ( , )  was defined to be 

 U t P U t     ( , ) ( ) 0, 0 . 

In this section the effect of changing parameter values on ( , )U t  and ( )U  will be 

discussed. 

No new theory will be introduced and the method for obtaining numerical values for ( , )U t  

will not be discussed.  Features of ( , )U t , and in some cases of ( )U , will be illustrated by 

a series of numerical examples.  In these examples the same basic assumptions will be 
made as in previous sections.  In particular, it will be assumed that the aggregate claims 
process is a compound Poisson process.  In addition it will be assumed throughout Section 
4.3, Section 4.4 and Section 4.5 that: 

 the Poisson parameter for the number of claims is 1 (4.1) 

 the expected value of an individual claim is 1 (4.2) 

 individual claims have an exponential distribution. (4.3) 

In Section 4.6, Assumptions (4.2) and (4.3) will be made, but the Poisson parameter will be 
allowed to vary. 

The implication of Assumption (4.1) is that the unit of time has been chosen to be such that 
the expected number of claims in a unit of time is 1.  Hence ( ,500)U  is the probability of 

ruin (given initial surplus U ) over a time period in which 500 claims are expected.  The 
actual number of claims over this time period has a Poisson distribution (with parameter 
500) and could take any non-negative integer value. 

The implication of Assumption (4.2) is that the monetary unit has been chosen to be equal 
to the expected amount of a single claim.  Hence (20,500)  is the probability of ruin (over a 

time period in which 500 claims are expected) given an initial surplus equal to 20 times the 
expected amount of a single claim. 

The advantage of using an exponential distribution for individual claims (Assumption (4.3)) 
is that both exp( )RU  and ( )U  can be calculated for these examples.  See Section 3.2 and 

Section 4.2. 

4.2 A formula for ( )U  when F(x) is the exponential distribution 

The formula for ( )U  when individual claims amounts are exponentially distributed with 

mean 1, and when the premium loading factor is  , is given by the following result. 

When ( ) 1 exp( )F x x   : 

 
1

( ) exp
1 1

UU 


 
     

 (4.4) 

The syllabus does not require this result to be derived or memorised. 
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This result has been stated in order to illustrate how, for this particular distribution, the 
ultimate ruin probability is affected by changes in parameter values. 

4.3 ( , )U t  as a function of t 

Question 

Is U t ( , )  an increasing or decreasing function of t ? 

Solution 

U t ( , )  is the probability of ruin at some point between times 0 and t .  This should increase with 
time since the longer the time period, the more chance there is of ruin.  It should be intuitively 
obvious that U t U t 1 2( , ) ( , )  for t t1 2 , since if a scenario produces ruin before time t1 , then 

ruin has also occurred before time t2 . 

 
Figure 7 shows a graph of (15, )t  for 0 500t  .  The premium loading factor,  , is 0.1 so 

that the premium income per unit time is 1.1.  Also shown in Figure 7 are (15)  (dotted line) 

and 0.1   (solid line) for this portfolio.  These last two values are shown as lines parallel 
to the time axis since their values are independent of time. 

Here: 

 t (15, )  has been worked out using a numerical method not described here 

  (15)  has been calculated using equation 4.4 

  Rexp 15  is the upper bound given by Lundberg’s inequality. 

 

 

 Figure 7 – Values over time 
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Question 

Calculate the value of  (15) . 

Solution 

e
 

 
150.1
1.11(15) 0.23248

1.1
 

Question 

Calculate the value of Re15 . 

Solution 

R  is worked out from R 



 


1 0.1

1 1.1
. 

So Re e   
0.1
1.11515 0.2557  

 
The features of note in Figure 7 are: 

(i) (15, )t  is an increasing function of t  

(ii) for small values of t, (15, )t  increases very quickly (its value doubles as t increases 

from 25 to 50 and doubles again as t increases from 50 to 100) 

(iii) for larger values of t, (15, )t  increases less quickly and approaches asymptotically 

the value of (15) . 

General reasoning should help you to understand (ii) and (iii).  You would expect a much higher 
probability of ruin before time 50 than before time 25 since the overall performance of the fund 
could easily change in such a short time period.  However, if premium rates are expected to be 
profitable in the long term, then at time 400, say, a significant surplus will have built up in most 
cases and so the probability of ruin at time 425 won’t be that much higher than at time 400.  We 
are assuming here that accumulated surpluses stay in the fund and are not, for example, 
distributed to shareholders. 

4.4 Ruin probability as a function of initial surplus 

Question 

Is U t ( , )  an increasing or decreasing function of U ? 
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Solution 

Decreasing.  The bigger the initial surplus, the less chance there should be of ruin. 

 
Figure 8 shows values of ( , )U t  for   and for three values of the initial surplus, 15, 20,U   

and 25.  The premium loading factor is 0.1 as in Figure 7.  For 15U   the graph of   is as in 
Figure 7. 

 

Figure 8 –   for different values of U 

Question  

Calculate the value of  (20) . 

Solution 

e   
20
1.10.11(20) 0.14756

1.1
 

This is the limit to which the middle of the three lines is tending to as t  tends to  . 

 
The features of note in Figure 8 are: 

(i) the graphs all have the same general shape 

(ii) increasing the value of U  decreases the value of ( , )U t  for any value of t  

(iii) each of the three graphs approaches an asymptotic limit as t  increases (as has 

already been noted for U  equal to 15 in the discussion of Figure 4).  Note that 

(20) 0.1476   and (25) 0.0937  . 

( )U  is a non-increasing function of U . 
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In the case of exponentially distributed individual claim amounts, the derivative with respect 
to U of ( )U  is: 

 ( ) ( )
1

d U U
dU


 







 

which is negative since 0  .  Hence ( )U  is a decreasing function of U . 

It is intuitively clear that ( , )U t  (of which ( )U  is a special case) should be a decreasing 

function of U .  An increase in U  represents an increase in the insurer’s surplus without any 

corresponding increase in claim amounts.  Thus, an increase in U  represents an increase 
in the insurer’s security and hence will reduce the probability of ruin. 

4.5 Ruin probability as a function of premium loading 

Question 

Is U t ( , )  an increasing or decreasing function of  ? 

Solution 

Decreasing.  If everything else remains unchanged, then increasing the premium income will 
reduce the probability of ruin. 

 
Figure 9 shows values of (15, )t  for 0 500t   and for three values of the premium 

loading factor, 0.1, 0.2   and 0.3.  The graph of (15, )t  for 0.1   is the same as the 

graph in Figure 7 and the same as one of the graphs in Figure 8.  Figure 9 is, in many 
respects, similar to Figure 8.  The features of note in Figure 9 are: 

(i) the graphs of (15, )t  all have the same general shape, 

(ii) increasing the value of   decreases the value of (15, )t  for any given value of t ; 

this is in fact true for any value of U , and is an obvious result since an increase in 
  is equivalent to an increase in the rate of premium income with no change in the 
aggregate claims process, 

(iii) it can be seen that when 0.1, 0.2   and 0.3, (15, )t  is more or less constant for t  

greater than about 150.  For 1 2t t , the difference 2 1(15, ) (15, )t t   represents the 

probability that ruin occurs between times 1t  and 2t .  Hence for these values of  , 

0.2 and 0.3, (and for this value of the initial surplus, 15, and for this aggregate claims 
process) ruin, if it occurs at all, is far more likely to occur before time 150, ie within 
the time period for 150 claims to be expected, than after time 150.  This point will be 
discussed further in Section 4.6. 
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Figure 9 – (15, )t  for different values of   

It is clear by general reasoning that ( )U  must be a non-increasing function of  .  In the 

case of exponential individual claim amounts, ( )U  is a decreasing function of  . 

 1 2( ) (1 ) ( ) (1 ) ( )
d U U U U

d
    


       

Question 

Verify this expression for 
d U

d



( ) . 

Solution 

This is probably easiest if we start by writing: 

  U U U 


  


11( ) exp (1 )
1

 

We need to differentiate this using the product rule: 

 
d dv duuv u v

d d d  
 ( )  

Differentiating U ( )  with respect to  : 

   d U U U U U U
d

     


                
1 2 1 2 1( ) (1 ) (1 ) exp (1 ) (1 ) exp (1 )  

Now substituting back in each term for U ( ) : 

d U U U U
d

    


       
2 1( ) (1 ) ( ) (1 ) ( )  
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This is clearly negative since  , U  and ( )U  are all positive quantities.  Since the 

derivative is less than zero for all values of  , ( )U  is a decreasing function of  . 

Figure 10 shows (10)  as a function of  . 

 

 Figure 10 

4.6 Ruin probability as a function of the Poisson parameter 

Figure 11 shows (15,10)  as a function of   for three values of the premium loading factor, 

0.1, 0.2   and 0.3.  This graph is identical to Figure 9 apart from the labelling of the x-axis.  

This can be explained by considering the following two risks. 

 

 Figure 11 

Risk 1: aggregate claims are a compound Poisson process with Poisson parameter 1 and 

( ) 1 xF x e  .  The premium income per unit time to cover this risk is (1 ) . 

Risk 2: aggregate claims are a compound Poisson process with Poisson parameter 0.5 and 

( ) 1 xF x e  .  The premium income per unit time to cover this risk is 0.5(1 ) . 
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The unit of time is taken to be one year.  The only difference between these risks is that 
twice as many claims are expected each year under Risk 1.  This is reflected in the two 
premiums. 

Consider Risk 2 over a new time unit equivalent to two years.  Then the distribution of 
aggregate claims and the premium income per unit time are now identical to the 
corresponding quantities for Risk 1.  Hence, the probability of ruin over an infinite time span 
is the same for both risks. 

The solid line in Figure 12 shows an outcome of the surplus process for Risk 1 when 
0.1.    The dotted line shows the same surplus process when the unit of time is two years.  

This illustrates that any outcome of the surplus process that causes ultimate ruin for Risk 1 
will also cause ultimate ruin for Risk 2.  There is thus no difference in the probability of 
ultimate ruin for these two risks.  It is only the time (in years) until ruin that will differ.  
Measuring times in years, the probability of ruin by time 1 for Risk 1 is the same as the 
probability of ruin by time 2 for Risk 2.  This explains why Figures 9 and 11 show the same 
functions.  For example, the value of (15,10)  when 50   (Figure 11) is the same as the 

value of (15,500)  when 1   (Figure 9). 

 

 Figure 12 

Point (iii) in Section 4.5 will now be investigated, where it was noted that values of (15, )t  

were more or less constant for values of t  greater than 150 when 0.2   and 0.3.  In 
particular, the situation will be considered when the premium loading factor is 0.2. 

Consider a second aggregate claims process, which is the same as the process considered 
throughout this section except that its Poisson parameter is 150 and not 1.  (This second 
process is really identical to the original one; all that has happened is that the time unit has 
been changed.)  Use *  to denote ruin probabilities for the second process and   to 

denote, as before, ruin probabilities for the original process.  The change of time unit means 
that for any 0t  : 

 * ( , ) ( ,150 )U t U t   

but it has no effect on the probability of ultimate ruin (put t    in the relationship above) 
so that: 

 * ( ) ( )U U   
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The point made in (iii) above was that: 

 (15,150) (15)   

From this and the previous two relations it can be seen that: 

 * (15,1) * (15)   

In words this relation says that for the second process, starting with initial surplus 15, the 
probability of ruin within one time period is almost equal to (actually a little less than) the 
probability of ultimate ruin.  This conclusion depends crucially on the fact that * (15,1)  is a 

continuous time probability of ruin.  To see this, consider * (15,1) , which is just the 

probability that for the second process the surplus at the end of one time period is negative.  
* (15,1)  can be calculated approximately by assuming that the aggregate claims in one 

time period, which will be denoted S*(1), have a normal distribution.  Recall that individual 
claims have an exponential distribution with mean 1 and that the number of claims in one 
time period has a Poisson distribution with mean 150.  From this: 

  1 150E S     and      1 300Var S   

These are calculated as m   1 150 1 150  and m   2 150 2 300 , where E X   
2 2  for an 

 Exp 1  distribution. 

Now, using tables of the normal distribution: 

 

 

 

* (15,1) * (1) 15 1.2 150

( * (1) 150) / 17.32 45 / 17.32

0.005

P S

P S

    

  



 

Recall that if X N   2( , ) , then 
XZ 



  has a standard normal distribution, ie Z N(0,1) .  

Probabilities for this distribution can be looked up in the Tables. 

From Figure 9 it can be seen that the value of (15,150) , and hence of * (15,1) , is about 

0.07 which is very different from the (approximate) value of the discrete time probability of 
ruin * (15,1)  calculated above. 

4.7 Concluding remarks 

When individual claim amounts are exponentially distributed with mean 1, first note that if 
0  , then ( ) 1U   irrespective of the value of U . 

We’re thinking here of substituting   0  into equation 4.4. 

This result is in fact true for any form of ( )F x  (it trivially follows that if 0  , then ( ) 1U  ).  

In other words a positive premium loading is essential if ultimate ruin is not to be certain. 
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Also note that throughout this section it has been assumed that individual claim amounts 
are exponentially distributed with mean 1.  This mean could be measured in units of £100, 
£1,000 or perhaps £1,000,000.  The parameter of the exponential distribution can be set to 1 
without loss of generality provided that the monetary unit is correctly specified.  In simple 
terms, the probability of ruin when U  is £1 is the same as the probability of ruin when U  is 
100 pence.  It can be said that: 

 ( )U  when ( ) 1 xF x e    

is the same as: 

 ( )U   when ( ) 1 xF x e   

In other words, if the expected claims per unit time increase by a factor  , so too must the 
initial surplus if the probability of ultimate ruin is to be unchanged. 
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5 Reinsurance and ruin 

5.1 Introduction 

One of the options open to an insurer who wishes to reduce the variability of aggregate 
claims from a risk is to effect reinsurance.  This is a form of insurance in which an 
insurance company obtains insurance cover from other insurance companies (reinsurers) 
against the risk of losses. 

A reduction in variability would be expected to increase an insurer’s security, and hence 
reduce the probability of ruin.  A reinsurance arrangement could be considered optimal if it 
minimises the probability of ruin.  As it is difficult to find explicit solutions for the 
probability of ruin, the effect of reinsurance on the adjustment coefficient will be considered 
instead.   

If a reinsurance arrangement can be found that maximises the value of the adjustment 
coefficient, the upper bound for the probability of ultimate ruin will be minimised.  As the 
adjustment coefficient is a measure of risk, it seems a reasonable objective to maximise its 
value.  In the following, the effect on the adjustment coefficient of proportional and of 
excess of loss reinsurance arrangements will be considered.   

Throughout this section we will use the notation X   individual claim amount, Y   amount paid 
by the direct insurer and Z   amount paid by the reinsurer. 

5.2 Proportional reinsurance 

Under proportional reinsurance, the reinsurer covers an agreed proportion of each risk and 
the reinsurance premium is in proportion to this risk ceded. 

For example, the reinsurer might agree to pay 20% of each claim.  The insurer would then pay 
80% of the claim amount. 

If we have a retained proportion   then: 

 Y X    Z X (1 )  

   E Y E X E X  [ ] [ ] [ ]  E Z E X E X    [ ] [(1 ) ] (1 ) [ ]  

 
Question 

Write down expressions for Var Y( )  and Var Z( ) . 

Solution 

Var Y Var X Var X   2( ) ( ) ( )  

Var Z Var X Var X     2( ) ((1 ) ) (1 ) ( )  
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Let us consider the idea of a proportional reinsurance approach by way of a question: 

Question 

Consider the insurer in the third question of Section 2.4.  The number of claims has a Poisson 
distribution with parameter 30 per year.  The individual claim amount distribution is lognormal 

with parameters   3  and  2 1.1 .  The rate of premium income from the portfolio is 1,200 per 
year.  The insurer has an initial surplus of 1,000 

This insurer is investigating the possibility of using proportional reinsurance.  It has approached a 
reinsurer, who uses a security loading of 50% to calculate its reinsurance premiums.  If the insurer 
decides to reinsure 20% of each risk in the portfolio, estimate the effect the reinsurance will have 
on its probability of ruin at Time 2.  Again you can assume that the aggregate claim distribution is 
approximately normal. 

Solution 

We first need to calculate the reinsurance premium.  Since the reinsurer takes responsibility for 
20% of each risk, and uses a loading factor of 50%, the reinsurance premium (per annum) will be: 

  RRP m e       3.55
11 1.5 30 0.2 313.32  

So over a two year period, the insurer will pay 626.64 for the reinsurance. 

We now use netS (2)  for the insurers aggregate payments (net of reinsurance).  We need the 

mean and variance of netS (2) , which are, using the formulae for a compound Poisson distribution 
as before: 

 netE S e   3.55[ (2)] 60 0.8 1,671.04  

and:  netVar S e   2 8.2(2) 60 0.8 139,812.49  

So ruin will occur if: 

 netS    (2) 1,000 2,400 626.64 2,773.36  

Using a normal distribution approach, we have: 

 netP S P N
 

   
 

  

2,773.36 1,671.04
(2) 2,773.36 (0,1)

139,812.49

1 (2.9481) 0.0016

 

Question 

Comment on the usefulness of reinsurance in this context. 
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Solution 

The reinsurance has reduced the probability of ruin to some extent, ie from about 0.25% (which 
was calculated in Section 2.4) to about 0.16%.  However, this result is probably quite sensitive to 
the assumptions made (we are near the tail of the normal distribution), and slightly different 
assumptions might give us very different results. 

We will also want to look at the effect of reinsurance on profitability.  As we are paying a 
reinsurance premium, it is likely that the overall effect on profitability is negative (although the 
effect on security is positive, as we have seen).  There is likely to be a trade-off between security 
and profitability here. 

 
5.3 Excess of loss reinsurance 

Under excess of loss reinsurance, the cost to an insurer of a large claim, a cluster of claims 
arising from a single event (such as an explosion) or claims over a given period (such as a 
catastrophe) is capped with the liability above a certain level being passed to a reinsurer.  In 
most cases the reinsurer’s maximum liability is limited, but we will assume there is no such 
limit within this chapter. 

We refer to the capped amount as the retention of the insurer.   

For example, the insurer might retain the first ten million of claims arising during the year, with 
the reinsurer paying any excess above this amount.  If the claim amount turns out to be less than 
ten million, then the insurer will pay this amount in full and the reinsurer will pay nothing.  
However, if the claim amount is twelve million, then the insurer will pay ten million and the 
reinsurer will pay the excess of two million. 

Subject SP7 discusses the different forms of reinsurance contracts and their relative merits 
in greater detail. 

We can apply the same type of logic as used in the previous section if the insurer decides to buy 
excess of loss reinsurance.  You might like to think about the effect on the probability of ruin if the 
insurer in the previous example purchases excess of loss reinsurance with an individual retention 
of 2,000, say, and a security loading of 50% as before. 

If we have a retention limit M , and no upper limit, then: 

 
X X M

Y
M X M


  

  
X M

Z
X M X M


   

0
 

Y  can be also be written as X Mmin( , ) , and Z  can also be written as X Mmax(0, ) . 

Question 

Calculate  E Y  if X  has an exponential distribution with parameter 0.01, and the insurer has an 

excess of loss reinsurance arrangement with retention limit M . 
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Solution 

The formula for an expectation is 
x

xf x dx ( ) .  We have to calculate E Y[ ]  by carrying out two 

integrals, to allow for the two different ranges of X : 

 

M

M

M
x x

M

E Y xf x dx Mf x dx

xe dx Me dx




 

 

 

 

 

0

0.01 0.01

0

[ ] ( ) ( )

0.01 0.01

 

Using integration by parts: 

 

 

M M
x x x

M

MMx x x
M

M M M

M M

x e e dx M e

xe e Me

Me e Me

e e


  

  

  

 

              

             

    

   

0.01 0.01 0.01

0 0

0.01 0.01 0.01
0 0

0.01 0.01 0.01

0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

1
0.01

1 1
0.01 0.01

1 (1 ) 100 1
0.01

 

Question 

Calculate Var Z( )  (in terms of M ) if X U(0,100) , where the insurer has an excess of loss 
reinsurance arrangement with retention limit M , M 0 100 . 

Solution 

To find Var Z( ) , we need to find E Z2[ ] , since Var Z E Z E Z 2 2( ) [ ] [ ] . 

 
M

M
E Z f x dx x M f x dx   

100
2 2 2

0
[ ] 0 ( ) ( ) ( )  

The PDF of the U(0,100)  distribution is 
1

100
 (see page 13 of the Tables), so: 

 
M M

x M x M ME Z dx
   

   
  


100100 2 3 3

2 ( ) ( ) (100 )[ ]
100 300 300
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We now need E Z[ ] : 

 
M M

x M x M ME Z dx
   

   
  


100100 2 2( ) ( ) (100 )

[ ]
100 200 200

 

So 
M MVar Z

M M

  
   

 

 
 

23 2

3 4

(100 ) (100 )( )
300 200

(100 ) (100 )
300 40,000

 

 
5.4 Maximising the adjustment coefficient under proportional reinsurance 

First consider the effect of proportional reinsurance with retention   on the insurer’s 
adjustment coefficient.  Throughout Section 5.4 the insurer’s premium income per unit time, 
before payment of the reinsurance premium, will be written as 1(1 ) m  , which represents 

the expected aggregate claims per unit time for the compound Poisson process with a 
loading factor  .  It will also be assumed that the reinsurance premium is calculated as 

1(1 )(1 ) m    .  Since the reinsurer pays proportion 1   of each claim, 1(1 ) m   

represents the reinsurer’s expected claims per unit time. 

Thus,   is the premium loading factor used by the reinsurer.  Hence, the insurer’s premium 

income, net of reinsurance, is: 

       11 1 1 m          (5.1) 

Question 

Explain this formula. 

Solution 

The insurer will charge a premium of: 

      E X m      11 1  

The reinsurer will charge a premium of: 

 E Z (1 ) [ ]  

But E Z E X m     1[ ] (1 ) [ ] (1 ) , so the reinsurer’s premium is: 

 m    1(1 ) (1 )  
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So the net premium received by the insurer is the difference: 

  m m m                1 1 1(1 ) (1 ) (1 ) (1 ) (1 )(1 )  

 
It will also be assumed that   .  If this were not true, it would be possible for the insurer 

to pass the entire risk on to the reinsurer and to make a certain profit. 

This of course ignores commission, expenses and other adjustments to the theoretical risk 
premium. 

For the insurer’s premium income, net of reinsurance, to be positive: 

 1 (1 )(1 )       

ie ( ) / (1 )       

Question 

What range of values is possible for   if   0.2  and   0.4 ? 

Solution 

  
0.2 0.1429
1.4

 

But since   cannot exceed 1, the possible range of values is  0.1429 1 . 

 
There is, however, a more important constraint on the insurer.  The insurer’s net of 
reinsurance premium income per unit time must exceed the expected aggregate claims per 
unit time.  Otherwise ultimate ruin is certain (as noted in Section 0).  Net of reinsurance, the 
insurer’s expected aggregate claims per unit time are 1m .   

Thus: 

 (1 ) (1 )(1 )         

or 1





      (5.2) 

Question 

So what is the range of possible values of   now, given the figures in the previous question? 

Solution 

   
0.2

1 0.5
0.4

.  So  0.5 1 . 
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Equation (5.2) specifies the insurer’s minimum retention level since: 

 1 / ( ) / (1 )         when    

the only case of interest.  If the premium loading factors are equal, then inequality (5.2) 
becomes 0  .  In this case there exists a risk sharing arrangement and any retention level 
is possible.  If, however,    then the insurer has to retain part of the risk. 

Same loadings 

First consider the case where both the insurer and the reinsurer use   as the premium 
loading factor.  The adjustment coefficient will be found as a function of the retention level 

 , when 0.1( ) 1 xF x e  . 

The distribution of the insurer’s individual claims net of reinsurance is exponential with 
parameter 0.1/ .  This can be seen by noting that if Y X , then: 

[ ] [ / ] 1 exp{ 0.1 / }P Y y P X y y        

Note that the assumptions for the claims process and the adjustment coefficient equation apply 
equally well in the presence of reinsurance, provided that we use the net premium and the net 
claim amounts in the adjustment coefficient equation. 

Question 

What will be the general equation for R , the direct insurer’s adjustment coefficient, when there 
is reinsurance? 

Solution  

From the previous work, we know that the equation for R  is: 

 Xcr M r   ( )  

With reinsurance this will become: 

 net Yc r M r   ( )  

for the direct insurer.  But we know that netc E X E Z      (1 ) [ ] (1 ) [ ] , so the equation for R  
becomes: 

   YE X E Z r M r         (1 ) [ ] (1 ) [ ] ( )  

or   YE X E Z r M r     1 (1 ) [ ] (1 ) [ ] ( )  

In the case of proportional reinsurance this is: 

   YE X E X r M r       1 (1 ) [ ] (1 )(1 ) [ ] ( )  
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Hence, the equation defining R  (see formula (3.2)) is: 

 0.1 /
0

(1 ) 10 (0.1/ )Rx xR e e dx     
      


1

1 (1 )10
1 10

R
R

 


   


 (5.3) 

 
(1 )10

R 
 

 


 for 0 1   (5.4) 

It can be seen that R  is a decreasing function of  .  This is sensible as the larger the 

retention  , the larger the risk for the insurer and so ( )U  would be expected to increase, 

and R to decrease, with  . 

Different loadings 

Now consider what happens when   .  For the rest of Section 5.4 assume that: 

 the individual claim amount distribution is 0.1( ) 1 xF x e   

 the insurer’s premium loading factor is 0.1  . 

Case A: 0.2   

Suppose first that the reinsurer’s premium loading factor is 0.2  , so that the insurer’s 

(net) premium income per unit time is (12 1)  . 

This comes from Equation 5.1. 

Equation (5.2) shows that the insurer must retain at least 50% of each claim.  Hence, a value 
of   will be sought in the interval [0.5,1]  that maximises the value of R .  The equation 

defining R  is: 

 (12 1)
1 10

R
R


  


  


 

Question 

Derive this formula for R . 

Solution 

Using the equation from the previous question where   0.1 , E X  [ ] 1 / 0.1 10  and   0.2 , we 
get: 

 

 

 
Y

Y

Y

r M r

r M r

r M r







     

    

   

1 1.1 10 1.2(1 ) 10 ( )

1 11 12(1 ) ( )

1 (12 1) ( )
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But what about YM r( ) ? 

 rY r X
Y X

rM r E e E e M r
r

 



         

1 1( ) [ ] [ ] ( ) 1
0.1 1 10

 

Therefore the equation is: 

 r
r




  


1
1 (12 1)

1 10
 

 
This follows from (5.3) as only the premium is different  which leads to: 

 
2

2 1

10(12 )
R 

 





   for 0.5 1   (5.5) 

The right hand side is based on the MGF of the net claim amounts which have an    
distribution. 

Question 

Derive this formula for R . 

Solution 

Multiplying the equation in the previous question through by R1 10  gives: 

 R R R    (1 12 )(1 10 ) 1  

Multiplying out the left hand side and subtracting 1 from both sides gives: 

 R R     2 2(10 120 ) (2 1) 0  

Dividing through by R  and rearranging gives the required expression. 

 
As when the loading factors were equal, the adjustment coefficient depends on the 
retention level. 

The value of   that maximises R  in (5.5) is sought. 

Differentiate R  with respect to   (using the quotient rule for differentiation) to give: 

 
2

2 2

20(12 ) (2 1)10(24 1)

100(12 )

dR
d

   
  

   



 

The quotient rule is 

du dvv ud u d d
d v v

 


   
  2 . 
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Alternatively the algebra is a little easier if you write R
 

 


1 1
10 12 1

. 

Now the denominator is always positive for values of   in [0.5,1] , so there will be a turning 

point of the function when: 

 220(12 ) (2 1)10(24 1)        

ie when 224 24 1 0     

The roots of this quadratic are 0.9564 and 0.0436, and so the turning point which is of 
interest is 0.9564. 

Remember that   must lie in the range (0.5,1). 

Consider the following values: 

  R 

0.5 

0.9564 

1.0 

0 

0.00911 

0.00909 

This shows that R has a maximum in [0.5,1]  at 0.9564. 

Alternatively you can show that the second derivative is negative. 

Figure 13 shows R  as a function of   (as given by (5.5)) for values of   greater than 0.85.  
This range of   values has been chosen to highlight the important features of the graph.  

The dotted line shows the value of R  when 1   (ie no reinsurance). 

 

Figure 13 – R  as a function of    
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It can be seen from Figure 13 that there is a range of values for  , 1   , such that if the 

retention level is in this range, the value of the adjustment coefficient exceeds the value 
when 1  .  The value of   can be calculated from (5.5) by setting the value of R  at   

equal to the value of R  at 1, giving 0.9167  .  The arrow in Figure 13 indicates the value 

of  . 

You can check for yourself that 11 / 12  . 

In terms of maximising the adjustment coefficient, the optimal retention level is 0.9564  .  
It should be noted, however, that optimality in one sense does not imply optimality in 
another.  For example, if the insurer does not effect reinsurance, then the expected profit 
per unit time is 1m  (ie  , since 0.1   and 1 10m  ). 

m 1  is the ‘loading’ bit. 

If the insurer effects reinsurance with retention level 0.9564, then the expected profit per 
unit time is 0.9128  (ie premium income, from (5.1), less expected claims). 

The expected profit per unit time is now found in terms of   and  . 

It has already been calculated from (5.1), that with 0.1  , 0.2   and 1 10m  , the 

insurer’s net premium income is (12 1)  .  The insurer’s expected claims per unit time are 

10 .  Hence, the expected profit per unit time is (2 1)  . 

If we put   0.9564 , this gives 0.9128 , as stated above. 

This shows that expected profit per unit time is an increasing function of  , and if the 
insurer were to choose   to maximise the expected profit per unit time, the choice would 

be 1  .  This example illustrates a general point – the level of reinsurance is a trade-off 
between security and profit. 

Case B:  0.3   

The value of   is now found that maximises R  when the reinsurer’s premium loading 
factor is 0.3. 

The calculations are very similar to the previous case. 

From (5.1), the insurer’s net premium income is (13 2)  , so that the equation defining R  

is: 

 (13 2)
1 10

R
R


  


  


 

which leads to: 

 
2

3 2

10(13 2 )
R 

 





  for 0.67 1   

Or R
 

 


1 1
10 13 2

, adopting the same approach as before. 
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By (5.2), the insurer must retain at least 2/3 of each claim so the value of   in the range 

 2 3,1   that maximises R  is sought.  Differentiation gives: 

 
2

2 2

30(13 2 ) (3 2)10(26 2)

100(13 2 )

dR
d

   
  

   



 

and the function has a turning point when: 

 230(13 2 )=(3 2)10(26 2)        

ie when: 

  239 52 4 0     

The roots of this quadratic are 0.0820 and 1.2514, so there are no turning points in the 
interval [2 3,1]  and R  as a function of   in this interval increases from 0 at 2 / 3   to 

0.00909 at 1  .  Thus, the value of   which maximises the adjustment coefficient is 1. 

It is not always possible to increase the value of the adjustment coefficient by effecting 
reinsurance.  Note that when an insurer effects reinsurance, this reduces the variability of 
the insurer’s aggregate claims.  A reduction in variability is associated with an increase in 
the value of the adjustment coefficient.  However, when   , the insurer’s premium 

loading factor, net of reinsurance, decreases, and the value of the adjustment coefficient is 
expected to decrease with the loading factor.  When the reinsurer’s premium loading factor 
was 0.3, the reduction in the insurer’s security caused by the reduction in the loading factor 
has a greater effect on the adjustment coefficient than the increase resulting from 
reinsurance for all values of  . 

Loading factor (net of reinsurance) 

The insurer’s premium loading factor, net of reinsurance, implied by (5.1) is now found, and 
shown to be an increasing function of  . 

The loading factor is found by dividing the expected profit per unit time by the expected 
claims per unit time.  The expected profit per unit time is: 

 1 1[(1 ) (1 )(1 )] m m          

This is just an algebraic expression for net premiums less expected net claims. 

So the loading factor is: 

 
[(1 ) (1 )(1 ) ] /

( ) /

     

   

      

  
 

Now 2( ) /
d
d


  


   which is positive since   , so that    is an increasing function 

of  .  Thus, the net loading factor increases as the retention level increases. 
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5.5 Maximising the adjustment coefficient under excess of loss reinsurance 

In this section the effect of excess of loss reinsurance on the adjustment coefficient will be 
considered.  The following assumptions will be made for Section 0: 

 the insurer’s premium income (before reinsurance) per unit time is 1(1 ) m   

 the reinsurance premium per unit time is (1 ) ( )E Z  , where ( )   is the 

reinsurer’s premium loading factor, and max(0, )Z X M  . 

The insurer’s individual net claim payments are distributed as min( , )Y X M , and the 

insurer’s premium income, net of reinsurance, is: 

 1* (1 ) (1 ) ( )c m E Z        

which gives the equation defining R  as: 

 
0

* ( ) [1 ( )]
M

Rx RMc R e f x dx e F M 
 
    
  
  

You may see c* referred to as netc .  

Question 

Explain where the right hand side of this equation comes from. 

Solution 

We need YM r ( ) , where 
X X M

Y
M X M


  

 and X  has PDF f x( ) .  By definition, rY
YM r E e( ) [ ] , but 

we need to express this as two separate integrals to take into account the different ranges of X : 

 

M
rY rx rM

M

M
rx rM

M

E e e f x dx e f x dx

e f x dx e f x dx





 

 

 

 

0

0

[ ] ( ) ( )

( ) ( )

 

But the second integral is just integrating the PDF from M  to  .  This is the same as P X M( ) , 
which can be written as F M1 ( ) .  So the right hand side of the equation is: 

 
M

rx rMe f x dx e F M
 
  
  

0

( ) (1 ( ))  

 
This is formula (3.2) with a truncated claim amount distribution as a result of the excess of 
loss reinsurance. 
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To illustrate ideas, look at the situation when  (0,20)X U , so that ( ) 0.05f x   for 0 20.x    

Then for 0 20M  : 

 
20

2[ ] ( ) 0.05 10 0.025
M

E Z x M dx M M      

and 
0

( ) 0.05 (1 0.05 )

0.05
( 1) (1 0.05 )

M
Rx RM

Y

RM RM

M R e dx e M

e e M
R

  

   

  

The equation for R  must be solved numerically for given values of   and  .  Figure 14 

shows R  as a function of M  when 0.1   .  As in Section 5.4, any retention level is 

possible when the premium loading factors are equal.  R  is a decreasing function of M . 

 

Figure 14 – R  as a function of M 

In Figure 14, R  goes to   as M  goes to 0. 

When   , there is a minimum retention level for the same reason as in the previous 

section. 

Recall that the lower limit for   given by Equation 5.2 applied when we were considering 
proportional reinsurance. 

For example, when 0.1   and 0.2   the insurer’s net premium income, c , is 

211 1.2 (10 0.025 )M M     and this must exceed the insurer’s expected claims, net of 

reinsurance.  The insurer’s expected net claims equal [ ] [ ]E X E Z  , which gives 

2( 0.025 )M M  .   
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Thus: 

 2 21 1.2 0.03 0.025M M M M      

  2 40 200 0M M    

  5.8579 34.1421M   

Hence, the minimum retention level is 5.8579.  Similarly, when 0.4  , the minimum 

retention level is 10. 

Figure 15 shows R  as a function of M  for the following combinations of   and  : 

(a) 0.1   and 0.2   (solid line) 

(b) 0.1   and 0.4   (dotted line). 

Without reinsurance, ie for 20M  , the insurer’s adjustment coefficient is 0.014 
(irrespective of the reinsurer’s loading factor). 

From Figure 15, it can be seen that, for 0.2  : 

 ( ) (20)R M R  for 9.6 20M   

 ( ) (20)R M R  for 9.6M   

and for 0.4  : 

 ( ) (20)R M R  for 20R   

 

 Figure 15 – R as a function of M 

Hence, for 0.2   it is possible for the insurer to increase the value of the adjustment 

coefficient by effecting reinsurance, provided that the retention level is above 9.6.  However, 
when 0.4  , the insurer should retain the entire risk in order to maximise the value of the 

adjustment coefficient.  As in the case of proportional reinsurance, the insurer’s expected 
profit per unit time is reduced if reinsurance is effected. 
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Question 

Claims occur as a Poisson process with rate   and individual claim sizes X follow an Exp ( )  

distribution.  The office premium includes a security loading 1 .  An individual excess of loss 
arrangement operates under which the reinsurer pays the excess of individual claims above an 
amount M  in return for a premium equal to the reinsurer’s risk premium increased by a 
proportionate security loading 2 .  Derive and simplify as far as possible an equation satisfied by 
the adjustment coefficient for the direct insurer. 

Solution 

The adjustment coefficient equation is XcR M R   ( ) .  The net rate of premium income for the 
direct insurer equals the rate of premiums charged to the policyholder minus the rate of premiums 
paid to the reinsurer: 

x

M
c x M e dx    




    1 2

1(1 ) (1 ) ( )  

The second term can be integrated using the substitution y x M  , and identifying the integral as 
the mean of an Exp ( )  distribution.  This gives: 

Mc e   


   1 2
1

[(1 ) (1 ) ]  

The individual net claims are the claims paid to policyholders minus the recoveries from the 
reinsurer.  So the MGF (which is valid for all values of R  ) is: 

M
R x x RM x R M

X
M

M R e e dx e e dx R e
R

    



      

  ( )

0

1( ) [ ]  

So the equation for the adjustment coefficient is: 

M R Me R R e
R

      
 

       


( )
1 2

1 1
[(1 ) (1 ) ] [ ]  

Cancelling  ’s and multiplying through by R  ( )  gives: 

M R MR R e R Re                      
( )

1 2( ) ( ) (1 ) (1 )  

Cancelling the  2 ’s from both sides gives: 

M R MR R e R R e               ( )
1 2( )[(1 ) (1 ) ]  

Cancelling R’s to exclude the trivial solution gives: 

M R MR e e               ( )
1 2( )[(1 ) (1 ) ]  
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The adjustment coefficient R is the smallest positive solution of this equation. 

 
Question 

Use the approximation xe x x   21 / 2  to find an approximate numerical value for the 
adjustment coefficient for the previous example in the case where   0.05 ,  1 0.3,  2 0.4  
and M 10 . 

Solution 

Using the values given, the adjustment coefficient equation becomes: 

RR e e       0.5 0.5 100.05 (0.05 )(1.3 1.4 ) 0.05  

Multiplying by e 0.520  to clear some of the fractions gives: 

Re R e e   0.5 0.5 10(1 20 )(1.3 1.4)  

Expanding the LHS and applying the approximation to the RHS: 

R R R    20.90538 14.8668 1 10 50  

ie R R   20.09462 4.8668 50 0  

Solving this using the quadratic formula (taking the smallest positive root) gives: 

R
    

 


24.8668 4.8668 4( 50)( 0.09462)
0.0268

2( 50)
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Chapter 20 Summary 

Poisson process – claim numbers  

Claim numbers  tN t 0( )  can be modelled using a Poisson process with parameter   so that 

N t Poisson t( ) ( ) .  A Poisson process is an example of a counting process.  

