Mount Kenya | .25, University
R LB S

BBIT

BBIT 3206 : EVENT DRIVEN PROGRAMMING

AUTHOR : Njuguna Patrick
Phone:0721238570
email : rpwnjuguna@gmail.com

1|Page

| Course content o

INTRODUCTION

The Visual Basic 6 environment

Defining terms

Creating a Visual Basic Project

Practice project - Building a Football Scoreboard

APPLICATION DEVELOPMENT

Improving the VB application
Using a step-by-step approach
Writing a VB procedure
Calling procedures

BUILDING BLOCK OF VB 6

Using the Visual Basic 6 code editor

Adhering to programming standards

Data types, variables and constants in Visual Basic

Using operators

Control structures - IF...THEN, Select Case, DO...LOOP, FOR...NEXT
Practice assignment - Upgrading the Scoreboard

DESIGNING VB APPLICATION

Designing the Visual Basic Application
Working with users

Guiding principles

Choosing a Visual Basic interface style

DEVELOPING USER INTERFACE

o Defining the Visual Basic Form
e Standard controls: Picture, Frame, CommandButton, Label, TextBox, CheckBox, etc.
Visual Basic practice assignment: Creating a Payroll Form

Arrays

More controls: ListBox, ComboBox

Properties and Methods of objects in Visual Basic

Building a file search application: DriveListBox, DirListBox, FileListBox
Building a Menu

e Debugging Visual Basic code

2|Page

http://www.profsr.com/vb/vbless02.htm
http://www.profsr.com/vb/vbless02.htm
http://www.profsr.com/vb/vbless04.htm
http://www.profsr.com/vb/vbless04.htm

e Error trapping

ENHANCING VB APPLICATION WITH CONTROLS

Manipulating text - string functions

Visual Basic functions for dates, numbers

Using the Windows Clipboard and Screen objects
Creating Copy, Paste, Cut, Delete functions

Pictures, Graphics and Drawing controls in Visual Basic
Multimedia - incorporating sounds and pictures
Building a CD player in code

FILE ACCESS

Working with Visual Basic files

Writing and reading a Sequential-access file
Sample project: the Address Book

Creating a sequential output form

Creating and using a Random-access file

DATABASE PROGRAMMING

Creating a Microsoft Access database - refer to SQL tutorial

The Project Management example

The Data control

Visual Basic Bound controls - TextBox controls linked to database
Validating data - ensuring database integrity

Finding a specific record in the database

Using multiple tables from the database

Creating multiple data controls

Using Data Bound List Controls

Using VISDATA - the Visual Basic Data Manager

3|Page

http://www.profsr.com/vb/vbless07.htm
http://www.profsr.com/vb/vbless07.htm
http://www.profsr.com/vb/vbless08.htm
http://www.profsr.com/vb/vbless08.htm
http://www.profsr.com/vb/vbless09.htm
http://www.profsr.com/vb/vbless09.htm

Chapter 1: INTRODUCTION

Learning outcome.

At the end of this topic learner should be able to:
e Use basic terms in application development
e Understand visual basic 6.0 development environment

e Develop a basic application

1.1 Defining basic terms
Application

An application is a collection of objects that work together to accomplish something useful. In Visual
Basic(VB) the application is called a Project. A Project could be a the management of student records,
banking application, Video store, the calculation of mortgages, a booking service or the Payroll system
for employees etc.

Object

An object is a piece of software that has properties and functions that can be manipulated. Whew! You're
here so, you must be somewhat familiar with the Windows environment. A window is an object. It has
properties: size, color, position on the screen, etc. (The purists among you may want to talk about a class
rather than an object but, at this point we just want to keep it simple, and the underlying concept is the
same). The window has functions, also called methods, that can be manipulated: change the size, move it
around, open it and close it. You do not have to write code to resize a window - you just click and drag.
But somebody had to write code at some point. Fortunately for us, when they did they put it all in a nice
little package and called it a window object. Now, whenever you need a window in your Project you can
make a copy of the window object, change its properties for color or size very easily, and paste it where
you want it. Then you can use its built-in methods to open it, close it when you want or resize it whenever
necessary. When you create an application using objects and combining them to produce results, you are
working in an object-oriented environment.