Time until first claim and inter claim time 

If  tN t 0( )  is a Poisson process with parameter  , then the time until the first claim and 

the inter claim time follow exponential distributions with parameter  : 

t
Tf t e  ( )     ( t  0 ) 

Compound Poisson process - aggregate claim amounts  

N tS t X X X   1 2 ( )( )   

 E S t tE X( ) ( )   Var S t tE X    
2( )    Xt M u

S tM u e  [ ( ) 1]
( )( )  

Surplus process 

U t U ct S t  ( ) ( ) , t  0   

U is the initial surplus and c is the premium income per unit time 

 c E S 1 [ ]  where   is the insurer’s premium loading 

Ruin probabilities 

u P U t t    ( ) [ ( ) 0 for some ]  

u t P U t t t     0 0( , ) [ ( ) 0 for some ]  

h u P U t t h h h     ( ) [ ( ) 0 for some ,2 ,3 , ]   

h u t P U t t h h h t t       0 0( , ) [ ( ) 0 for some ,2 ,3 , and ]  
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Lundberg’s inequality and the adjustment coefficient

For the continuous time model with an infinite time horizon, Lundberg’s inequality, which 
uses a parameter R called the adjustment coefficient, provides an upper bound for the 
probability of ultimate ruin.  The adjustment coefficient R is an inverse measure of risk, ie the 
higher the value of R, the lower the upper bound on the probability of ultimate ruin. 

For a compound Poisson process with parameter  , the adjustment coefficient R is the 
unique positive root of the equation: 

Xcr M r   ( )  

where   is the Poisson parameter, c  is the premium rate per unit of time and XM r( )  is the 
MGF of the individual claim amounts at point r .   

It is possible to derive upper and lower bounds for R.   

The adjustment coefficient in the presence of reinsurance 

In the presence of reinsurance, for a compound Poisson process with parameter  , the 
adjustment coefficient R is the unique positive root r of the equation: 

net Yc r M r   ( )  

where   is the Poisson parameter, netc  is the premium rate per unit of time net of the rate 

paid to the reinsurer and YM r( )  is the MGF of the individual claim amounts paid by the insurer 
(net of reinsurance) at point r .   

In order to maximise security, the insurer will want to find a reinsurance arrangement that 
maximises the adjustment coefficient R.   However, this will not necessarily be the 
arrangement that maximises expected profits.  There is a trade-off between security and 
profit.   

Effect of changes in parameter values on the probability of ruin 

The probability of ultimate ruin decreases if the insurer’s premium loading   is increased or if 
the insurer’s initial surplus U  is increased.  This is because the insurer has more of a buffer 
against claims.   

An increase in the value of the Poisson parameter   will not affect the probability of ultimate 
ruin since the expected aggregate claims E S E X[ ] [ ] , the variance of aggregate claims 

Var S E X    
2( )  and the premium rate   E X 1 [ ]  all increase proportionately in line with 

 .  However, it will reduce the time it takes for ruin to occur. 
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An increase in the variance Var X( )  of the individual claim amounts will increase the probability 
of ruin as it will increase the uncertainty associated with the aggregate claims process without 
any corresponding increase in premium.   

An increase in the expected individual claim amount E X[ ]  will increase the probability of ruin.  
The expected aggregate claims and the premium rate both increase proportionately in line with 
E X[ ] , however the variance of the aggregate claims amount increases disproportionately since 

    Var S E X Var X E X     
22( ) [ ] .  The variance of the aggregate claim amount increases 

in line with  E X 2[ ] . 
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The practice questions start on the next page so that you can 
keep the chapter summaries together for revision purposes. 
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Chapter 20 Practice Questions 

20.1 A general insurance company is planning to set up a new class of travel insurance.  It plans to start 
the business with £2 million and expects claims to occur according to a Poisson process with 
parameter 50.  Individual claims are thought to have a gamma distribution with parameters 
 150  and  ¼ .  A premium loading factor of 30% is applied. 

Explain how each the following changes to the company’s model will affect the probability of 
ultimate ruin: 

(i) A 28% premium loading factor is applied instead.  

(ii) Individual claims are found to have a gamma distribution with parameters  150  and 
 ½ .    

(iii) The Poisson parameter is now believed to be 60.  

20.2 Claims occur according to a compound Poisson process at a rate of 0.2 claims per year.  Individual 
claim amounts, X , have probability function: 

 
P X

P X

 

 

( 50) 0.7

( 100) 0.3
 

The insurer’s surplus at time 0 is 75 and the insurer charges a premium of 120% of the expected 
annual aggregate claim amount at the beginning of each year.  The insurer’s surplus at time t  is 
denoted U t( ) .  Find: 

 P U [ (2) 0]    

20.3 tS t 0{ ( )}  and tS t
0{ ( )}  are compound Poisson processes representing the aggregate claims up to 

time t  from two risks.  Individual claim amounts have the same distribution for the two risks and 
premiums are calculated using the same premium loading factor for the two risks.  The Poisson 

parameters for the two risks are   and  , respectively.  The probability of ruin in finite time and 

in infinite time for these two risks, given initial surplus U , are U t ( , )  and U t( , )  and U ( )  and 

U ( ) , respectively.  You are given that   2 .  

Which of the following equations is/are true: 

I U U  ( ) 2 ( )  

II U U  ( ) ( )  

III U t U t  ( , ) ( ,2 )  

IV U t U t  ( , ) ( , )   
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20.4 For a Poisson process with intensity  , determine the probability that exactly one event will 
occur during a finite time interval of length t .  

20.5 The aggregate claims process for a risk is a compound Poisson process.  The expected number of 
claims each year is 0.5 and individual claim amounts have the following distribution: 

 

P

P

P

 

 

 

[claim amount 1] 0.5

[claim amount 2] 0.25

[claim amount 3] 0.25

 

Let U t( )  denote the insurer’s surplus at time t .  The insurer’s surplus at time 0 is 0.5 and the 
insurer charges a premium of 1 each year to insure this risk. 

Calculate the probability: 

 P U t t [ ( ) 0 for 1 or 2]   

20.6 An insurance company has a portfolio of policies, for which claims occur as a Poisson process at a 
rate of 25 claims per year.  The claim amounts in pounds follow a generalised (three parameter) 
Pareto distribution with parameters k  3 ,   500  and   4 .  The insurer includes a premium 
loading of 15% in its premiums for this portfolio.  You may assume that the aggregate claim 
amount for a year is approximately normally distributed. 

(i) Find u , the initial capital required in order to ensure that the probability of ruin at the 
end of the first year is 2%.  

(ii) If the insurer takes out proportional reinsurance, reinsuring 30% of the loss with a 
reinsurer which loads its premiums by 45%, find the new level of initial capital required, 
and compare your answer with that in part (i).  

    [Total 9] 

20.7 Aggregate annual claims from a portfolio of general insurance policies have a compound Poisson 
distribution with Poisson parameter  .  Individual claim amounts have an exponential 
distribution with mean 1.  The premium loading factor used to calculate the premium for these 
policies is 0.30.  Given an initial surplus of 2, calculate the probability of ruin at the first claim. [6] 

20.8 The aggregate claims produced by a risk have a compound Poisson distribution with Poisson 
parameter 100 and individual claim size density, f x( ) , where: 

 xf x e x  0.2( 5)( ) 0.2 5  

The premium charged by the insurer to insure the risk is calculated using a premium loading 
factor of 0.15.  The insurer is considering excess of loss reinsurance for this risk.  The reinsurer’s 
premium would be calculated using a premium loading factor of 0.30.  The table below shows, for 
various values of the retention limit M , the insurer’s expected profit in one year net of 
reinsurance, with some missing values indicated by asterisks.  

Exam style 

Exam style 

Exam style 
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Retention limit M  Expected annual profit Adjustment coefficient 

7.5 59 0.0227 
10 * 0.0252 
15 * 0.0240 
* 147 0.0220 
  * 0.0213 

 
(i) Calculate the missing values of M  and of the insurer’s expected profit in one year and set 

out the complete table. [12] 

(ii) Using the values in the completed table comment on the effect on the insurer of the 
choice of different values for M . [3] 

    [Total 15] 

20.9 (i) The random variable W  has a compound negative binomial distribution, so that W  can 
be written in the form: 

  
N

i
i

W Y



1

 

where iY{ }  for i  = 1, 2, ... , is a sequence of independent and identically distributed 

random variables, each with mean m  and variance s2 , and N  is independent of that 
sequence and has the following probability function: 

  k xk x
P N x p p

x
  

   
 

1
[ ] (1 )      x  0,1,  

for some parameters k (k > 0) and p (0 < p < 1) . 

Show that: 

(a) E W k p m p ( ) (1 ) /  

(b) W k p m ps p  2 2 2var( ) (1 )( ) /  [6] 

(ii) An insurer plans to issue 5,000 one-year policies at the start of a year.  For each policy the 
annual aggregate claims have a compound negative binomial distribution; the negative 
binomial parameters are k  0.5  and p  0.5 , and individual claim amounts, in pounds, 
have a lognormal distribution with parameters   5.04  and  1.15 . 

The premium for each policy is £160 and is payable at the start of the year.  Claims are 
assumed to be paid at the mid-point of the year.  Calculate the minimum annual rate of 
interest the insurer must earn throughout the year if the accumulation to the end of the 
year of premiums minus claims is to exceed £52,500 with probability 90%.  You may 
assume that the distribution of total aggregate claims in the year may be approximated by 
a normal distribution. [15] 
   [Total 21] 
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20.10 Individual claim amounts in a Poisson claims process with a frequency of 50 claims per year for 
the whole portfolio have mean £5,000 and standard deviation £2,500.  If the annual premium rate 
is £300,000, calculate the tightest upper bound for the adjustment coefficient.  

20.11 An insurer calculates the annual premiums for fire insurance of flats by increasing the risk 
premium by 30% and adding a £30 loading.  The claim frequency is 3% and individual claim 
amounts can be assumed to be: 

 £2,000 with probability 0.9 

 £15,000 with probability 0.1. 

Calculate the insurer’s adjustment coefficient for these policies, to 2 significant figures.  

20.12 A Poisson claims process has security loading  2 / 5  and claim size density function: 

 x xf x e e x   3 73 7
2 2( ) , 0  

(i) Derive the moment generating function (MGF) for the claim size distribution, and state 
the values of t  for which it is valid. [3] 

(ii) Calculate the value of the adjustment coefficient. [4] 
    [Total 7] 

20.13 (i) Show that the adjustment coefficient for a compound Poisson claims process satisfies the 
inequality: 

  
c E X

r
E X
 

 2
2[ / ( )]

( )
 

 and define what each of the symbols represents. [9] 

(ii) An insurer considers that claims of a certain type occur in accordance with a compound 
Poisson process.  The claim frequency for the whole portfolio is 100 per annum and 
individual claims have an exponential distribution with a mean of £8,000. 

(a) Calculate the adjustment coefficient if the total premium rate for the portfolio is 
£1,000,000 per annum. 

 (b) Verify that the value calculated in (ii)(a) satisfies the inequality in (i). 

(c) The insurer decides to take out excess of loss reinsurance for this portfolio.  The 
reinsurer has agreed to pay the excess of any individual claim above £20,000 in 
return for an annual premium of £80,000.  Calculate the adjustment coefficient 
for the direct insurer when the reinsurance is in operation. 

(d) Estimate the direct insurer’s probability of ultimate ruin with and without the 
reinsurance arrangement, assuming that the initial surplus is £20,000 and that 
future premiums remain at the same level. 
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Exam style 
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 (e) Comment briefly on the effect of the reinsurance on the probability of ruin. [14] 
    [Total 23] 

20.14 Claims occur on a portfolio of insurance policies according to a Poisson process with Poisson 
parameter  .  Claim amounts, X X1 2, , ,  are assumed to be identically distributed with moment 

generating function XM t( ) .  The insurer calculates premiums using a loading factor  ( 0) .  The 
insurer’s adjustment coefficient, R , is defined to be the smallest positive root of the equation: 

 Xcr M r   ( )  

where c  is the insurer’s premium income rate. 

(i) Using the above equation for R , or otherwise, show that, provided R  is small, an 
approximation to R  is R̂ , where: 

  
cR  
 




2 2
2( / )ˆ  

 where iE X  [ ]  and iX 2 var[ ] . [4] 

(ii) Describe how the adjustment coefficient can be used to assess reinsurance arrangements 
on the basis of security. [3] 

(iii) The Poisson parameter,  , for this portfolio is 20 and all individual claims are for a fixed 
amount of £5,000.  The insurer’s premium loading factor,  , is 0.15 and proportional 
reinsurance can be purchased from a reinsurer who calculates premiums using a loading 
factor of 0.25. 

 Calculate the maximum proportion of each claim that could be reinsured so that the 
insurer’s security, measured by R̂ , is greater than the insurer’s security without 
reinsurance.  [9] 

    [Total 16] 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 20 Solutions 

20.1 (i) Reduction in premium loading factor 

Since there is a smaller loading factor, the premiums will be reduced even though claims remain 
the same.  Hence, the probability of ultimate ruin will increase.  

(ii) Change in claims distribution 

The mean of the distribution has decreased from 600 to 300, and the variance has decreased 
from 2,400 to 600.  Therefore the claims are smaller on average and less uncertain.  Both of these 
factors will decrease the probability of ultimate ruin.  

(iii) Change in the Poisson parameter 

The Poisson parameter has increased so claims occur more often (but their size is unchanged).  
However, the premium received will also increase proportionally (as c m   1(1 ) ).  Hence, the 
timing at which ruin may occur will be earlier, but not the probability of it occurring in the first 
place.  Therefore, the probability of ultimate ruin will be unchanged.  

20.2 The annual premium is 120% of E S( ) , where S  is the aggregate claim amount in a single year.  
Since S  has a compound Poisson distribution with Poisson parameter 0.2, we have E S E X( ) 0.2 ( )  
where: 

 E X     ( ) 50 0.7 100 0.3 65  

Hence the annual premium is: 

 E S E X     1.2 ( ) 1.2 0.2 ( ) 1.2 0.2 65 15.6   

The initial surplus is 75, so the surplus at time 2 is: 

 U S S     (2) 75 2 15.6 (2) 106.2 (2)  

So the probability of ruin is: 

 P U P S P S P S        [ (2) 0] [106.2 (2) 0] [ (2) 106.2] 1 [ (2) 106.2]  
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Considering P S [ (2) 106.2] , and remembering that N Poi (2) (2 0.2)  we have the following 
scenarios where the aggregate claim amount by time 2 is less than 106.2: 

 number of claims amount of claim(s) probability 

0 claims 0 e 0.4 0.67032  

1 claim 
50 e  0.40.4 0.7 0.18769  

100 e  0.40.4 0.3 0.08044  

2 claims 50, 50 e  
2 0.4 20.4

2 0.7 0.02628  

 

Hence P S P U    [ (2) 106.2] 0.9647 [ (2) 0] 0.0353  

20.3 Equations II and III are true. 

Doubling   means claims occur in half the time, but premium income comes in at double the 

rate.  So graph of U t( )  is squashed compared to U t( ) : 

  

t

U*(t) U( t)

t

doubled

 

No change to u ( ) , but increases u t ( , ) .  

20.4 The number of events occurring has a Poisson t( )  distribution.  

So the probability of exactly one event is: 

 
t

tt e te


 



1( )
1!

  

20.5 The surplus is: 

 
U S S

U S S

    

     

(1) 0.5 1 (1) 1.5 (1)

(2) 0.5 2 1 (2) 2.5 (2)
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Considering the probability of non-ruin we require: 

 S S (1) 1.5 and (2) 2.5   

1st period 2nd period 
probability no. of 

claims 
claim 

amount 
no. of 
claims 

claim 
amount 

0 claims 0 

0 claims 0 e e  0.5 0.5( )( ) 0.36788  

1 claim 
1 e e   0.5 0.5( )(0.5 ½) 0.09197  

2 e e   0.5 0.5( )(0.5 ¼) 0.04598  

2 claims 1, 1 e e   
20.5 0.5 20.5

2( )( 0.5 ) 0.01150  

1 claim 1 
0 claims 0 e e  0.5 0.5(0.5 ½)( ) 0.09197  

1 claim 1 e e   0.5 0.5(0.5 ½)(0.5 ½) 0.02299  
     

Hence P U t t P U t t      [ ( ) 0 for 1 or 2] 0.6323 [ ( ) 0 for 1 or 2] 0.3677   

20.6 (i) Initial capital required 

We first need the moments of the generalised Pareto distribution.  Using the formulae in the 
Tables, we have: 

 
kE X 



  


3 500( ) 500

1 3
 

and: 
kE X
k

 


     
  

   
2 2 2( 2) ( 2) (2) (5)

( ) 500 500,000
( ) ( ) (4) (3)

 [1] 

So: 

 E S   ( ) 25 500 12,500      and:     S   var( ) 25 500,000 12,500,000  

where S  is the aggregate claim amount in one year. [1] 

For ruin, S  must exceed the initial capital u  plus the premiums received, E S1.15 ( ) .  So we want: 

  P S u E S  1.15 ( ) 0.02  

Standardising this in the usual way, we have: 

 

  S E S u E SP S u E S P
S S

u E SP N
S

  
     

 

 
    

 

( ) 0.15 ( )
1.15 ( )

var( ) var( )

0.15 ( )
(0,1) 0.02

var( )
 [1] 
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Using the tables of the standard normal distribution, this gives us the equation: 

 
u E S

S



0.15 ( ) 2.0537
var( )

 

Using the values of the mean and variance found earlier to solve this for u , we find that: 

 u      2.0537 12,500,000 (0.15 12,500) 7,260.93 1,875 5,385.93  

So the initial capital required is £5,386. [1] 

(ii) Initial capital with reinsurance 

We now need to allow for the reinsurance.  The reinsurer takes on 30% of the risks.  So the 
reinsurance premium is: 

 P E S   1.45 0.3 ( ) 5.437.5  [1] 

The insurer retains 70% of the risks, so the amount paid out on claims by the insurer now has 
moments: 

 E S E S    ( ) (0.7 ) 0.7 12,500 8,750  

 S S    2var( ) var(0.7 ) 0.7 12,500,000 6,125,000  [1] 

So the condition for ruin is now: 

  P S u E S    1.15 ( ) 5,437.5 0.02  

which becomes: 

 S E S uP
S

    
    

( ) 8,937.5 8,750 0.02
var( ) 6,125,000

 

Again using the normal distribution tables, this gives us the equation; 

 
u 


8,937.5 8,750 2.0537

6,125,000
 [1] 

Solving this equation, we find that u  4,895.15 .  So the initial capital required is now £4,895. [1] 

The initial capital required has decreased.  With the reinsurer taking on more of the risks the 
variance of the claim amounts paid by the insurer will have reduced and hence the amount of 
capital the insurer needs to write the business has decreased.  This may make it worthwhile for 
the insurer to take out reinsurance (although the effect on profits and cashflows will also need to 
be considered).   [1] 
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20.7 First, assume that the first claim occurs at time t .  We want the probability that the first claim is 
big enough to cause ruin, ie it is bigger than the surplus accumulated at time t .  Since the 
premium loading factor is 0.3 and the rate of premium income is 1.3 , the probability that the 
first claim will cause ruin if it occurs at time t  is: 

 tx x
tt

e dx e e 


    




     (2 1.3 )
2 1.3

2 1.3

 [3] 

We now consider all the times at which the first claim could occur.  Since we have a Poisson 
process, the time to the first claim has an exponential distribution with parameter  , and the 
unconditional probability of ruin at the first claim is: 

 t t tee e dt e dt   
 

    
2

(2 1.3 ) 2.3

0 0

2.3
2.3

 [2] 

But since this integral is just the density function of another exponential distribution, it integrates 
to 1.  So the unconditional probability of ruin at the first claim is: 

 e


2
0.05884

2.3
  [1] 

20.8 (i) Calculate the missing values 

The insurer’s expected net annual profit will be: 

 Ic E S c E Y  net net( ) 100 ( )  [1] 

where: 

 Rc E S E S E X E Z   net 1.15 ( ) 1.30 ( ) 115 ( ) 130 ( )  [1] 

Hence, the expected annual profit is: 

 E X E Z E Y 115 ( ) 130 ( ) 100 ( )  

Since E X E Y E Z ( ) ( ) ( )  we can substitute for E Y( )  to simplify to: 

 E X E Z15 ( ) 30 ( )  [1] 
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Now, integrating by parts: 

 

x

x x

x

E X x e dx

xe e dx

e


 

   

 



    

    

  





0.2( 5)

5

0.2( 5) 0.2( 5)
5

5

0.2( 5)
5

( ) 0.2

5 5

5 5 10  [2] 

And: 

 
X M

Z
X M X M

 
 

0
 

Hence, integrating parts: 

 

x

M

x x
M M

x
M

M

E Z x M e dx

x M e e dx

e

e


 

   

 

 

 

     

   







0.2( 5)

0.2( 5) 0.2( 5)

0.2( 5)

0.2( 5)

( ) ( )0.2

( )

5

5  [2] 

So the expected annual profit is: 

  M Me e       0.2( 5) 0.2( 5)15 10 30 5 150 1  [1] 

The completed table is: 

Retention limit M  Expected annual profit Adjustment coefficient 
7.5 59 0.0227 
10 94.8 0.0252 
15 129.7 0.0240 

24.56 147 0.0220 
  150 0.0213 

    [4] 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-20: Ruin theory Page 73 

The Actuarial Education Company  IFE: 2019 Examinations 

(ii) Comment on the effect of different values of M 

The adjustment coefficient is a measure of security (ie a higher adjustment coefficient implies a 
reduced probability of ruin).  We can see that decreasing the retention limit (ie passing on more 
of the claims to a reinsurer) at first increases the adjustment coefficient and then decreases it.  So 
decreasing the retention limit will at first reduce the probability of ruin and then eventually 
increase it.   [1] 

A higher retention limit implies that the insurer is holding more of the claims (and more of the 
premium).  However, by holding more of the claims they also shoulder more of the risk of claims 
not being as expected.    [1] 

A lower retention limit means more of the claim is passed onto the reinsurer which reduces the 
risk and should reduce the probability of ruin.  However in the extreme case of a retention limit of 
7.5 so much of the claim is passed onto the reinsurer that their larger premium (due to the larger 
premium loading factor) eats into the surplus of the insurer and results in a greater probability of 
ruin.    [1] 

20.9 (i)(a) E(W) 

Using the fact that E W E E W N( ) [ ( )] , we have: 

 n nE W N n E Y Y E Y E Y mn       1 1( ) ( ) ( ) ( )   [1] 

So, for the random variable N : 

 E W N mN( )  

and: 

 
mk pE W E mN mE N

p


  
(1 )

( ) ( ) ( )  [1] 

using the formula for the mean of the negative binomial distribution. 

(i)(b) var(W) 

Using the fact that W E W N E W N var( ) var[ ( )] [var( )] , we have, since the iY  are independent 

and identically distributed: 

 n nW N n Y Y Y Y n s        2
1 1var( ) var( ) var( ) var( )   [1] 

So:  

 W N Ns 2var( )   [1] 
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So, again using the standard formulae for the negative binomial distribution, we find that: 

 

W mN E Ns m N s E N

k p k p k pm s m ps
pp p

   

  
   

2 2 2

2 2 2 2
2 2

var( ) var( ) ( ) var( ) ( )

(1 ) (1 ) (1 )
( )  [2] 

(ii) Minimum rate of interest required 

Consider a single policy.  If W  is the aggregate claim amount from one policy, then: 

 NW Y Y  1   

where 
k pE N .

p


 
(1 )

( ) 0 5  and 
k pN

p


 2
(1 )var( ) 1 . 

Using standard formulae to calculate the moments of Y : 

 E Y m e e    
2½ 5.70125( ) 299.24122  [1] 

and Y s e e     
2 22 2var( ) ( 1) 246,499.57  [1] 

So the mean and variance of W  are: 

 E W   ( ) 0.5 299.24122 149.62061  [1] 

and W     2var( ) 1 (299.24122 0.5 246,499.57) 212,795.09  [1] 

So the total aggregate claim amount from all policies is S W W  1 5000 , and: 

 E S   ( ) 5000 149.62061 748,103.05  [1] 

and S     9var( ) 5000 212,795.09 1.0639755 10  [1] 

assuming that individual policies operate independently. 

Suppose that the required annual rate of interest is i .  We want: 

 P i S i         
½5000 160 (1 ) (1 ) 52,500 0.90  [2] 

Rearranging this inequality gives: 

 P S i i       
½ ½800,000(1 ) 52,500(1 ) 0.90  

Standardising, we now have: 

 S E S i iP
S

     
  
  

½ ½

9

( ) 800,000(1 ) 52,500(1 ) 748,103.05
var( ) 1.0639755 10

 [2] 
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But 
S E S

S
 ( )
var( )

 is approximately standard normal.  So we must have: 

 

i i

i i

i i





   




    

    

½ ½

9

½ ½

½

800,000(1 ) 52,500(1 ) 748,103.05 1.28155
1.0639755 10

800,000(1 ) 52,500(1 ) 748,103.05 41,802.415

800,000(1 ) 789,905.46(1 ) 52,500 0  [2] 

Solving this quadratic in i ½(1 )  gives: 

 
i

    
 



 

2
½ 789,905.46 789,905.46 4 800,000 ( 52,500)

(1 )
2 800,000

1.0499 (or 0.0625)

 

So: i   21.0499 1 0.1023  ie the required interest rate is 10.23% per annum. [3] 

20.10 The adjustment coefficient satisfies the inequality: 

 
c X

r
X
  

  
2 2 2

2[ / E( )] 2[300,000 / 50 5,000] 0.000064
E( ) 5,000 2,500

  

Since we don’t know the precise distribution of the individual claim amounts, this is the best we 
can do. 

20.11 The adjustment coefficient equation is: 

 rXcr E e   ( )  

The average claim size is: 

 E X     ( ) 0.9 2,000 0.1 15,000 £3,300   

So the annual risk premium is: 

 E X   ( ) 0.03 3,300 £99  

So the annual office premium is c    1.3 99 30 £158.70 .  

So the adjustment coefficient equation is: 

 r rr e e  2,000 15,0000.03 158.70 0.03(0.9 0.1 )   

Simplifying by dividing by 0.03 and writing R r1,000  gives: 

 R RR e e  2 151 5.29 0.9 0.1   
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Expanding the RHS as a series to get a first approximation: 

 
R R R R R

R R

        

   

2 2

2

1 5.29 0.9(1 2 2 ) 0.1(1 15 112.5 )

1 3.3 13.05

 


 

So: R 
 

5.29 3.3 0.1525
13.05

  

Evaluating R Rf R e e R   2 15( ) 0.9 0.1 1 5.29  for different values of R , we get: 

 

f f f

f f f

   

   

(0.15) 0.37 (0.1) 0.018 (0.09) 0.013

(0.094) 0.0015 (0.095) 0.00156 (0.0945) 0.000011   

So R  lies between 0.094 and 0.0945.  So the value of the adjustment coefficient correct to 2SF is 

0.000094 (in units of 1£ ).  

20.12 (i) Moment generating function 

The moment generating function is given by: 

 

tX tx x x t x t x

t x t x

E e e e e dx e dx e dx

e e
t t t t

  
   

  

     

   
      

         

  3 7 ( 3) ( 7)3 37 7
2 2 2 2

0 0 0

( 3) ( 7)

0 0

( )

3 7 3 7
2 3 2 7 2(3 ) 2(7 )

 [2] 

The first integral converges if t  3  and the second if t 7 .  So the MGF is valid for values of t  3.
    [1] 

(ii) Adjustment coefficient 

For the adjustment coefficient, we require: 

 XE X r M r  1 (1 ) ( ) ( )  

To find E X( ) , we can differentiate the MGF: 

 

X

X

X

M t t t

M t t t

M

 

 

   

    

   

1 13 7
2 2

2 23 7
2 2

( ) (3 ) (7 )

( ) (3 ) (7 )

3 1 5(0)
18 14 21

 [1] 

Alternatively we can note that this distribution is a mixture of two exponential distributions.  So 
the mean is given by a weighted average of two exponential means, ie     51 1 1 1

2 3 2 7 21 .  Or we 

could integrate from first principles. 
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So E X  5
21( )  and the equation for r  is: 

 
r r r r

r r r r r r
   

     
     

7 5 3 7 3(7 ) 7(3 ) 21 5
1

5 21 2(3 ) 2(7 ) 2(3 )(7 ) (3 )(7 )
 [1] 

Multiplying through by 3: 

 
rr

r r


 
 
63 15

3
(3 )(7 )

 

Multiplying through by r r (3 )(7 )  and multiplying out brackets, we obtain: 

 r r r r    2 363 9 7 63 15  

Gathering up the terms, we obtain: 

 r r r  2 36 7 0  [1] 

Factorising: 

 r r r  (6 )(1 ) 0  

which gives r 1  as the positive solution that satisfies the inequality t  3 .  So the value of the 
adjustment coefficient in this case is 1. [1] 

20.13 (i) Adjustment coefficient 

The adjustment coefficient r  is the smallest positive solution of the equation: 

 rXcr E e   ( )  [1] 

The expected claim frequency   is the expected number of claims occurring per unit of 
time.    [1] 

The premium rate c  is the constant amount of premium actually received per unit of 
time.    [1] 

The claim size X  is a random variable representing the amount of an individual claim. [1] 

Expanding the RHS of the equation defining the adjustment coefficient gives: 

 rX rcr E e r E X E X       
2

2( ) [1 ( ) ( ) ]
2

  [1] 

Since the individual claim sizes X  take positive values, the terms on the RHS are all positive.  So, 

ignoring terms in powers higher than X2  gives: 

 rcr r E X E X    
2

2[1 ( ) ( )]
2

 [1] 
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Subtracting a   from both sides: 

 rc r r E X E X 
2

2[ ( ) ( )]
2

 [1] 

Dividing by r  (which must be a positive number): 

 
rc E X E X  2[ ( ) ( )]
2

 [1] 

Rearranging to get an inequality for r  gives: 

 
c E X

r
E X
 

 2
2[ / ( )]

( )
 [1] 

(ii)(a) Adjustment coefficient 

The adjustment coefficient equation is: 

 rXcr E e   ( )  

Since individual claims have an exponential distribution with a mean of 8,000: 

 rX
XE e M r

r
 


1( ) ( )

1 8,000
          ( t 1 / 8000 ) 

So the adjustment coefficient satisfies: 

 r
r

 


100
100 1,000,000

1 8,000
 [1] 

Dividing by 100: 

 r
r

 


11 10,000
1 8,000

 

Rearranging:  

 r r  (1 10,000 )(1 8,000 ) 1  

 r r  21 2,000 80,000,000 1  [1] 

Cancelling the ones and factorising: 

 r r 2,000 (1 40,000 ) 0  

The adjustment coefficient is the smallest positive solution, ie:  

 r  
1

0.000025
40,000

 [1] 
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(ii)(b) Verify inequality 

Since X  has an exponential distribution: 

 E X ( ) 8,000  

and: 

 E X X E X     2 2 2 2 2( ) var( ) [ ( )] 8,000 8,000 2 8,000  

So the inequality in (i) states that: 

 r 
 

 2
2[1,000,000 /100 8,000] 0.00003125

2 8,000
 [1] 

The exact value of r  (ie 0.000025) is indeed less than this. 

(ii)(c) Adjustment coefficient with reinsurance 

The adjustment coefficient equation (with the reinsurance in effect) is: 

 netr X
netc r E e   ( )  [1] 

Since the direct insurer will still have to pay a part of every claim, the claim frequency   is 
unchanged. 

The net rate of premium income (after paying the reinsurance costs) for the direct insurer is: 

 netc   1,000,000 80,000 920,000  [1] 

The MGF for the net claim amount netX  paid by the direct insurer is: 

 

netrX rrx x x

r
x r x

r
r

E e e e dx e e dx

ee dx e dx

e e e
r

e


 


  

 


 

 


 






 

 

20,000
20,000/8000 /8000

0 20,000

20,000 20,000
(1/8000 ) /8000

0 20,000

20,000(1/8000 )
20,000 20,000/8,000

20,0

( ) / 8,000 / 8,000

1
8,000 8,000

1
8,000(1 / 8,000 )

1 r
re

r






00 2.5
20,000 2.5

1 8,000
 [2] 

So the adjustment coefficient equation becomes: 

 
r

rer e
r


 

   
  

20,000 2.5
20,000 2.51100 920,000 100

1 8,000
 [1] 
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Multiplying through by r1 8,000  and dividing through by 100 gives: 

 r rr r e e r      20,000 2.5 20,000 2.5(1 9,200 )(1 8,000 ) 1 (1 8,000 )  

Expanding and cancelling the 1’s: 

 rr r r e   2 20,000 2.51,200 73,600,000 8,000  

Dividing by r100 : 

 rr e    20,000 2.512 736,000 80  

Evaluating the function rf r e r  20,000 2.5( ) 80 736,000 12  for trial values of r , we find: [1] 

 

f
f
f
f
f

f



 

 

 

(0.000025) 4.43
(0.00003) 1.89
(0.00004) 2.83
(0.000033) 0.42
(0.000034) 0.06

(0.000035) 0.54  [1] 

So r  is approximately 0.000034 (measured in units of 1£ ). [1] 

(ii)(d) Probability of ruin 

So the probability of ruin with and without the reinsurance are approximately: 

 without e   0.000025 20,000 0.61  and    with e   0.000034 20,000 0.51  [1] 

(ii)(e) Comment 

So the reinsurance reduces the probability of ultimate ruin. [1] 

20.14 (i) Approximation to R 

The MGF of X  can be written: 

 tX
X

tX tM t E e E tX t E X E X        
2 2

2( )( ) ( ) (1 ) 1 ( ) ( )
2! 2!

   

So: X
RM R R E X E X   

2
2( ) 1 ( ) ( )

2!
  [1] 

Assuming that R  is small enough for terms in R3  and higher powers to be neglected, we can 
write: 

 X
RM R R     

2
2 2( ) 1 ( )

2!
 [1] 
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Substituting this into the defining equation for R : 

 RcR R        
2

2 2[1 ( )]
2!

 

Subtracting   from both sides and rearranging, we get: 

 Rc R     
2

2 2( ) ( )
2!

 [1] 

Dividing through by R  and simplifying, we get: 

  
c cR   

    
 

 
 2 2 2 2

2( ) 2( / )

( )
 [1] 

This is the required expression. 

(ii) Assessment of reinsurance 

The adjustment coefficient can be used to assess the effectiveness of different reinsurance 
arrangements, using Lundberg’s inequality to find an upper bound for the probability of ruin for 
the insurer under different reinsurance arrangements.  An arrangement that produces a lower 
upper bound for the probability of ruin is in some sense more secure for the insurer than an 
arrangement that has a higher upper bound for the probability of ruin. [3] 

Note however that the adjustment coefficient cannot tell us anything about the relative 
profitability of different reinsurance arrangements.  This will need to be assessed using other 
means. 

(iii) Maximum reinsurance 

First we consider the insurer’s security without reinsurance.  The equation for the adjustment 
coefficient is: 

 Xm r M r  11 (1 ) ( )  

Substituting in   0.15 , m 1 5000  and r
XM r e 5000( ) , we get: 

 rr e  50001 5750  [1] 

The rate of premium income is: 

 c m      1(1 ) 1.15 20 5000 115,000  

So, using the approximation derived for the adjustment coefficient in part (i), we have: 

 R 
   5

2
2(115000 / 20 5000)

6 10
5000

 [1] 
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Now assume that a proportion k  of each risk is reinsured.  The net premium income is now: 

 k k      [1.15 5000 1.25 5000] (5750 6250 )  [1] 

The MGF of the insurer’s net claim payments is now: 

 k R
XM t e  5000(1 )( )  [1] 

So the equation for the insurer’s adjustment coefficient is now: 

 k tk R e    5000(1 )1 (5750 6250 )  [1] 

Using the same approximation to R  as before, we have: 

 
k k kR

k k
   

 
 2 2 2

2[(5750 6250 ) 5000(1 )] 3 5

5000 (1 ) 50000(1 )
 [1] 

If we want the insurer’s security with reinsurance to be greater than without reinsurance, we 
want the adjustment coefficient with reinsurance to be larger, ie: 

 
k

k


 


5
2

3 5 6 10
50000(1 )

 [1] 

Rearranging this inequality, we get: 

 k k 23 0   [1] 

The solution of this is k 0 1 / 3 .  So the maximum proportion to be reinsured is 1
333 %. [1] 
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Run-off triangles 

   

Syllabus objectives 

5.2 Run-off triangles 

5.2.1 Define a development factor and show how a set of assumed development 
factors can be used to project the future development of a delay triangle. 

5.2.2 Describe and apply the basic chain ladder method for completing the delay 
triangle using development factors. 

5.2.3 Show how the basic chain ladder method can be adjusted to make explicit 
allowance for inflation. 

5.2.4 Describe and apply the average cost per claim method for estimating 
outstanding claim amounts. 

5.2.5 Describe and apply the Bornhuetter-Ferguson method for estimating 
outstanding claim amounts. 

5.2.6 Describe how a statistical model can be used to underpin a run-off triangles 
approach. 

5.2.7 Discuss the assumptions underlying the application of the methods in 5.2.1 
to 5.2.6 above. 
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0 Introduction 

0.1 The origins of run-off triangles 

Run-off triangles (or delay triangles) are an important topic in the practical work of actuaries 
working in general insurance who make use of spreadsheets and other computer packages to 
forecast future claim numbers and amounts.  In this section we will look at four standard methods 
for projecting run-off triangles – the basic chain ladder method, the inflation-adjusted chain 
ladder method, the average cost per claim method and the Bornhuetter-Ferguson method. 

For these last two methods, there is no one way of applying the method that is universally agreed, 
ie you may find variations in the methods if you see these in everyday use.  Be careful in the exam 
to apply them sensibly to the data you are given. 

The techniques we will study in this chapter are directly relevant to general insurance.  You are 
unlikely to be asked questions about the types of reserves given in the next section.  However, 
this is useful background material which you will meet again in much more detail if you study the 
later general insurance subjects. 

Run-off triangles (delay triangles) usually arise in types of insurance (particularly non-life 
insurance) where it may take some time after a loss until the full extent of the claims which 
have to be paid is known.  It is important that the claims are attributed to the year in which 
the policy was written. 

The claims are analysed in cohorts, and it is important that each claim is allocated to the correct 
cohort.  You will see in the general insurance subjects that several different cohort definitions can 
be used.  For example, claims can be grouped by the year in which the policy was originally 
written, or by the year in which the accident occurred, or in a number of other ways. 

The insurance company needs to know how much it is liable to pay in claims so that it can 
calculate how much surplus it has made.  However, it may be many years before it knows 
the exact claims totals.  There are many causes for the delays in the claim totals being 
finalised.  The delay may occur before notification of the claim and/or between notification 
and final settlement. 

It is clear that although the insurance company does not know the exact figure for total 
claims each year, it must try to estimate that figure with as much confidence and accuracy 
as possible. 

So the question that we shall attempt to answer in this chapter is this: how much needs to be set 
aside now (as a reserve) to meet future payments to be made on claims that have arisen during 
some recent past period? 

0.2 Types of reserves 

General insurers need to be able to estimate the ultimate cost of claims for several purposes.  For 
example, they need to know the full cost of paying claims in order to set future premium rates.  
They also need to set up reserves in their accounts to make sure that they have sufficient assets 
to cover their liabilities. 
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The normal steps involved in settling a general insurance claim are shown in the diagram: 

Claim event 
occurred  

Claim 
reported  

Claim payment(s) 
made  

Claim file 
closed 

 
After the claim event has occurred (eg a policyholder has been involved in a motor accident or has 
been burgled), the policyholder will report the incident to the insurer. 

In due course the insurer will make any payments required (eg paying for repairs to a vehicle, 
compensation to an injured person or the cost of replacing stolen belongings).  There may be 
several payments made under a single claim. 

When the insurer considers that no further payments will be required for this claim, the claim file 
will be closed. 

A general insurer will need to set up reserves to cover its liabilities for future payments in respect 
of accidents that have already occurred.  These reserves will relate to claims at different stages in 
the settlement process.  In particular, reserves will be required for outstanding reported claims 
and IBNR claims. 

Types of reserves 

An IBNR (pronounced ‘I.B.N.R.’) claims reserve is required in respect of claims that have been 
incurred but not reported, ie the claim event has occurred, but the claim has not yet been 
reported to the insurer. 

An outstanding reported claims reserve is required in respect of claims that have been reported, 
but have not yet been closed. 

Question 

Identify where each of these reserves fits in on the diagram above. 

Solution 

The IBNR reserve corresponds to the claims at the stage indicated by the left hand arrow. 

The outstanding reported claims reserve corresponds to the middle arrow. 

(No reserve would be required for the right hand arrow, since all payments for these claims have 
already been made.  However, in practice, insurers may hold a reopened claims reserve to cover 
the possibility that the claim file is closed ‘too soon’ and that further payments are required.) 
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0.3 Presentation of claims data 

There are several ways of presenting claims data, which emphasise different aspects of the 
data.  Here they will be presented as a triangle, which is the most commonly used method.  
The year in which the incident happened and the insurer was on risk is called the accident 
year.  The number of years until a payment is made is called the delay, or development 
period.  The claims data is divided up by the accident year and the development year.  The 
following table is an example of claims data referenced by accident year and development 
year.  In some types of insurance it might be relevant to look at development of claims by 
month or quarter, but the principles are unchanged. 

Also, as we shall see, data may be presented cumulatively, or on an individual year basis. 

Example 

The figures in the table below are in units of £1,000, but for convenience we will not write them 
out in full in our calculations. 

Cumulative claim payments 

Accident 
Year 

Development Year 

 0 1 2 3 4 

2008 

2009 

2010 

2011 

2012 

786 

904 

995 

1,220 

1,182 

1,410 

1,575 

1,814 

2,142 

2,216 

2,515 

2,880 

2,440 

2,796 

2,519 

Figure 1: Sample claims data 

Each row in the triangle represents an origin year which defines a cohort of claims.  This example 
uses an accident year cohort.  Because a lot of statistical theory in general insurance was 
developed in relation to motor insurance, the term ‘accident year’ is extended to situations where 
the claim event is clearly not an accident, eg car thefts, arson, burglaries.  The 2008 row includes 
all claims relating to accidents that occurred during the 2008 calendar year. 

In practice most general insurers use an accounting year starting on 1st January, so the rows do 
really represent calendar years. 

The columns represent development years, which show how the cohort of claims relating to a 
particular origin year ‘develop’ over time.  Column 0 represents the year in which the accident 
occurred.  Column 1 represents the year after the accident occurred, etc. 
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Each entry in the table can be defined by its accident year (row) and its development year 
(column) eg the figure of 2,216 is for Accident Year 2008, Development Year 2, which we will 
write as 2008/2 or C2008,2 .  Note that this figure includes payments made in 2008, 2009 and 

2010, since it is a cumulative table. 

The figures given are cumulative and represent total amounts paid by the end of each 
development year.  They have been compiled after the end of the 2012 accident year.  For 
the 2012 accident year, only payments with delay 0 have been reported.  For the 2011 
accident year, payments with delay 0 and delay 1 have been reported, and so on. 

Question 

Use the delay triangle above to determine: 

(i) the total amount of claims paid in 2012 in respect of accidents that occurred in 2010, and 

(ii) the total amount of claims paid during 2012. 

Solution 

Because the triangle shows cumulative amounts, we need to subtract neighbouring columns 
(‘disaccumulate’). 

(i)  2,880 1,814 1,066  

(ii)        



1,182 (2,142 1,220) (2,880 1,814) (2,796 2,515) (2,519 2,440)

3,530

 

 
Note that particular calendar years are represented by the diagonals in the triangle.  For example, 
the long diagonal (1182,  2142,  2880,  2796,  2519) includes all payments made during the most 
recent calendar year shown, ie 2012 (as well as past calendar years).  Note also that the upper left 
corner represents ‘known’ past payments, while the lower right corner represents ‘unknown’ 
future payments.  Our task in the remainder of this chapter is to look at methods of estimating 
these unknown figures to complete the lower right triangle.  For each accident year, the 
difference between the figure in the extreme right hand column and the total amount paid so far 
will give us the estimate of the amount we need to hold currently to meet future liabilities arising. 

The table in the example above showed the amounts of paid claims tabulated by accident year.  
Various alternative tabulations could have been used.  For example: 

1. The cohorts could be defined by reporting year (‘all claims reported in year X’) or by 
written year (‘all claims from policies written in year X’). 

2. The origin years might be the company’s financial years or might be origin quarters or 
origin months. 

The entries in the table might show numbers of claims or estimated ultimate cost or claims-
related expenses. 
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Question 

If we projected the claims given in the run-off triangle, which of the reserves described in the 
previous section would be included if the table showed: 

(i) the amounts of claims paid, tabulated by accident year, and 

(ii) the amounts of claims paid, tabulated by reporting year? 

Solution 

(i) The table would include all claims in respect of accidents that occurred between 
1 January 2008 and 31 December 2012.  So this would include both outstanding reported 
claims and IBNR claims. 

(ii) The table would include all claims that were reported between 1 January 2008 and 
31 December 2012.  So this would include outstanding reported claims, but not IBNR 
claims. 

 
0.4 Estimating future claims 

We now look at the methods we might use to try to estimate the missing figures in the table. 

The task is to decide the amounts yet to be paid in respect of the given accident years.  This 
can be done for 2012 by looking at previous accident years.  If the cumulative payments 
increase in a similar way, it is possible to say that they are likely to be about 3,788 in 4 
years’ time.  This figure is obtained by assuming that the 2012 accident year is similar to the 
2008 accident year in the pattern of making payments, and estimating cumulative payments 
at the end of Development Year 4 by: 

2,519
1,182 3,788

786
   

This is not necessarily the ‘best’ estimate, but it is possible to fill in the lower triangle in 
Figure 1 by comparing present figures with past experience.  This process is the main 
object of this chapter. 

Note that the figure of 3,788 actually includes what we have already paid out.  The estimate of 
the amount yet to be paid, using this method, would be  3,788 1,182 2,606 . 

Question 

Using the same assumption about claims in 2011, what would be the cumulative claim payment at 
the end of Development Year 4 for 2011 accidents? 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-21: Run-off triangles Page 7 

 

The Actuarial Education Company  IFE: 2019 Examinations 

Solution 

If we assume as before that payments for 2011 will have a similar pattern to those of 2008, we 
would get: 

 
2,5192,142 3,827
1,410

 

Note that, since we have the more up-to-date total of 2,142 for this row, this calculation is likely 

to be more accurate than calculating 
2,5191,220
786

, based on the older figure of 1,220. 

 
0.5 Other ways of recording data 

The method used above is based on an accident-year basis where claims development is 
clustered by the year an accident has occurred.  In that respect, such data would include 
incurred but not yet reported (IBNR) claims. 

Another method of recording data is by underwriting year.  This procedure would group 
claims by the time policies were written rather than when they occurred.   

So this method would include IBNR claims, and claims that are yet to occur, if they relate to a 
policy written in the underwriting year.  

A third method of grouping claims is by reporting year. 

This method would not include IBNR claims as all claims would be allocated to the year in which 
they were reported. 

Example 

Consider a claim on an incident occurring on 1st December 2017 for an insurance policy 
written on 21st December 2016.  Assume that this was reported to the insurer on 
15th January 2018 and settled in July 2018. 

Then, assuming calendar years are used, it would show: 

 in development year 1 for 2017 under an accident-year basis 

 in development year 2 for 2016 under an underwriting-year basis 

 in development year 0 for 2018 under a reporting-year basis. 

The relative merits of each basis are discussed further in Subject SP7. 
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1 Projections using development factors 

1.1 Run-off patterns 

The basic assumption made in estimating outstanding claims concerns the run-off pattern.  
The simplest assumption is that payments will emerge in a similar way in each accident 
year.  The proportionate increases in the known cumulative payments from one 
development year to the next can then be used to calculate the expected cumulative 
payments for future development years. 

However, as the example below illustrates, there are a number of choices as to which such 
ratio should be used to project future claims. 

Note that the ratios that are used to project future claims are known as development factors 
or link ratios. 

A development factor may describe the ratio between cumulative claim amounts in consecutive 
years or between years over a longer period.  In the table below we calculate development 
factors for the ratios between consecutive years. 

Example 

Proportionate increases in cumulative payments 

Accident 
Year 

Development Year 

 0  1  2  3  4 

2008 

2009 

2010 

2011 

2012 

786 

904 

995 

1,220

1,182

1.794 

1.742 

1.823 

1.756 

1,410

1,575

1,814

2,142

1.572 

1.597 

1.588 

2,216

2,515

2,880

1.101

1.112

2,440

2,796

1.032 2,519 

Figure 2: Increase in cumulative payments 

For each accident year from 2008 to 2011 there is a different ratio for the increase in 
cumulative payments from Development Year 0 to Development Year 1.  It is not clear which 
is the ‘correct’ one to use when projecting forward for Accident Year 2012.  For a 
conservative estimate of cumulative payments, it might be best to take the largest ratio, ie 
1.823. 
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Question 

Project the known figure for Accident Year 2012 across to Development Year 4 using: 

(i) the largest ratio for each development year 

(ii) the smallest ratio for each year. 

Comment on the difference between your two results. 

Solution 

(i) Using the largest ratio for each development year we get: 

    1,182 1.823 1.597 1.112 1.032 3,949  

(ii) Using the smallest ratio in each case we get: 

    1,182 1.742 1.572 1.101 1.032 3,678  

Note that the results are substantially different.  The estimate for the outstanding claims reserve 
will be very sensitive to the method used to calculate the development factors. 

 
However, some sort of average of the ratios would seem more appropriate.  It is possible to 
use a simple arithmetic average: 

1.794 1.742 1.823 1.756
1.779

4

  
  

The disadvantage of this is that it does not take into account that the years in which more 
claims occur provide more information.  Thus, the greater the amount of claims, the more 
confidence you can have in the ratio. 

Note that we’re assuming a large number of claims here, which would lead to a more predictable 
average, not a small number of very large claims, which would probably have the opposite effect. 

This suggests using a weighted average and the usual choice of weights are the cumulative 
claims values. 

Accident 
Year 

Ratio Weight 

2008 

2009 

2010 

2011 

1.794 

1.742 

1.823 

1.756 

786 

904 

995 

1,220 

 
1.794 786 1.742 904 1.823 995 1.756 1,220

1.777
786 904 995 1,220

      


  
 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 10  CM2-21: Run-off triangles 

 

 IFE: 2019 Examinations The Actuarial Education Company 

This method of estimating the ratios which describe the run-off pattern is called the 
chain-ladder method.  The most efficient mode of calculating the ratios is given in 
Section 1.3. 

Question 

Using this method, what estimate would you give for the ratio to be used for calculating figures 
for Development Year 2 from Development Year 1? 

Solution 

    


 
1.572 1,410 1.597 1,575 1.588 1,814 1.586

1,410 1,575 1,814
 

 
1.2 A statistical model for run-off triangles 

The general form of a run-off triangle can be expressed as follows: 

Accident 
Year 

Development Year 
0 
 

1 ... j ................................. n 

0 
 

C0,0 C0,1 ... C0, j ................................ C0,n 

1 C1,0 C1,1 ... C1, j ............ C1,n1  

           
i Ci,0 Ci,1   Ci,ni  

  
  
  

  
  
  

 
 

Cn1,1 

 

n Cn,0       
 
Each entry, Cij , in the run-off triangle represents the incremental claims (as opposed to 
cumulative claims) and can be expressed in general terms 

 ij j i i j ijC r s x e    

where:  

 jr  is the development factor for year j, representing the proportion of claim 

payments in Development Year j.  Each rj is independent of the Origin Year i. 

 is  is a parameter varying by Origin Year, i, representing the exposure, for example 

the number of claims (or claim amount) incurred in the Origin Year i. 

 i jx   is a parameter varying by calendar year, for example representing inflation. 

 ije   is an error term. 
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Note that some of the terminology above is being used in a different context to previously.  The 
development factors jr  in this general statistical model are defined differently to the 

development factors that we have met previously.   

The development factors that we met previously were used to project forward cumulative claims 
data.  The development factors in the general statistical model are being used to model 
incremental data.  They are defined above as the proportion of claims from a particular accident 

year that are paid in the thj  development year.  As such, they are a set of factors that add up 
to 1. 

Question 

An actuary using this model has estimated the parameters for a run-off triangle as follows: 

s m r x

s m r x

s m r x

x

x

  

  

  





08 0 08

09 1 09

10 2 10

11

12

£1.50 , 0.6, 1.00

£1.75 , 0.3, 1.10

£1.60 , 0.1, 1.20

1.25

1.30

 

Use these estimates (ignoring error terms) to construct the complete table of incremental claim 
amounts for Accident Years 2008-2010, and hence estimate the amount of outstanding claims at 
the end of 2010. 

Solution 

In this example, there are only 3 origin years and development years.  Multiplying the appropriate 
parameters gives the following incremental table: 

 
Claim payments made during year 

(£000) 
Development Year 

 0 1 2 
 
 2008 900 495 180 

Accident Year 2009 1,155 630 219 

 
 

2010 1,152 600 208 

 
The outstanding claim amount at the end of 2010 is   219 600 208 1,027  ie £1,027,000. 
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Question 

Explain what each of the parameters is , jr  and i jx   would represent if you were applying this 

model to a run-off triangle showing the incremental number of claims paid, tabulated by reporting 
year. 

Solution 

 is  would represent the total number of claims reported in origin year i . 

 jr  would represent the proportion of claims where a payment was completed in 

development year j . 

 i jx   would be 1, since we’re looking at numbers of claims. 

 
1.3 The chain ladder method 

This section explains how you would carry out the calculations for completing the run-off triangle 
using the basic chain ladder method. 

This method of calculating the development ratios is demonstrated in the following 
example. 

Example 

Recall that the ratio in Accident Year 2008 was calculated as follows: 

1,410
1.794

786
  

The ratios for the other accident years were calculated in a similar way.  The numerator of 
the last Core Reading equation of Section 1.1 can therefore be written as: 

 

1,410 1,575 1,814 2,142
786 904 995 1,220

786 904 995 1,220

1,410 1,575 1,814 2,142

      

   

 

Thus, the development factor can be calculated using the cumulative claims in Development 
Years 0 and 1: 

1,410 1,575 1,814 2,142

786 904 995 1,220

  
  

 

In other words the development factor is the sum of the figures in Column 1 divided by the sum of 
the corresponding figures from Column 0. 

The name given to this method presumably arises from the ladder-like operations which are 
chained over the development years.  The development factors for the chain ladder 
technique can be found for each development year by adding the appropriate number of 
terms.  This is illustrated below. 
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Accident 
Year 

Development Year 

 0  1  2  3  4 

2008 

2009 

2010 

2011 

2012 

786 

904 

995 

1,220 

1,182 

 1,410 

1,575 

1,814 

2,142 

 2,216 

2,515 

2,880 

 2,440 

2,796 

 2,519 

  
6,941

3,905
  

7,611

4,799
  

5,236

4,731
  

2,519

2,440
  

  = 1.777  = 1.586  = 1.107  = 1.032  

Figure 3: Development factors 

Note that the development factors will normally be 1-point-something. 

Development factors have been calculated for each development year.  It is now possible to 
project forward each accident year. 

For Accident Year 2012, the projections of cumulative claims are: 

1,182 1.777     2,100  

1,182 1.777 1.586     3,331  

1,182 1.777 1.586 1.107     3,688  

1,182 1.777 1.586 1.107 1.032     3,806  

Each calculation follows on from the previous one, so you don’t have to multiply repeatedly by 
the same factors.  Storing the development factors in your calculator’s memories will also save 
time and maintain accuracy. 

For Accident Year 2011, start from 2,142 in Development Year 1 and use only the last three 
link ratios (ie development factors). 
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Accident 
Year 

Development Year 

 0 1 2 3 4 

2008 

2009 

2010 

2011 

2012 

  

 

 

 

2,100 

 

 

 

3,397 

3,331 

 

 

3,188 

3,761 

3,688 

 

2,885 

3,290 

3,881 

3,806 

Figure 4: Projections of cumulative payments 

Note that no projection can be done for the first accident year because it is not possible to 
project beyond the highest development year.  It is therefore assumed that all claims from 
this cohort have completely run off. 

We would like to think that claims from Accident Year 2008 are now ‘completely run off’, ie that 
we can expect to make no further payments on these claims.  So, in fact, we would not need to 
project the 2008 row.  If we do not believe this to be the case, we should be using a triangle with 
a correspondingly greater number of columns. 

In practice, where this assumption may not be appropriate, manual adjustments in the form 
of ‘tail factors’ may be used.  These are beyond the scope of Subject CM2, and will be 
discussed in Subject SP7. 

The reserve that needs to be held at the end of 2012 is the sum over all accident years for 
which a projection has been made of the difference between the cumulative payment at the 
end of Development Year 4 and the last known entry in the development triangle for that 
accident year. 

So from Figures 1 and 4, the reserve at the end of 2012 is: 

(2,885 2,796) (3,290 2,880) (3,881 2,142) (3,806 1,182) 4,862         

Note that no discount rate has been applied to the payments in different years. 

This is the usual convention when using run-off triangles to calculate reserves.  It is consistent 
with the way accounts are drawn up for other companies.  However, for much insurance business 
of this type, the payments are usually fairly short-tail, ie we expect to have made the final 
payments on claims within a few years.  If claims are paid quickly, there is less need to allow for 
any discounting.  In addition, not discounting reserves errs on the side of prudence, rather than 
the reverse, which makes it a safe approach.  There would be nothing to stop you including the 
appropriate v  factors to calculate discounted reserves, if this was required. 

The model can be applied in exactly the same way to the distribution of the number of claims, 
rather than to total claim amounts. 
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Question 

The table below shows the numbers of household insurance claims reported in each development 
year for accident years from 2009 to 2012.  Use the basic chain ladder method to estimate the 
total ultimate number of claims arising from accidents occurring between 1 January 2009 and 31 
December 2012. 

Number of claims reported 
Development Year 

0 1 2 3 
 2009 17,500 5,000 2,250 750 

Accident Year 2010 21,000 6,200 2,750  
 2011 18,800 5,500   
 2012 21,300    

 

Solution 

The first thing we must do is to get the cumulative claim numbers. 

If we write the development factors over the appropriate columns, the table of cumulative claim 
numbers looks like this: 

   1.2914  1.1006  1.0303 

Cumulative claim numbers 
Development Year 

0 1 2 3 

 
 

2009 17,500 22,500 24,750 25,500 

Accident Year 2010 21,000 27,200 29,950 30,858 

 
 2011 18,800 24,300 26,745 27,555 

 
 2012 21,300 27,508 30,275 31,193 

 

The projected ultimate number of claims is just the total of the last column: 

    25,500 30,858 27,555 31,193 115,106  

 
1.4 Model checking 

The chain ladder technique is used primarily to estimate the development of cumulative 
claim payments.  However, it is useful to check whether it fits reasonably with the claims 
data which have already been received.  To illustrate this, look at the data in Figure 2. 
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To check how well the chain ladder technique performs, the claims in Development Year 0 
for Accident Years 2008-2011 will be considered in the example below. 

Example 

The actual claims in Development Year 0 are as follows: 

2008 

2009 

2010 

2011 

786 

904 

995 

1,220 

The development factors calculated in Section 1.3 were 1.777, 1.586, 1.107 and 1.032.  Using 
these, estimates of cumulative claim payments in each development year can be obtained.  
It is of particular interest to compare these with the actual values given in Figure 2. 

Hence, the following table gives the ‘fitted’ values using the chain ladder technique. 

Accident 
Year 

Development Year 

 0 1 2 3 4 

2008 

2009 

2010 

2011 

786 

904 

995 

1,220 

1,397 

1,606 

1,768 

2,168 

2,215 

2,548 

2,804 

2,452 

2,820 

2,531 

Figure 5: Fitted cumulative claim payments 

It is now possible to compare Figure 5 with Figure 1.  However, it is preferable to look at the 
increases in cumulative payments when considering the fit of the model as it gives a more 
sensitive test.   

The increases in cumulative payments with development year (both actual and fitted) are 
given in Figure 6. 

The error is given by actual – fitted.  

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-21: Run-off triangles Page 17 

 

The Actuarial Education Company  IFE: 2019 Examinations 

 Development Year 

 0 1 2 3 4 

2008 Actual 

Fitted 

Error 

 

786 

786 

 

624 

611 

13 

806 

818 

–12 

224 

237 

–13 

79 

79 

0 

2009 Actual 

Fitted 

Error 

 

904 

904 

 

671 

702 

–31 

940 

942 

–2 

281 

272 

9 

 

2010 Actual 

Fitted 

Error 

 

995 

995 

 

819 

773 

46 

1,066 

1,036 

30 

  

2011 Actual 

Fitted 

Error 

1,220 

1,220 

 

922 

948 

–26 

   

Figure 6: Errors 

None of the errors is large enough to suggest that the model is inaccurate.   

However, it is not clear exactly how large the differences should be before we start to doubt 
whether the model is accurate. 

Question 

Apply this technique to the data in the previous question and comment on any unusually large 
error figures.  
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Solution 

Calculating the increase in the cumulative claim numbers as before gives the following figures: 

  Development Year 

  0 1 2 3 

 Actual 17,500 5,000 2,250 750 

2009 Expected 17,500 5,100 2,274 754 

 Error 0 –100 –24 –4 

 Actual 21,000 6,200 2,750  

2010 Expected 21,000 6,119 2,728  

 Error 0 81 22  

 Actual 18,800 5,500   

2011 Expected 18,800 5,478   

 Error 0 22   

 Actual 21,300    

2012 Expected 21,300    

 Error 0    

 

Again, the fit looks pretty good. 

 
Question 

Is it possible to apply a chi square goodness of fit test here? 

Solution 

Possibly.  But note that you are dealing with claim amounts here, and not frequencies.  So some 
additional assumptions would be necessary. 
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If each claim amount is for a fixed amount m , and the number of claims N  has a Poisson ( )  

distribution, then the total amount S  for a given year would have mean m  and variance m 2 .   

Therefore: 

 S m Nm m N

m m

  
 

  
 

2 2
 

This expression is of the form A E
E
 , where A  is the actual claim number and E  is the expected 

claim number. 

This quantity would have an approximately N(0,1)  distribution, since N  is approximately normal 
for large parameter values.  So the square of this quantity would have an approximate chi square 
distribution, and the chi square test could be used. 

 
However, despite this check it is quite possible that the estimate obtained may be a poor 
guide to the future. 

Question 

Why? 

Solution 

Because any of a number of factors may have changed.  For example: 

 Claims inflation may increase suddenly. 

 Office expenses may also increase (if these are allowed for in the calculations). 

 Weather patterns may change, altering the balance between short tail and long tail claims 
(ie poor weather conditions may increase the number of claims for damage, which are 
settled reasonably quickly, but have no effect on the number of claims for liability, which 
are generally settled much more slowly). 

 The characteristics and behaviour of the insured lives in the portfolio may change over 
time. 

 Catastrophe claims may occur. 

 Underwriting procedures may change. 
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1.5 Other methods of deriving development factors 

It is possible to adjust the calculated development factors in the light of other information.  
This method which uses prior knowledge can take a formal approach, but it is more often an 
ad hoc adjustment.  There may be good reasons to change the development factors.  For 
example, changes in accounting methods or claims administration can alter the speed with 
which claims are settled.  This would give rise to changes in the development factors and it 
would be sensible to reflect this in the estimate of future claim payments.  The development 
factors, either calculated directly from the data, or set using expert knowledge, are always 
used in the same way to estimate outstanding claim payments. 

For example, suppose that a new computer system is installed that speeds up the claims process 
substantially.  If a run-off triangle method is applied to a period that spans the time both before 
and after the installation of the new system, the underlying development factors are likely to 
change when the system is installed.  Because calendar years span the diagonals of the triangle, 
rather than horizontal lines, the effect of a change of this kind is likely to be unpredictable. 

When using run-off triangles, you should always be on the look out for factors that may distort 
the pattern of the run-off.  It may be possible to allow for distortions by adjusting the figures 
produced by the triangle. 

The chain ladder method can also be applied to a triangle of loss ratio data rather than 
cumulative payments, where the loss ratio for a given development and accident year is the 
cumulative payment up to and including that development year divided by the total premium 
income in respect of the given accident year. 

Question 

Apply the chain ladder method to the triangle of loss ratios shown below.  Estimate the ultimate 
loss ratio in each year, and the amount that needs to be set aside to meet future claims.  The 
amounts of premium received in each of the years 2009 to 2012 were £1.42m, £1.64m, £1.73m 
and £1.82m. 

Loss ratio 
Development year 

0 1 2 3 
 2009 47% 63% 70% 74% 

Accident year 2010 48% 62% 71%  
 2011 49% 60%   

 2012 50%    
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Solution 

Applying the standard chain ladder approach we get the following triangle of figures: 

Loss ratio 
Development Year 

0 1 2 3 

 2009 47% 63% 70% 74% 

Accident Year 2010 48% 62% 71% 75.06% 

 2011 49% 60% 67.68% 71.55% 

 2012 50% 64.24% 72.46% 76.60% 

 

So the ultimate loss ratios are the figures in the right hand column. 

The amount of the outstanding claims reserve is: 

        (0.7660 0.50) 1.82 (0.7155 0.60) 1.73 (0.7506 0.71) 1.64 0.7505m  

or £750,500. 

 
1.6 Assumptions underlying the method 

The chain ladder technique is based on the assumption that payments from each accident 
year will develop in the same way.  In other words, the same development factors are used 
to project outstanding claims for each accident year.  Changes in the rate at which claims 
emerge can only be incorporated by adjustment of the development factors. 

The final assumption made when the chain ladder technique is used concerns inflation.  It is 
assumed that weighted average past inflation will be repeated in the future.  This is because 
claims inflation is one of the influences swept up within the projection factors. 

Using the general statistical model described earlier, it can be seen that the basic chain 
ladder takes the form:  

ij j i ijC r s e    

This might be an unrealistic assumption, and it will be considered in greater detail in the 
following section.  When considering inflation, it is important to bear in mind that it is 
claims inflation which is important.  Thus, although a standard measure of overall inflation 
may be used, the inflation rate inherent in claims may be quite different.  For example, a 
court decision can affect the size of claim payments.  Later, we deal with claims inflation in 
more detail. 
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When you read about inflation on news websites or in newspapers, it usually refers to inflation in 
the price of consumer goods.  However, this is just one example of inflation.  Here we are 
interested in the rates of inflation in the cost of settling claims, and there are in fact special 
indices published that show the past rates of inflation for things like the cost of repairing vehicles. w
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2 Adjusting for inflation 

2.1 The inflation adjusted chain ladder method 

Dealing with past inflation 

Claims inflation will affect the payments in the run-off triangle by calendar year of payment. 

These were represented by the x ’s in our statistical model earlier. 

The inflation adjusted chain ladder method works by adjusting the figures in the triangle to allow 
for the effects of inflation. 

In the model considered here, it will be assumed that claims inflation is at the same annual 
rate for all claims within a particular calendar year of payment.  Each calendar year of 
payment corresponds to a diagonal in the triangle.  For an illustration, look again at 
Figure 1. 

When adjusting for inflation, it is the payments in each calendar year which need to be 
considered, rather than cumulative totals.  The first step is to calculate incremental 
payments from the cumulative totals, by differencing along each row.  The same operation 
was performed earlier and the following figure can be compared with Figure 6. 

Example 

Figure 7 gives the incremental (or non-cumulative) claim payments for the data in Figure 1. 

Accident 
Year 

Development Year 

 0 1 2 3 4 

2008 

2009 

2010 

2011 

2012 

786 

904 

995 

1,220 

1,182 

624 

671 

819 

922 

806 

940 

1,066 

224 

281 

79 

Figure 7: Incremental claim payments in monetary amounts 

Suppose that the annual claim payments inflation rates over the 12 months up to the middle 
of the given year are as follows: 

2009 

2010 

2011 

2012 

5.1% 

6.4% 

7.3% 

5.4% 
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For simplicity, it is also assumed that payments are made in the middle of each calendar 
year.  An index can now be calculated in order to convert all payments to mid-2012 prices. 

2012 has been chosen because it is the last ‘known’ year. 

Question 

What would the index be for the years 2008-2012 if the base value is 100 for 2008? 

Solution 

2008 100 

2009 105.1 

2010 111.8 

2011 120.0 

2012 126.5 

 
The payments in Figure 7 can now be adjusted using the inflation rates.  Figure 8 gives the 
inflation adjusted incremental payment data. 

For example, we have: 

    786 1.051 1.064 1.073 1.054 994  (or  
126.5786 994
100

) 

and   1,220 1.054 1,286  (or  
126.51,220 1,286
120.0

) 

Accident 
Year 

Development Year 

 0 1 2 3 4 

2008 

2009 

2010 

2011 

2012 

994 

1,088 

1,125 

1,286 

1,182 

751 

759 

863 

922 

912 

991 

1,066 

236 

281 

79 

Figure 8: Incremental claim payments at mid-2012 prices 

Now it is straightforward to form a table of inflation adjusted cumulative payments to which 
the chain ladder technique can be applied. 
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Applying the chain ladder method we get the following cumulative figures: 

 Development Year 
 0 1 2 3 4 
 2008 994 1,745 2,657 2,893 2,972 

 2009 1,088 1,847 2,838 3,119  
Accident Year 2010 1,125 1,988 3,054   

 2011 1,286 2,208    
 2012 1,182     

 
This gives development factors of 1.7334, 1.5321, 1.0941 and 1.0273. 

The forecasts of cumulative payments at mid-2012 prices are given in Figure 9. 

Accident 
Year 

Development Year 

 1 2 3 4 

2009 

2010 

2011 

2012 

 

 

 

2,049 

 

 

3,383 

3,139 

 

3,341 

3,701 

3,434 

3,204 

3,432 

3,802 

3,528 

Figure 9: Forecasts of cumulative claim payments at mid-2012 prices 

If you’re checking these figures, you might get answers that differ by 1 or 2 from the ones shown, 
depending on how you have rounded your intermediate figures. 

Dealing with future inflation 

The predictions of cumulative payments do not, however, take account of future inflation.  
In order to forecast the actual payments, an assumed rate of future inflation will be needed.  
Again, it is necessary to convert to non-cumulative data rather than the cumulative totals 
before adjusting these for future inflation in a similar way to that used when dealing with 
past inflation. 
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Example 

In this example we will assume a constant future rate of inflation. 

Applying an annual inflation rate of 10% (at 30 June) to the data in Figure 9 gives revised 
forecasts of the cumulative claim payments as follows: 

Accident 
Year 

Development Year 

 1 2 3 4 

2009 

2010 

2011 

2012 

 

 

 

2,136 

 

 

3,435 

3,455 

 

3,196 

3,820 

3,848 

2,890 

3,306 

3,954 

3,986 

Figure 10: Forecasts of cumulative claim payments in monetary amounts 

The reserve that needs to be held at the end of 2012 is 5,136. 

Question 

Reproduce the figures shown in the table and the reserve figure of 5,136. 

Solution 

The incremental table in mid-2012 prices is: 

Incremental payments at 
2012 prices 

Development Year 

1 2 3 4 

 2009    85 

Accident Year 2010   287 91 

 2011  1,175 318 101 

 2012 867 1,090 295 94 
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Applying the 10% future inflation rate: 

Incremental payments 
allowing for future inflation 

Development Year 

1 2 3 4 

 2009    94 

Accident Year 2010   316 110 

 2011  1,293 385 134 

 2012 954 1,319 393 138 

 

Accumulating using the original figures from Figure 1: 

Cumulative payments in  
Development Year 

actual amounts 
0 1 2 3 4 

 2008 786 1,410 2,216 2,440 2,519 

 2009 904 1,575 2,515 2,796 2,890 

Accident Year 2010 995 1,814 2,880 3,196 3,306 

 2011 1,220 2,142 3,435 3,820 3,954 

 2012 1,182 2,136 3,455 3,848 3,986 

 

These figures agree with those shown in Figure 10. 

The reserve is calculated as: 

    (3,986 1,182) (2,890 2,796) 5,136  

Question 

Can we apply the method if we believe that inflation will vary in each future year? 
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Solution 

Of course, provided that we can estimate the inflation rate for each future year.  We just multiply 
by the appropriate future inflation factors, which will be different for each year, exactly as we did 
for past inflation. 

 
Assumptions underlying the method  

The key assumption underlying this method is that, for each origin year, the amount of 
claims paid, in real terms, in each development year is a constant proportion of the total 
claims, in real terms, from that origin year. 

Explicit assumptions are made for both past and future claims inflation.  Therefore, using 
the general statistical model, the inflation adjusted chain ladder method takes the form:  

ij j i i j ijC r s x e   

As before, we are also assuming that the first origin year is fully run off. 
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3 The average cost per claim method 

This method, considers separately the two key elements of total claim amounts, ie the 
number of claims and the average amounts of the claims. 

3.1 Description of method 

This method requires development tables for both total claim amounts and claim numbers.   

We normally use cumulative figures, as before. 

A third development table, of the average claim amounts, is then formed by dividing the 
figures in the corresponding cells of the first two tables. 

The next stage is the projection of figures in the average claims and number of claims 
tables, using either grossing-up factors or development factors. 

A grossing-up factor is not very different from a development factor.  A grossing-up factor gives 
the proportion of the ultimate claim amount that has been paid so far.  Suppose that we had 
cumulative payment amounts of: 

 500 800 1000 1,100 

The development factors for this row would be: 

 
800 1.6
500

   
1,000 1.25
800

   and 
1,100 1.1
1,000

 

The grossing-up factors would be calculated as follows: 

 
500 45.45%

1,100
  

800 72.73%
1,100

  
1,000 90.91%
1,100

 

Grossing-up factors are particularly useful when we already know the ultimate expected payout 
amount for a table row and are trying to calculate individual figures in the row.  We will see that 
this is usually the case in the next two methods that we study. 

Finally, the projected ultimate claims can be calculated by multiplying together for each 
accident year the projected figures for the average claim amounts and claim numbers. 

A reserve can then be calculated by subtracting all payments to date in respect of claims 
relating to the data in the table.  An example is given below to illustrate this process. 

3.2 Application of the method 

The average cost per claim method is not uniquely defined.  It may therefore equally be 
applied on an accident year cohort to either paid or incurred claims, or on a reporting year 
cohort.  It is, however, important to ensure that the form of the data for the number of claims 
corresponds to that of the total claim amounts (ie paid claims corresponds to the number of 
claims settled and incurred claims corresponds to the number reported). 
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Of course, it is also important only to apply the method to data for which the development is 
considered to be stable and hence suitable for projection into the future.  It is more likely 
that the reporting of claims will be more stable than the settlement, so the example given 
below relates to incurred claims. 

In general insurance, ‘incurred claims’ has a technical definition.  In simple cases, however, it just 
corresponds to the intuitive meaning of claims arising in a particular period. 

Further, the method is not uniquely defined as using a particular form of grossing-up 
factors or development factors.  However, the grossing-up method is generally considered 
simpler and is used in its simple average form in the example that follows. 

Finally, the method described above ignored any adjustment for inflation.  This can, 
however, be done in exactly the same way as the adjustment to the basic chain ladder 
method to form the inflation adjusted chain ladder method (ie if the data being used have 
been adjusted for inflation, it would simply require an index for future inflation to be applied 
to non-cumulative projected average claim amounts before multiplying by the projected 
claim numbers).  In practice an adjustment for inflation would normally be made. 

The following example is done on the basis that the data has not, and need not be, adjusted 
for inflation. 

You should be able to see how the method would be adjusted for inflation (and you should be 
prepared to answer questions that ask you to make such an adjustment). 

Cumulative incurred claims data, by years of accident and reporting development 

  DY  

  0 1 2 3 4 5 Ult 

 1 2,777 3,264 3,452 3,594 3,719 3,717 3,717 

 2 3,252 3,804 3,973 4,231 4,319   

AY 3 3,725 4,404 4,779 4,946  

 4 4,521 5,422 5,676   

 5 5,369 6,142    

 6 5,818     

This is a different set of data from any of the previous examples. 

Question 

How can the figure of 3,719 in Development Year 4 of Accident Year 1 reduce in the following 
development year? 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-21: Run-off triangles Page 31 

 

The Actuarial Education Company  IFE: 2019 Examinations 

Solution 

Since we are working with incurred claims, rather than claims paid, we are looking at the amounts 
that we believe we have incurred as liabilities in each development year.  There are a number of 
factors that might cause the cumulative amount incurred to decrease.  For example, we might 
expect a reinsurance payment relating to items incurred in the previous year to be paid.  If such 
an amount was large, it could cause the total cumulative incurred amount to decrease. 

 
Number of reported claims, by year of accident and reporting development 

  DY  

  0 1 2 3 4 5 Ult 

 1 414 460 482 488 492 494 494 

 2 453 506 526 536 539   

AY 3 494 548 572 582  

 4 530 588 615   

 5 545 605    

 6 557     

These figures are also cumulative. 

Dividing each cell in the first table by the corresponding cell in the second gives the 
accumulated average incurred cost per claim. 

Average incurred cost per claim, by year of accident and reporting development. 

  DY  

  0 1 2 3 4 5 Ult 

 1 6.708 7.096 7.162 7.365 7.559 7.524 7.524 

 2 7.179 7.518 7.553 7.894 8.013   

AY 3 7.540 8.036 8.355 8.498  

 4 8.530 9.221 9.229   

 5 9.851 10.152    

 6 10.445     

These tables lead to the grossing-up factors and projected ultimate figures given in the 
following table (the projections are based on the, underlined, simple averages of the 
grossing-up factors). 
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Average claim amounts 

  DY  

  0 1 2 3 4 5 Ult 

 1 
6.708 

89.2% 

7.096 

94.3% 

7.162 

95.2% 

7.365 

97.9% 

7.559 

100.5% 

7.524 

100.0% 

7.524 

 

 2 
7.179 

90.0% 

7.518 

94.3% 

7.553 

94.7% 

7.894 

99.0% 

8.013 

100.5% 
 

7.973 

 

AY
 3 

7.540 

87.4% 

8.036 

93.1% 

8.355 

96.8% 

8.498 

98.45% 
  

8.632 

 

 4 
8.530 

88.3% 

9.221 

95.5% 

9.229 

95.57% 
   

9.657 

 

 5 
9.851 

91.5% 

10.152 

94.3% 
    

10.766 

 

 6 
10.445 

89.28% 
     

11.699 

 

It may not be immediately obvious what is happening here.  Let’s see how these figures are 
calculated. 

Accident Year 1 is fully run off.  We can express the figures for each year as a percentage of 7.524, 

the final figure.  For example, 
7.365 0.979
7.524

. 

Now look at Accident Year 2.  We use the corresponding figure in Accident Year 1 (because we 
have already filled in the percentages here) to find a grossing-up factor for Development Year 4, ie 

100.5%.  So we can find the ultimate expected payout figure for Accident Year 2 as 
8.013 7.973.
1.005

 

Now calculate the grossing-up factors for Accident Year 2 by expressing the figures in Accident 
Year 2 as a percentage of 7.973. 