Event-driven

To produce an application in COBOL, a procedural language, you write COBOL source programs, you
compile them into machine code and then you run them via a control interface such as JCL. A program
can contain 1000's of lines of source code and could run for hours with no human intervention. In fact, in
large installations, a jobstream can consist of a dozen programs, all automatically accepting input from
the previous program and producing output for the next. The programmer can be blissfully unaware that
the program has run unless something catastrophic happens.

4|Page

In a VB project, the processes that occur have to be associated with events. An event is somethitig that
happens - the user clicks on a button, a form is opened, the result of a calculation is too largeSThe
operation is event-driven because everything that executes does so as the result of some kind of event.
The role of the programmer is to anticipate the events and to write the code that will be executed when the
event occurs. A VB application is interactive in the sense that the user is constantly interacting with the
program. The user inputs a Customer Id, the program checks the Id in the database and immediately
brings up the customer’s file or displays a message that the particular Id is invalid.

Project description

We want to create a Scoreboard for a football game (there it is already!) between the Giants and the
Redskins. To begin with the simplest task we will only count the touchdowns and display appropriate
messages.

Please note: although we will create a complete functional Project with controls and code and so on, the
purpose of this exercise is to show what can be done. In the following lessons we will be explaining
scripts and the use of controls in a lot more detail. If you study this example you should be able to relate it
to what you already know of programming and judge whether this tutorial will be easy or hard for you to
do.

1.2 Creating the Project

First thing to do is to create a Directory where you will store all your VB Projects. Call it VBApps, for
example. Then start VB. The first screen will ask whether you want to open a new project or an existing
one - it's obviously a new one and it will be a Standard EXE. Then, maximize all the windows (it's easier
to work with - some of the examples in the tutorial had to be reduced for the sake of the presentation).
Now, save your project. It will first ask you to save the form - call it Score.frm - and then the Project - call
it Scorebrd.vbp. From now on, do File-->Save Project very, very frequently.

5|Page

i#g Microzsoft Yisual Basic
File Edit “jew Project Format Debug Run Query Diagram Tools Add-Ins ‘Window Help

Bl ays Sta
for niow

6|Page

2 > B

Standard ExE ST =rd 2e = Aickivens DLL Ackivex VE Application
Conkrol Wizard

"% R L R R
=
Fo
YB Wizard WEB Waorking Daka Project 115 application Addin
Manager Model Editi. ..

- [il
SEORL S

P 4 Pea 4 P=a

Cancel |
Help |

Alphabetic I C:

[Don't show thiz dialog in the future

w5, Project] - Microsoft Vizual Bazic [dezign]
Fi

e Edit Wiew Project Format Debug Bun Query Diagram Tools Add-Ins Window Help (Q{b'

-]
X

SH L EARA o],) | MFRERAL &

E@ Projectl (Project1)
=25 Farmis

....................................... F'n:.pertiEE: o F.jrn'l'l

L IFurmlFDrm
i A'PhabEtiCICategDrized
g0 3 il {Name) Form?
S i Appearance 1-30
3 = i AutoRedraw False
: i BackCalar [aHaooo000Fs:
mye il BorderStyle 2 - Sizable
B R S S SRS RS RS RS RSN S Caption Farmi
ClipControls True
'ﬁl EE i~rnkealRAs Ten=

Before you start to build-up the form, it will make it easier if you change the color of the form. Otherwise
you will be working with grey controls on a grey background. To change the color, just click anywhere on
the form, go to the properties window, find the property called BackColor and change it to the standard
Window background (teal) or to any color you want in the palette.

In our first example we will need 6 labels and 2 command buttons. Each one of these objects that you
put on a Form is called a control. To get a control you go to the Toolbox, click on the control you want,
come back to the Form and click and drag the control to the size and position you want. Position the
controls somewhat like in the diagram below.