Now look at Accident Year 3.  We calculate the grossing-up factor for Development Year 3 by 
taking the average of the two figures that we already know, ie  ½(97.9 99.0) 98.45% . 

Now calculate the ultimate figure for Accident Year 3 : 
8.498 8.632

0.9845
 

Use this figure to calculate grossing-up factors for the whole of Accident Year 3. 

Continue through the table, using the average of the known grossing-up factors to calculate the 
required grossing-up factor for each development year in turn. 
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We end up with an ultimate claim amount for each accident year. 

We now do exactly the same for the claim number table. 

Question 

Why did we not just complete the average cost table using the basic chain ladder method? 

Solution 

No reason!  As we said, the ACPC method is not a uniquely defined procedure.  The method 
described in the Core Reading is just one possibility. 

 
Claim numbers 

  DY  

  0 1 2 3 4 5 Ult 

 

 

 

AY 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

414 

83.8% 

453 

83.7% 

494 

84.0% 

530 

83.9% 

545 

84.0% 

557 

83.88% 

460 

93.1% 

506 

93.5% 

548 

93.2% 

588 

93.0% 

605 

93.2% 

482 

97.6% 

526 

97.2% 

572 

97.3% 

615 

97.37% 

 

488 

98.8% 

536 

99.1% 

582 

98.95% 

492 

99.6% 

539 

99.6% 

494 

100.0% 

 

494 

 

541 

 

588 

 

632 

 

649 

 

664 
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The total ultimate loss is therefore the sum of the following projected amounts for each 
accident year: 

         Projected 
AY Average cost per claim      Claim Numbers = Loss estimate 

1  7.524    494   3,717 

2  7.973    541   4,313 

3  8.632    588   5,076 

4  9.657    632   6,103 

5  10.766    649   6,987 

6  11.699    664   7,768 

Total Projected Loss Estimate = 33,964 

If the claims paid to date amounted to 20,334, the total reserve required would be 13,630. 

Because the triangle we started with was based on incurred claims, we can’t deduce the total paid 
claims from the figures in the triangle. 

Question 

Using an average cost per claims method based on development factors, find the outstanding 
claims reserve at the end of 2012 in the following example.  Claims paid to date are £1,902,000. 

Cumulative incurred claims 
(£k) 

Development Year 

0 1 2 3 

 2009 632 714 788 822 

Accident Year 2010 729 784 803  

 2011 800 855   

 2012 824    

 

Cumulative number of 
claims 

Development Year 

0 1 2 3 

 2009 52 60 66 70 

Accident Year 2010 54 63 65  

 2011 60 70   

 2012 65    
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Solution 

Dividing one table of values by the other, we find the average cost per claim for each accident and 
development year: 

Average cost per claim 
Development Year 

0 1 2 3 

 2009 12.154 11.900 11.939 11.743 

Accident Year 2010 13.500 12.444 12.354  

 2011 13.333 12.214   

 2012 12.677    

 
Since we are using development factors, we can just complete the table using the usual chain 
ladder approach.  However, because we’re not dealing with total amounts here, we do not need 
to accumulate in this situation.  The development factors of 0.9377, 0.9979 and 0.9836 give: 

 

Average cost per claim 
Development Year 

0 1 2 3 

 2009 12.154 11.900 11.939 11.743 

Accident Year 2010 13.500 12.444 12.354 12.151 

 2011 13.333 12.214 12.188 11.988 

 2012 12.677 11.887 11.862 11.667 

 

Completing the claim number table in the same way, using development factors 1.1627, 1.0650.  
and 1.0606, we get: 

Cumulative number of claims 
Development Year 

0 1 2 3 

 2009 52 60 66 70 

Accident Year 2010 54 63 65 68.939 

 2011 60 70 74.553 79.071 

 2012 65 75.572 80.488 85.366 
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We can now calculate the total estimated payout for all claims arising during the period: 

      822 68.939 12.151 79.071 11.988 85.366 11.667 3,604  

But since we have already paid out 1,902, the amount outstanding is 1,702, ie £1,702,000. 

 
3.3 Assumptions underlying the method 

As there is no unique way of defining the method, there is no unique set of assumptions.  In 
particular, the assumptions relating to inflation will depend on the data used. 

In general terms, however, there are the assumptions that for each origin year, both the 
number and average amount of claims relating to each development year are constant 
proportions of the totals from that origin year. 

Finally, it is worth noting that for the assumptions to hold for this method, it would be 
normal for them to also hold for a simpler method applying to total rather than average 
claim amounts, such as the chain ladder method. 

You may then ask: ‘Why then do we not just use the basic chain ladder method?’.  The answer is 
that the totals used in the basic chain ladder method contain a combination of the patterns of the 
average amount and the numbers of claims.  By analysing these separately, we hope to get a 
more accurate projection. 

You may also be asking: ‘If an exam question asks for the ACPC method, what approach do I take?’  
The answer here is that you may need to use your judgement based on the form of the data given 
and any instructions included in the wording of the question.  It is possible that the examiners 
might set a question where a variety of approaches were equally acceptable.  In any case, the 
examiners will be trying to test your understanding, not trying to catch you out. 
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4 Loss ratios 

The ratio of incurred claims to earned premiums over a defined period is called the loss 
ratio. 

ie incurred claimsloss ratio = 
earned premiums

 

Investigation of the loss ratios for each of several different origin years would normally 
show some consistency, provided that there have not been any distortions, and in particular 
no significant change in premium rates. 

A good example of a ‘distortion’ would be the hurricane that affected the South of England in 
1987.  This changed the pattern of household insurance claims completely during that origin year. 

An increase in premiums would affect the loss ratio directly. 

The expected loss ratios will also have formed part of the derivation of the premium basis. 

It is therefore logical that a loss ratio based on trends of past data, underwriters’ views, or 
market data, could be used as a basis for an estimate of the eventual loss and hence the 
outstanding claims.  It is, however, on its own a very crude measure due to the fluctuations 
that are inherent in any claims experience. 

This is similar to the approach that we used earlier when we applied the chain ladder method to a 
triangle of loss ratios when we used the ACPC method.  However, the approach here is more 
general, in that the ultimate loss ratios can be estimated using any method, including subjective 
methods involving personal judgement.  However, once the ultimate estimated loss ratios have 
been found, they are applied to the premium figures in order to calculate outstanding claims 
reserve figures, just as we did before. 

Such estimated loss ratios may be useful as an input to Bornhuetter-Ferguson based 
estimates.  These are discussed in the next section. 
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5 The Bornhuetter-Ferguson method 

5.1 Concept of the Bornhuetter-Ferguson method 

The Bornhuetter-Ferguson method combines the estimated loss ratio with a projection 
method. 

Here, ‘projection method’ refers to methods such as the basic chain ladder method which are 
based on past claim amounts and/or numbers. 

It therefore improves on the crude use of a loss ratio by taking account of the information 
provided by the latest development pattern of the claims, whilst the addition of the loss ratio 
to a projection method serves to add some stability against distortions in the development 
pattern. 

The concepts behind the method are: 

 That whatever claims have already developed in relation to a given origin year, the 
future development pattern will follow that experienced for other origin years. 

 The past development for a given origin year does not necessarily provide a better clue 
to future claims than the more general loss ratio. 

In other words it is a compromise that combines the loss ratios with the development pattern. 

5.2 Description of the method 

In its simplest form the concept leads to the following approach to calculations: 

1. Determine the initial estimate of the total ultimate claims from each origin year using 
premiums and loss ratios. 

2. Divide these estimates by projection factors (f) determined, in a normal manner, 
from a claims development table.  These are effectively estimates of the claims that 
should have developed to date. 

3. Subtract these amounts from the corresponding total ultimate claims figures to give 
an estimate of the amount of claims that are yet to develop. 

Clearly, the three stages could be combined and expressed as: 

Future claims development  =  Premium  Estimated Loss Ratio  1 1 f     

We can relate this formula to the explanation given above: 

1 Step 1 gives you premium   expected loss ratio 

2 Step 2 gives you premium   expected loss ratio  1/f 

3 Step 3 gives you Step 1 minus Step 2, which is the formula given. 

As the final estimate of the ultimate loss is based on observed data and an initial estimate 
ignoring the observations, this method could be viewed as using a Bayesian approach. 
Bayesian statistics is covered in Subject CS1. 
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In standard Bayesian work we combine data from two sources.  We find an estimate of a 
parameter value based on a prior distribution, and combine it with an estimate based on a 
likelihood function.  Our final estimate for the parameter value is usually a weighted average of 
the two estimates from these two different sources. 

We are doing the same thing here.  We find an estimate of the outstanding losses based on loss 
ratios (ie not from the data in the run off triangle), and use the data in the triangle as a second 
source of information to refine our estimate. 

The analysis is not precise here because there is no single parameter that we’re trying to 
estimate. 

5.3 Application of the method 

In its original form, the Bornhuetter-Ferguson method was applied to the development of 
incurred claims.  However, it could equally be applied to the development of paid claims, 
using either an accident year or policy year cohort. 

Further, the original projection was done using a chain ladder approach, although 
alternative development factors or grossing-up factors (g) could easily be applied instead 
(ie g would replace 1/f in the above expression). 

The original form also made no explicit adjustment for inflation, although the method could 
be adjusted in a similar way to the other methods. 

The example below is based on the original form of the method, but examiners would 
expect students to also be able to apply the method to paid claims. 

The first stage is to determine the development factors, using the same method as for the 
chain ladder methods. 
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Cumulative incurred claims data, by years of accident and reporting development 

    DY   

  0 1 2 3 4 5 Ult 

 

 

AY 

1 

2 

3 

4 

5 

6 

2,866 

3,359 

3,848 

4,673 

5,369 

5,818 

3,334 

3,889 

4,503 

5,422 

6,142 

3,503 

4,033 

4,779 

5,676 

3,624 

4,231 

4,946 

3,719 

4,319 

3,717 3,717 

        

TOTAL 

TOTAL – last no: 

RATIO (r) 

DEVELOPMENT 
FACTOR (f) 

25,933 

20,115 

1.158 

1.290 

23,290

17,148

1.049 

1.114 

17,991

12,315

1.039 

1.062 

12,801

7,855 

1.023 

1.022 

8,038 

3,719 

0.999 

0.999 

3,717 

 

1.000 

1.000 

 

 
Don’t get confused by the numbers in this table.  The numbers in the top left-hand corner of the 
triangle are slightly different from the ones used in the ACPC example.   

The ‘TOTAL’ figures have been calculated by summing the entries in each column, eg the second 
TOTAL is: 

     3,334 3,889 4,503 5,422 6,142 23,290   

The ‘TOTAL  last no’ figures have been calculated by summing all but the last entry in each 
column, eg  the first TOTAL  last no figure is: 

  25,933 5,818 20,115  

The RATIO figures are what we previously referred to as the development factors.   These are 
calculated in the usual way.  Note, however, that since we are given the TOTAL and TOTAL  last 
no for each development year, the calculation can be simplified.  For example, the ratio of DY1 to 
DY0 is given by: 

  
23,290 1.158
20,115
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What the Core Reading refers to as DEVELOPMENT FACTORS are actually cumulative development 
factors, ie they apply from the development year of the column they are in up to Development 
Year 5.  For example, the figure of 1.290 is calculated as: 

      1.158 1.049 1.039 1.023 0.999 1.000 1.290  

So, if we were to use the Basic Chain Ladder method to estimate the cumulative claims incurred 
by the end of Development Year 5 in respect of Accident Year 6, we would obtain: 

  5,818 1.290 7,505  

Question 

Confirm the figures of f 1.062  and r 1.039  for Development Year 3. 

Solution 

The figures are: 

 r  
12,801 1.0394
12,315

 

and f      1.000 0.999 1.023 1.039 1.0618 1.062  

 
Next, the expected Ultimate Loss Ratio, say 83%, is applied to the earned premium (EP) to 
give the initial estimate of the total ultimate loss (UL) for each accident year. 

This figure of 83% (or whatever) would normally be derived from a different source from the data 
in the triangle. 

Initial estimate of total ultimate losses, by accident year: 

AY  1 2 3 4 5 6 

EP  4,486 5,024 5,680 6,590 7,482 8,502 

UL 
(0.83 EP) 

 3,723 4,170 4,714 5,470 6,210 7,057 

Again, the figures for earned premium are ‘new data’ that would be derived from a separate 
source. 

Note that in this example, the expected loss ratio has been taken as that experienced for the 
fully developed first accident year.  This has been done due to lack of other information. 

In other words the figure of 83% we are assuming has been estimated by dividing the ultimate 
claims incurred for Accident Year 1 (ie 3,717) by the earned premium for Accident Year 1 (ie 
4,486).  If we knew that the claims experience was likely to be different for the other accident 
years, we would use different percentages for the other years. 

The next stage is the application of the development factors to the estimated ultimate 
losses and the addition of the incurred claims that have already been reported. 
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Note that the accident years are in reverse order in the following table. 

Revised estimate of total ultimate losses, by accident year 

AY 6 5 4 3 2 1  

f 1.290 1.114 1.062 1.022 0.999 1.000  

1 – 1/f 0.225 0.102 0.058 0.022 –0.001 0  

Initial UL  7,057 6,210 5,470 4,714 4,170 3,723  

        

Emerging liability 1,588 633 317 104 –4 0  

Reported liability 5,818 6,142 5,676 4,946 4,319 3,717  

Ultimate liability 7,406 6,775 5,993 5,050 4,315 3,717  

 
The emerging liability is calculated by multiplying the initial UL by the corresponding value of 

f 11 .  The reported liability for a particular accident year is the last known figure in the run-off 

triangle for that accident year.  The ultimate liability is the sum of the emerging liability and 
reported liability. 

The total ultimate liability relating to these six accident years is, therefore, 33,256. 

If the claims paid to date amounted to 20,334 (the same figure that we used before), the total 
reserve required would be 12,922. 

If you are having some difficulty getting to terms with the method, it may be helpful to look at the 
procedure from a slightly different point of view. 

(i) The earned premium for Accident Year 2 is 5,024 (given). 

(ii) The initial expected ultimate loss amount for Accident Year 2 (ie before combining with 
the development information) is 83% of this, ie 4,170. 

(iii) If the ultimate claim amount was 4,170, then we would expect to have paid out so far 

 
1 4,170 4,174

0.999
 (ie 

f


1 initial UL ). 

(iv) So that would mean we would have   4,170 4,174 4  to pay out in the future (ie we 
expect a rebate of 4 next year). 

(v) We have actually incurred so far 4,319 (from the triangle). 

(vi) So we would expect to pay out  4,319 4 4,315 in total. 

This is our Bornhuetter-Ferguson estimate for the total claim payment on claims arising in 
Accident Year 2. 
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Question 

Apply the same logic to the amount needed for Accident Year 3. 

Solution 

(i) The earned premium for Accident Year 3 is 5,680. 

(ii) The initial expected ultimate loss amount for accident Year 3 is 83% of this, ie 4,714. 

(iii) If the ultimate claim amount was 4,714, then we would expect to have paid out so far 

 
1 4,714 4,613

1.022
. 

(iv) So that would mean we have  4,714 4,613 101  to pay in the future. 

(v) We have actually incurred 4,946 so far. 

(vi) So we would expect to pay out  4,946 101 5,047  in total. 

This is our Bornhuetter-Ferguson estimate for the total claim payment on claims arising in 
Accident Year 3. 

Our figure differs slightly from the 5,050 shown in the table because of rounding. 

 
The same approach is used to get the figures for Accident Years 4, 5 and 6. 

Ultimately we add up the expected outgo for the whole period, and subtract what we have 
already paid out. 

5.4 Assumptions underlying the method 

Again the assumptions depend on whether the original or an amended version of the 
method is being used. 

The ‘original’ method is the simplest form, which was outlined at the start of this section. 

For the original method, the underlying assumptions are the same as for the basic chain 
ladder method, together with the assumption that the estimated loss ratio is appropriate. 
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Question 

Estimate the expected outstanding claims reserve at the end of 2012 for the data in the table 
below, using the Bornhuetter-Ferguson method.  Assume an expected loss ratio of 85%, and that 
the total claims paid are £1,942,000. 

Claims incurred 
(£000) 

Earned 
premium 

Development Year 
0 1 2 3 

 2009 860 473 620 690 715 
Accident Year 2010 940 512 660 750  

 2011 980 611 700   
 2012 1,020 647    

 

Solution 

First calculate the initial expected total loss as 85% of the earned premium.  This gives figures of 
731, 799, 833 and 867. 

Now calculate the development factors for individual years in the usual way.  We find that the 
factors are 1.2406, 1.1250, and 1.0362. 

Tackling the years one at a time: 

The total expected outgo for Accident Year 2009 is 715 as we are assuming that Accident Year 
2009 is fully run-off. 

For Accident Year 2010, the expected outgo was initially 799.  On this basis we would expect to 

have paid out 
799 771.09

1.0362
 so far.  So we would have to pay out  799 771.09 27.91  in the 

future.  In fact we have incurred 750, so our final figure would be  750 27.91 777.91 . 

For Accident Year 2011, the expected outgo was initially 833.  On this basis we would expect to 

have paid out 


833 714.58
1.0362 1.125

 so far.  So we would have to pay out  833 714.58 118.42  

in the future.  In fact we have incurred 700 so far, so our final figure should be 
 700 118.42 818.42 . 

For Accident Year 2012, the expected outgo was initially 867.  On this basis we would expect to 

have paid out 
 

867 599.50
1.0362 1.125 1.2406

 so far.  So we would have to pay out 

 867 599.50 267.5  in the future.  In fact we have incurred 647 so far, so our final figure would 
be  647 267.5 914.5 . 

So the total payout expected is 3,225.83, ie £3,225,830, of which we have already paid 
£1,942,000.  So the balance is £1,284,000. 
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5.5 Grossing-up factors versus development factors 

Students are sometimes unclear about when to use grossing-up factors and when to use 
development factors.  To some extent it doesn’t really matter – both are valid methods of 
completing a run-off triangle.   

The Core Reading uses development factors for the basic chain ladder method, the inflation-
adjusted chain ladder method and the Bornhuetter-Ferguson method.  It uses grossing-up factors 
for the ACPC method.  If you are not sure, stick to these approaches and you will produce sensible 
answers.  As always, if you are in any doubt, explain carefully in the exam what you are about to 
do before you do it.   

In fact, both procedures are very similar.  Using grossing-up factors as they are used in this 
chapter is equivalent to taking an unweighted average of the past years’ experience.  Using 
development factors in the way they are used in this chapter is equivalent to taking a weighted 
average of past experience, with the years with more claims being weighted more heavily.   
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This page has been left blank so that you can keep the chapter 
summaries together for revision purposes. 
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Chapter 21 Summary 

An important feature of the claims process in general insurance is reserving ie estimating the 
components of claims reserves, which include outstanding reported claims, IBNR, reopened 
claims and claims handling expenses. 

Run-off triangles (or delay triangles) provide a method of tabulating claims data and studying 
the underlying statistical model. 

Three methods used for projecting claims are the basic chain ladder method, the average 
cost per claim method and the Bornhuetter-Ferguson method.   

Basic chain-ladder method 

 Calculate development factors from the cumulative claims data.   

 Use these development factors to project the future cumulative claims. 

Basic chain-ladder method – assumptions 

 The first accident year is fully run off.   

 Claims in each development year are a constant proportion in monetary terms of 
total claims for each accident year. 

 Inflation is not allowed for explicitly, rather it is allowed for implicitly as a weighted 
average of past inflation. 

Inflation-adjusted chain ladder method 

 Apply past inflation factors to incremental data so that all the claims data in the table 
is expressed in the monetary terms of the most recent accident year. 

 Accumulate the data and calculate development factors. 

 Use these development factors to project the future cumulative claims (note that 
these will still be expressed in the monetary terms of the most recent accident year). 

 Disaccumulate the data to make it incremental. 

 Apply future inflation assumptions to convert the outstanding claim payments into 
the amounts relating to each future year.   

Inflation-adjusted chain ladder method – assumptions 

 The first accident year is fully run off.   

 Claims in each development year are a constant proportion in real terms of total 
claims for each accident year. 

 Inflation is allowed for explicitly and we assume that both the past and future 
inflation assumptions are correct 
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  Average cost per claim – method 

 Divide the entry in each cell in the cumulative claims table by the entry in the 
corresponding cell of the claim number table. This gives the average cost per claim.  

 Calculate grossing-up factors for the average claim amounts. Use these to estimate 
the final average for each accident year. 

 Repeat the last step for the claim number table. 

 For each accident year, multiply together the figures from the ACPC and claim 
number tables. 

 Sum over all accident years to obtain the total projected loss estimate. 

Average cost per claim – assumptions 

 The first accident year is fully run off.  

 The average cost per claim in each development year is a constant proportion in 
monetary terms of the ultimate average cost per claim for each accident year. 

 The number of claims in each development year is a constant proportion in of the 
ultimate number of claims for each accident year. 

 Inflation is not allowed for explicitly, rather it is allowed for implicitly as a weighted 
average of past inflation. 

Bornhuetter-Ferguson – method 

 Decide on the amount of the loss ratio.  

 Calculate development factors (as in BCL method).  

 Calculate the cumulative development factors f. 

For each accident year that is not fully run-off: 

 Multiply the earned premium by the loss ratio to obtain the initial estimate of the 
ultimate loss 

 Use the initial estimate and the cumulative development factors to determine the 
expected amount paid out so far 

 Use this to see how much is expected to be paid in the future (emerging liability) 

 The revised estimate of the ultimate loss is the reported liability (last known figure) 
plus the emerging liability. 

Finally: 

 Sum the revised estimates of the ultimate losses for each accident year to obtain an 
estimate of the total liability. 
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Bornhuetter-Ferguson – assumptions

 The first accident year is fully run off.  

 The loss ratio is correct. 

 Claims in each development year are a constant proportion in monetary terms of total 
claims for each accident year. 

 Inflation is not allowed for explicitly, rather it is allowed for implicitly as a weighted 
average of past inflation. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 50  CM2-21: Run-off triangles 

 

 IFE: 2019 Examinations The Actuarial Education Company 

 

 

 

 

 

The practice questions start on the next page so that you can 
keep the chapter summaries together for revision purposes. 
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Chapter 21 Practice Questions 

21.1 The table below shows cumulative claims (not adjusted for inflation) from a portfolio of insurance 
policies for 4 accident years. 

 Year of    Development Year 
  origin      0      1      2      3 

2014  2,047  3,141  3,209  3,310 

2015  2,471  3,712  3,810  

2016  2,388  3,750   

2017  2,580    

It may be assumed that payments are made in the middle of a calendar year. 

It is estimated that the inflation rate applicable to these data has been 5% per annum over the 
relevant period. 

Use the inflation adjusted chain ladder method to estimate the total outstanding payments, up to 
the end of Development Year 3, for Accident Year 2017 in mid-2017 prices. 

21.2 Write down an equation defining the statistical model assumed by each of the following methods 
of projecting the payments for outstanding claims: 

 basic chain ladder method 

 inflation adjusted chain ladder method 

Define each symbol and indicate whether the value of each quantity is assumed at the outset or is 
estimated by the model. 

21.3 What does the factor i jx   represent in the inflation adjusted chain ladder model? 

A The proportion (by number) of claims paid in Development Year i j . 

B The proportion (by amount) of claims paid in Accident Year i j . 

C The volume of claims for Accident Year i j . 

D An index of the cost of claims paid in calendar year i j . 
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21.4 Explain in words (ie without using mathematical symbols) the assumptions underlying the: 

(i) basic chain ladder method. 

(ii) inflation adjusted chain ladder method. 

(iii) average cost per claim method 

(iv) Bornhuetter-Ferguson method. 

21.5 The table below shows the claim payments made by a general insurer in each year for a particular 
type of insurance. 

Claim payments made during 
year (£000s) 

Development Year 
0 1 2 3 

Accident Year 

2012 10 50 50 30 
2013 50 70 30  
2014 40 30   
2015 90    

 

(i) What was the total amount paid during the 2015 calendar year? 

(ii) Calculate the development factors from development years 1 to 2 for each of the 2012 
and 2013 accident years. 

(iii) Give three reasons why it may not be appropriate to use the basic chain ladder method to 
project the claim payments for this portfolio, using figures from the table to support your 
comments.  

21.6 The following table shows incremental claims relating to the accident years 2007, 2008 and 2009.  
It is assumed that claims are fully run-off by the end of Development Year 2.  Estimate total 
outstanding claims using the chain-ladder technique, ignoring inflation. 

Incremental claims 
Development Year 

0 1 2 

Accident 
Year 

2007 2,587 1,091 251 
2008 2,053 1,298  
2009 3,190   

    [7] 

Exam style 
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21.7 The cumulative claims paid each year under a certain cohort of insurance policies are recorded in 
the table below, for accident years 2010, 2011, 2012 and 2013. 

 Development Year 

 Accident Year   0 1 2 3 

    2010 2,457 4,196 4,969 5,010 

    2011 2,648 4,715 5,561 

    2012 3,084 5,315 

    2013 3,341 

(i) Calculate the development factors under the basic chain ladder technique and state the 
assumptions underlying the use of this method. [4] 

(ii) The rate of claims inflation over these years, measured over the 12 months to the middle 
of each year, is given in the table below.  

  2011 2.1% 

  2012 10.5% 

  2013 3.2% 

 Calculate the development factors under the inflation-adjusted chain ladder technique 
and state the assumptions underlying the use of this method.  [6] 

(iii) Based on the development factors calculated in parts (i) and (ii), calculate the fitted values 
under these two models and comment on how these compare with the actual 
values.   [7] 

    [Total 17] 

21.8 The table below shows the payments, in £’000s, made in successive development years in respect 
of a particular class of general insurance business.  It may be assumed that all claims are fully 
settled by the end of Development Year 3 and that all payments are made in the middle of a 
calendar year. 

Year of origin Development Year 

0 1 2 3 

2012 342 82 68 37 

2013 359 90 73  

2014 481 120   

2015 591    

 

Exam style 

Exam style 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 54  CM2-21: Run-off triangles 

 

 IFE: 2019 Examinations The Actuarial Education Company 

Use the inflation adjusted chain ladder method to estimate the amount of the reserve required at 
the end of 2015 to pay the outstanding amounts in respect of claims from 2013, 2014 and 2015.  
You should assume that past inflation has been at the rate of 5% per annum and that future 
inflation will also be at 5% per annum. [10] 

21.9 The tables below show the cumulative cost of incurred claims and the number of claims reported 
each year for a certain cohort of insurance policies.  The claims are assumed to be fully run-off at 
the end of Development Year 2. 

Cumulative cost of incurred claims: 

 Development Year 

Accident Year 0 1 2 

0 

1 

2 

288 

465 

773 

634 

980 

 

893 

 

The numbers of claims reported in each year are: 

 Development Year 

Accident Year 0 1 2 

0 

1 

2 

110 

167 

285 

85 

113 

 

55 

 

Given that the total amount paid in claims to date, relating to accident years 0, 1 and 2, is £2,750, 
calculate the outstanding claims reserve using the average cost per claim method. 
   [11] 

21.10 The following table shows cumulative incurred claims data, by year of accident and reporting 
development, for a portfolio of domestic household insurance policies: 

Cumulative 
incurred claims 

(£000) 
Development Year 

 

Accident Year 

 0 1 2 3 

2011 829 917 978 1,020 

2012 926 987 1,053  

2013 997 1,098   

2014 1,021    

Exam style 

Exam style 
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The corresponding cumulative number of reported claims, by year of accident and reporting 
development, are as follows: 

Cumulative 
number of 

reported claims 
Development Year 

 

Accident Year 

 0 1 2 3 

2011 63 68 70 74 

2012 65 69 72  

2013 71 76   

2014 70    

Use the average cost per claim method with simple average grossing up factors to calculate an 
estimate of the outstanding claim amount for these policies for claims arising during these 
accident years.  The claims paid to date are £3,640,000.  State any assumptions used. [11] 

21.11 An insurance company has paid the following claim amounts (in £000s): 

Accident 
Year 

                                                  Development Year 

 1 2 3 4 5 

1 2,800 1,400 987 322 57 

2 3,260 2,004 1,017 421  

3 3,854 1,978 857   

4 3,722 2,114    

5 4,627     

The earned premium in each year is 6,727 for Accident Year 1, 8,289 for Accident Year 2, 9,627 for 
Accident Year 3, 9,928 for Accident Year 4 and 10,004 for Accident Year 5. 

Apply the Bornhuetter-Ferguson method to estimate the amount of claims yet to be paid, stating 
any assumptions that you make. [8] 

Exam style 
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21.12 The table below shows the cumulative costs of incurred claims.  The claims are assumed to be 
fully run-off by the end of Development Year 2. 

£000s Development Year 

Accident Year 0 1 2 

2011 2,670 3,290 4,310 

2012 2,850 3,420  

2013 3,030   

Annual premiums written were: 

Year 
Premiums 

(£000s) 
2011 5,390 
2012 5,600 
2013 6,030 

 
The ultimate loss ratio has been estimated at 80% and the total amount of claims paid to date is 
£5,720,000.  Calculate the outstanding claims reserve using the Bornhuetter-Ferguson 
method.   [6] 

  

Exam style 
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Chapter 21 Solutions 

21.1 First we disaccumulate the amounts.  This gives the following table: 

INCREMENTAL CLAIM 
PAYMENTS – NOMINAL 

Development Year 

0 1 2 3 

 2014 2,047 1,094 68 101 

Origin Year 2015 2,471 1,241 98  

2016 2,388 1,362   

2017 2,580    
 

Now we convert to 2017 prices, using a past inflation rate of 5%: 

INCREMENTAL CLAIM 
PAYMENTS – REAL 

Development Year 

0 1 2 3 

Origin Year 

2014 2,369.6584 1,206.135 71.4 101 

2015 2,724.2775 1,303.05 98  

2016 2,507.40 1,362   

2017 2,580    
 

Now we find the cumulative claim payments in real terms: 

CUMULATIVE CLAIM 
PAYMENTS – REAL 

Development Year 

0 1 2 3 

Origin Year 

2014 2,369.6584 3,575.7934 3,647.1934 3,748.1934 

2015 2,724.2775 4,027.3275 4,125.3275  

2016 2,507.40 3,869.4   

2017 2,580    
 

Calculating the development factors in the usual way: 

   
 

 1
3575.7934 4027.3275 3869.4 1.509277
2369.6584 2724.2775 2507.4

 

  
 

2
3647.1934 4125.3275 1.022280
3575.7934 4027.3275

 

   3
3748.1934 1.027693
3647.1934
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We now complete the triangle (still working in 2017 values): 

CUMULATIVE CLAIM 
PAYMENTS – REAL 

Development Year 

0 1 2 3 

Origin Year 

2014 2,369.6584 3,575.7934 3,647.1934 3,748.1934 

2015 2,724.2775 4,027.3275 4,125.3275 4,239.57 

2016 2,507.40 3869.4 3,955.61 4,065.15 

2017 2,580 3,893.93 3,980.70 4,090.93 
 
So the total amount of outstanding payments for 2017 at mid-2017 prices is: 

  4,090.93 2,580 1,510.93  or 1,511 (4 SF) 

Note that this question asked us to find the outstanding amount in 2017 prices.  If we had been 
asked to find the outstanding amount in nominal (actual) prices, we would have had to apply 
three further stages – disaccumulating, adjusting for future inflation and finally totalling. 

21.2  

Method Model 
Data 
items 

Assumed 
values 

Estimated 
values 

Not 
required 

Basic chain ladder ij i j ijC s r e   ijC   is , jr  ije  

Inflation adjusted 
chain ladder ij i j i j ijC s r x e   ijC  i jx   is , jr  ije  

 
The symbols are defined as follows: 

is  is a measure of the “volume” of claims relating to origin year i . 

jr  is a factor for development year j , representing the proportion of claims paid in that 

development year. 

i jx   is an adjustment factor relating to calendar years 

ije  is a random statistical error with mean zero that represents the difference between actual 

and expected results. 

21.3 i jx   is a factor that is applied to all the entries along a particular diagonal (ie calendar year).  In 

other words, i jx   is an index of the cost of claims paid in calendar year i j .  So the answer 

is D.   

21.4 (i) Basic chain ladder assumptions 

 Payments from each origin year will develop in the same way in monetary terms. 

 Weighted average past inflation will be repeated in the future. 
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 The first year is fully run-off. 

(ii) Inflation-adjusted chain ladder assumptions 

 Payments from each origin year will develop in the same way in real terms. 

 Rates of past and future claims inflation are appropriate. 

 The first year is fully run-off. 

(iii) ACPC assumptions 

 For each origin year, the number of claims in each development year is a constant 
proportion of the total number of claims from that origin year. 

 For each origin year, the average incurred cost per claim in monetary terms in each 
development year, is a constant proportion of the total claims incurred in monetary terns 
for that origin year.  

 The first year is fully run-off. 

(iv) BF assumptions 

 Payments from each origin year will develop in the same way. 

 Weighted average past inflation will be repeated in the future. 

 The first year is fully run-off. 

 The estimated loss ratio is appropriate. 

21.5 (i) The payments made during 2015 correspond to the figures in the longest diagonal, which 
total: 

     90 30 30 30 180  

 So the total amount paid during 2015 was £180,000. 

(ii) The development factor for Accident Year 2012, Development Year 2 is: 

  
 

 


10 50 50 110 1.83
10 50 60

 

 The development factor for Accident Year 2013, Development Year 2 is: 

  
 

 


50 70 30 150 1.25
50 70 120
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(iii) Reasons why the basic chain ladder method may not be appropriate here include: 

1. The first accident year may not be fully run-off. 

2. The development ratios do not appear to be constant for each origin year.  This is 
illustrated by the ratios calculated in part (ii). 

3. The total payment amounts are relatively small (eg a total of £180,000 paid in 2015).  
There may not be enough policies for the statistical model to apply, since the figures may 
be dominated by the random errors ije . 

4. The basic chain ladder does not explicitly model inflation but assumes that a weighted 
average of past inflation will apply in the future.  If inflation for calendar years 2012 to 
2015 has varied significantly, a chain ladder calculation will not give reliable results.  The 
figures in the table are too erratic (eg the values in Development Year 0 vary from 
£10,000 to £90,000) to judge whether this is the case. 

21.6 First of all the claim data must be accumulated to form the table below: 

Cumulative claims 

Accident Year 

Development year  

0 1 2 

2007 2587 3678 3929 

2008 2053 3351  

2009 3190   

    [1] 

Then the development factors should be calculated: 

 Development factor for DY1 = 





3678 3351 1.514871
2587 2053

 [1] 

 Development factor for DY2 = 
3929 1.068244
3678

 [1] 

The lower half of the run-off triangle can now be completed: 

Cumulative claims 

Accident Year 

Development year  

0 1 2 

2007 2587 3678 3929 

2008 2053 3351 3579.68 

2009 3190 4832.44 5162.22 

    [3] 
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So the estimates amount of outstanding claims is:  

SF   (3579.7 3351) (5162.2 3190) 2201 (4 )  [1] 

21.7 (i) BCL development factors and assumptions 

The development factors are: 

 d  
 

 1
4,196 4,715 5,315 1.737208
2,457 2,648 3,084

 

 d 
 

2
4,969 5,561 1.181686
4,196 4,715

 

 d  3
5,010 1.008251
4,969

 [2] 

The assumptions underlying the method are: 

 Claim amounts are fully run off by the end of Development Year 3 [½] 

 Payments from each origin year will develop in the same way in monetary terms. [½] 

 Weighted average past inflation will be repeated in the future. [1] 

(ii) Inflation-adjusted chain ladder development factors and assumptions 

First we need to disaccumulate the figures to obtain incremental figures.  If we do this we obtain 
the following results: 

  Development year 

 Accident year   0 1 2 3 

    2010 2,457 1,739 773 41 

    2011 2,648 2,067 846 

    2012 3,084 2,231 

    2013 3,341    
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We now inflate the incremental figures to get real values (in mid-2001 terms): 

  Development year 

 Accident year   0 1 2 3 

    2010 2860.70 1983.09 797.74 41 

    2011 3019.67 2133.14 846 

    2012 3182.69 2231 

    2013 3341 

    [2] 

We can now find the cumulative figures in real terms: 

  Development year 

 Accident year   0 1 2 3 

     2010 2860.70 4843.79 5641.53 5682.53 

     2011 3019.67 5152.81 5998.81 

     2012 3182.69 5413.69 

     2013 3341 

So the development factors are now: 

 d  
 

 1
4,843.79 5,152.81 5,413.69 1.700340
2,860.70 3,019.67 3,182.69

 

 d 
 

2
5,641.53 5,998.81 1.164429
4,843.79 5,152.81

 

 d  3
5,682.53 1.007268
5,641.53

 [2] 

The assumptions underlying the inflation adjusted chain ladder method are: 

 the claim amounts are fully run off by the end of Development Year 3 [½] 

 Payments from each origin year will develop in the same way in real terms. [½] 

 Rates of past and future claims inflation are appropriate. [1] 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2-21: Run-off triangles Page 63 

 

The Actuarial Education Company  IFE: 2019 Examinations 

(iii) Fitted values 

We now use the development factors to find the fitted claim amounts for past years.  Using the 
development factors for the basic chain ladder method we get: 

Accident Year 
Development Year 

0 1 2 3 

2010 2,457 4,268.32 5,043.81 5,085.43 

2011 2,648 4,600.13 5,435.90  

2012 3,084 5,357.52   

2013 3,341    

    [1] 

So the fitted incremental payments are: 

Accident Year 
Development Year 

0 1 2 3 

2010 2,457 1,811 776 42 

2011 2,648 1,952 836  

2012 3,084 2,274   

2013 3,341    

    [1] 

If we compare the fitted and the actual incremental payments, we get the following: 

Accident Year 
Development Year 

0 1 2 3 

Fitted 2010 2,457 1,811.32 775.49 41.62 

Actual 2010 2,457 1,739 773 41 

A – F  -- -72.32 -2.49 -0.62 

 

Fitted 2011 2,648 1,952.13 835.78  

Actual 2011 2,648 2,067 846  

A – F  -- 114.87 10.22  
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Fitted 2012 3,084 2,273.55   

Actual 2012 3,084 2231   

A – F  -- -42.55   

 

Fitted 2013 3,341    

Actual 2013 3,341    

A – F  --    

    [2] 

We can now repeat the process with the inflation-adjusted chain ladder method.  Using the 
inflation adjusted development factors on the real data amounts for Development Year 0, we get: 

Accident Year 
Development Year 

0 1 2 3 

2010 2,860.70 4,864.17 5,663.98 5,705.15 

2011 3,019.67 5,134.47 5,978.73  

2012 3,182.69 5,411.65   

2013 3,341    

    [1] 

If we now disaccumulate and compare with the actual incremental (real) values: 

Accident Year 
Development Year 

0 1 2 3 

Fitted 2010 2,860.70 2,003.47 799.81 41.16 

Actual 2010 2,860.70 1,983.09 797.74 41 

A – F  -- -20.38 -2.08 -0.16 

 

Fitted 2011 3,019.67 2,114.80 844.26  

Actual 2011 3,019.67 2,133.14 846  

A – F  -- 18.34 1.74  
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Fitted 2012 3,182.69 2,228.96   

Actual 2012 3,182.69 2231   

A – F  -- 2.04   

 

Fitted 2013 3,341    

Actual 2013 3,341    

A – F  --    

The inflation adjusted method appears to fit the original data better, given that the residuals are 
smaller in this case.  However, there are not many categories of data, and it is not clear whether 
either method will provide satisfactory results in the future. [2] 

21.8 Adjust for past inflation (ie obtain figures in mid 2015 prices): 

Incremental claims paid 
mid 95 prices (£k) 

Development year 
0 1 2 3 

Accident 
year 

2012 395.908 90.405 71.4 37 
2013 395.798 94.5 73  
2014 505.05 120   
2015 591    

    [2] 

Accumulate the data and project figures forward using the basic chain ladder: 

Cumulative claims paid mid 
2015 prices (£k) 

Development year 
0 1 2 3 

Accident 
year 

2012 395.908 486.313 557.713 594.713 
2013 395.798 490.298 563.298 600.668 
2014 505.05 625.05 717.469 765.067 
2015 591 729.961 837.892 893.48 

    [2] 

The development factors are 1.235129, 1.147858 and 1.066342. [2] 

Disaccumulate the data: 

Incremental claims paid 
mid 2015 prices(£k) 

Development year 
0 1 2 3 

Accident 
year 

2012     
2013    37.3705 
2014   92.4189 47.5986 
2015  138.961 107.931 55.5878 

    [1] 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 66  CM2-21: Run-off triangles 

 

 IFE: 2019 Examinations The Actuarial Education Company 

Adjust for future inflation (ie obtain future amounts actually paid): 

Incremental claims paid  
– adjusted (£k) 

Development year 
0 1 2 3 

Accident 
year 

2012     
2013    39.239 
2014   97.040 52.477 
2015  145.91 118.99 64.345 

    [2] 

Totalling these up the reserve that needs to be held is 518.  Since the figures are in thousands, the 
reserve is £518,000.  [1] 

21.9 First we need the cumulative numbers of claims reported: 

Cumulative claims 
reported 

Development Year 

Accident Year 0 1 2 

0 

1 

2 

110 

167 

285 

195 

280 

 

250 

 

    [1] 

We now divide the cumulative cost by the cumulative claim numbers to get the average cost per 
claim: 

Cumulative ACPC Development Year 

Accident Year 0 1 2 

0 

1 

2 

2.61818 

2.78443 

2.71228 

3.25128 

3.5 

 

3.572 
 

    [1] 

Assuming that Accident Year 0 is fully run off, we divide the numbers in the top row by 3.572 to 
get the percentages 73.297%, 91.021%, 100%. [1] 

So the ultimate average cost per claim figure for Accident Year 1 is: 

 
3.5 3.84525

0.91021
 [1] 

We can now calculate the percentage figures for Accident Year 1 as 72.412%, 91.021%. 
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For accident Year 2, we take the average of the two previous figures for Development Year 0: 

  ½(72.412 73.297) 72.855%  [1] 

So the ultimate figure for Accident Year 2 is: 

 
2.71228 3.72286
0.72854

 [1] 

Using the same approach for the claim number figures, we get: 

Cumulative claim 
numbers 

Development Year 

Accident Year 0 1 2 

0 
110 195 250 

44% 78% 100% 

1 
167 280  

46.521% 78%  

2 
285   

45.261%   

These give ultimate claim number values of 250, 358.974 and 629.685. [3] 

So the total expected ultimate loss will be: 

      250 3.572 358.974 3.84525 629.685 3.72286 4,617.58  [1] 

Since the claims paid to date are 2,750, the outstanding claims reserve is 1,868 (4 SF). [1] 

21.10 Dividing each cell in the first table by the corresponding cell in the second table gives the 
cumulative average incurred cost per claim, by year of accident and reporting development: 

Cumulative average 
incurred cost per 

claim 
Development year 

Accident year 

 0 1 2 3 
2011 13.159 13.485 13.971 13.784 
2012 14.246 14.304 14.625  
2013 14.042 14.447   
2014 14.586    

    [2] 
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Completing the ultimate cumulative number of claims reported table and the ultimate cumulative 
average incurred cost per claim table using the chain ladder technique with simple grossing up 
factors gives: 

Cumulative number of 
reported claims 

Development year 

Accident year 

 0 1 2 3 
2011 63 68 70 74 
2012 65 69 72 76.114 
2013 71 76  83.267 
2014 70   82.095 

    [1½] 

The simple average grossing up factors used are: 

Development year 2 to 3: 94.595% 

Development year 1 to 3: 91.273% (average of 91.892% and 90.653%) 

Development year 0 to 3: 85.267% (average of 85.135%, 85.398% and 85.268%) 

    [1½] 

Cumulative average 
incurred cost per 

claim 
Development year 

Accident year 

 0 1 2 3 
2011 13.159 13.485 13.971 13.784 
2012 14.246 14.304 14.625 14.429 
2013 14.042 14.447  14.669 
2014 14.586   15.093 

    [1½] 

The simple average grossing up factors used are: 

Development year 2 to 3: 101.361% 

Development year 1 to 3: 98.487% (average of 97.834% and 99.139%) 

Development year 0 to 3: 96.642% (average of 95.465%, 98.736% and 95.725%) 

    [1½] 

Therefore, the ultimate claims incurred amount from accident years 2011 to 2014 is: 

   1,020  + (76.114 14.429) + (83.267 14.669) + (82.095 15.093) = 4,579  [1] 

The claims paid to date (from accident years 2011 to 2014) amount to 3,640, resulting in a total 
outstanding claim amount of 939, ie £939,000. [½] 
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Assumptions: 

 Claims incurred in the first accident year are fully run off.  [½] 

 For each accident year, the number of reported claims in each development year, is a 
constant proportion of the total for that accident year.  [½] 

 For each accident year, the average incurred cost per claim in monetary terms in each 
development year, is a constant proportion of the total claims incurred in monetary terns 
for that accident year.  [½] 

21.11 We need the cumulative claims data: 

Accident 
year 

Development year 
 1 2 3 4 5 

1 2,800 4,200 5,187 5,509 5,566 
2 3,260 5,264 6,281 6,702  
3 3,854 5,832 6,689   
4 3,722 5,836    
5 4,627     

 

The ultimate loss ratio is 
5,566 0.827412
6,727

. [1] 

Next we calculate the expected end of year figures (the initial ultimate liability): 

 

 

 

 

 

2: 0.827412 8,289 6,858.4

3: 0.827412 9,627 7,965.5

4 : 0.827412 9,928 8,214.5

5: 0.827412 10,004 8,277.4

 [1] 

The development factors are: 

Year 4 to Year 5  
5,566 1.010347
5,509

 

Year 3 to Year 4  



5,509 6,702 1.064789
5,187 6,281

 

Year 2 to Year 3   


 
5,187 6,281 6,689 1.187042
4,200 5,264 5,832

 

Year 1 to Year 2    


  
4,200 5,264 5,832 5,836 1.549721
2,800 3,260 3,854 3,722

 [1] 
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The emerging liabilities for each year are: 

 

 
 
 
 



 

  

  

  

  

  

1
1.010347

1
1.010347 1.064789

1
1.010347 1.064789 1.187042

1
1.010347 1.064789 1.187042 1.549721

2: 6,858.4 1 70.2

3: 7,965.5 1 561.3

4 : 8,214.5 1 1,782

5: 8,277.4 1 4,094.9

 [3] 

Given that these are claims paid (rather than incurred), we don’t need to calculate the revised 
ultimate liability to get the reserve we can just total up the emerging liabilities: 

    70.2 561.3 1,782 4,094.9 6,508   (4 SF), ie £6,508,000 [1] 

The assumptions are: 

 Payments from each origin year will develop in the same way. 

 Weighted average past inflation will be repeated in the future. 

 The first year is fully run-off. 

 The estimated loss ratio is appropriate. [1] 

21.12 First we calculate the expected end of year figures (the initial ultimate liability): 

 

 

 

 

2011: 0.8 5,390 4,312

2012: 0.8 5,600 4,480

2013: 0.8 6,030 4,824
  [1] 

Next we calculate the development factors: 

 


 





3,290 3,420 6,710 1.215580
2,670 2,850 5,520

4,310 1.310030
3,290

  [1] 

The emerging liabilities for each year are: 

 

 
 
 

  

  

  

1
1

1
1.310030

1
1.215580 1.310030

2011: 4,312 1 0

2012: 4,480 1 1,060.2

2013: 4,824 1 1,794.7

 [2] 
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So the ultimate liabilities for each year are: 

 

 

 

 

2011: 4,310 0 4,310

2012: 3,420 1,060.2 4,480.2

2013: 3,030 1,794.7 4,824.7

 [1] 

Thus the total ultimate liability is: 

   4,310 4,480.2 4824.7 13,614.9  [½] 

Therefore the outstanding claims reserve is  13,614.9 5,720 7,895 (4 SF) 

ie £7,895,000  (4 SF) [½] 
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End of Part 4 

What next?   

1. Briefly review the key areas of Part 4 and/or re-read the summaries at the end of 
Chapters 18 to 21. 

2. Ensure you have attempted some of the Practice Questions at the end of each chapter in 
Part 4.  If you don’t have time to do them all, you could save the remainder for use as part 
of your revision. 

3. Attempt Assignment X4. 
 

 

And finally ... 

Good luck! 

Time to consider …  
 … ‘rehearsal’ products 

Mock Exam and Marking – You can attempt the Mock Exam and get it marked.  Results of 
surveys have found that students who do a mock exam of some form have significantly 
higher pass rates.  Students have said: 

‘I find the mock a useful tool in completing my pre-exam study.  It helps 
me realise the areas I am weaker in and where I need to focus my study.’  

‘Overall the marking was extremely useful and gave detailed comments 
on where I was losing marks and how to improve on my answers and exam 
technique.  This is exactly what I was looking for – thank you!’ 

You can find lots more information on our website at www.ActEd.co.uk. 

Buy online at www.ActEd.co.uk/estore 
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Subject CM2: Assignment X1 

2019 Examinations 
 

Time allowed: 2¾ hours 

 

Instructions to the candidate 

1. Please: 

– attempt all of the questions, as far as possible under exam conditions  

– begin your answer to each question on a new page 

– leave at least 2cm margin on all borders  

– write in black ink using a medium-sized nib because we will be unable to mark 
illegible scripts 

– note that assignment marking is not included in the price of the course materials.  
Please purchase Series Marking or a Marking Voucher before submitting your script. 

– note that we only accept the current version of assignments for marking, ie you can 
only submit this assignment in the sessions leading to the 2019 exams. 

2. Please do not: 

– use headed paper 

– use highlighting in your script. 

 

At the end of the assignment 

If your script is being marked by ActEd, please follow  
the instructions on the reverse of this page. 

 

In addition to this paper, you should have available actuarial tables and an 
electronic calculator. 
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Submission for marking 

You should aim to submit this script for marking by the recommended submission date.  The 
recommended and deadline dates for submission of this assignment are listed on the summary page 
at the back of this pack and on our website at www.ActEd.co.uk. 

Scripts received after the deadline date will not be marked, unless you are using a Marking Voucher.  
It is your responsibility to ensure that scripts reach ActEd in good time.  If you are using Marking 
Vouchers, then please make sure that your script reaches us by the Marking Voucher deadline date 
to give us enough time to mark and return the script before the exam. 

When submitting your script, please: 

 complete the cover sheet, including the checklist 

 scan your script, cover sheet (and Marking Voucher if applicable) and save as a pdf 
document, then email it to: ActEdMarking@bpp.com 

 do not submit a photograph of your script  

 do not include the question paper in the scan. 

In addition, please note the following: 

 Please title the email to ensure that the subject and assignment are clear 
eg ‘CM2 Assignment X1 No. 12345’, inserting your ActEd Student Number for 12345. 

 The assignment should be scanned the right way up (so that it can be read normally without 
rotation) and as a single document.  We cannot accept individual files for each page.   

 Please set the resolution so that the script is legible and the resulting PDF is less than 4 MB 
in size.   

 Do not protect the PDF in any way (otherwise the marker cannot return the script to ActEd, 
which causes delays). 

 Please include the ‘feedback from marker’ sheet when scanning.  

 Before emailing to ActEd, please check that your scanned assignment includes all pages and 
conforms to the above. 
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Subject CM2: Assignment X1 
2019 Examinations 

Please complete the following information:  

Name: 

 

 

 

ActEd Student Number (see Note below): 

     
 

 

Number of following pages: _______ 

Please put a tick in this box if you have solutions 
and a cross if you do not: 

Please tick here if you are allowed extra time or 
other special conditions in the  
profession’s exams (if you wish to  
share this information): 
 
Time to do assignment 
(see Note below):        _____ hrs _____ mins 

Under exam conditions  
(delete as applicable):       yes / nearly / no 

Note:  If you take more than 2¾ hours, you should 
indicate how much you completed within this 
exam time so that the marker can provide useful 
feedback on your progress. 

Note: Your ActEd Student Number is printed on all 
personal correspondence from ActEd.  Quoting it will help 
us to process your scripts quickly.  If you do not know 
your ActEd Student Number, please email us at 
ActEd@bpp.com.   

Your ActEd Student Number is not the same as your 
IFoA Actuarial Reference Number or ARN. 

Score and grade for this assignment (to be completed by marker): 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total 

6
 

4
 

9
 

12
 

10
 

6
 

7
 

10
 

9
 

7
 

80
 =_____% 

Grade:     A    B    C    D    E  Marker’s initials: ________ 

Please tick the following checklist so that your script can be marked quickly. Have you: 

[      ]  Checked that you are using the latest version of the assignments, ie 2019 for the sessions leading 
to the 2019 exams?  

[      ]  Written your full name in the box above? 

[      ]  Completed your ActEd Student Number in the box above?  

[      ]  Recorded your attempt conditions?   

[      ]  Numbered all pages of your script (excluding this cover sheet)? 

[      ]  Written the total number of pages (excluding the cover sheet) in the space above? 

[      ]  Included your Marking Voucher or ordered Series X Marking?  

 

Please follow the instructions on the previous page when submitting your script for marking. 

w
w
w
.m

as
om

om
si
ng

i.c
om

mailto:ActEd@bpp.com


© IFE: 2019 Examinations    The Actuarial Education Company 

Feedback from marker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes on marker’s section 

The main objective of marking is to provide specific advice on how to improve your chances of 
success in the exam.  The most useful aspect of the marking is the comments the marker makes 
throughout the script, however you will also be given a percentage score and the band into which 
that score falls.  Each assignment tests only part of the course and hence does not give a complete 
indication of your likely overall success in the exam.  However it provides a good indicator of your 
understanding of the material tested and the progress you are making with your studies: 

A = Excellent progress      B = Good progress     C = Average progress   
D = Below average progress     E = Well below average progress 

 
Please note that you can provide feedback on the marking of this assignment at: 

www.ActEd.co.uk/marking 
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X1.1 (i) Technical analysis is the study of chart patterns of various asset prices.  Explain whether 
this can be used to an investor’s advantage, if the Efficient Markets Hypothesis (EMH) 
holds.   [2] 

(ii) Insider trading is illegal in the UK stock market.  Explain what this suggests about the 
EMH.   [2] 

(iii) Fundamental analysis includes the analysis of balance sheets, consideration of company 
strategy, the environment in which the company operates etc.  Explain how this relates to 
the EMH.  [2] 

    [Total 6] 

X1.2 (i) An investor has the utility function ( ) exp
100
wU w     

 
 . 

Determine whether the investor exhibits increasing, constant or decreasing absolute and 
relative risk aversion. [2] 

(ii) The investor has an initial wealth of 1,000  and is offered a gamble with a payoff 
described by a random variable: 

  
 


100 with probability 0.5
X

50 with probability 0.5
 

 Find the investor’s certainty equivalent of this gamble. [2] 
    [Total 4] 

X1.3 Two assets are available to investors.  Asset B is a risk-free investment that returns 1%, and the 
return on Asset A is given by: 

  
1% probability 0.5

3% probability 0.5AR


 


 

(i) Explain why Asset B must be second-order stochastically dominant over Asset A in terms 
of investors and utility functions. [2] 

(ii) Verify numerically the second-order stochastic dominance expressed in part (i). [2½] 

(iii) What can be said about dominance if Asset A offers instead a return of: 

 (a) 
1% probability 0.5

4% probability 0.5AR


 


 [2½] 

 (b) 
1% probability 0.5

1% probability 0.5AR


 


 [1] 

(iv) Can an asset that allows the possibility of a return less than 1% ever dominate Asset B? [1] 
    [Total 9] 
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X1.4 An investor is trying to choose between the investments whose distributions of returns are 
described below: 

Investment A:  0.4 probability that it will return 10% 

   0.2 probability that it will return 15% 

   0.4 probability that it will return 20% 

Investment B:  0.25 probability that it will return 10% 

   0.70 probability that it will return 15% 

   0.05 probability that it will return 40% 

Investment C:  A uniform distribution on the range 10% to 20% 

Calculate the following for each investment: 

(i) expected return [1½] 

(ii) variance of return [3½] 

(iii) semi-variance  [3½] 

(iv) expected shortfall below 12% [2½] 

(v) shortfall probability below 15%. [1] 
    [Total 12] 

X1.5 The annual rates of interest from a particular investment, in which part of an insurance company’s 
funds is invested, are independently and identically distributed.  Each year, the distribution of 

(1 )ti , where ti  is the rate of interest earned in year t, is log-normal with parameters   and 2 . 

ti  has mean value 0.07 and standard deviation 0.02, the parameter 0.06748   and 
2 0.0003493  . 

(i) The insurance company has liabilities of £1m to meet in one year from now.  It currently 
has assets of £950,000.  Assets can either be invested in the risky investment described 
above or in an investment which has a guaranteed return of 5% per annum effective.  
Find, to two decimal places, the probability that the insurance company will be unable to 
meet its liabilities if: 

 (a) All assets are invested in the investment with the guaranteed return. 

 (b) 85% of assets are invested in the investment which does not have the guaranteed 
return and 15% of assets are invested in the asset with the guaranteed return. [7] 

(ii) Determine the variance of return from the portfolios in (i)(a) and (i)(b) above. [3] 
    [Total 10] 
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X1.6 £1,000 is invested for 10 years.  In any year the yield on the investment will be 4% with probability 
0.4, 6% with probability 0.2 and 8% with probability 0.4 and is independent of the yield in any 
other year. 

(i) Calculate the mean accumulation at the end of 10 years.  [2] 

(ii) Calculate the standard deviation of the accumulation at the end of 10 years. [4] 
     [Total 6] 

X1.7 (i) Explain the following terms in the context of mean-variance portfolio theory: 

  (a) opportunity set 

 (b) efficient frontier for a portfolio of risky assets 

 (c) indifference curves 

 (d) optimal portfolio [5] 

(ii) Describe, using a sketch, the effect on the efficient frontier of introducing a risk-free asset 
that can be bought or sold in unlimited quantities. [2] 

    [Total 7] 

X1.8 Assets A and B have the following distributions of returns in various states: 

  State Asset A Asset B Probability 

  1 10% –12% 0.1 

  2 8% 0% 0.2 

  3 6% 3% 0.3  

  4 4% 16% 0.4 

(i) Calculate the correlation coefficient between the returns on asset A and asset B and 
comment on your answer. [4] 

(ii) An investor is going to set up a portfolio consisting entirely of assets A and B.  Calculate 
the proportion of assets that should be invested in asset A to obtain the portfolio with the 
smallest possible variance. [2] 

(iii) Assume that the means and the variances of the returns on assets A and B remain 
unchanged, but that the correlation AB  between assets A and B does change.  The 
investor decides to hold 80% of their wealth in asset A and 20% in asset B.  Calculate the 
range of values of AB  such that the portfolio has a smaller variance than if they were to 
invest everything in asset A. [4] 

    [Total 10] 
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X1.9 (i) State the assumptions of mean-variance portfolio theory (MVPT). [3] 

(ii) You are given the choice of only two assets, A and B.  The expected returns and variances 
of return of the two assets are: 

  
13% 5%

36%% 4%%

A B

A B

E E

V V

 

 
 

Find the equation of the efficient frontier in  ,E   space in the special case where the 

returns on Assets A and B are perfectly correlated.  Comment on your result. [3] 

(iii) State, giving the relevant equations, how your approach in (ii) would be modified if there 
were more than two assets?  [Numerical calculations are not required.]  [3] 

    [Total 9] 

X1.10 (i) State the principal theme of behavioural finance.  State the assumption of expected utility 
theory that is challenged by this theme. [2] 

(ii) Outline what is meant by prospect theory. [2] 

(iii) Briefly describe the behavioural finance theme categorising the behaviour of the people in 
each of the following cases. 

 (a) Short-term interest rates have remained at historically low levels for several years 
now and there is no compelling reason for them to change.  However, Saver A 
continues to expect them to increase anytime soon. 

 (b) Investor B has been investing their cash with Bank X for the last five years and has 
received an annual interest rate of 5%.  Bank Y has the same type of account with 
exactly the same interest rate, and is offering a £250 incentive for customers to 
switch accounts.  Investor B is reluctant to switch banks. [3] 

    [Total 7] 
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Subject CM2: Assignment X2 

2019 Examinations 
 

Time allowed: 2¾ hours 

 

Instructions to the candidate 

1. Please: 

– attempt all of the questions, as far as possible under exam conditions  

– begin your answer to each question on a new page 

– leave at least 2cm margin on all borders  

– write in black ink using a medium-sized nib because we will be unable to mark 
illegible scripts 

– note that assignment marking is not included in the price of the course materials.  
Please purchase Series Marking or a Marking Voucher before submitting your script. 

– note that we only accept the current version of assignments for marking, ie you can 
only submit this assignment in the sessions leading to the 2019 exams. 

2. Please do not: 

– use headed paper 

– use highlighting in your script. 

 

At the end of the assignment 

If your script is being marked by ActEd, please follow  
the instructions on the reverse of this page. 

 

In addition to this paper, you should have available actuarial tables and an 
electronic calculator. 
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Submission for marking 

You should aim to submit this script for marking by the recommended submission date.  The 
recommended and deadline dates for submission of this assignment are listed on the summary page 
at the back of this pack and on our website at www.ActEd.co.uk. 

Scripts received after the deadline date will not be marked, unless you are using a Marking Voucher.  
It is your responsibility to ensure that scripts reach ActEd in good time.  If you are using Marking 
Vouchers, then please make sure that your script reaches us by the Marking Voucher deadline date 
to give us enough time to mark and return the script before the exam. 

When submitting your script, please: 

 complete the cover sheet, including the checklist 

 scan your script, cover sheet (and Marking Voucher if applicable) and save as a pdf 
document, then email it to: ActEdMarking@bpp.com 

 do not submit a photograph of your script  

 do not include the question paper in the scan. 

In addition, please note the following: 

 Please title the email to ensure that the subject and assignment are clear 
eg ‘CM2 Assignment X2 No. 12345’, inserting your ActEd Student Number for 12345. 

 The assignment should be scanned the right way up (so that it can be read normally without 
rotation) and as a single document.  We cannot accept individual files for each page.   

 Please set the resolution so that the script is legible and the resulting PDF is less than 4 MB 
in size.   

 Do not protect the PDF in any way (otherwise the marker cannot return the script to ActEd, 
which causes delays). 

 Please include the ‘feedback from marker’ sheet when scanning.  

 Before emailing to ActEd, please check that your scanned assignment includes all pages and 
conforms to the above. 
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Subject CM2: Assignment X2 
2019 Examinations 

Please complete the following information:  

Name: 

 

 

 

ActEd Student Number (see Note below): 

     
 

 

Number of following pages: _______ 

Please put a tick in this box if you have solutions 
and a cross if you do not: 

Please tick here if you are allowed extra time or 
other special conditions in the  
profession’s exams (if you wish to  
share this information): 
 
Time to do assignment 
(see Note below):        _____ hrs _____ mins 

Under exam conditions  
(delete as applicable):       yes / nearly / no 

Note:  If you take more than 2¾ hours, you should 
indicate how much you completed within this 
exam time so that the marker can provide useful 
feedback on your progress. 

Note: Your ActEd Student Number is printed on all 
personal correspondence from ActEd.  Quoting it will help 
us to process your scripts quickly.  If you do not know 
your ActEd Student Number, please email us at 
ActEd@bpp.com.   

Your ActEd Student Number is not the same as your 
IFoA Actuarial Reference Number or ARN. 

Score and grade for this assignment (to be completed by marker): 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Total 

8
 

10
 

8
 

9
 

12
 

14
 

8
 

6
 

5
 

80
 =_____% 

Grade:     A    B    C    D    E  Marker’s initials: ________ 

Please tick the following checklist so that your script can be marked quickly. Have you: 

[      ]  Checked that you are using the latest version of the assignments, ie 2019 for the sessions leading 
to the 2019 exams?  

[      ]  Written your full name in the box above? 
[      ]  Completed your ActEd Student Number in the box above?  
[      ]  Recorded your attempt conditions?   
[      ]  Numbered all pages of your script (excluding this cover sheet)? 
[      ]  Written the total number of pages (excluding the cover sheet) in the space above? 
[      ]  Included your Marking Voucher or ordered Series X Marking?  
[      ]  Rated your X1 marker at www.ActEd.co.uk/marking? 

 

Please follow the instructions on the previous page when submitting your script for marking. 
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Feedback from marker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes on marker’s section 

The main objective of marking is to provide specific advice on how to improve your chances of 
success in the exam.  The most useful aspect of the marking is the comments the marker makes 
throughout the script, however you will also be given a percentage score and the band into which 
that score falls.  Each assignment tests only part of the course and hence does not give a complete 
indication of your likely overall success in the exam.  However it provides a good indicator of your 
understanding of the material tested and the progress you are making with your studies: 

A = Excellent progress      B = Good progress     C = Average progress   
D = Below average progress     E = Well below average progress 

 
Please note that you can provide feedback on the marking of this assignment at: 

www.ActEd.co.uk/marking 
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X2.1 (i) Explain what is meant by the multifactor model.  You should define any notation you 
use.   [4] 

(ii) Briefly describe three different types of factor that can be used in a multifactor 
model.   [4] 

    [Total 8] 

X2.2 (i) Explain what the separation theorem implies about optimal investment strategies. [2] 

(ii) Explain why an individual investor wouldn’t hold the market portfolio as part of their 
investment portfolio in practice. [2] 

You are given the following historical information for a share in Company ABC and for a portfolio 
of 100 shares. 

 Return (% pa) 
Standard deviation of 

return (% pa) beta 

ABC 8.5 20 0.7 
Portfolio 10.5 16 1.1 

 

(iii)  Use these results to derive the expected return on the market portfolio and the risk-free 
rate of return assuming the CAPM applies.  [3] 

A student has commented that ABC’s lower return and higher standard deviation, relative to the 
100-share portfolio, contradicts the predictions of the CAPM. 

(iv)  Discuss the student’s comment.  [3] 
    [Total 10] 

X2.3 (i) Use Taylor’s formula to derive Ito’s Lemma for a function ( )tf X . [2] 

An oil trader uses the following model for the short-term behaviour of the oil price tX , measured 
in terms of US $100 per barrel: 

 0.05 0.10t tX t B   

where tB  is a standard Brownian motion. 

(ii) Use Ito’s Lemma for a function ( , )tf B t  to derive the stochastic differential equation 
for tX .   [3] 

A bank offers an exotic derivative whose value is given by: 

 2( )t tG X X  

(iii) Use Ito’s Lemma to derive the stochastic differential equation for the exotic derivative. [3] 
    [Total 8] 
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X2.4 Let Bt be a standard Brownian motion, and let tF  be its natural filtration. 

(i) Derive the conditional expectations 2
t sE B F 

  
 and 4

t sE B F 
  

, where s t . 

You may assume that the third and fourth moments of a random variable with 

distribution  20,N   are 0  and 43  respectively.  [4] 

(ii) Hence construct a martingale out of 4 .tB  [5] 
    [Total 9] 

X2.5 An investment banker wishes to model exchange rate movements between US Dollars and Euros 
as a geometric Brownian motion.  Suppose they decide to use the following stochastic differential 
equation for this purpose: 

 ( )t d e t t tdX r r X dt X dB    

where: 

 tX  represents the value of US Dollars in terms of Euros  

 dr  and er  are the (constant) short-term interest rates in the US and the Eurozone 
respectively 

 tB  is a standard Brownian motion. 

(i) Explain why, in economic terms, the value of the US Dollar is likely to increase when 

d er r .   [2] 

(ii) By considering the function ( ) logt tf X X , use Ito’s Lemma to solve the above stochastic 
differential equation for tX . [5] 

(iii) Let 
1

t
t

G
X

  denote the value of the Euro in terms of US Dollars.  Derive the stochastic 

differential equation for tG  and comment on your answer. [5] 
    [Total 12] 

X2.6 (i) (a) State the defining properties of standard Brownian motion Bt. 

 (b) Write down the probability density function, for an increment over a time lag 
t s , of general Brownian motion Wt =  Bt +  t. [5] 

(ii) By first obtaining the stochastic differential equation for the function ( ) logt tf S S , solve 
the stochastic differential equation defining geometric Brownian motion: 

  dSt =  St dt +  St dBt  [5] 
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(iii) tS , the price of a share at time t, is modelled as geometric Brownian motion. If  = 20% pa 
and  = 10% pa, calculate the probability that the share price will exceed 110 in six 
months’ time given that its current price is 100. [4] 

    [Total 14] 

X2.7 (i) Describe what is meant by the lognormal model of security prices. [2] 

(ii) If tX  is defined to be the deviation of the log of the security price tS  from its trend value, 
show that changes in tX  over a time interval h are stationary. [2] 

(iii) Derive expressions for the mean and the variance of the security price tS . [4] 

    [Total 8] 

X2.8 The stochastic differential equation that implies that the price of an asset at time t , tS , follows a 
geometric Brownian motion, is: 

 { }t t tdS S dt dZ    

where tZ  is a standard Brownian motion process. 

Describe and discuss the plausibility of the assumptions behind this equation when it is used as a 
model of share prices.  [6] 

X2.9 Consider an investment market in which: 

 the risk-free rate of return on Treasury bills is 4% pa 

 the expected return on the market as a whole is 8% pa 

 the standard deviation of the return on the market as a whole is 30% pa 

 the assumptions of the capital asset pricing model (CAPM) hold. 

(i) Consider an efficient portfolio Z that consists entirely of Treasury bills and non-dividend-
paying shares, there being no other types of investment.  If Z yields an expected return of 
7% pa, determine its beta. [1] 

(ii) Calculate the standard deviation of returns for Portfolio Z. [2] 

(iii) Split the total standard deviation for Portfolio Z into the amounts attributable to 
systematic risk and specific risk. [1] 

(iv) Calculate the market value of Portfolio Z assuming that its constituent securities are 
expected to realise a total sum of $100 in one period from now. [1] 

    [Total 5] 
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All study material produced by ActEd is copyright and is sold 
for the exclusive use of the purchaser.  The copyright is 

owned by Institute and Faculty Education Limited, a 
subsidiary of the Institute and Faculty of Actuaries. 

 

Unless prior authority is granted by ActEd, you may not hire 
out, lend, give out, sell, store or transmit electronically or 

photocopy any part of the study material. 

 

You must take care of your study material to ensure that it 
is not used or copied by anybody else. 

 

Legal action will be taken if these terms are infringed.  In 
addition, we may seek to take disciplinary action through 

the profession or through your employer. 

 

These conditions remain in force after you have finished 
using the course. 
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Subject CM2: Assignment X3 

2019 Examinations 
 

Time allowed: 3¼ hours 

 

Instructions to the candidate 

1. Please: 

– attempt all of the questions, as far as possible under exam conditions  

– begin your answer to each question on a new page 

– leave at least 2cm margin on all borders  

– write in black ink using a medium-sized nib because we will be unable to mark 
illegible scripts 

– note that assignment marking is not included in the price of the course materials.  
Please purchase Series Marking or a Marking Voucher before submitting your script. 

– note that we only accept the current version of assignments for marking, ie you can 
only submit this assignment in the sessions leading to the 2019 exams. 

2. Please do not: 

– use headed paper 

– use highlighting in your script. 

 

At the end of the assignment 

If your script is being marked by ActEd, please follow  
the instructions on the reverse of this page. 

 

In addition to this paper, you should have available actuarial tables and an 
electronic calculator. 
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Submission for marking 

You should aim to submit this script for marking by the recommended submission date.  The 
recommended and deadline dates for submission of this assignment are listed on the summary page 
at the back of this pack and on our website at www.ActEd.co.uk. 

Scripts received after the deadline date will not be marked, unless you are using a Marking Voucher.  
It is your responsibility to ensure that scripts reach ActEd in good time.  If you are using Marking 
Vouchers, then please make sure that your script reaches us by the Marking Voucher deadline date 
to give us enough time to mark and return the script before the exam. 

When submitting your script, please: 

 complete the cover sheet, including the checklist 

 scan your script, cover sheet (and Marking Voucher if applicable) and save as a pdf 
document, then email it to: ActEdMarking@bpp.com 

 do not submit a photograph of your script  

 do not include the question paper in the scan. 

In addition, please note the following: 

 Please title the email to ensure that the subject and assignment are clear 
eg ‘CM2 Assignment X3 No. 12345’, inserting your ActEd Student Number for 12345. 

 The assignment should be scanned the right way up (so that it can be read normally without 
rotation) and as a single document.  We cannot accept individual files for each page.   

 Please set the resolution so that the script is legible and the resulting PDF is less than 4 MB 
in size.   

 Do not protect the PDF in any way (otherwise the marker cannot return the script to ActEd, 
which causes delays). 

 Please include the ‘feedback from marker’ sheet when scanning.  

 Before emailing to ActEd, please check that your scanned assignment includes all pages and 
conforms to the above. 

 

 

w
w
w
.m

as
om

om
si
ng

i.c
om

http://www.ActEd.co.uk
mailto:ActEdMarking@bpp.com


The Actuarial Education Company    © IFE: 2019 Examinations 

Subject CM2: Assignment X3 
2019 Examinations 

Please complete the following information:  

Name: 

 

 

 

ActEd Student Number (see Note below): 

     
 

 

Number of following pages: _______ 

Please put a tick in this box if you have solutions 
and a cross if you do not: 

Please tick here if you are allowed extra time or 
other special conditions in the  
profession’s exams (if you wish to  
share this information): 
 
Time to do assignment 
(see Note below):        _____ hrs _____ mins 

Under exam conditions  
(delete as applicable):       yes / nearly / no 

Note:  If you take more than 3¼ hours, you should 
indicate how much you completed within this 
exam time so that the marker can provide useful 
feedback on your progress. 

Note: Your ActEd Student Number is printed on all 
personal correspondence from ActEd.  Quoting it will help 
us to process your scripts quickly.  If you do not know 
your ActEd Student Number, please email us at 
ActEd@bpp.com.   

Your ActEd Student Number is not the same as your 
IFoA Actuarial Reference Number or ARN. 

Score and grade for this assignment (to be completed by marker): 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total 

10
 

6
 

10
 

12
 

9
 

12
 

9
 

13
 

11
 

8
 

100
 =_____% 

Grade:     A    B    C    D    E  Marker’s initials: ________ 

Please tick the following checklist so that your script can be marked quickly. Have you: 

[      ]  Checked that you are using the latest version of the assignments, ie 2019 for the sessions leading 
to the 2019 exams?  

[      ]  Written your full name in the box above? 
[      ]  Completed your ActEd Student Number in the box above?  
[      ]  Recorded your attempt conditions?   
[      ]  Numbered all pages of your script (excluding this cover sheet)? 
[      ]  Written the total number of pages (excluding the cover sheet) in the space above? 
[      ]  Included your Marking Voucher or ordered Series X Marking?  
[      ]  Rated your X2 marker at www.ActEd.co.uk/marking? 

 

Please follow the instructions on the previous page when submitting your script for marking. 
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Feedback from marker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes on marker’s section 

The main objective of marking is to provide specific advice on how to improve your chances of 
success in the exam.  The most useful aspect of the marking is the comments the marker makes 
throughout the script, however you will also be given a percentage score and the band into which 
that score falls.  Each assignment tests only part of the course and hence does not give a complete 
indication of your likely overall success in the exam.  However it provides a good indicator of your 
understanding of the material tested and the progress you are making with your studies: 

A = Excellent progress      B = Good progress     C = Average progress   
D = Below average progress     E = Well below average progress 

 
Please note that you can provide feedback on the marking of this assignment at: 

www.ActEd.co.uk/marking 
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X3.1 (i) In the context of a non-dividend-paying security, define the Greeks (in both words and 
using formulae) and state whether each has a positive or negative value for a call option 
and a put option. [5] 

(ii) Consider a 30-day, at-the-money call option on a non-dividend-paying share currently 
valued at £8.  The volatility of the share is 30% and the continuously compounded risk-
free rate of interest is 4%. 

 The outputs of a computer model used to value the option are: 

Option value 28.7p Theta  –0.499pday–1 

Delta  0.532 Vega  0.91p%–1 

Gamma 0.00578p–1 Rho  0.33p%–1 

After one day the share price increases by 50p, volatility is reassessed to be 35% pa and the risk-
free rate moves to 3.5% pa.  Estimate the new price of the option. [5] 
    [Total 10] 

X3.2 (i) Consider a call option and a put option on a dividend-paying security, each with   

 the same term and exercise price.  By considering the put-call parity relationship  

 or otherwise, state the value of  n such that: 

   c p n    

 ( c  is the delta for the call option and p  is the delta for the put option.) [1] 

(ii) Derive similar relationships for the other five Greeks. [3] 

(iii) Hence, or otherwise, decide whether or not the following relationship holds: 

   ( ) ( )c c c p p pr q T t r q T t             [2] 

    [Total 6] 

X3.3 A non-dividend-paying stock has a current price of £100.  In any unit of time the price of the stock 
is expected to increase by 10% or decrease by 5%.  The continuously compounded risk-free 
interest rate is 4% per unit of time. 

A European call option is written with a strike price of £103 and is exercisable after two units of 
time, at t = 2. 

Establish, using a binomial tree, the replicating portfolio for the option at the start and end of the 
first unit of time, ie at t = 0, 1.  Hence, calculate the value of the option at t = 0. [10] 
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X3.4 (i) Explain what is meant by a “replicating portfolio”.   [2] 

(ii) Explain what is meant by a “risk-neutral probability measure” and state mathematically 
what it implies about the pricing of derivatives relative to the price of the underlying 
asset.   [2] 

(iii) Consider a one-period model of a non-dividend paying-stock, currently priced at 0S  and 
which may move up or down to give 1 0S S u  or 1 0S S d .  Consider a derivative that 
pays uc  or dc  following an up or down event.  The risk-free rate of return (continuously 
compounded) is r . 

 (a) Use a replicating portfolio to derive an equation for the price of the derivative at 
time 0t  . 

 (b) Hence find the price of a derivative whose payoff is defined as 1 0S S , assuming 

1d   and 1u  . 

 (c) Explain how to synthesise the derivative in (iii)(b) from simpler options. [8] 
    [Total 12] 

X3.5 Using the Black-Scholes formula for the value of a European call option on a non-dividend-paying 

stock, show that the call price, c, tends to the maximum of  r T tS Ke   and zero (depending on 
the strike price) as   tends to zero. [9] 

X3.6 The price of a non-dividend-paying stock at time 1, 1S , is related to the price at time 0, 0S , as 
follows: 

 0
1

0

with probability       
 
with probability 1

S u p
S

S d p


  
 

The continuously compounded rate of return on a risk-free asset is r. 