7|Page

i, Project] - Microsoft Yizual Bazic [deszign] - [Form1 [Form]] - il
B9 Eile Edit “ew Project Format Cebug Bun Query Di_au;Lram Tools Add-Ins Window Help & ﬂ
B-a-BSH BRG] S « BRI ERREY
Eq ! Praject - Project
General | [T T m = Project and
_Generd | D11 Labell | BEES A J
b F - " c El@ Project1 {Scorebrd.vb have bean
E"ﬁ Forms named
03 Forml (Scoreffm) o coved
Properties - Labell
LahEIl Label I U'_IEI L8 P} ;I
EE =H &lphabetic Cateékz-';l
Al ¥ ﬂ = Appearance -
- Appearance 1-3D
iy = BackColor [N SR
X Backstyle 1 - Opaque
D Borderstyle 0 - Mone
@ Capkion Labell
T
ForeCaolor B =Hz00000128
% Bl Behavior
Draglcon [Mone)
Draghode 0 - Manual
Friahler Tre LI
BackColor
ekurnsfsets the background color used ko display
kext and graphics in an objeck,

IMPORTANT NOTE: If this is your first experience with VB, don't be afraid to experiment. This is
hands-on stuff! Remember that VB is a Microsoft product, therefore it works with the standard Windows
interface. All the functions you know from MS-Office work the same way here: Copy, Cut, Paste,
(CtrD)+(Click), (Shift)+(Click), drag the mouse over a group of controls to select them all, etc. The Undo
button is a nice one to keep handy - when you modify a control you can always Undo the change -
remember this when you get to the part about aligning the controls, making them all the same size and so
on. That part can get tricky. If you accidentally end up in the Code window while palying around, go
down a few paragraphs and you will see how to get back to the Form. At this point the worst that can
happen is that your Form will get all messed up. So what! You can just scrap it and start over again, but
you will have learned something.

8|Page

OO(Q
X
é)\(\

&
O

Now that we have a bunch of controls on the form, we have to jazz them up a bit. We do this by chanqj’)@(\
the Properties of the controls in the Properties window. Each control has a whole series of prope&'@,
most of which we won't need right now. The ones we do need are: \

Alignment = how text aligns in the control §

BackColor = choose the color of the background

Caption = the text that will appear in the control

Font = choose the font type and size

ForeColor = choose the color of the text (foreground)

As with all Windows applications, you can select multiple controls with (Ctrl)+(Click) and change a
property for all of them at once. For example, if all backgrounds are white, select all controls, change
ForeColor to white and all of them are modified. Change your form to look like the one below. Note that
you do not have to change the Caption for Label4, Label5 and Label6 and that you can't change the color
of the buttons. They insist on being what was called in the old days "IBM grey". Don't forget to save
your project often as you go along!

Anal Black Boid hakic n
O Acsl Narow 12
O Anal Rounded MT Bole
O Acal Unicode MS v 16 v
Efects j l Sample
[Strikeout
& | AaBbYyzz
SELECT FONT AND SIZE
Scrpt
[Westem |
atadource
DragMode 0 -Manual SELECT FONT PROPERTY
Enabed T'”‘L/-““
‘ = <\\
CHOOSE ALL LABELS THAT HAVE [2o80e
SAME PROPERTY P

9|Page

w, Form1

B m)sﬁ' 1 (Scorebrd.vbp)
=3 Forms

Visitor

..... B3 Form1 (Score.frm)

Properties - Form1

sl ; : |Form1 Form

e TR Alphabetic ICahegorizedI

Moveable True
........... ' True
L i DLEDropMode |0 - None
T alette (None)
SR 0 - Halftone
ctur (Bitmap)
RightToLeft False
...... ScaleHeight 401
SO ScaleLeft 0
""" ScaleMode 3 -Pixel
ScaleTop 0
ScaleWidth 429

ShowlnTaskbar |True

Tag A
To create picture background [Top 12520
for form, find picture then use [Visble True
Picture property WhatsThisButton False

If you Run the application at this point, you should see your Form appear, just the way you created it.
However if you click on any of the controls, absolutely nothing happens! There are events that occur;
the form opens, a button is clicked, etc. But, there is nothing that tells the form what to do when it sees an
event. That is why we have to write code, also called script.

10|Page

StartUpPosition |2 - CenterScreen

.\9
é)\(\
S
| Labeld.Caption = O)O(Q
r HE | End If (Q"b'

End Sub A
5% Project1 {Scorebrd.vbp) N§
% Forms |' Mhen the End of Game

...... B3 Formi (Score.frm)

it Uurg, mrant Gol e losme bhe oo
Switch between Code and gﬂ%w i,“ |5Ui',525 '.:-_";,.Jugl.,- ey
; Nan=gl
. A FL: lvate Subh Commandi Ol
Inload He
IFurml Farrm ;I Encd
Alphabetic |Categu:urizeu:|| End Sub
(Marmne) Farm1 -
4
i |Appearance 1-30 —I_I

To switch between the Code window and the Form window, use the buttons just over the Project Explorer
window (diagram on the left).

Once in the Code window, you have the option of seeing all the code for the Project or the code for one
event at a time. Use the buttons in the lower left-hand corner (diagram on the right).

To select the object and the event you wish to code, use the two Listboxes at the top of the Code window.
The one on the left for the object and the one on the right for the event. Start with General ...
Declarations and then Form ... Load, etc.

At this point you might want to download the sample program and study it. In the following lessons
we'll add functionality to the exercice and we'll explain what the code means. But for the moment, a good
exercice would be to write part of the code and then try to figure out how to improve certain aspects of
the program.

x|
G_e'_"e'i_l PR Project1 - frmScoreboard (Code)
I(General) L‘ I(Deciarations) _v_l

-

P We need 2 wariables to serve as counters so
' we'll declare both as Integer numbers.

|»]

' The String wvariables will hold the team names.
i o ' The Explicit word will be covered in
' the next lesson.

' Note the use of a prefix for the names of

425 ' 2ll controls and wvariables, for example:
e ' str for a String, 1lbl for a Label, btn for a Button, etc.
y =
L] Option Explicit
Dim intHomeScore As Integer
@ BN Dim intVisitorScore As Integer
Dim strVis As String
% Dim strHome As String

x| -
{ General I PR Project1 - frmScoreboard (Code) E]

o,
X

L I(General) =l I(Declarations) - |

A [ab] j
-~

X 'The Form Load event is triggered when the Form

L =1 'opens. We put in all the stuff we want to do

vV & 'right at the beginning of the program. That's

'called "Initializing" controls and variables.

Private Sub Form Load()

SR 1blTitle.Caption = "SCOREBOARD"
1blVisScore.Caption = 0
l1blHomeScore.Caption = 0
lblMessage.Caption = "GAME IS TIED!"
1blHalf.Caption = 1
intHomeScore = 0
intVisitorScore = 0
' Get team names and display them:
strVis = InputBox("Enter Visitor team name")
strHome = InputBox("Enter Home team name")
1blVisitor.Caption = strVis
1blHome.Caption = strHome

End Sub

Now we can Run it and see something happen. When the Form loads, it will initialize the fields that we
specified in the code.

Now code the Command1 button and Run it to see the result.

12| Page

. O
N\
O
N
8
| K
queﬂheral] Proje oreboard ode L] a
. '
Eer (General) - (Declarations) . X
1 =l R
A [a0] End Sub N i
xX¥— “‘
L = 'This is the code triggered when Visitor goal button
VvV & 'is clicked.
'The .Caption is really a text field. We use it only for display
EE 'but we can't use it in a comparison - that
'is why we created the counters.
a3
= Private Sub btnVisGoal Click()
intVisitorScore = intVisitorScore + 1
—~ h 1blVisScore.Caption = intVisitorScore
O E
B If intVisitorScore > intHomeScore Then
@ ibliMessage.Caption = strxrVis & " LEAD!" At
ElseIf intHomeScore > intVisitorScore Then
iblMessage.Caption = strHome & " LEAD!"
Else
iblMessage.Caption = "GAME IS TIED!"
End If
End Sub
|

Getting to know the interface
Any program can stand to be improved, even mine!
But there's a technique to use when building a bigger and better application - you do it step-by-step.

Improving the application
Assuming that you're a beginner with VB, here's the development technique | recommend for you:

o write the simplest program that you understand and make it work - even if it doesn't have color or
fancy fonts, test it and then save it;

e make a copy of your previous working program and code one or two improvements in the copy -
if you become stuck and can't recover, destroy the copy, go back to the previous version, make a
new copy and start again;

o repeat for every improvement you make, using small steps so that if something does go wrong its
easier to identify the source of the problem (if you made 12 corrections in a program and then it
doesn't work, how will you know which of the changes is causing the problem?)

Avoid repeating code!