(i) (a) Determine the replicating portfolio for a European call option written on the stock 
that expires at time 1 and has a strike price of k, where 0 0d S k uS  .  You should 
give expressions for the number of units for each constituent in the portfolio.  

 (b) Use your expressions in (i)(a) to find a formula for the price of the European call 
option. 

 (c) Use put-call parity to derive a formula for the price of the corresponding 
European put option, with the same strike price and strike date. 

 (d) Show that the price of the European call option in (i)(b) can be written as the 
discounted expected payoff under a probability measure Q.  Hence find an 
expression for the probability, q, of an upward move in the stock price 
under Q.
  [7] 
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(ii) Explain the relationship between the probability measure Q in (ii) and the real- 
 world probability measure P.  Explain what relationship you would expect q and  
 p to have if all investors are: 

 (a) risk-averse 

 (b) risk-seeking 

 (c) risk-neutral. [5] 
    [Total 12] 

X3.7 (i) State the put-call parity relationship for a non-dividend-paying share with value tS . [1] 

(ii) Using the result in part (i) and the Black-Scholes formula for the value of a European call 
option on a non-dividend-paying share as given in the Tables, derive an expression for tp  
in terms of 1, , ,K r T t d  and 2d . [2] 

(iii) The underlying share pays no dividends and has a current value of £20  and a volatility of 
0.3 .  An investor who has £100 to invest has a choice between investing in either a one-
year zero-coupon bond (redeemable at par) with a current market value of £94.18  or in 
one-year put options with a strike price of £17.50 .  If the investor chooses to allocate all 
of their money to the options, how many can they buy? 

 [Ignore tax and investment expenses and assume that the bond market and the options 
market are both arbitrage-free.  Assume that the option price is quoted to the nearest 
penny.]   [6] 

    [Total 9] 

X3.8 The price tS  of a particular share follows a geometric random walk: 

 1t t tS S Z  

where  tZ  is a sequence of independent, identically distributed random variables: 

 
1.1 with probability 0.6

 
0.95 with probability 0.4tZ


 


 

and t denotes the time in months. 

A 1-month European call option is available on the share with a strike price of £10.50.  The current 
market price of the share is £10.  No dividends are to be paid over the next 6 months.  An 
annualised risk-free force of interest of 4% is available. 

(i) Find the expected payoff of the call option. [1] 

(ii) Construct a replicating portfolio for the derivative out of shares and cash, and hence find 
the fair price of the derivative. [3] 
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(iii) Hence state how many options need to be bought (or sold) per share, in order to 
construct a risk-free portfolio out of shares and these options. [1] 

(iv) Describe quantitatively the arbitrage opportunity that would arise if the price of the 
option in the market was equal to the discounted value of the expected payoff.   [4] 

(v) Another derivative is available on this share.  It gives the purchaser the right (but not the 
obligation) to buy two shares at a price of £12.00 each, or sell one share at a price of 
£9.00, both in 4 months’ time.  Determine the possible payoffs for this derivative, and 
hence find the fair price of this derivative using risk-neutral valuation. [4] 

    [Total 13] 

X3.9 An investment bank has developed a new exotic derivative, which will pay an amount equal to the 
share price at maturity multiplied by the share price at maturity less one dollar.  Let T  be the 
maturity date of the derivative and r  be the risk-free force of interest and assume that the Black-
Scholes analysis applies. 

(i) Use risk-neutral valuation to derive the pricing formula for this derivative at time t T , 
based on a share that pays no dividends.   [7] 

(ii) (a) Derive the corresponding formula for the delta of the derivative. 

 (b) Derive a condition for the range of values for the current share price for which 
delta is positive and comment on what your answer suggests for derivatives of 
this type with differing terms. 

 (c) Derive the corresponding formula for the gamma of the derivative and comment 
on the sign of gamma.  [4] 

    [Total 11] 

X3.10 The price tS  of a share that pays no dividends follows a geometric Brownian motion: 

  t t tdS S dt dZ    

where tZ  is a standard Brownian motion.  A derivative is available on this share that can only be 

exercised at time T.  The price of the derivative at time t,  , tf t S , depends on the time and the 

current share price.  A cash bond is also available that offers a risk-free rate of return of r 
(continuously compounded).  The price of the bond is tB .  You wish to set up a replicating 
portfolio for the derivative made out of shares and cash, so that: 

  ,t t t t tS B f t S              (*) 

(i) Write down the differential equation that is satisfied by tB . [1] 

(ii) What does it mean for the portfolio to be self-financing?  Give a differential equation that 
must be satisfied by the portfolio considered above in order that this is the case. [2] 

(iii) What does it mean for a process to be previsible? [1] 
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(iv) By applying Ito’s Lemma to the right-hand side of equation (*) and using your answers to 
parts (i) and (ii), deduce that: 

    



,t t
t

f t S
S

 [4] 

    [Total 8] 
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All study material produced by ActEd is copyright and is sold 
for the exclusive use of the purchaser.  The copyright is 

owned by Institute and Faculty Education Limited, a 
subsidiary of the Institute and Faculty of Actuaries. 

 

Unless prior authority is granted by ActEd, you may not hire 
out, lend, give out, sell, store or transmit electronically or 

photocopy any part of the study material. 

 

You must take care of your study material to ensure that it 
is not used or copied by anybody else. 

 

Legal action will be taken if these terms are infringed.  In 
addition, we may seek to take disciplinary action through 

the profession or through your employer. 

 

These conditions remain in force after you have finished 
using the course. 
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Subject CM2: Assignment X4 

2019 Examinations 
 

Time allowed: 3¼ hours 

 

Instructions to the candidate 

1. Please: 

– attempt all of the questions, as far as possible under exam conditions  

– begin your answer to each question on a new page 

– leave at least 2cm margin on all borders  

– write in black ink using a medium-sized nib because we will be unable to mark 
illegible scripts 

– note that assignment marking is not included in the price of the course materials.  
Please purchase Series Marking or a Marking Voucher before submitting your script. 

– note that we only accept the current version of assignments for marking, ie you can 
only submit this assignment in the sessions leading to the 2019 exams. 

2. Please do not: 

– use headed paper 

– use highlighting in your script. 

 

At the end of the assignment 

If your script is being marked by ActEd, please follow  
the instructions on the reverse of this page. 

 

In addition to this paper, you should have available actuarial tables and an 
electronic calculator. 
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Submission for marking 

You should aim to submit this script for marking by the recommended submission date.  The 
recommended and deadline dates for submission of this assignment are listed on the summary page 
at the back of this pack and on our website at www.ActEd.co.uk. 

Scripts received after the deadline date will not be marked, unless you are using a Marking Voucher.  
It is your responsibility to ensure that scripts reach ActEd in good time.  If you are using Marking 
Vouchers, then please make sure that your script reaches us by the Marking Voucher deadline date 
to give us enough time to mark and return the script before the exam. 

When submitting your script, please: 

 complete the cover sheet, including the checklist 

 scan your script, cover sheet (and Marking Voucher if applicable) and save as a pdf 
document, then email it to: ActEdMarking@bpp.com 

 do not submit a photograph of your script  

 do not include the question paper in the scan. 

In addition, please note the following: 

 Please title the email to ensure that the subject and assignment are clear 
eg ‘CM2 Assignment X4 No. 12345’, inserting your ActEd Student Number for 12345. 

 The assignment should be scanned the right way up (so that it can be read normally without 
rotation) and as a single document.  We cannot accept individual files for each page.   

 Please set the resolution so that the script is legible and the resulting PDF is less than 4 MB 
in size.   

 Do not protect the PDF in any way (otherwise the marker cannot return the script to ActEd, 
which causes delays). 

 Please include the ‘feedback from marker’ sheet when scanning.  

 Before emailing to ActEd, please check that your scanned assignment includes all pages and 
conforms to the above. 
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Subject CM2: Assignment X4 
2019 Examinations 

Please complete the following information:  

Name: 

 

 

 

ActEd Student Number (see Note below): 

     
 

 

Number of following pages: _______ 

Please put a tick in this box if you have solutions 
and a cross if you do not: 

Please tick here if you are allowed extra time or 
other special conditions in the  
profession’s exams (if you wish to  
share this information): 
 
Time to do assignment 
(see Note below):        _____ hrs _____ mins 

Under exam conditions  
(delete as applicable):       yes / nearly / no 

Note:  If you take more than 3¼ hours, you should 
indicate how much you completed within this 
exam time so that the marker can provide useful 
feedback on your progress. 

Note: Your ActEd Student Number is printed on all 
personal correspondence from ActEd.  Quoting it will help 
us to process your scripts quickly.  If you do not know 
your ActEd Student Number, please email us at 
ActEd@bpp.com.   

Your ActEd Student Number is not the same as your 
IFoA Actuarial Reference Number or ARN. 

Score and grade for this assignment (to be completed by marker): 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Total 

11
 

9
 

14
 

13
 

4
 

6
 

4
 

6
 

8
 

6
 

9
 

10
 

100
 =_____% 

Grade:     A    B    C    D    E  Marker’s initials: ________ 

Please tick the following checklist so that your script can be marked quickly. Have you: 

[      ]  Checked that you are using the latest version of the assignments, ie 2019 for the sessions leading 
to the 2019 exams?  

[      ]  Written your full name in the box above? 
[      ]  Completed your ActEd Student Number in the box above?  
[      ]  Recorded your attempt conditions?   
[      ]  Numbered all pages of your script (excluding this cover sheet)? 
[      ]  Written the total number of pages (excluding the cover sheet) in the space above? 
[      ]  Included your Marking Voucher or ordered Series X Marking?  
[      ]  Rated your X3 marker at www.ActEd.co.uk/marking? 

 

Please follow the instructions on the previous page when submitting your script for marking. 
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Feedback from marker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes on marker’s section 

The main objective of marking is to provide specific advice on how to improve your chances of 
success in the exam.  The most useful aspect of the marking is the comments the marker makes 
throughout the script, however you will also be given a percentage score and the band into which 
that score falls.  Each assignment tests only part of the course and hence does not give a complete 
indication of your likely overall success in the exam.  However it provides a good indicator of your 
understanding of the material tested and the progress you are making with your studies: 

A = Excellent progress      B = Good progress     C = Average progress   
D = Below average progress     E = Well below average progress 

 
Please note that you can provide feedback on the marking of this assignment at: 

www.ActEd.co.uk/marking 
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X4.1 An analyst is using the Merton model, together with the following information, to value the five-
year zero-coupon bonds (ZCBs) issued by a company: 

 The nominal value of ZCBs issued is $100 million. 

 The company’s shares have a market capitalisation of $118.46 million. 

 The volatility of the company’s underlying assets has been estimated to be 25% pa. 

 The five-year risk-free force of interest is 5% pa. 

(i) Calculate the price per $100 nominal of a five-year risk-free ZCB. [1] 

(ii) Using your answer to (i) to obtain an initial estimate, and then applying linear 
interpolation, estimate the value of the company’s assets (to the nearest $10,000) and 
hence show that the value of its ZCBs is $76.47 million. [5] 

(iii) (a) State the formula for the delta of a European call option based on the Black-
Scholes formula (assuming no dividends) and use it to derive a formula for the 
delta of the ZCBs with respect to the value of the company’s assets. 

 (b) Estimate the numerical value of delta using your calculations in part (ii) and use it 
to estimate the new value of the ZCBs following a $10 million fall in the value of 
the company’s assets. 

 (c) The actual value of the ZCBs following a $10 million fall in the value of the 
company’s assets is $76.16 million.  Give a possible reason for the discrepancy 
between your estimated value of the ZCBs and the actual value. [5] 

    [Total 11] 

X4.2 A bank is using a three-state discrete-time Markov chain model to value its bond portfolio. 

0.2 0.1

0.1State F
(full payment)

State H
(half payment)

State N
(no payment)

 

On 1 January each year the bank assigns each of its client companies to one of the following 
categories: 

 State F:  The bank expects to receive any payments due that year in full. 

 State H:  The bank expects to receive only 50% of any payments due that year. 

 State N:  The bank expects to receive no payments from the company that year. 
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The diagram shows the risk-neutral probabilities that each company will move from its current 
rating level to another level at the time of each review.  These probabilities are independent of 
the company’s previous ratings and the behaviour of other companies. 

Let (0, )ijp t  denote the probability that a company initially in State i  will be in State j  t  years 

later. 

(i) Calculate (0, )Fjp t  for ,j F H  and 1,2,3t  . [3] 

The bank is considering purchasing at par a 3-year bond issued by a company currently rated as F.  
Under the terms of the bond, interest of 10% of the face value of the bond will be paid at the end 
of each year, and the bond will be redeemed at par at the end of the 3 years. 

The annual effective yields on 1-year, 2-year and 3-year government bonds are all 5%. 

(ii) (a) Calculate the risk-neutral expected present value of the payments from the bond 
per £100 face value. 

 (b) Comment on your answer in (ii)(a). [3] 

After negotiations, the bank agrees to purchase the bonds at a price of £95.20. 

(iii) Calculate the credit spread for this bond. [3] 
    [Total 9] 

X4.3 In the Vasicek model, the spot rate of interest is governed by the stochastic differential equation: 

      t t tdr a b r dt dB  

 where Bt is a standard Brownian motion and a, b > 0 are constants. 

(i) A stochastic process {Ut : t  0} is defined by at
t tU e r . 

 (a) Derive an equation for tdU . 

 (b) Hence solve the equation to find tU . 

 (c) Hence show that: 

     ( )
0

0

t
at a s t

t sr b r b e e dB       [5] 

(ii) Determine the probability distribution of tr  and the limiting distribution for large t. [4] 

(iii) Derive, in the case where s < t, the conditional expectation t sE r F   , where  : 0sF s  is 

the filtration generated by the Brownian motion sB . [5] 
    [Total 14] 
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X4.4 (i) Describe briefly the Vasicek one-factor model of interest rates and its key statistical 
properties.  [4] 

(ii) According to a particular parameterisation of this model, the instantaneous forward rate 
applicable at a fixed time T t  implied by the market prices at time t  is found to be: 

  ( , ) (1 ) (1 )tf t T r e r e k e e      
      

 where T t    and 0  . 

Show that, if a humped curve is required for ( , )f t T , the parameter values must satisfy the 

condition tk r r  . [5] 

Here a “humped curve” means one where the value of the function for some intermediate 
values of   exceeds the values for both 0   and    . In other words, there will be a 
maximum value for some positive value of  . 

(iii) Describe briefly the main advantages and limitations of the Vasicek model.  [4] 
    [Total 13] 

X4.5 Claims occur according to a compound Poisson process at a rate of ¼ claims per year.  Individual 
claim amounts, X , have probability function: 

 
( 50) 0.8

( 100) 0.2

P X

P X

 

 
 

The insurer charges a premium at the beginning of each year using a 20% loading factor.  The 
insurer’s surplus at time t  is ( )U t .  Find [ (2) 0]P U   if the insurer starts at time 0 with a surplus 
of 100.     [4] 

X4.6 Claims arrive in a Poisson process at rate  , and ( )N t  is the number of claims arriving by time t .  
The claim sizes are independent random variables 1 2, ,X X   with mean  , independent of the 
arrivals process.  The initial surplus is u  and the premium loading factor is  . 

(i) (a) Give an expression for the surplus ( )U t  at time t. 

 (b) Define the probability of ruin with initial surplus u , ( )u , and sketch a realisation 
of the surplus process that shows a ruin event. 

 (c) State the value of ( )u  when 0  . [4] 

(ii) The unit of currency is changed so that one unit of the old currency is worth the same as 
2.5 units of the new currency. 

 Determine a relationship between ( )u  in (i)(b) and the probability of ruin for the new 
process.  [2] 

    [Total 6] 
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X4.7 The general form of a run-off triangle can be expressed as: 

Accident 
Year, i  

Development Year, j  

0 1 2 3 4 5 

0 0,0C  1,0C  2,0C  3,0C  4,0C  5,0C  

1 0,1C  1,1C  2,1C  3,1C  4,1C   

2 0,2C  1,2C  2,2C  3,2C    

3 0,3C  1,3C  2,3C     

4 0,4C  1,4C      

5 0,5C       

Define a model for each incremental entry, ijC , in general terms and explain each element of the 

formula.   [4] 

X4.8 Claims arrive in a Poisson process at rate  .  Individual claim amounts are all exactly 100.  The 
insurer applies a premium loading factor of 20%. 

(i) (a) Show that the adjustment coefficient, R , satisfies: 

   100 120 1 0Re R    

 (b) By approximating 100Re  with a series expansion up to terms in 3R , obtain an 
approximate value of R . [4] 

(ii) Determine the minimum initial capital such that the probability of ruin is at most 0.05. [2] 
    [Total 6] 

X4.9 The table below shows the payments made in each development year in respect of an insurer’s 
claims for fire damage for the three most recent calendar years.  You may assume that all claims 
are paid in the middle of each year. 

Claim payments made 
during year (£’000) 

Development year 

0 1 2 

Accident 
year 

2010 830 940 150 

2011 850 920  

2012 1,120   
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The rate of claims inflation over these years, measured over the 12 months to the middle of each 
year are given below: 

Annual claim inflation rate 
(past) 

 Estimated annual claim 
inflation rate (future) 

-2011 2%  -2013 3% 

-2012 2.5%  -2014 3% 

 

Use the inflation adjusted chain ladder method to estimate the total amount outstanding for 
future claims arising from accident years 2011 and 2012. [8] 

X4.10 Cumulative claims incurred on a motor insurance account are as follows: 

Cumulative claims 
incurred (£’000) 

Development year 

0 1 2 

Policy year 

2010 1,417 1,923 2,101 

2011 1,701 2,140  

2012 1,582   

 

The data have already been adjusted for inflation.  Annual premiums written in 2012 were 
£3,073,000 and the ultimate loss ratio has been estimated as 92%.  Claims paid to date for policy 
year 2012 are £441,000, and claims are assumed to be fully run-off by the end of Development 
year 2. 

Estimate the outstanding claims to be paid arising from policies written in 2012 only, using the 
Bornhuetter-Ferguson technique. [6] 

X4.11 The following table gives the cumulative incurred claims data, by years of accident and reporting 
development for a portfolio of motor insurance policies: 

Cumulative incurred 
claims (£’000) 

Development year 

0 1 2 

Accident 
year 

2010 252 375 438 

2011 230 343  

2012 208   
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Number of reported 
claims 

Development year 

0 1 2 

Accident 
year 

2010 56 74 87 

2011 49 65  

2012 44   

 

(i) Given that the total claims paid to date are £950,000 for Accident years 2010 to 2012 
calculate the outstanding claims reserve for this cohort using the average cost per claim 
method with grossing-up factors. [7] 

(ii) State the assumptions that underlie your result. [2] 
    [Total 9] 

X4.12 Aggregate claims on a general insurance company’s portfolio form a compound Poisson process 
with parameter  .   

Individual claims have an exponential distribution with mean 100.  The company applies a 20% 
premium loading.  The insurer effects proportional reinsurance with a retained proportion of  .  
The reinsurer applies a 30% premium loading. 

(i) Calculate the minimum value of   such that the insurer’s net income is greater than the 
expected net claims.   [2] 

(ii) Hence, show that the direct insurer’s adjustment coefficient, R , satisfies: 

  
2

1 3
 
100 1,300

R 
 





 [4] 

(iii) By differentiating the result from (ii), show that 0.6257   maximises the adjustment 
coefficient and calculate the corresponding optimal value of R . 

 You may assume that the turning point is a maximum. [4] 
  [Total 10] 
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For the session leading to the April 2019 exams – CS1 & CM2 Subjects 
 
Marking vouchers 
 

Subjects Assignments Mocks 

CS1 6 March 2019 13 March 2019 

CM2 20 March 2019 27 March 2019 

 
Series X and Y Assignments 
 

Subjects Assignment 
Recommended 

submission date 
Final deadline date 

CS1 

X1 
5 December 2018 9 January 2019 

CM2 19 December 2018 23 January 2019 

CS1 X2 19 December 2019 23 January 2019 

CS1 Y1 2 January 2019 30 January 2019 

CM2 X2 9 January 2019 6 February 2019 

CM2 Y1 16 January 2019 13 February 2019 

CS1 
X3 

16 January 2019 13 February 2019 

CM2 30 January 2019 27 February 2019 

CS1 X4 30 January 2019 27 February 2019 

CS1 Y2 13 February 2019 6 March 2019 

CM2 X4 13 February 2019 13 March 2019 

CM2 Y2 27 February 2019 20 March 2019 

 
Mock Exams 
 

Subjects 
Recommended 

submission date 
Final deadline date 

CS1 (Paper A/B) 27 February 2019 13 March 2019 

CM2 (Paper A/B) 13 March 2019 27 March 2019 

 
We encourage you to work to the recommended submission dates where possible.   
If you submit your mock on the final deadline date you are likely to receive your script back less than a week 
before your exam. 
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For the session leading to the September 2019 exams – CS1 & CM2 Subjects 
 
Marking vouchers 
 

Subjects Assignments Mocks 

CS1 21 August 2019 28 August 2019 

CM2 28 August 2019 4 September 2019 

 
Series X and Y Assignments 
 

Subjects Assignment 
Recommended 

submission date 
Final deadline date 

CS1 
X1 

22 May 2019 17 July 2019 

CM2 29 May 2019 24 July 2019 

CS1 
X2 

5 June 2019 24 July 2019 

CM2 12 June 2019 31 July 2019 

CS1 
Y1 

19 June 2019 31 July 2019 

CM2 26 June 2019 7 August 2019 

CS1 
X3 

3 July 2019 7 August 2019 

CM2 10 July 2019 14 August 2019 

CS1 
X4 

17 July 2019 14 August 2019 

CM2 24 July 2019 21 August 2019 

CS1 
Y2 

31 July 2019 21 August 2019 

CM2 7 August 2019 28 August 2019 

 
Mock Exams 
 

Subjects 
Recommended 

submission date 
Final deadline date 

CS1 (Paper A/B) 14 August 2019 28 August 2019 

CM2 (Paper A/B) 21 August 2019 4 September 2019 

 
We encourage you to work to the recommended submission dates where possible.   
 
If you submit your mock on the final deadline date you are likely to receive your script back less than a week 
before your exam. 
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Assignment X1 Solutions 

Markers:  This document sets out one approach to solving each of the questions.  Please give 
credit for other valid approaches. 

Note that some of the numerical answers are sensitive to rounding. 

Solution X1.1  

Course reference: The relevance of technical analysis, fundamental analysis and insider trading to 
the different forms of market efficiency is discussed in Chapter 1.  

(i) Technical analysis 

This is based purely on historical market data, ie prices and trading volumes.  If the market is 
efficient in the weak sense, then technical analysis will be of no benefit.   [1] 

Conversely, if it is possible to generate excess risk-adjusted returns based purely on historical 
market data, then this would suggest that the market is weak form inefficient (and hence also 
semi-strong and strong form inefficient). [1] 
    [Total 2] 

(ii) Insider trading 

Insider trading is based on information that is not publicly available and which will therefore not 
be built into the prices in a market that is only semi-strong form efficient.  If the market is not 
efficient in the strong sense, then insider trading would enable the investor to generate excess 
risk-adjusted returns.    [1] 

Making insider trading illegal aims to remove this advantage from those with access to inside 
information, and so suggests that some markets may not be strong form efficient. [1] 
    [Total 2] 

(iii) Fundamental analysis  

The information mentioned here is publicly available. [½] 

So if the market is semi-strong form efficient, fundamental analysis will be of no benefit in helping 
the investor to identify mispriced securities, which can then be traded to generate excess risk-
adjusted returns.  [1] 

Fundamental analysis can add value only if the market is semi-strong form inefficient. [½] 
    [Total 2] 
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Solution X1.2  

Course reference: The risk aversion measures and their relationships to certainty equivalence are 
described in Chapter 2. 

(i) Risk aversion measures 

Absolute risk aversion is measured by: 

 





( )( )
( )

U wA w
U w

  [¼] 

In this case: 

 

    
 

   
 

     
 

( ) exp 
100

1'( ) exp
100 100

1( ) exp
10,000 100

wU w

wU w

wU w  [½] 

So: 

 
1( )

100
A w   [¼] 

The investor exhibits constant absolute risk aversion. [¼] 

Relative risk aversion is measured by: 

 


 

( )

( )
( )

U wR w w
U w

  ( )w A w  [¼] 

So in this case: 

 ( )
100
wR w   [¼] 

The investor exhibits increasing relative risk aversion. [¼] 
   [Total 2] 

(ii) Find the certainty equivalent 

The certainty equivalent of the gamble, Xc , is found from the equation: 

   (1000 ) [ (1000 )]XU c E U X  [½] 
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This can be written as: 

        
 

1100/100 950/100( 1000) 1 1exp e
100 2 2

Xc
e  [½] 

Therefore, the certainty equivalent is: 

 

         
 

1100/100 950/1001 1
100ln 1000 0.83

2 2Xc e e  [1] 

   [Total 2] 

Solution X1.3  

Course reference: Stochastic dominance is discussed in Chapter 3. 

(i) Why Asset B is second-order stochastically dominant 

Both assets offer an expected return of 1%.   [½] 

Asset A has some risk while Asset B is risk-free.  [½] 

If an asset is second-order stochastically dominant over another asset, then every risk-averse 
investor will prefer that asset.  [½] 

This must be the case here, as every risk-averse investor will prefer the risk-free asset, Asset B. 
    [½] 
     [Total 2] 

(ii) Verifying second-order stochastic dominance numerically 

We can check second-order stochastic dominance by using the table below.  

Return % AF  BF   AF   BF  

–1 0.5 0 0.5 0 

0 0.5 0 1 0 

1 0.5 1 1.5 1 

2 0.5 1 2 2 

3 1 1 3 3 

    
    [1½, less ½ for each incorrect column] 

Strictly speaking, second-order stochastic dominance is defined in terms of the integral of the 
cumulative probability distribution function.  However, simply summing the cumulative 
probabilities will work for a discrete distribution provided that the probabilities are summed in 
equally sized steps. 
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Asset B is second-order dominant since: 

    ( ) ( )B AF x F x  for all x  

 and  ( ) ( )B AF x F x  for 1,0,1x  [1] 

    [Total 2½] 

(iii)(a) What can be said about dominance 

We can check first-order and second-order dominance by using the table below.  

Return % AF  BF   AF   BF  

–1 0.5 0 0.5 0 

0 0.5 0 1 0 

1 0.5 1 1.5 1 

2 0.5 1 2 2 

3 0.5 1 2.5 3 

4 1 1 3.5 4 

   
    [1½, less ½ for each incorrect column] 

From the table we see that Asset B is not first-order or second-order dominant. [1] 
    [Total 2½] 

(iii)(b) What can be said about dominance 

We can check first-order dominance by using the table below. 

Return % AF  BF  

–1 0.5 0 

0 0.5 0 

1 1 1 

 
    [¼ for each correct column] 

Asset B is therefore first-order dominant (and therefore also second-order dominant). [½] 
    [Total 1] 
(iv) Can Asset B be dominated? 

No.  If an Asset D offers even the smallest possibility of a return of % 1%x  then ( ) ( )D BF x F x  and 
so Asset D can never dominate Asset B. [1] 

  

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2: Assignment X1 Solutions Page 5 

The Actuarial Education Company  © IFE: 2019 Examinations 

Solution X1.4  

Course reference: The measures of investment risk covered by this question are discussed in 
Chapter 4. 

(i) Expected return 

Investment A  0.4  0.1 + 0.2  0.15 + 0.4  0.2  =  15%  [½] 

Investment B  0.25  0.1 + 0.7  0.15 + 0.05  0.4  =  15%  [½] 

Investment C  0.1 0.2
2

 =  15% [½] 

     [Total 1½] 

(ii) Variance  

Investment A  0.4  0.052 + 0.4  (–0.05)2  =  0.002 or 20%% [1] 

Investment B  0.25  0.052 + 0.05  (–0.25)2  =  0.00375 or 37.5%% [1] 

Investment C  
0.2

2

0.1
10 (0.15 )x dx  [½] 

   =
 

  
  

0.23
2 2

0.1

10 0.15 0.15
3
xx x

     [½] 

   = 10  (0.0011666 – 0.0010833) 

   = 0.000833 or 8.33%% [½] 
     [Total 3½] 

Or using the formula   21[ ] ( )
12

Var X b a  from page 13 of the Tables, we get: 

  21 (20 10) 8.33%%
12

 

Or using  2 2[ ] ( ) [ ( )]Var X E X E X  we have ( ) 15%E X  from part (i) and: 

 
 

    
  


0.20.2 3

2 2

0.1 0.1

( ) 10 10 0.023333 233.33%%
3
xE X x dx  

(iii) Semi-variance  

Investment A  0.4  0.052  =  0.001 or 10%% [1] 

Investment B  0.25  0.052  = 0.000625 or 6.25%% [1] 
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Investment C  
0.15

2

0.1
(0.15 ) 10x dx  [½] 

   = 
 

  
  

0.153
2 2

0.1

10 0.15 0.15
3
xx x  [½] 

   = 10  (0.0011250 – 0.0010833) 

   = 0.000417 or 4.17%% [½] 
     [Total 3½] 

Or, since the distributions of returns for A and C are symmetrical, their semi-variances will be half 
the variance. 

(iv) Expected shortfall below 12%  

Investment A  0.4  0.02  =  0.008 or 0.8% [½] 

Investment B  0.25  0.02  = 0.005 or 0.5% [½] 

Investment C  
0.12

0.1
(0.12 )10x dx  [½] 

   = 
 

 
  

0.122

0.1

10 0.12
2
xx  [½] 

   = 10  (0.0072 – 0.0070) 

   = 0.002 or 0.2% [½] 
     [Total 2½] 

The last one can also be found by noting that there is a probability of 0.2 of a shortfall and in this 
case the average shortfall will be 1%.  So we get  0.2 1% 0.2% . 

(v) Shortfall probability below 15%  

Investment A  0.4     [¼] 

Investment B  0.25  [¼] 

Investment C  0.50  [½] 
     [Total 1] 
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Solution X1.5  

Course reference: The lognormal stochastic investment return model is covered in Chapter 5. 

(i) Probability of not meeting liabilities 

(a) All assets with guaranteed return 

If the assets are invested in the investment with a guaranteed 5% return then the accumulated 
value of the assets after one year will be: 

  950,000 1.05 £997,500  [1] 

The company will therefore be unable to meet its liabilities, ie the probability is 1. [1] 

(b) Assets split 85% : 15% 

The accumulated value of the 15% of assets invested in the guaranteed investment is: 

   0.15 950,000 1.05 £149,625  [1] 

For the company to be unable to meet its liabilities, the remaining investment must be worth less 
than  1,000,000 149,625 £850,375  one year from now. [1] 

We therefore require: 

 
 

 

           

  

     
 

1 1

1

1

850,375
(0.85 950,000(1 ) 850,375) log(1 ) log

0.85 950,000

(log(1 ) log1.053096)

log(1 ) log1.053096

P i P i

P i

i
P  [1] 

Since 



 1log(1 )

~ (0,1)
i

N ,  0.06748  and  2 0.0003493 , this is equivalent to: 

 

 
       

 

  

log1.053096 0.06748 ( 0.842) 1 ( 0.842)
0.0003493

1 0.80 0.2

P Z P Z P Z

 [2] 

(ii) Variance of return 

The return from the portfolio in (i)(a) is guaranteed to be 5% and so the variance of return 
is 0.    [1] 

The return from the portfolio in (i)(b) is:  

    10.15 0.05 0.85 i  [1] 
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The variance of return is therefore:  

   2 20 0.85 0.02 0.000289  [1] 

Solution X1.6  

Course reference: The “variable” stochastic interest rate model is covered in Chapter 5. 

(i) Mean 

Let: 

  


 
10

10
1

1 t
t

S i  

where ( 1,2, ,10)ti t   are independent and identically distributed random variables. 

 The mean of the rate of return in each year, j , is: 

          0.04 0.4 0.06 0.2 0.08 0.4 0.06tE i j  [1] 

So: 

       10 10
10[1,000 ] 1,000 1 1,000 1.06 £1,790.85E S j  [1] 

(ii) Standard deviation 

The variance of the rate of return in each year, 2s , is: 

 

         



2 2 2 2 2var 0.04 0.4 0.06 0.2 0.08 0.4 0.06

0.00032

ti s

 [2] 

The variance of the accumulation is: 

 

    

   



 
     

 

 
   

 

 

2
10 10

210 102 2 2

10 202 2

2 2

var 1,000 1,000 var[ ]

1,000 (1 ) 1

1,000 1.06 0.00032 1.06

1,000 0.095633

S S

j s j

 [1½] 

So the standard deviation is £95.63. [½] 
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Solution X1.7  

Course reference: The portfolio theory terms covered by this question are introduced in Chapter 6. 

(i)(a) Opportunity set 

The opportunity set is the set of all the possible combinations of mean and variance that are 
available to the investor by suitable choice of investment portfolios. [1] 

(i)(b) Efficient frontier for a portfolio of risky assets 

The efficient frontier for a portfolio of risky assets is the set of efficient portfolios consisting solely 
of risky assets – ie those that yield an uncertain investment outcome.  An efficient portfolio is one 
such that no other portfolio offers a higher expected return for the same (or lower) variance of 
investment return or equivalently a lower variance of investment return for the same (or higher) 
expected return.  [1] 

The efficient frontier turns out to be the upper “half” of the envelope curve (ie above the point of 
minimum variance) around the opportunity set.  This is because investors are assumed to prefer 
more to less – and therefore to like a higher expected return – and to be risk-averse – and so 
dislike variance of returns. [½] 

(i)(c) Indifference curves 

An indifference curve is a locus of combinations of points in expected return-variance space that 
yield the same expected utility to the investor and hence between which the investor is 
indifferent.  They slope upwards for a risk-averse investor, because the investor requires an 
additional expected return to compensate for any additional risk (ie variance) if the expected 
utility is to remain unchanged. [1] 

(i)(d) Optimal portfolio 

Within the context of mean-variance portfolio theory, the optimal portfolio is the portfolio that 
maximises the expected utility of the investor as a function of the mean and variance of 
investment return over a single time period.   [1] 

It arises where an indifference curve is tangential to the efficient frontier. [½] 
    [Total 5] 
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(ii) Efficient frontier with risk-free asset 

The effect on the efficient frontier of introducing a risk-free asset that can be bought or sold in 
unlimited quantities is to make the efficient frontier a straight line in mean-standard deviation 
space. (In mean-variance space it remains parabolic – but will be different to before.)  [½] 

In both cases, the efficient frontier intersects the expected return axis at the (certain) risk-free 
rate of return and is tangential to the efficient frontier of risky assets only.  [½] 

 

 

 

 

  

 

    

 

 

      0                                                                                                    

                 standard deviation,   

    [1 for correct diagram] 
    [Total 2] 

  

 r 

new efficient frontier  

efficient frontier 
(risky assets only) 

expected 
return, E 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2: Assignment X1 Solutions Page 11 

The Actuarial Education Company  © IFE: 2019 Examinations 

Solution X1.8  

Course reference: The calculation of the variance of a portfolio is covered in Chapter 6. 

(i) Calculate the correlation coefficient 

The correlation coefficient AB  is defined as: 

 
 


( , )

AB
A B

Cov A B  

where: 

       ( , )Cov A B E AB E A E B  

Using the data given: 

        6.0% 6.1% 19%%E A E B E AB  [1] 

So:     ( , ) 19 6.0 6.1 17.6%%Cov A B  [½] 

Also, using the data given: 

 









2%

9.0714%

A

B   [1] 

So:  
  


17.6 0.970

2 9.0714AB  [½] 

This shows that the returns are very strongly negatively correlated, so a poor return on one asset 
is very likely to be accompanied by a favourable return on the other. [1] 
    [Total 4] 

(ii) Calculate the proportion in Asset A 

The portfolio variance is given by: 

         
22 2 21 2 1 ( , )P A A A B A AV x x x x Cov A B  [½] 

where Ax  is the portfolio proportion invested in Asset A.  Differentiating this expression with 

respect to Ax  and setting it equal to zero gives the following condition for a minimum: 

     
     


2 22 2 1 2 1 2 ( , ) 0P

A A A B A
A

V x x x Cov A B
x

 [½] 
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Cancelling out the 2’s and rearranging then gives: 

 
 




 

2

2 2
( , )

2 ( , )
B

A
A B

Cov A B
x

Cov A B
 [½] 

If we substitute in the values calculated in (i) we obtain the value of Ax  that minimises the 
portfolio variance: 

 
 

  

2

2 2
9.0714 17.6 0.8222

2 9.0714 2 17.6
Ax  [½] 

ie  82.22% of the portfolio should be invested in Asset A.   

    [Total 2] 

(iii) Calculate the range of values of the correlation coefficient 

As before, the portfolio variance is given by: 

         
22 2 21 2 1 ( , )P A A A B A AV x x x x Cov A B  [1] 

If we substitute in all the actual values given – including  0.8Ax  – except for the correlation 

coefficient AB , then this becomes: 

          2 2 2 20.8 2 0.2 9.0714 2 0.8 0.2 2 9.0714P ABV  [1] 

This simplifies to: 

  5.85161 5.805696P ABV  [½] 

We require that this portfolio variance be less than the variance of Asset A, ie: 

    25.85161 5.805696 2AB  [½] 

This in turn requires that: 

   0.319AB  

So the portfolio will have a lower variance provided that AB  lies in the range  ( 1, 0.319) . [1] 
    [Total 4] 
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Solution X1.9  

Course reference: The assumptions underlying portfolio theory are listed in Chapter 6, in which the 
Core Reading also defines the efficient frontier and outlines how it may be derived using the 
Lagrangian approach. 

(i) MVPT assumptions 

 All expected returns and variances of return are known for each individual asset, and 
covariances of return are known for each pair of assets.  [½] 

 Investors make decisions purely on the basis of the expected return and variance of 
return of their portfolio. [½] 

 Investors are non-satiated, ie they prefer more to less. [½] 

 Investors are risk-averse. [½] 

 There is a single one-step time horizon. [½] 

 Assets may be held in any amounts. [½] 

 There are no taxes or transaction costs. [½] 
    [Maximum 3] 

(ii) Equation of efficient frontier 

The expected return and variance of the portfolio are: 

   (1 )A A A BE x E x E  

  





B
A

A B

E E
x

E E
  [½] 

and        2 2 2 2 2 2A A B B A B A B ABx x x x  

           2
A A B Bx x    since  1AB  [1] 

This gives: 

 

   

  

 

 

 
     

 

 

6 25 13
8 8

1 1
2 2

A A B B

B A
A B

A B A B

x x

E E E E E E
E E E E

E  [1] 
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This is a straight line, which is what we would expect since the returns on A and B are perfectly 
correlated.  The actual return BR  on Asset B will be a linear function of AR , the actual return on 
Asset A.  So both the mean and the standard deviation will be linearly related to the asset 
proportions.   [½] 
    [Total 3] 

(iii) Method with more than two assets 

Here we need to minimise the portfolio variance subject to the two constraints of specifying the 
expected portfolio return and having a fully-invested portfolio.  To do this, we use a Lagrangian 
function:  

        ( ) ( 1)i j ij i i i
i j i i

W x x C x E E x  [½] 

We can differentiate this with respect to kx ,   and  : 

  
  

 2 j jk k
k j

W x C E
x

,    1,...,k n  

 



 

  i i
i

W E x E  

 

 1 i

i

dW x
d

  [1] 

Setting these to zero gives 2n  simultaneous equations in 2n  unknowns. [½] 

We then solve these and substitute the solutions for the ix ’s as functions of the portfolio mean 
E  back into the expression for the variance above. [½] 

This gives us the efficient frontier in  ,E V  space. [½] 

    [Total 3] 

Solution X1.10  

Course reference: Behavioural finance appears in Chapter 3 of the Course Notes. 