In our FootScoreboard example, there is one occasion where there are several lines of code repeated.

OK, so it's only a few lines but, in a large program that can happen a lot and it is very time-consuming
both to create the code and the to maintain it.

13| Page

Private Sub btnVisGoal Click() (Q'b'
intVisitorScore = intVisitorScore + 1

1blVisSc = itorScore 4§§s§

If intVisitorScore > intHomeScore Then

lblMessage.Caption = stxrVis & " LEAD!"
ElseIf intHomeScore > intVisitorScore Then
lblMessage.Caption = strHome & " LEAD!"

Else

lblMessage.Caption = "GAME IS TIED!"
End If
End

.—-v'—"_'_'_'-'-'—

'To capture the Home goals we code for
'btnHomeGoal button.

'This is done with Copy and Paste of btnVisGoal code.

Private Sub btnHomeGoal Click()

intHomeScore = intHomeScore + 1
l1blHomeSco : SEEE

core

If intVisitorScore > intHomeScore Then
lblMessage.Caption = strVis & " LEAD!"
ElseIf intHomeScore > intVisitorScore Then

lblMessage.Caption = strHome & " LEAD!"
Else

lblMessage.Caption = "GAME IS TIED!"
End If
End St

B ———

The way to correct that is to take all the code that repeats and put it into a separate procedure. A
procedure is identified by the Private Sub ... End Sub lines.

Then, whenever you have to execute the code, call the procedure simply by writing its name.

14| Page

Private Sub btnVisGoal Click() Q;b
intVisitorScore = intVisitorScore + 1 d}
1blVisScore.Caption = intVisitorScore 4§§s§’
ShowScore Call procedure

End Sub

'To capture the Home goals we code for
'btnHomeGoal button.
'This is done with Copy and Paste of btnVisGoal code.

Private Sub btnHomeGoal Click()
intHomeScore = intHomeScore + 1
l1blHomeScore.Caption = intHomeScore

ShowScore
End Sub

Create procedure for
Private Sub ShowScore () repetitive code

If intVisitorScore > intHomeScore Then
1blMessage.Caption = strVis & " LEAD!"
ElseIf intHomeScore > intVisitorScore Then
l1blMessage.Caption = strHome & " LEAD!"
Else
lblMessage.Caption = "GAME IS TIED!"
End If
End Sub

A second improvement
Another thing we usually need in a program is a re-initialize button.
After one loop of the program, in this case one match, we usually want to clear all the data and start over.

For that we'll create a Clear button on the form.

15|Page

But, we'll notice that what we do with the Clear button is in fact the same thing we do when we load the
form in the first place. So, we'll use the procedure technique to simplify the code.

'The Form Load event is triggered when the Form
'opens. We put in all the stuff we want to do
'right at the beginning of the program. That's
'called "Initializing” controls and wvariables.

Private Sub Form Load()
Clearzll
End Sub

'The Clear button does the same thing as the Form Load
'so we use the same procedure

Private Sub btnClear Click()
Clearzll
End Sub

Private Sub Clearall ()
1blTitle.Caption = "SCOREBOARD"
1blVisScore.Caption = 0
l1blHomeScore.Caption = 0
lblMessage.Caption = "GAME IS TIED!"
1blHalf.Caption = 1
intHomeScore = 0
intVisitorScore = 0
' Get team names and display them:
strVis = InputBox("Enter Visitor team name")
strHome = InputBox("Enter Home team name")
1blVisitor.Caption = strVis
1blHome.Caption = strHome

End Sub

16 |Page

1.3 Writing code

The Code Editor

As we saw in the previous lesson, getting to the Code Editor is as simple as hitting the proper button. You
may have discovered that you can also call-up the Editor by double-clicking on an object. It is also
possible to select "View code" with the right mouse button.

You will note that the Editor has all the functions of a text editor and then some. The most commonly
used functions will be Cut ... Copy ... Paste which you can call from the Menu, from the Toolbar or from
the right mouse button. You also have access to the usual Find and Replace functions

Getting help

There is a lot of documentation available on VB. There is so much, in fact, that it's easy to get lost in it.
However, the on-line Help available from the Menu should be used regularly. Very often just doing a
search on a word in particular will be sufficient to get you out of a jam. If you want to go into more detail
check out the Contents part of MSDN (Microsoft Developers' Network) and surf through it.