(i) Principal theme of behavioural finance 

The field of behavioural finance looks at how a variety of mental biases and decision-making 
errors affect financial decisions.  It relates to the psychology that underlies and drives financial 
decision-making behaviour. [1] 

Behavioural finance challenges the assumption of expected utility theory that decisions are made 
on the basis of maximising the expected value of utility under the investor’s particular beliefs 
about the probability of different outcomes. [1] 
    [Total 2] 
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(ii) Prospect theory 

This is a theory of how individuals make decisions when faced with risk and uncertainty.  It 
replaces the conventional risk-averse / decreasing marginal utility theory based on total wealth 
with a concept of value defined in terms of gains and losses relative to a reference point.   [1] 

Individuals are assumed to be risk-averse when facing gains relative to the reference point, but 
risk-seeking when facing losses relative to the reference point. [½] 

This generates utility curves with a point of inflexion at the chosen reference point.  [½] 
    [Total 2] 

(iii) Describe the behavioural finance theme 

(a) This is an example of anchoring and adjustment. [½] 

 The saver’s expectations with regard to future short-term interest rates are anchored by 
past experience of higher interest rates.  Consequently, they expect interest rates to rise 
back to average historical levels even when there is no evidence that they are likely to do 
so.   [1] 

(b) This is an example of status quo bias. [½] 

 The investor is preferring to stick with their current situation, even though the alternative 
is more favourable.  This behaviour can be driven by the fear of incurring a loss when 
switching to a new bank, even though there’s no rational reason why Bank Y should be 
any more risky than Bank X.  [1] 

    [Total 3] 
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Assignment X2 Solutions 

Markers:  This document sets out one approach to solving each of the questions.  Please give 
credit for other valid approaches. 

Solution X2.1  

Course reference: Multifactor models are covered in Chapter 7.   

(i) Multifactor model 

The multifactor model attempts to explain returns on assets by relating them to a series of n  
factors known as indices: 

 ,1 1 ,...i i i i n n iR a b I b I c      where: [1] 

 ,i ia c  are the constant and random parts of the return, specific to asset i  [½] 
 1 2, ,..., nI I I  are the (changes in the) n  factors explaining the returns on all the 

stocks   [½] 
 ,i kb  is the sensitivity of the return on stock i  to factor k  [½] 

 [ ] 0iE c    [½] 

 [ , ] 0i jcov c c   for all i j  [½] 

 [ , ] 0i kcov c I   for all stocks and indices. [½] 
    [Total 4] 

(ii) Three types of factors 

1. Macroeconomic – the factors will include some macroeconomic variables such as interest 
rates, inflation, economic growth and exchange rates. [1] 

2. Fundamental – the factors will be company specifics such as P/E ratios, liquidity ratios and 
gearing levels.  [1] 

3. Statistical – the factors do not necessarily have a meaningful interpretation.  This is 
because they are derived from historical data, using techniques such as principal 
components analysis to identify the most appropriate factors.  [2] 

    [Total 4] 

Solution X2.2  

Course reference: The capital asset pricing model (CAPM) is outlined in Chapter 8. 

(i) What the separation theorem implies about optimal investment strategies 

The separation theorem states that, under the assumptions of CAPM, the optimal combination of 
risky assets for an investor can be determined without any knowledge of their preferences 
towards risk and return. [1] 
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This combination is the market portfolio, which consists of all risky assets held in proportion to 
their market capitalisation. [1] 
    [Total 2] 

(ii) Why an investor wouldn’t hold the market portfolio in practice 

In practice, the investor won’t hold the market portfolio because: 

 It is impossible to identify exactly the constituents of the market portfolio, as in principle 
it contains all risky assets including shares, property, bonds, commodities and human 
capital, many of which are never traded and have no market values. [1] 

 Even if it were possible to identify exactly the constituents of the market portfolio, many 
of the different risky assets required (eg human capital) cannot be invested in, in 
practice.  [1] 

    [Total 2] 

(iii)  Derive expected return on market portfolio and risk-free rate of return   

According to the CAPM security market line, the expected return on any portfolio, efficient or 
otherwise, including a single risky stock is given by: 

  p p mE r E r    

where: 

 r  is the risk-free rate of return 

 mE  is the expected return on the market portfolio 

 
 
 

,p m
p

m

Cov R R

Var R
   [1] 

For ABC shares we have: 

(1)  8.5 0.7 0.3 0.7m mr E r r E       [½] 

whereas for the 100-share portfolio: 

(2)  10.5 1.1 0.1 1.1m mr E r r E        [½] 

(1) + 3×(2) gives: 

 40 4 mE  ,      10%mE   [½] 

Substituting this back into (1) gives: 

 8.5 0.3 0.7 10r   ,    5%r   [½] 
    [Total 3] 
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(iv)  Discuss the student’s comment 

The student’s reasoning is flawed because according to CAPM, what counts in the determination 
of expected returns for inefficient portfolios such as we have here is   and not the standard 
deviation.   [1] 

The student believes that the higher standard deviation of ABC (not surprisingly higher than the 
standard deviation of the well-diversified, 100-stock portfolio) justifies a higher return for ABC. [1] 

In fact, ABC has a lower   than that of the 100-share portfolio and so, r  and mE  being the same 
for both, the return on ABC should be lower. [1] 
    [Total 3] 

Solution X2.3  

Course reference: Ito’s Lemma is stated in Chapter 10 and also appears on page 46 in the Tables. 

(i) Derive Ito’s Lemma 

Ito’s Lemma states that if  tf X  is a twice continuously differentiable function with respect to 

tX  and t t t tdX a dt b dB   (where ta  and tb  are tF -measurable), then  tf X  satisfies: 

        2½t t t t t t t tdf X a f X b f X dt b f X dB        [½] 

This can be derived as follows using Taylor’s formula and ignoring higher than second-order 
terms: 

 

      

     

2

2

½

½

t t t t t

t t t t t t t t

df X f X dX f X dX

f X a dt b dB f X a dt b dB

  

      [½] 

Since: 

 2( ) 0dt   

 0tdB dt   

 2( )tdB dt  

from the multiplication grid for increments in the Core Reading: 

 

      

     

2

2

½

½

t t t t t t t

t t t t t t t

df X f X a dt b dB f X b dt

a f X b f X dt b f X dB

   

        [1] 

    [Total 2] 
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(ii) Use Ito’s Lemma to derive the stochastic differential equation for tX  

Here tX  is a function of tB  and time t: 

 ( , ) 0.05 0.10t t tX f B t t B    

So: 

 0.05f
t





  [½] 

 0.10
t

f
B





  [½] 

 
2

2 0
t

f
B





  [½] 

Note that as tX  is a direct function of standard Brownian motion tB , we need to derive the drift 
and volatility terms ( , )ta t X  and ( , )tb t X  (using the notation on page 46 in the Tables) from the 
stochastic differential equation for tB .  As we can write: 

 0 1t tdB dt dB     

We have: 

 ( , ) 0ta t X    [¼] 

  ( , ) 1tb t X    [¼] 

So, substituting all of these terms into Ito’s Lemma from page 46 in the Tables gives: 

 

2( , ) 0 0.10 ½ 1 0 0.05 1 0.10

0.05 0.10

t t t

t

dX df B t dt dB

dt dB

          

   [1] 
    [Total 3] 

Alternatively, using a Taylor Series expansion, we have: 

  
2

2
2, ½t t t

t t

df f fdf B t dt dB dB
t B B

 
  
  

 [½] 

where the three partial derivatives are the same as above and so: 

   2, 0.05 0.10 ½ 0t t tdf B t dt dB dB      

ie 0.05 0.10t tdX dt dB   [1] 
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(iii) Derive the stochastic differential equation for the exotic derivative 

The value of the exotic derivative is given by: 

 2( )t tG X X  

So: 

 0G
t





   [½] 

 2 t
t

G X
X





  [½] 

 
2

2 2
t

G
X





  [½] 

And from the SDE for tX  (and working in terms of the notation on page 46 in the Tables) we have: 

 ( , ) 0.05ta t X    [¼] 

 ( , ) 0.10tb t X    [¼] 

So, substituting these terms into Ito’s Lemma from page 46 in the Tables gives: 

  

2

2

( ) 0.05 2 ½ 0.10 2 0 0.10 2

0.10 0.10 0.20

t t t t

t t t

dG X X dt X dB

X dt X dB

         

    [1] 

    [Total 3] 

Alternatively, using a Taylor Series expansion, we have: 

  
2

2
2½t t t

t t

G GdG X dX dX
X X
 

 
 

 

Note that there is no term in time t here, as G is an explicit function of tX  only and not time t. 

Here the partial derivatives are the same as above and so: 

   2, 2 ½ 2t t t tdG X t X dX dX     

Substituting in for tdX  from part (i) gives: 

      2, 2 0.05 0.10 ½ 2 0.05 0.10t t t tdG X t X dt dB dt dB       
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Next multiplying the increments in the right-hand bracket and remembering that 2( ) 0dt  , 

0tdB dt   and 2( )tdB dt , gives: 

     2, 2 0.05 0.10 ½ 2 0.10t t tdG X t X dt dB dt      

ie    2, 0.10 0.10 0.20t t t tdG X t X dt X dB     

Solution X2.4  

Course reference: Chapter 9 covers the important properties of Brownian motion and martingales. 

(i) Conditional expectations of 2
tB  and 4

tB  

We can evaluate these expectations by splitting tB  into the (independent) past and future 
components at time tB  ie by writing ( )t s t sB B B B   .  We also need to remember that the value 
of sB  is known at time s  and that ~ (0, )t sB B N t s  .  We then get: 

 
2 2

2 2

[ | ] [{ ( )} | ]

[ 2 ( ) ( ) | ]

t s s t s s

s s t s t s s

E B F E B B B F

E B B B B B B F

  

    
 

       2 22 [( )] [( ) ]s s t s t sB B E B B E B B      [1] 

We lose the filtration sF  since we have independent increments. 

Now: 

 2 2[( ) ] var( ) { [ ]} 0t s t s t sE B B B B E B B t s t s           

So: 

       

2 2

2

[ ] 2 0 ( )t s s s

s

E B F B B t s

B t s

    

    [1] 

Similarly: 

4 4

4 3 2 2 3 4

[ | ] [{ ( )} | ]

4 ( ) 6 ( ) 4 ( ) ( ) |

t s s t s s

s s t s s t s s t s t s s

E B F E B B B F

E B B B B B B B B B B B B F

  

             

    [1] 
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Evaluating the expectations: 

 

4 4 2 2 4

4 2 2

[ | ] 0 6 [( ) ] 0 [( ) ]

6( ) 3( )

t s s s t s t s

s s

E B F B B E B B E B B

B t s B t s

      

      [1] 
    [Total 4] 

NB The very last term in the above is derived using the information given in the question. 

(ii) Constructing a martingale based on 4
tB  

To find a martingale we can re-express the result we’ve just derived so that we have an expression 
involving tB  and t  on the LHS and an identical expression involving sB  and s  on the RHS. 

The result based on 4
tB  can be written: 

 4 4 2 2 2[ | ] 6 6 3( )t s s s sE B F B tB sB t s      [½] 

We have also shown that: 

 2 2[ | ]t s sE B F B t s    

or 2 2[ | ] ( )s t sB E B F t s    [½] 

This allows us to express the 26 stB  term purely in terms of t  to get: 

 4 4 2 2 2[ | ] 6 { [ | ] ( )} 6 3( )t s s t s sE B F B t E B F t s sB t s        [1] 

Taking the 26 [ | ]t st E B F  over to the LHS gives: 

 

4 2 4 2 2

4 2 2 2

[ 6 | ] 6 ( ) 6 3( )

6 3 3

t t s s s

s s

E B tB F B t t s sB t s

B sB t s

      

     [1] 

Taking the 23t  over to the LHS gives: 

 4 2 2 4 2 2[ 6 3 | ] 6 3t t s s sE B tB t F B sB s      

Since the functions take the same form on both sides, we have shown that 4 2 26 3t tB tB t   is a 
martingale.   [1] 

Strictly speaking, we should also check that the absolute expectation is bounded for all values of t, ie 

that 4 2 2[| 6 3 |]t tE B tB t    
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To show this: 

 

4 2 2 4 2 2

4 2 2

2 2

2

6 3 6 3

6 3

3 6 3

12

t t t t

t t

E B tB t E B tB t

E B tE B t

t t t t

t

             

        

   

   [1] 
    [Total 5] 

Solution X2.5  

Course reference: Ito’s Lemma is stated in Chapter 10 and also appears on page 46 in the Tables. 

(i) Explain why the value of the US Dollar is likely to increase 

If d er r , then the short-term interest rate is higher in the US than in the Eurozone.  This means 
that “hot money” is likely to flow from Euros to US Dollars in search of the higher interest rate.  
    [1] 

The consequent higher demand for US Dollars (and higher supply of Euros) on the currency 
market will lead the value of US Dollars to rise against the Euro. [1] 
    [Total 2] 

(ii) Use Ito’s Lemma to solve the stochastic differential equation (SDE) 

Note that we cannot integrate the stochastic differential equation for tX  directly, as to do so 

would involve the following Ito integral:  
0

t

t tX dB . 

As tX  is being modelled as a geometric Brownian motion, we can solve its SDE by applying Ito’s 
Lemma to: 

 ( ) log( )t tf X X    [½] 

So: 

 1

t t

f
X X





  [½] 

 
2

2 2
1

t t

f
X X
 




  [½] 

Note that 0f
t





, as ( )tf X  does not depend directly on time t. 
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From the SDE for tX  (and working in terms of the notation on page 46 in the Tables) we have: 

 ( , ) ( )t d e ta t X r r X   [½] 

 ( , )t tb t X X   [½] 

So, substituting these terms into Ito’s Lemma from page 46 in the Tables gives: 

 

2 2
2

2

1 1 1( ) ( ) ½

( ½ )

t d e t t t t
t tt

d e t

df X r r X X dt X dB
X XX

r r dt dB

 

 

 
    
  

     [1] 

Alternatively, using a Taylor Series expansion, we have: 

    
 
 

2
2

2½t t t
t t

f fdf X dX dX
X X

] 

where the two partial derivatives are the same as above and so: 

   2
2

1 1
½t t t

t t
df X dX dX

X X
    

Substituting in the expression for tdX  given in the question and remembering that 2( ) 0dt  , 

0tdB dt   and 2( )tdB dt , gives: 

 

     

 

 

 

   

   

2 2
2

2

1 1( ) ½

½

t d e t t t t
t t

d e t

df X r r X dt X dB X dt
X X

r r dt dB   

This can be integrated directly as follows: 

 2

0 0 0
( ) ( ½ )

t t t

s d e sdf X r r ds dB        

  2
0 0( ) ( ) ( ½ )( 0) ( )t d e tf X f X r r t B B         [½] 

Hence, remembering that ( ) log( )t tf X X  and 0 0B  , this becomes: 

 2
0log( ) log( ) ( ½ )t d e tX X r r t B       

ie 2
0 exp{( ½ ) }t d e tX X r r t B      [1] 

    [Total 5] 
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(iii) Derive the stochastic differential equation for tG  

Here the function we need to “differentiate” using Ito’s Lemma is: 

 1
t

t
G

X
  

So: 

 2
1t

t t

G
X X

 



  [½] 

 
2

2 3
2t

t t

G

X X





  [½] 

And from the SDE for tX  (and working in terms of the notation on page 46 in the Tables) we again 
have: 

 ( , ) ( )t d e ta t X r r X   [½] 

 ( , )t tb t X X   [½] 

So, substituting these terms into Ito’s Lemma from page 46 in the Tables gives: 

 

2 2
2 3 2

2

1 2 1( ) ( ) ½

1 1( )

t t d e t t t t
t t t

e d t
t t

dG X r r X X dt X dB
X X X

r r dt dB
X X

 

 

  
    
  

     [1] 

Or, remembering that 1
t

t
G

X
 , this becomes: 

 2( )t e d tdG r r Gdt GdB      [1] 

So, tG , which represents the value of the Euro in terms of US Dollars, is also a geometric 

Brownian motion, but with drift 2( )e dr r    and volatility parameter,  .  

    [1] 
    [Total 5] 
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Alternatively, using a Taylor Series expansion, we have: 

  
2

2
2½t t

t t t t
t t

G G
dG X dX dX

X X

 
 
 

  

where the two partial derivatives are the same as above. So, substituting in the expression for tdX  

given in the question and remembering that 2( ) 0dt  , 0tdB dt   and 2( )tdB dt , gives: 

 

     

 

2 2
2 3

2

1 2( ) ½

1 ( )

t t d e t t t t
t t

e d t
t

dG X r r X dt X dB X dt
X X

r r dt dB
X

 

 


   

      

ie    2
t t e d t t tdG X r r G dt G dB       

Solution X2.6  

Course reference: The defining properties of standard Brownian motion are stated in Chapter 9, 
which also describes geometric Brownian motion.  Ito’s Lemma is stated in Chapter 10 and on 
page 46 in the Tables.  

(i)(a) Defining properties of standard Brownian motion 

Standard Brownian motion is a continuous-time stochastic process with state space  . [½] 

It has: 

 0 0B    [½] 

 independent increments [½] 

 stationary increments [½] 

 continuous sample paths [½]  

 The distribution of the increments t sB B  ( 0 s t  ) is given by: 

  (0, )t sB B N t s   [½] 

    [Total 3] 

(i)(b) Probability density for general Brownian motion 

The distribution of the increments for the general process is given by: 

 2[ ( ), ( )]t sW W N t s t s     [1] 
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which has probability density function: 

  
2

22

1 { ( )}exp
2 ( )2 ( )

x t s
t st s




  
 

   
, x   [1] 

    [Total 2] 

(ii) Solving the stochastic differential equation 

The question tells us to consider the function ( ) logt tf S S . 

Now: 

 0f
t





   [½] 

 1

t t

f
S S





  [½] 

 
2

2 2
1

t t

f
S S
 




  [½] 

and from the stochastic differential equation for tS  given in the question, the drift function is 

ta S  and the volatility function is tb S . 

Substituting these five terms in Ito’s Lemma from page 46 in the Tables gives: 

  

2 2
2

2

1 1 1½ 0

½

t t t t
t tt

t

df S S dt S dB
S SS

dt dB

  

  

 
    
  

    [1½] 

Alternatively, by Taylor’s theorem (see page 3 in the Tables), the stochastic differential equation 
for this process is: 

 2
2

1 1 1(log ) ( )
2t t t

t t
d S dS dS

S S

 
   

 
 

  

Substituting in for tdS  and simplifying: 

 2
2

1 1(log ) ( ) ( )
2

t t t t t t t
t t

d S S dt S dB S dt S dB
S S

        

Now, from the multiplication grid for increments in the Core Reading: 

 2( ) 0dt   

 0tdB dt    

 2( )tdB dt    
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So: 

 

21
2

21
2

(log )

( )

t t

t

d S dt dB dt

dt dB

  

  

  

     

Integrating this equation between limits of 0s   and s t , we get: 

21
2

0 0 0
log ( )

t t t

s sd S ds dB        [1] 

  21
0 2log log ( )t tS S t B       

  
2( ½ )

0 tt B
tS S e      [1] 

    [Total 5] 

(iii) Probability that the share price will exceed 110 (at the end of the period) 

We need to calculate: 

 6/12 0( 110| 100)P S S   [½] 

Using the result from (ii), this gives: 

 
21

1/2 2( ½ )1/2

0

11 11
10 10

BS
P P e

S
      

     
  

 [1] 

This simplifies to: 

  

2 21 1
1/2 1/22 2

1/2

11 11( ½ ) log 0.1 (0.2 ½ 0.1 ) log
10 10

0.022

P B P B

P B

               
   

    [1] 

Since  1
1/2 2~ 0,B N , this is: 

  0.022 01 0.031 0.512
1 / 2

  
    

 
  or 51.2% [1½] 

    [Total 4] 
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Solution X2.7  

Course reference: The properties of the lognormal model are discussed in Chapter 11. 

(i) Describe the lognormal model 

The continuous-time lognormal model of security prices assumes that log prices form a random 
walk in continuous-time.   [½] 

If tS  denotes the market price of an investment, then the model states that, for T t , the log 
returns are modelled by the following distribution: 

        2log log ,T tS S N T t T t       [1] 

where: 

   is the parameter associated with the drift   

 2  is the parameter associated with the volatility. [½] 
    [Total 2] 
 
(ii) Show that changes in tX  are stationary 

By definition: 

 logt tX S t    [½] 

Thus: 

 2

log ( ) log

log log

[0, ]

t h t t h t

t h t

X X S t h S t

S S h

N h

 





 



     

  

 [1] 

Since the distribution of t h tX X   depends only on  , which is constant, and the time 
interval ,h  it must be stationary. [½] 
    [Total 2] 
(iii) Mean and variance of share price 

Starting with the distribution of the log of the returns: 

        2log log ,T tS S N T t T t       

the share price TS  is lognormally distributed with parameters  ( ) log tT t S    and  2 T t  . [1] 
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From the Tables we have: 

 
      

  

21
2

21
2

exp ( ) log

exp ( )

T t

t

E S T t S T t

S T t T t

 

 

    

   
 [1½] 

and: 

 
          

      

2 2

2 2 2

exp 2 ( ) 2log exp 1

exp 2 ( ) exp 1

T t

t

Var S T t S T t T t

S T t T t T t

  

  

      

     
 [1½] 

 
    [Total 4] 

Solution X2.8  

Course reference: Geometric Brownian motion is the same process as the lognormal model.  The 
properties of the lognormal model and its suitability for modelling share prices are discussed in 
Chapter 11. 

This model is a continuous-time random walk.  Graphs of share prices do appear to have this 
form, with the price changing by a small ‘random’ amount from day to day. [½] 

The RHS contains an tS  factor, which implies that prices changes are proportional to the current 
price.  This is plausible since we would expect price movements to be based on percentage 
changes, not absolute changes.  [½] 

Empirical evidence suggests that the volatility parameter   may not be constant over time, as 
estimates of volatility from past data are critically dependent on the time period chosen for the 
data and how often the estimate is re-parameterised. [1] 

It can also be argued that the drift parameter   may not be constant over time, as it is likely to 
vary with the level of bond yields. [1] 

The underlying Brownian motion has normal increments.  However, studies have shown that the 
distribution of log-share price increments has fatter tails and is more peaked than a normal 
distribution.   [1] 

Brownian motion also assumes continuous sample paths.  However, share prices often exhibit 
sudden jumps both upwards and downwards. [1] 

Brownian motion assumes independent increments.  However the empirical evidence suggests a 
degree of dependence between the increments.  [1] 

In particular, there is some evidence of mean reversion, ie negative serial correlation, in the long 
term, although this is based largely on a small number of market crashes.   [½] 
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In addition, daily movements appear to be subject to “momentum” effects, ie they are positively 
correlated.    [½] 
    [Maximum 6] 

Solution X2.9  

Course reference: Chapter 8 describes the capital asset pricing model (CAPM). 

(i) Beta 

According to the capital asset pricing model: 

 ( )z z mE r E r    [½] 

where:  

 zE  is the expected return on Portfolio Z, ie 7% or 0.07 

 r  is the risk-free rate of return, ie 4% or 0.04 

 mE  is the expected return on the market as a whole, ie 8% or 0.08  

Thus: 

 0.07 0.04 (0.08 0.04)z     

From which: 

 0.75z      [½] 
     [Total 1] 

(ii) Standard deviation 

As both Portfolio Z is efficient and the market includes a risk-free security, the efficient frontier 
(here, the capital market line) is a straight line and the returns on any efficient portfolio are 
perfectly correlated with those of the market.  Hence, 1zm  . [1] 

Recalling the definition of beta: 

 2
zm z m

z
m

  



  [½] 

We can substitute in the relevant values to obtain: 

 
2

1 0.3
0.75

0.3
z 

  

ie 0.225z   or 22.5% pa [½] 
    [Total 2] 
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Alternatively, you can note that, since Z is efficient and the assumptions of CAPM apply, Portfolio Z 
must consist of 25% risk-free asset and 75% market portfolio. 

ie 0.25 0.75Z mR r R   (*) 

  2[ ] 0.75Z mVar R V  

  0.75 0.75 30% 22.5%Z m      pa 

(iii) Systematic and specific risk 

Portfolio Z is efficient.  Consequently it can have no specific risk – this having been diversified 
away.  Hence, the entire standard deviation of 22.5% is attributable entirely to systematic risk.  
(This is immediately apparent from equation (*) above, since the only source of randomness 
is .)mR     [1] 

(iv) Market value of Portfolio Z 

If Portfolio Z makes a single payment of $100 in one period’s time, then its market value must be 
given by: 

 PV(Z)  =  100v @ i = 7% 

ie PV(Z)  =  $93.46  [1] 
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Assignment X3 Solutions 

Markers:  This document sets out one approach to solving each of the questions.  Please give 
credit for other valid approaches. 

Note that some of the numerical answers are sensitive to rounding. 

Solution X3.1  

Course reference: The Greeks are discussed in Chapter 13. 

(i) The Greeks 

 Delta measures the sensitivity of the derivative price to small changes in the price of the 
underlying security S, all else being equal, ie:  

 
f
S


 


 

It is positive for a call option and negative for a put option. [1] 

Gamma measures the curvature or convexity of the relationship between the derivative price and 
the price of the underlying security, all else being equal, ie:  

 
S


 


, 

or: 
2

2
f

S


 


 

It has a positive value for both put and call options. [1] 

Vega measures the sensitivity of the derivative price to small changes in the assumed level of 
volatility    of the underlying security price, all else being equal, ie: 

 f


 



 

Vega is positive for both options. [1] 

Rho measures the sensitivity of the derivative price to small changes in the risk-free rate of 
interest r, all else being equal, ie:   

 f
r

 



 

It is positive for a call option and negative for a put option. [1] 
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Theta measures the rate of change of the derivative price with respect to time, t.  Here t 
measures time since the start of the contract and not the outstanding time to expiry. 

 f
t

 



 

Theta is generally negative for vanilla options. [1] 
    [Total 5] 

NB Theta may be positive for a deeply in-the-money European put option. 

(ii) Estimate the new price of option 

Because delta measures the rate of increase in the option price with changes in the share price, we 
expect that if the share price increases by 50p, then the option price will increase by: 

 50 0.532 26.6p  .   

Using the same logic for all the other Greeks, we see that the change in the option price is: 

 2½df f f dS dS V d dr dt            [2] 

where S,  , r and t are defined as in (i) above. 

The new option price f can be estimated from the original theoretical value, f, using the relationship: 

 f f df     [1] 

Thus, substituting in the relevant values gives: 

 
20.532 50 ½ 0.00578 50 0.91 5 0.33 ( ½) 0.499 1

37.7

df             


 [1] 

So, the new option price is approximately: 

 28.7 + 37.7   =   66.4p   [1] 
    [Total 5] 

Solution X3.2  

Course reference: Put-call parity is described in Chapter 12 and the formula also appears on page 
47 in the Tables.  The Greeks are introduced in Chapter 13. 

(i) Value for   

The put-call parity relationship is given in the Tables on page 47: 

 ( ) ( )r T t q T t
t t tc Ke p S e       

Differentiating once with respect to tS , we obtain: 
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 ( ) ( )q T t q T t
c p e n e          [1] 

(ii) Derive relationships for the other five Greeks 

Starting from the result in (i), we differentiate once again with respect to tS , to obtain: 

 c p    [½] 

Starting from the original put-call parity relationship, we differentiate once with respect to r  to 
obtain: 

 ( )( ) r T t
c pT t Ke      [½] 

Starting from the original put-call parity relationship, we differentiate once with respect to q  to 
obtain: 

 ( )( ) q T t
c p tT t S e       [½] 

Starting from the original put-call parity relationship, we differentiate once with respect to   to 
obtain: 

 c pV V    [½] 

Starting from the original put-call parity relationship, we differentiate once with respect to t  to 
obtain: 

 ( ) ( )r T t q T t
c p trKe qS e        [1] 

    [Total 3] 

(iii) Decide whether the relationship holds 

Using the relationships derived in (ii) we see that: 

 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

r T t q T t
c c c p p t

q T t r T t
p t

p p p

r q T t r T t Ke r q q T t S e

T t T t qS e T t rKe

r q T t

    



  

   

   

        

     

   

 

Therefore the relationship holds. [2] 

Solution X3.3  

Course reference: Valuing derivatives using binomial trees is described in Chapter 14. 

The binomial tree looks as follows, with share prices within the boxes and the option payoffs at 
expiry above the right-hand boxes. 
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100.00

110.00

95.00

121.00

104.50

90.25

0.00

1.50

18.00

  

    [1 for correct tree] 

Given that an up-movement occurs over the first time period, a portfolio of 11  shares and 11  
cash set up a time 1 will replicate the value of the call option at time 2 if: 

 11 11 11 21
rS u e c    

and 11 11 11 22
rS d e c     

Substituting in the relevant numerical values then gives: 

 0.04
11 11121.00 18e     and  0.04

11 11104.50 1.5e    [1] 

Solving these equations simultaneously gives: 

 11 1    and  11 98.961    [1] 

Thus, the value of the replicating portfolio – and hence the call option – at the upper node at time 
1 is given by: 

 11 11 11 1 110 98.961 11.039S       [1] 

Given that a down-movement occurs over the first time period, a portfolio of 12  shares and 12  
cash set up at time 1 will replicate the value of the call option at time 2 if: 

 0.04
12 12104.50 1.5e    

and 0.04
12 1290.25 0e    [1] 

Solving these equations simultaneously gives: 

 12 0.10526    and  12 9.1275    [1] 
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Thus, the value of the replicating portfolio – and hence the call option – at the lower node at time 
1 is given by: 

 12 12 12 0.10526 95 9.1275 0.872S       [1] 

Finally, a portfolio of 01  shares and 01  cash set up a time 0 will replicate the value of the call 
option at time 1 if: 

 0.04
01 01110.00 11.039e    

and 0.04
01 0195.00 0.872e    [1] 

Solving these equations simultaneously gives: 

 01 0.6777   

 01 61.023    [1] 

Thus, the value of the replicating portfolio – and hence the call option – at time 0 is given by: 

 01 01 01 0.6777 100 61.023 6.75S       [1] 
    [Total 10] 

Solution X3.4  

Course reference: Replicating portfolios, the risk-neutral probability measure and the use of one-
period binomial trees are all introduced in Chapter 14. 

(i) Replicating portfolio 

A replicating portfolio is one that reproduces the payoffs of a derivative for all possible outcomes 
of the value of the underlying asset.   [½] 

It is usually constructed out of a suitable combination of the underlying asset and risk-free cash.  
    [½] 

In an arbitrage-free world it must have the same value as the derivative it replicates. [1] 
    [Total 2]  

(ii) Risk-neutral probability measure 

A risk-neutral probability measure is a synthetic set of probabilities under which the expected 
values of the relevant assets accumulate at the risk-free rate of interest, ie at the rate of return 
that would apply if all investors were risk-neutral. [1] 

If the risk-neutral probability measure for the underlying asset is Q  and the risk-free interest rate 
(continuously compounded) is r , then the value at time t  of a derivative with payoff TX  at time 
T  is: 

 ( ) [ | ]r T t
t Q T tV e E X F    
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This can be used to calculate a derivative price in an arbitrage-free world. [1] 
    [Total 2] 

(iii)(a) Derive an equation for the price 

Let’s set up a replicating portfolio at the start of the period consisting of   units of the underlying 
share and   units of cash.  [½] 

Equating the values of the portfolio at the end of the period to the corresponding derivative 
payoffs leads to the equations: 

 
0

0

r
u

r
d

S u e c

S d e c

 

 

 

 
 [1] 

We can solve these equations by subtracting to find  , and by first multiplying the equations by 
d  and u  respectively then subtracting to find  .  This gives: 

 
0( )
u dc c

S u d






  and  

( )
d u

r
uc dc

e u d






 [1] 

The value at the start of the period of the replicating portfolio is 0S  .  So the value of the 
derivative (in an arbitrage-free world) must be: 

 0 0
0( ) ( )( ) ( )
u d d u u d d u

r r
c c uc dc c c uc dc

c S S
S u d u de u d e u d

 
   

     
  

 [1½] 

Note that this can be written in an alternative form involving risk-neutral probabilities: 

 
r r

r
u d

e d u ec e c c
u d u d

         
 

or  (1 )r
u dc e qc q c     where  

re dq
u d





  

(iii)(b) Price of derivative 

 For this derivative the payoffs are: 

 0 0 0( 1)uc S u S S u     

and 0 0 0(1 )dc S d S S d     [1] 

The replicating portfolio consists of   shares, where: 

 0 0

0 0

( 1) (1 ) 2
( ) ( )

u dc c S u S d u d
S u d S u d u d
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and an amount   in cash, where: 

 0 0
0

(1 ) ( 1) 2

( ) ( )
rd u

r r
uc dc uS d dS u u d ud S e

u de u d e u d
             

 

So we find that: 

 0 0 0
2 2 ru d u d udc S S S e

u d u d
                  

 [1] 

Alternatively, using the formula derived in part (iii)(a): 

 0( 1) (1 )
r r

r e d u ec e u d S
u d u d

           
  

(iii)(c) How to synthesise the derivative  

This derivative pays the absolute value of the difference between 1S , the stock price at time 1, 
and the original stock price 0S . 

Consider a portfolio consisting of a call option and a put option, both with exercise price equal 
to 0S .    [1] 

If 1 0S S  the payoff from the call option will be the difference 1 0 1 0S S S S    and the put will 

have zero payoff.    [½] 

If  1 0S S  the payoff from the put option will be the difference 0 1 1 0S S S S    and the call will 

have zero payoff.    [½] 

So this portfolio would reproduce the payoffs. 

    [Total 8] 

Solution X3.5  

Course reference: The Black-Scholes formula is stated in Chapter 15. 

The Black-Scholes formula is given on page 47 of the Tables (it is the Garman-Kohlhagen formula 
with 0q  ) as: 

      1 2
r T tc S d Ke d      

where: 

 
    2

2
1

ln S K r T t
d

T t





  



  and  2 1d d T t    
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Consider 
   

1
ln

½
S K r T t

d T t
T t




 
  


.  As 0  , the second term vanishes. 

The numerator in the first term does not depend on  .  So, as 0  :  

(1) if    ln 0S K r T t    then 1d    [1] 

(2) if    ln 0S K r T t    then the first term 1d     [1] 

(3) if    ln 0S K r T t    then the first term 1 0d   [1] 

The behaviour of 2d  is the same as the behaviour of 1d  in all three cases. [½] 

By taking the exponential of each of the above three conditions and rearranging, we see that they 
can be rewritten as: 

(1) if   0r T tS Ke    then  1 1d   and  2 1d   [1] 

(2) if   0r T tS Ke    then  1 0d   and  2 0d   [1] 

(3) if   0r T tS Ke    then  1 ½d   and  2 ½d   [1] 

So, the Black-Scholes formula      1 2
r T tc S d Ke d      implies that: 

(1) if   0r T tS Ke    then  r T tc S Ke    [½] 

(2) if   0r T tS Ke    then 0c   [½] 

(3) if   0r T tS Ke    then   ½ r T tc S Ke    [½] 

However, given the condition   0r T tS Ke    we can see that in case (3) we actually have 0c 

So it follows that   max ,0r T tc S Ke    as required. [1] 

    [Total 9] 

Solution X3.6  

Course reference: The valuation of derivatives using binomial trees is discussed in detail in 
Chapter 14. 

(i)(a) Replicating portfolio of European call option 

We have two possibilities for the price at time 1: 

 0
1

0

    
    

S u if the price goes up
S

S d if the price goes down
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We can hold an amount   of the stock, and amount   of cash at time 0 with the intention of 
replicating a derivative whose payoff at time 1 is uc  if the stock price goes up and dc  if the stock 
price goes down.  

We equate the value of the portfolio at time 1 with the payoffs on the call option at time 1 and 
solve the simultaneous equations: 

 0
r

uS u e c            

 0
r

dS d e c           [1] 

giving  r d uc u c d
e

u d
   

   
   [½] 

and   
0( )
u dc c

S u d






 [½] 

By the no-arbitrage principle, the value of this portfolio at time 0, 0V , must also be the value of the 
derivative contract at that time.    

Finally, we are actually asked to replicate a European call with strike price of k.  This implies that 

0uc uS k   and 0dc   since we are told that 0 0dS k uS  .  Substituting in our expressions for 
  and   gives: 

 0

0( )
S u k

S u d






  [½] 

and  
 0 0r rS u k d S u k

e e d
u d u d

               
 [½] 

    [Total 3] 

Note that we could have alternatively worked with the explicit expressions for the payoff from the 
start.  In this question it wouldn’t have really mattered; perhaps the maths is slightly easier just 
dealing specifically with the call option, although at least with uc  and dc  you get answers that 
should be familiar from Core Reading.  In addition, if the question had asked later for the 
corresponding expressions for a put, then the method presented here would have saved you a 
considerable amount of time.  It often pays to read all the parts of a question before starting it.   

(i)(b) Price of European call option 

By the no-arbitrage principle, the price of the European call option is given by: 

 0 0V S     [½] 
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Substituting the expressions for   and   from (i)(a) into this gives: 

 
   00

0 0 0 0
0( )

r
r rS u k dS u k e dV S S e e S u k

S u d u d u d
       

                
 [1] 

    [Total 1½] 

(i)(c) Price of European put option using put-call parity  

Put-call parity says that for European calls and puts with the same strike price and date: 

 0 0 0
rp S c ke    [½] 

So: 

ie 

 

0 0 0

0 0

0

r

r
r r

r
r

p c ke S

e de S u k ke S
u d

e S ue
u d



 



  

 
      


 0

rS ud ke kd   ku kd  0
rS ue

 

0

0

r

r
r

S de

e ue S d k
u d



   

 
     

 [1] 

    [Total 1½] 

(i)(d) Price of European call under risk-neutral measure Q 

As in part (i(a)) we could work with the general case using uc  and dc  but it’s quicker to use the 
explicit expressions because 0dc   simplifies matters. 

We want to show that: 

     0 0 0 0|r r
QV S e E C F e q S u k          

where C is the call option payoff at time 1 and q is the required (risk-neutral) probability of an 
upward stock price movement.   [½] 

Now, comparing the pricing formula for the call option in (i)(b) to: 

     0
r r

Qe E C e q S u k     

gives us: 

  
re dq

u d





  [½] 

    [Total 1] 
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(ii) Risk-neutral versus real-world probabilities  

The probability measure Q was constructed in part (ii) so that the value of the derivative at time 0 
was the discounted value, at the continuously compounded risk-free rate, of its expected payoff 
at time 1 using the risk-neutral probabilities q  and 1 q . [1] 

Under the probability measure Q investors are therefore assumed to be risk-neutral, ie they 
demand no extra return from the stock even though it has higher risk (variance) than the cash.  
    [½] 

Under the real-world probability measure P, we would value the same derivative at time 0 as the 
discounted value (using a real-world risk discount rate) of its expected payoff at time 1, using the 
real-world probabilities p  and 1 p . [1] 

The relationship of Q to the real-world probability measure P will depend on the preferences of 
investors.     [½] 

If, as is generally considered to be the case, investors are risk-averse, then the actual real-world 
probability p must be greater than the risk-neutral probability q.  This must be so because the 
actual expected return must be higher than the risk-free rate to compensate them for the risk. [1] 

If the investors are actually risk-neutral in the real world, then p q .   [½] 

While if they are risk-seeking, then p q . [½] 
    [Total 5] 

Solution X3.7  

Course reference: Valuing options using the Black-Scholes pricing formula is described in 
Chapter 15. 

(i)  Put-call parity relationship 

 ( )r T t
t t tc Ke p S     [1] 

(ii) Derive a formula for the value of a put option 

Using put-call parity, we have: 

( )

( ) ( )
1 2( ) ( )

r T t
t t

r T t r T t
t t

p Ke S c

Ke S S d Ke d

 

   

  

       [1] 

This can be simplified to: 

( )
2 1

( )
2 1

(1 ( )) (1 ( ))

( ) ( )

r T t
t t

r T t
t

p Ke d S d

Ke d S d

 

 

   

        [1] 
    [Total 2] 
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Notice that the bottom line answer is in the Tables and so you definitely need to show all your 
working here. 

(iii) How many options can be bought? 

Working in pence, we have: 

 2000tS  , 0.3  , 1750K   

The one-year zero-coupon bond has a current value of £94.18 .  So: 

 0.9418 6%re r    pa [1] 

We can now use this to calculate 1d  and 2d : 

 1

22000 0.3log (0.06 )
1750 2 0.7951

0.3
d

 
   [1] 

 2 1 0.3 0.4951d d    [1] 

So, the price of the put option is: 

 

0.06

0.06

1750 ( 0.4951) 2000 ( 0.7951)

1750 0.3103 2000 0.2133

84.79

tp e

e

p





     

   

  [2] 

For £100, the investor can purchase 117  options for 85 pence each, with 55 pence left over. [1] 
    [Total 6] 

Solution X3.8  

Course reference: The valuation of derivatives using binomial trees is discussed in detail in 
Chapter 14. 

(i) Expected option payoff 

Given the strike price of £10.50, the payoff is £0.50 if the share price goes up, otherwise it is zero. 
So: 

        1 0.6 0.5 0.4 0 £0.30E C  [1] 
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(ii) Replicating portfolio  

If we let   be the number of shares held at time 0 and   be the amount of cash, then for 
replication we require: 

 0.04 1211 0.50e    [½] 

 0.04 129.5 0e    [½] 

Solving these equations gives: 

 1
3 0.333      [½] 

and  0.04 1219.5 3.156
3

e          [½] 

The fair price is therefore: 

 10 £0.18    [1] 
    [Total 3] 

(iii) Number of options to construct risk-free portfolio 

Since one derivative can be replicated by   shares and   cash, as we saw in part (ii), one 

derivative and   shares, or equivalently, 1


  derivatives and one share must replicate the cash, 

ie they will form a risk-free portfolio.  

We therefore need to sell 1 3

  call options for every share owned to construct a risk-free 

portfolio.   [1] 

(iv) Arbitrage opportunity 

The discounted value of the expected payoff is 0.04 120.3 £0.29900e  .   [½] 

This is greater than the fair price found in Part (ii), so we need to sell the options.   [½] 

By part (iii), a portfolio consisting of 1 share and 3  options will be risk-free.   [½] 

This portfolio will cost 10 3 0.29900 £9.103   . [1] 

We borrow this amount in the cash market to have zero initial expenditure.   [½] 

At the end of the month you would owe 0.04 12 9.103 £9.13e    … [½] 

… but have a portfolio worth either: 

 11 3 0.5 £9.50    if the share price goes up [½] 

or  9.50 3 0 £9.50    if the share price goes down.   [½] 
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Note the portfolio is constructed to be risk-free and hence the payoffs must be equal. 

Either way, you make a (risk-free) profit of 9.50 9.13 £0.37   per share. [½] 
    [Maximum 4] 

If your arbitrage portfolio involved selling one call option, the profit would be £0.12 per option.  It 
is also possible to take the profit up-front and have a portfolio that exactly breaks even at the end 
of the month. 

(v) Risk-neutral valuation of option 

The general risk-neutral valuation formula for the price at time t of a derivative that pays X at time 
T is: 

  r T t
t Q tV e E X F       [½] 

where r is the risk-free force of interest and Q is the risk-neutral measure. 

Here the binomial tree is recombining and: 

 
0.04 12 0.95

0.35559
1.1 0.95

re d eq
u d
 

  
 

 [½] 

There are 5 possible share prices at time 4: 

(1) 14.641   

(2) 12.6445  

(3) 10.92025  

(4) 9.431125  

(5) 8.1450625  [Maximum 1] 

These occur with risk-neutral probabilities  4
4

1 iiq q
i

 
 

 
: 

(1) 1 0.015989q    

(2) 2 0.11590q    

(3) 3 0.31505q    

(4) 4 0.380622q    

(5) 5 0.172442q    [Maximum 1] 
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The corresponding payoffs for the derivative are: 

(1)  1 2 14.641 12 5.282X        (exercise and buy 2 shares at £12)  

(2)  2 2 12.6445 12 1.289X         (exercise and buy 2 shares at £12)  

(3) 3 0X      (do not exercise)  

(4) 4 0X      (do not exercise)  

(5)  5 1 9 8.145063 0.854937X         (exercise and sell 1 share at £9)  

    [Maximum 1] 

It follows that the fair price of the derivative is: 

 
5

4 0.04 12
0

1
£0.38i i

i
V e X q 



 
   

 
  [½] 

    [Maximum 4] 

Solution X3.9  

Course references: The risk-neutral valuation of derivatives in continuous time is introduced in 
Chapter 17.  The Greeks are discussed in Chapter 13. 

(i) Risk-neutral pricing formula for the derivative 

The general risk-neutral formula for pricing a derivative at time t T  is: 

 ( )r T t
t Q T tV e E X F       [½] 

In this instance, the payoff function of the derivative is: 

 2( 1)T T T T TX S S S S      

So, the price will be given by: 

 ( ) 2r T t
t Q T T tV e E S S F       [1] 

Given that the share price at maturity can take any value from zero upwards, this can be 
evaluated as: 

(1) ( ) 2

0 0
( ) ( )r T t

t T T t T T T t TV e S f S S dS S f S S dS
 

 
 
  
  
   [1] 

where: 

 ( )T tf S S  is the probability density function for TS  given tS  
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 The assumption of independent increments underlying Brownian motion means we don’t 
need to condition on the full past history of the share price. 

Under the risk-neutral measure Q , the share price follows geometric Brownian motion with drift 
r  and so: 

  2 2log log ½ ( ), ( )T tS N S r T t T t       
 [½] 

So, using the formula for the truncated moments of a lognormal distribution on page 18 in the 
Tables, (with 2k   for the first integral and 1k   for the second integral) (1) above becomes: 

 

 

 

    

2 2

2 2

2

2

2(log ( ½ )( )) ½ 4 ( )
2 2

( )

log ( ½ )( ) ½ ( )
1 1

( ) 2 (2 )( ) ( )
2 2 1 1

2 (

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

t

t

S r T t T t

r T t
t

S r T t T t

r T t r T t r T t
t t

r
t

e U L

V e

e U L

e S e U L S e U L

S e

 

 





     

 

    

    



        
         

           

    )( )
2 2 1 1( ) ( ) ( ) ( )T t

tU L S U L       
 

   [1½] 

Now, also from page 18 in the Tables: 

 
2

2
log( ) log ( ½ )( )

2tS r T t
U T t

T t





    
   


 [¼] 

 
2

2
log(0) log ( ½ )( )

2tS r T t
L T t

T t





   
    


 [¼] 

 
2

1
log( ) log ( ½ )( )tS r T t

U T t
T t





    

   


 [¼] 

 
2

1
log(0) log ( ½ )( )tS r T t

L T t
T t





   

    


 [¼] 

So: 

 2( ) 1U    

 2( ) 0L   

 1( ) 1U    

 1( ) 0L 

   [½] 

w
w
w
.m

as
om

om
si
ng

i.c
om



CM2: Assignment X3 Solutions Page 17 

The Actuarial Education Company  © IFE: 2019 Examinations 

Hence: 

 

   
2

2

2 ( )( )

2 ( )( )

1 0 1 0r T t
t t t

r T t
t t

V S e S

S e S





 

 

     
 

   [1] 
    [Total 7] 

Alternatively, as the lognormal distribution isn’t actually truncated here, you could instead use the 
formula for the (untruncated) moments of the lognormal distribution on page 14 in the Tables, 
with 2r   for the first integral and 1r   for the second integral. So: 

 ( ) 2

0 0

( ) ( )r T t
t T T t T T T t TV e S f S S dS S f S S dS

 
 

 
  
  
    

    

2 2

2 2

2(log ( ½ )( )) ½ 4 ( )

( )

log ( ½ )( ) ½ ( )

t

t

S r T t T t

r T t

S r T t T t

e
e

e

 

 

     

 

    

  
    
      

 [2] 

     
2 ( )( ) 2 (2 )( ) r T tr T t r T t

t te S e S e        
  

     
2( )( )2 r T t

t tS e S    [2] 

(ii)(a) Formula for the delta of the derivative 

Recall that for a derivative with price tf  delta is defined as: 

 t

t

f
S


 


  

So, here: 

 
2( )( )2 1r T t

tS e      [1] 

(ii)(b) Range of values for the current share price for which delta is positive 

 Delta will be positive if: 

 
2( )( )2 1 0r T t

tS e      

 
2( )( )½ r T t

tS e     [½] 

As the term on the right-hand side decreases as T  increases, this indicates that delta is more 
likely to be positive for a derivative of this type with a longer outstanding term. [½] 
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(ii)(c) Derive formula for the gamma of the derivative 

Recall that: 

 
tS


 


  

So for this derivative: 

 
2( )( )2 r T te     [1] 

So, gamma is always positive. [½] 

This reflects the fact that the value of the derivative depends directly upon the square of the 
share price and hence is a convex function of the share price. [½] 
    [Total 4] 

Solution X3.10  

Course references: Self-financing and previsible are defined in Chapter 16.  Ito’s Lemma is stated in 
Chapter 10 and also on page 46 in the Tables.  Note also that the result in (iv)(b) is the Black-
Scholes PDE from Chapter 15 (and page 46 in the Tables). 

(i) Differential equation  

 t tdB rB dt    [1] 

(ii) Self-financing portfolio 

The changes in the value of a self-financing portfolio are due purely to the changes in the prices of 
the constituent assets, and not due to injections or withdrawals of money into or out of the 
portfolio.    [1] 

If a portfolio of shares and cash has value tV , ie t t t t tV S B    then it will be self-financing if and 
only if: 

 t t t t tdV dS dB    [1] 
    [Total 2] 

(iii) Previsible 

A process is previsible if its value at time t can be deduced from the information that is known up 
to but not including time t. [1] 

(iv) Deduce that  ,t t
t

f t S
S







 

Starting from  ,t t t t tS B f t S    we get: 

(1)    ,t t t t td S B df t S    [½] 
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Assuming the portfolio is self-financing, the left-hand side of (1) must be t t t tdS dB  . [½] 

Given that  t t tdS S dt dZ    and t tdB rB dt , this is equal to:   

  t t t t tS dt dZ rB dt      [½] 

Applying Ito’s Lemma to the right-hand side of (1) we get: 

  
2

2 21
2 2, t t t t t

t tt

f f f fdf t S S S dt S dZ
t S SS

  
    

    
    

 [1] 

Alternatively, using a Taylor Series expansion, the right-hand side of (1) is equal to: 

    
2

21
2 2, t t t

t t

f f fdf t S dt dS dS
t S S
  

  
  

 

Again using  t t tdS S dt dZ    and t tdB rB dt , and using the 2-by-2 multiplication table for 

increments given in the Core Reading to note that  2 2 2
t tdS S dt , this can be written as: 

  
2

2 21
2 2, t t t t t

t tt

f f f fdf t S S S dt S dZ
t S SS

  
    

    
    

  

So, equating the two sides of (1) gives: 

    
2

2 21
2 2t t t t t t t t

t t

f f fS dt dZ rB dt dt S dt dZ S dt
t S S

        
     

  
 [½] 

Comparing the tdZ  terms we must have: 

 t t t
t

fS S
S

   



 [½] 

and therefore:   

  ,t t
t

f t S
S

 



  [½] 

 
    [Total 4] 
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Assignment X4 Solutions 

Markers:  This document sets out one approach to solving each of the questions.  Please give 
credit for other valid approaches. 

Note that some of the numerical answers are sensitive to rounding. 

Solution X4.1  

Course reference: The Merton model for valuing risky corporate debt is described in Chapter 19. 

(i) Price of risk-free zero-coupon bond 

 Price = 5 0.05100 $77.88e    [1] 

(ii) Value of company’s assets and ZCBs 

Adding together the value of the company shares and the risk-free ZCBs gives a starting value for 
the value of its assets of: 

 118.46 77.88 $196.34mtF     [½] 

Recall the Merton model for the current value of the shares: 

 ( )
1 2( ) ( )r T t

t tE F d L e d     ,   

where 
  2

1 2 1

log ½
,

tF r T t
Ld d d T t

T t






     
    


 [½] 

So, substituting the starting value of 196.34 for tF  into this formula, together with: 

 the outstanding term of the ZCBs, 5T t   

 the volatility of the company’s assets, 0.25F   

 the risk-free force of interest, 0.05r   

 the nominal value of the ZCBs, 100L   

gives: 

 2

1

196.34log 0.05 ½ 0.25 5
100 1.9336

0.25 5
d

      
    [½] 

2 1.9336 0.25 5 1.3746d     [½] 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 2 CM2: Assignment X4 Solutions  

© IFE: 2019 Examinations The Actuarial Education Company 

and hence: 

0.05 5

0.97342 0.91537

196.34 (1.9336) 100 (1.3746) $119.832mtE e         [½] 

This is (about 1.37) greater than the observed market capitalisation and delta (the change in the 
share price with respect to the total asset value) is positive.  So, try a lower estimate for the total 
asset value.   [½] 

Note also that as the option represented by the shares is very “in-the-money” (as tF  is much 
greater than 100L  ), delta is close to one.   

So, in order to reduce the market capitalisation by about 1.37, we need to try a value of tF  a bit 
more than 1.37 less than 196.34.  So, we next try 194.90tF  .  This gives: 

 2

1

194.90log 0.05 ½ 0.25 5
100 1.9205

0.25 5
d

      
    

2 1.9205 0.25 5 1.3614d     

and hence: 

0.05 5

0.97260 0.91331

194.90 (1.9205) 100 (1.3614) $118.431mtE e         

This is just below the market capitalisation of $118.46 (and delta is close to one), so let’s try an 
asset value that is slightly higher, eg 194.95tF  .  This gives: 

 2

1

194.95log 0.05 ½ 0.25 5
100 1.9209

0.25 5
d

      
    

  2 1.9209 0.25 5 1.3619d  

and hence: 

0.05 5

0.97263 0.91338

194.95 (1.9209) 100 (1.3619) $118.479mtE e         

Finally, linear interpolation between 194.90 and 194.95 gives: 

 118.46 118.431194.90 0.05 $194.93m
118.479 118.431tF 

   


  

    [2½ for correct value for tF  via appropriate interpolation] 
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Alternatively, trying 195.00tF   gives: 

 2

1

195.00log 0.05 ½ 0.25 5
100 1.9214

0.25 5
d

      
    

2 1.9214 0.25 5 1.3624d     

and hence: 

0.05 5

0.97266 0.91346

195.00 (1.9214) 100 (1.3624) $118.528mtE e         

So, linear interpolation between 194.90 and 195.00 gives: 

 118.46 118.431194.90 0.10 $194.93m
118.528 118.431tF 

   


  

    [2½ for correct value for tF  via appropriate interpolation] 

Hence, the value of the company’s ZCBs must be: 

 194.93 118.46 $76.47mtB     [½] 
    [Maximum 5] 

(iii)(a) Delta of the ZCBs 

If the underlying asset pays no dividends then, according to the Black-Scholes formula: 

 1( )call d     [½] 

In the Merton model: 

 t t tF E B    [½] 

Differentiating this equation partially with respect to tF  gives: 

 1 E B     

ie 1B E      [½] 

So, recalling that the Merton model suggests that the company’s shares are effectively a 
European call option on its underlying assets, we have: 

  11 ( )B d     [½] 
    [Total 2] 

(iii)(b) Numerical value of delta 

 11 ( )B d    
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So, using 1( ) 0.97262d   from part (ii) we have: 

 1 0.97262 0.02738B     [½] 

Markers: Please accept any value for B  between: 

 1 0.9726 0.0274B     

and 1 0.9727 0.0273B     

Estimated fall in the value of the ZCBs 

If the value of the company’s assets falls by $10 million, the value of the ZCBs will therefore fall by 
approximately: 

 10 10 0.02738 $0.2738mB     [1] 

to: 

    76.47 0.2738 $76.196mtB  [½] 
    [Total 2] 

(iii)(c) Reason for discrepancy between estimate and actual value 

The difference between the estimated value and the actual value stems from the fact that delta is 
not constant but varies with the change in the value of the company’s assets.   [1] 

In other words, the difference arises because gamma is non-zero.  

Alternatively, the values may differ because the values of one or more of the other parameters 
(eg the volatility) may have changed. [1] 
    [Maximum 1] 

In fact, partially differentiating the formula for delta gives: 

 
2

1
2

( )
0t

B
tt

F d
F T tE




    


 

which tells us that delta decreases as the value of the company’s assets increases and conversely 
that it increases with a fall in the value of the company’s assets.  So, in this instance, assuming 
delta is constant means that the fall in the value of the ZCBs is under-estimated.  Hence, the 
estimated ZCB value is greater than the actual value. 
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Solution X4.2  

Course reference: Multiple state models of credit risk are discussed in Chapter 19.  Note, however, 
that this is a discrete-time model in which changes only occur once a year.  So we need to think of 
this as a Markov chain, rather than as a jump process (like the Jarrow-Lando-Turnbull model). 

(i) Transition probabilities 

For time 1t  , we can infer the probabilities directly from the diagram: 

 (0,1) 1 0.2 0.8FFp    ,  (0,1) 0FHp   [½] 

For the later times, we can use the fact that the t -step transition probabilities are the entries in 
the matrix tP , where P  is the one-step transition probability matrix, which is: 

 
0.8 0 0.2
0.1 0.9 0
0 0.1 0.9

F H N
F

P
H
N

 
  

 
  

 [½] 

We find that: 

 2
0.8 0 0.2 0.8 0 0.2 0.64 0.02 0.34
0.1 0.9 0 0.1 0.9 0 0.17 0.81 0.02
0 0.1 0.9 0 0.1 0.9 0.01 0.18 0.81

P
     
           
          

 [½] 

So: (0,2) 0.64FFp  ,  (0,2) 0.02FHp   [½] 

An alternative method is to add up the probabilities for each possible path. 

For time 3: 

 3 2
0.64 0.02 0.34 0.8 0 0.2 0.514 0.052 0.434
0.17 0.81 0.02 0.1 0.9 0 0.217 0.731 0.052
0.01 0.18 0.81 0 0.1 0.9 0.026 0.243 0.731

P P P
     
            
          

 [½] 

So: (0,3) 0.514FFp  ,  (0,3) 0.052FHp   [½] 
    [Total 3] 

(ii)(a) Calculate the present value 

The payments due from the bond in State F are £10 at the end of years 1 and 2, and £110 at the 
end of year 3. 

The payments due from the bond in State H are £5 at the end of years 1 and 2, and £55 at the end 
of year 3. 

The payments due from the bond in State N are £0 at the end of each year. 
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Hence, using the probabilities calculated in part (i), the risk-neutral expected amounts of the 
payments are: 

Time 1: 10 (0,1) 5 (0,1) 10 0.8 5 0 8FF FHp p       [½] 

Time 2: 10 (0,2) 5 (0,2) 10 0.64 5 0.02 6.5FF FHp p       [½] 

Time 3: 110 (0,3) 55 (0,3) 110 0.514 55 0.052 59.4FF FHp p       [½] 

We can calculate the risk-neutral expected present value by discounting these payments using the 
yields on the government bonds (which can be considered to be default-free).  This gives: 

 
2 3

8 6.5 59.4 64.83
1.05 1.05 1.05

    [½] 

(ii)(b) Comment 

The risk-neutral present value calculated in part (ii)(a) is the fair value of the bonds (allowing for 
the possibility of default). [½] 

So, if the bank is considering purchasing the bonds at par (ie at £100), it will be paying far too 
much (according to the model). [½] 
    [Total 3] 

(iii) Calculate the credit spread 

We first need to find the rate of return that the bank will earn on the bond if the company makes 
all the payments in full.  This is found from the equation: 

 
2 3

10 10 110
95.2

1 (1 ) (1 )i i i
  

  
 [1] 

By trial and improvement, we find that the solution is 12%. [1] 

So the credit spread is the difference between this and the yield on a corresponding default-free 
bond, ie 12% 5% 7%  . [1] 
    [Total 3] 
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Solution X4.3  

Course reference: The Vasicek model is introduced in Chapter 18. 

(i)(a) Derive an equation for dUt 

Starting with Taylor’s theorem: 

  
2

2
2

t t t
t t t

t t

U U U
dU dt dr dr

t r r

  
  

  
 [½] 

Since at
t tU e r : 

 
2

2 0at att t t
t

t t

U U U
ae r e

t r r

  
  

  
 [½] 

Substituting these values, and the expression for tdr , into Taylor’s theorem gives: 

 

  at at
t t t t

at at
t

dU ae r dt e a b r dt dB

abe dt e dB





   

   [1] 

Note that this approach is equivalent to applying the “product rule”.  (It is not obvious that this is 
allowed in stochastic calculus, and indeed it isn’t in general.  However, it is legitimate to use it in 
this situation, where one of the factors in the product is deterministic). 

Alternatively, if we use Ito’s Lemma, the three partial derivatives are the same as above and the 
drift and volatility functions from the stochastic differential equation for tr  are ( )ta b r  and   
respectively.  So, substituting these five items into Ito’s Lemma from page 46 in the Tables gives: 

 

  2½ 0at at at
t t t t

at at
t

dU a b r e ae r dt e dB

abe dt e dB

 



        

    

(i)(b) Solve the equation 

We integrate both sides from 0 to t : 

0
0 0

t t
as as

t sU U abe ds e dB     [1] 

 0
0

1
t

at as
t sU U b e e dB       [1] 
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(i)(c) Show that 

Expressing the previous expression for tU  in terms of tr , we have: 

 

   

0
0

0
0

1
t

at at as
t s

t
a s tat

t s

e r r b e e dB

r b e r b e dB



 

   

    



  [1] 

    [Total 5] 

(ii) Probability distribution of rt 

  0,sdB N ds  

      220,a s t a s t
se dB N e ds    

     22

0 0
0,

t t
a s t a s t

se dB N e ds   
 
 
 

   [1] 

In the last line here just treat the integral as a sum, and therefore use the standard results for 
adding up independent normal random variables, ie their mean and variance just add. 

You can then evaluate this last integral, and you need to take the other non-random terms into 
account, which just change the mean, ie shift the distribution. 

The distribution of tr  is given by: 

        
2

22 2
0 0

0
, , 1

2

t
a s tat at at

tr N b e r b e ds N b e r b e
a

   
   
            

  [2] 

As t  , 2 0ate  , so we get: 

 
2

,
2tr N b

a
 

  
 

   [1] 

    [Total 4] 
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(iii) Derive the conditional expectation 

We have: 

 

   

   

0
0

0
0

t
a u tat

t s u s

t
a u tat

u s

E r F E b e r b e dB F

b e r b E e dB F









 
          

 
    
  



  [1] 

The integral in the last expression is an Ito integral, which suggests that it might be a martingale.  
In fact, it won’t be a martingale itself because it involves the variable t in the integrand.  However, 

if the factor ate  is removed, then the remaining part will be a martingale.  If you didn’t spot this, 
you could still continue as follows. 

      
0

0

s t
a u t a u tat

t s u s u s
s

E r F b e r b E e dB F E e dB F  
   

                 
   [1] 

What we’ve done here, is to split the integral up into two parts.  In the first part, from 0 to s, the 
random increments are all known, since we are conditioning on sF .  We can therefore treat that 
integral as a constant and take it outside the expectation.  In the second integral, from s to t, the 
increments are all independent of the past (ie the period before s) and so the conditioning can be 
dropped.  This leaves the expectation of such as integral, which is always zero, since the 
increments udB  themselves have zero mean. 

    
0

0

s
a u tat

t s uE r F b e r b e dB          [1] 

We can now relate this to sr  which we know from (i)(c): 

      
0

0

s
a t s a u sat

t s uE r F b e r b e e dB           [1] 

using the result from part (i)(c) with s replaced by u and t replaced by s. 

 

     

    

0 0

1

a s tat as
t s s

a s t a s t
s

E r F b e r b e r b r b e

b e e r

 

 

            

  

    [1] 

    [Total 5] 
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Solution X4.4  

Course reference: The Vasicek model is introduced in Chapter 18. 

(i) The Vasicek model and its statistical properties 

This is a model used for modelling the short-rate of interest ( )r t . [½] 

It assumes that ( )r t  has the dynamics of an Ito process (in fact, an Ornstein-Uhlenbeck process) 
under the risk-neutral probability measure Q . [1] 

The Vasicek model assumes the model ( ) [ ( )] ( )dr t r t dt dW t      , where ( )W t  is standard 
Brownian motion.  [1] 

The movements in the interest rate are therefore normally distributed and the parameter   
controls the volatility.  [½] 

( )r t  can take negative values. [½] 

The parameter   is chosen to be positive, so that ( )r t  is mean-reverting to the constant value .
    [½] 
    [Total 4] 

(ii) Condition for a humped curve 

If the graph is humped, there will be a local maximum for some positive value of  . 

Let ( ) ( , )f f t T  , so that the function given is: 

 
2

( ) (1 ) (1 )

( )

t

t

f r e r e k e e

r r r k e ke

   

 

    


 
 

    

    
 

Differentiating with respect to  : 

 

2( ) ( ) 2

[ ( ) 2 ]

t

t

f r r k e k e

r r k ke e

 

 

  



 


 


     

      [2] 

For this to equal zero, the expression in square brackets must also equal zero: 

ie 
2

tr r k
e

k
  

  [1] 
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This means that there is at most one stationary point.  Now, since 0     and 0  , then 

e   is in the range (0,1) .  So there will be a hump if: 

 0 1
2

tr r k
k
 

   [1] 

or 0 2tr r k k     

( k  must be positive – otherwise it would be a “dip”, rather than a hump.) 

If we subtract k ’s, we see that this condition is equivalent to: 

 tk r r k     

ie tk r r    [1] 

    [Total 5] 

(iii) Advantages and limitations 

Advantages 

The mean-reverting property is consistent with real-world observations. [½] 

The model is mathematically tractable. [½] 

It provides an arbitrage-free model of short-term interest rates. [½] 

It allows a wide range of possible yield curve shapes (upward-sloping, downward-sloping, 
humped) depending on the parameter values chosen. [½] 

Limitations 

The model has the disadvantage that it allows tr  to take negative values, which is not common in 
the real world.   [½] 

The model assumes a constant volatility, whereas the actual volatility of short-term interest rates 
appears to vary through time. [½] 

It can be difficult to calibrate the model to past date and to the current yield curve as there are 
only three parameters.  [½] 

Since the model incorporates only one source of randomness: 

 it is not flexible enough to price a wide range of derivatives, eg those whose payoffs 
depend on more than one interest rate [½] 

 it produces perfectly correlated movements in interest rates and hence in zero-coupon 
bond prices.  [½] 

    [Maximum 4] 
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Solution X4.5  

The premium is:  

 (1 ) ( ) 1.2 ( ) 1.2 ¼ 60 18c E S E X          [½] 

Hence: 

 (2) 100 2 18 (2) 136 (2)U S S       [½] 

So the probability of ruin is: 

 [ (2) 0] [136 (2) 0] [ (2) 136]P U P S P S       [½] 

Considering [ (2) 136]P S  , remembering that (2) ~ (2 ¼)N Poi  , we have: 

Number of claims Amount of claim(s) Probability 

0 claims 0 0.5( ) 0.60653e   

1 claim 
50 0.5(0.5 ) 0.8 0.24261e    

100 0.5(0.5 ) 0.2 0.06065e    

2 claims 50, 50 
2 0.5 20.5

2( ) 0.8 0.04852e    

     
    [½ for each probability = 2] 

Hence: 

 [ (2) 136] 0.9583 [ (2) 0] 0.0417P S P U      [½] 
    [Total 4] 

Solution X4.6  

(i)(a) Surplus 

The surplus process ( )U t  is given by: 

 ( ) ( )U t u ct S t    

where c , the rate of premium income per unit time, is (1 ) [ ]c E X    and ( )S t , the aggregate 
claim amount, is 1 2 ( )( ) N tS t X X X    . [1] 

(i)(b) Probability of ruin 

The probability of ruin is given by: 

  ( ) ( ) 0, 0u P U t t     [1] 
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The diagram showing a ruin event is as follows: 

u

Ruin

time

Surplus

 [1] 

(i)(c) State probability of ultimate ruin 

 ( ) 1u    [1] 
    [Total 4] 

(ii) Change of currency 

Let the surplus process under the new currency be ( )U t .  A surplus of 100 in the old currency is 
the same as a surplus of 250 in the new currency.  So ( ) 2.5 ( )U t U t .  The probability of ruin, 
( ),u  will be the same under the new currency since: 

      ( ) 0 2.5 ( ) 0 ( ) 0P U t P U t P U t      [2] 

Solution X4.7  

Each incremental entry, ijC , in the run-off triangle can be expressed in general terms as: 

 ij j i i j ijC r s x e   [1] 

where: 

 jr  is the development factor for Development Year j , representing the proportion of 

claim payments in year j .  Each jr  is independent of the Accident Year i . [1] 

 is  is a parameter for Accident Year i  representing exposure (eg number of claims or 
claim amount in respect of Accident Year i). [1] 

 i jx   is a parameter varying by calendar year (eg a measure of inflation). [½] 

 ije  is an error term. [½] 

    [Total 4] 
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Solution X4.8  

(i)(a) Adjustment coefficient equation 

The adjustment coefficient is the unique positive root, R , of the equation: 

 ( )Xcr M r    equation (1) [½] 

We have ( 100) 1P X   , hence: 

 100( ) 100 and ( ) t
XE X M t e   [½] 

(1 ) ( ) 120c E X       [½] 

Substituting these into equation (1) gives: 

 100 100120 1 120R RR e R e        [½] 

(i)(b) Adjustment coefficient 

Using the series expansion from Page 2 of the Tables: 

 
2 3(100 ) (100 )

2! 3!1 120 1 100 R RR R     
 
  [½] 

  500,000 2
30 20 5,000R R R     [½] 

Solving this gives 0, 0.00357, 0.0336R   . [½] 

Since the adjustment coefficient is the positive root, 0.00357R  . [½] 
    [Total 4] 

(ii) Minimum initial capital 

Using Lundberg’s inequality: 

 0.05RUe   [1] 

Using the value of R  from Part (i)(b): 

 ln0.05ln0.05 ln0.05 838
0.00357

RU RU U          [1] 

    [Total 2] 
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Solution X4.9  

Adjusting the incremental data for past inflation (ie change the figures to mid-2012 money terms): 

Claim payments in mid-
2012 money terms 

(£’000) 

Development year 

0 1 2 

Accident 
year 

2010 
830 1.02 1.025 

867.765 
940 1.025  

963.5 
150 

2011 
850 1.025  

871.25 
920  

2012 1,120   

     
    [1 mark for top left, ½ mark for other two bold entries = total 2] 

Next, we accumulate, find the ratios and use the basic chain ladder to project the values: 

                          ×2.083084          ×1.081911 

Claim payments in mid-
2012 money terms 

(£’000) 

Development year 

0 1 2 

Accident 
year 

2010 867.765 1,831.265 1,981.265 
2011 871.25 1,791.25 1,937.97 
2012 1,120 2,333.05 2,524.16 

  
 [1 mark for 1st ratio, ½ mark for 2nd ratio, ½ mark for each bold entry  total 3 ] 

Finally, we need incremental data again, so we can adjust for future inflation (ie calculate the 
actual money to be paid in each future year): 

Actual money paid 
(£’000) 

Development year 

0 1 2 

Accident 
year 

2010    

2011   
146.72 1.03  

151.12 

2012  
1,213.05 1.03  

1,249.44 

2191.11 1.03  
202.75 

    
    [1 mark for bottom right, ½ mark for other two bold entries = total 2] 

So the estimated total future amount for outstanding claims is: 

 151.12 1,249.44 202.75 1,603.31 £1,603,000     [1] 
    [Total 8] 
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Rounding will affect the accuracy of students’ answers.  Our general guidelines are to round the 
final figure to the same degree of accuracy as the figures given in the question but to keep several 
more significant figures throughout the workings.  In this case the final answer should be correct 
to at least 3 SF and the workings correct to at least 4 SF.  For reference, our workings are based on 
non-rounded figures, ie storing non-rounded figures in the calculator memory. 

Solution X4.10  

The development factors are: 

 DY 1 DY 2  2,101 1.09256
1,923

  [1] 

 DY 0 DY 1  1,923 2,140 1.30308
1,417 1,701





 [1] 

The initial estimate of the ultimate loss incurred for Policy Year 2012 is given by: 

 (ultimate loss ratio) (earned premium) 0.92 £3,073 £2,827.16     [1] 

Next we calculate the emerging liability for Policy Year 2012: 

 

1 1(intial ultimate loss) (1 ) £2,827.16 1
1.09256 1.30308

£841.37

f
       

  [1] 

In the formula above, f  is the cumulative development factor (ie the product of all the 
development factors from the last known payment to the end). 

So the revised estimate of the ultimate loss incurred for policies written in 2012 is: 

 £1,582 £841.37 £2,423.37   [1] 

Alternatively, we can calculate the expected claims incurred to date as 
1£2,827.16 £1,985.79

1.09256 1.30308
 


.  We have actually incurred £1,582.  The actual is less 

than the expected figure by £403.79.  Adjusting the initial estimate of the ultimate loss incurred by 
this gives a revised estimate of the ultimate loss incurred of £2,827.16 £403.79 £2,423.37  . 

Since all our figures are in 000’s, we have £2,423,370.  Now the figures given in the table are 
claims incurred (rather than claims paid).  So we need to use the fact that for policy year 2012 we 
have paid £441,000.  Therefore, the amount left to pay is: 

 £2,423,370 £441,000 £1,982,000   (4 SF) [1] 
    [Total 6] 
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Solution X4.11  

(i) ACPC 

First divide each number in the first table by the corresponding entry in the second table to obtain 
the average cost incurred per claim reported: 

Average cost per claim  
(£’000) 

Development year 

0 1 2 

Accident 
year 

2010 
252 56   

4.5 
375 74   

5.0676 
438 87   

5.0345 

2011 
230 49   
4.6939 

343 65   
5.2769 

 

2012 
208 44   

4.7273 
  

     
    [1] 

Then calculate the grossing-up factors for the average cost incurred per claim reported: 

Average cost per claim 
(£’000) 

Development year 

0 1 2 

Accident 
year 

2010 
4.5 

89.384% 
5.0676 

100.657% 
5.0345 
100% 

2011 
4.6939 

89.536% 
5.2769 

100.657% 
5.2769 1.00657  

5.2425 

2012 
4.7273 

89.460% 
 

4.7273 0.89460  
5.2843 

     
    [½ mark for each of the shaded figures = total 2] 

Next calculate the grossing-up factors for the number of reported claims: 

Number of reported 
claims 

Development year 

0 1 2 

Accident 
year 

2010 
56 

64.368% 
74 

85.057% 
87 

100% 

2011 
49 

64.120% 
65 

85.057% 
65 0.85057  

76.419 

2012 
44 

64.244% 
 

44 0.64244  
68.489 

     
    [½ mark for each of the shaded figures = total 2] 
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The projected ultimate incurred loss for each accident year is then obtained by multiplying the 
ultimate figures for the average cost per claim and the number of reported claims. 

Accident Year 
ACPC 

(£’000) 
Number of 

reported claims 
Projected incurred 

claims (£’000) 

2010 5.0345 87 438 

2011 5.2425 76.419 400.6 

2012 5.2843 68.489 361.9 

 Total 1,201 (4 SF) 

    [1] 

The total claims paid is £950,000.  So the estimated outstanding claims reserve is approximately: 

 £1,201,000 £950,000 £251,000   [1] 
    [Total 7] 

(ii) Assumptions 

 The 2010 accident year is fully run-off. 

 For each origin year, the numbers of claims reported in each development year are 
constant proportions of the total number of claims reported from that accident year. 

 For each origin year, the average claim amounts incurred in each development year are 
constant proportions of the total average claim amount incurred from that accident year. 

    [Total 2: subtract 1 mark per error or omission] 

Solution X4.12  

(i) Minimum value of  

The net premium is given by: 

 

(1 ) ( ) (1 ) ( )

(1 ) ( ) (1 ) ( )

net Rc E S E S

E X E Z

 

   

   

     [½] 

 

1.2 100 1.3 100(1 )

130 10

  

 

    

   [½] 

The expected net claims received by the insurer are given by: 

 ( ) ( ) ( ) 100IE S E Y E X      [½] 
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Hence: 

 1
3130 10 100 30 10           [½] 

    [Total 2] 

(ii) Adjustment coefficient 

The adjustment coefficient is the unique positive root, R , of the equation: 

 ( )net Yc R M R    equation (1) [½] 

From Part (i)(a) we have 130 10netc    .  Also: 

 1( ) [ ] [ ] ( ) (1 100 )RY R X
Y XM R E e E e M R R         [1] 

Substituting into equation (1) gives: 

 1(130 10 ) (1 100 )R R          [1] 

Solving this: 

 

1

2 2 2

2 2 2

2

2

1 (130 10) (1 100 )

1 (1 130 10 )(1 100 )

1 1 100 130 13,000 10 1,000

0 30 13,000 10 1,000

0 10 (3 1,300 1 100 )

1 30 or 
100 1,300

R R

R R R

R R R R R

R R R R

R R R

R

 

 

   

  

  


 

   

    

      

    

    


 


 [1] 

Since R is the unique positive root, we have 2
1 3

100 1,300
R 

 



 .  [½] 

    [Total 4] 

(iii) Maximum value of the adjustment coefficient 

In order to maximise R  we need to differentiate the above equation with respect to  .  Using 
the quotient rule, we get: 

 
2

2 2
(100 1,300 )( 3) (1 3 )(100 2,600 )

(100 1,300 )

dR
d

   
  

    



  [1] 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 20 CM2: Assignment X4 Solutions  

© IFE: 2019 Examinations The Actuarial Education Company 

 

2 2

2 2

2

2 2

300 3,900 100 2,600 300 7,800

(100 1,300 )

2,600 3,900 100

(100 1,300 )

    
 

 
 

     




 



 [1] 

Setting this equal to zero, we get: 

 
2

2 26 26 4 3939 26 1 0 0.6257 or 0.0410
2 39

     
     


 [1] 

But from (i) we know that 1
3  , so we have 0.6257  .  [½] 

Markers please note that students can also substitute the given value of   in to show that the 
derivative is zero. 

Substituting this value back into the equation in Part (ii), we get 0.0019649R  . [½] 
     [Total 4] 
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