Writing code

VB is not very particular about presentation - spaces, indents, lower case or upper case, it doesn't make
too much difference to the compiler. But it may make a whole lot of difference to the programmer who
has to maintain your code in 2 years, after you've moved up to President.

Apply ""Best Programming Practices™

fhen you work with RAD (Rapid Application Development) tools like VB in a graphical interface
wironment, you become more than just a programmer, a writer of code. You are a developer. We will cove
at in the next lesson.

ut at the moment, you are still a Programmer. And unless you are developing an application for your own
rrsonal use, that nobody else will see, you have to think of the environment, of the team you are working
ith.

""No man (or woman) is an island!"*
specially when it comes to programming. The code you write may have to be checked by an Analyst. It wil
wve to go through testing. It may have to be modified by other team members and it almost certainly will gc
rough modifications, maybe several times, in the months and years ahead when you probably won't be
'ound to defend yourself. "The evil that men do lives after them...". You do not write code for the VB
ympiler. You write it for other developers and programmers. What you want others to say behind your back
: "That Jane was blindingly efficient, brilliant, a genius with comments ..."

17 |Page

1.4 Good programming practice/habits

1. Use comments when appropriate but not so many as to overwhelm the code; the apostrophe ' is
the comment identifier; it can be at the beginning of a line or after the code.

' This is a comment
‘on 2 lines
DIM intNumber AS Integer 'This is a comment

2. Use indents - code must be indented under control structures such as If ... Then or Sub - it makes
it so much easier to follow the logic.

FORiI=1TO5
value(i) =0 ' Indent used in control structures
NEXT i

3. Use standard capitalization - keywords like If, Dim, Option, Private start with a capital letter with
the rest in lower case; variable names, control names, etc. are usually mixed case: ClientName,
Studentld, etc.

4. Write extra-long statements on 2 lines using the continuation character _ (space underscore); in

VB each line is assumed to be an individual statement unless there is a continuation at the end of
the first line.

Datal.RecordSource = _
"'Select * From Titles" ' One statement on 2 lines is OK

1.4 Naming conventions

These are the rules to follow when naming elements in VB - variables, constants, controls, procedures,
and so on:

e A name must begin with a letter.
e May be as much as 255 characters long (but don't forget that somedy has to type the stuff!).

e Must not contain a space or an embedded period or type-declaration characters used to specify a
data type ; theseare ' #% $ & @

e Must not be a reserved word (that is part of the code, like Option, for example).

e The dash, although legal, should be avoided because it may be confused with the minus sign.
Instead of Family-name use Family_name or FamilyName.

18| Page

Chapter 2 Data types and operators

Data types are set of values and permitted/allowable operations on those data.

2.1 VB supports variety of data types.

Data type Storage size Range

Byte 1 byte 0 to 255

Boolean 2 bytes True or False

Integer 2 bytes -32,768 to 32,767

hﬁggge(r')ong 4 bytes -2,147,483,648 to 2,147,483,647

Single (single- |4 bytes
precision
floating-point)

-3.402823E38 to -1.401298E-45 for negative values; 1.401298E-45 to
3.402823E38 for positive values

Double (double- |8 bytes -1.79769313486232E308 to -4.94065645841247E-324 for negative
precision values; 4.94065645841247E-324 to 1.79769313486232E308 for positive
floating-point) values

Currency 8 bytes -922,337,203,685,477.5808 to 922,337,203,685,477.5807

(scaled integer)

Decimal 14 bytes +/-79,228,162,514,264,337,593,543,950,335 with no decimal point; +/-
7.9228162514264337593543950335 with 28 places to the right of the
decimal; smallest non-zero number is +/-
0.0000000000000000000000000001

Date 8 bytes January 1, 100 to December 31, 9999

Object 4 bytes Any Object reference

String (variable- |10 bytes +

length) string length 0 to approximately 2 billion

String (fixed- |Length of

length) string 1 to approximately 65,400

Variant (with |16 bytes Any numeric value up to the range of a Double

19| Page

numbers)

Variant (with |22 bytes + . .

characters) string length Same range as for variable-length String

User-defined Number

(using Type) required by |The range of each element is the same as the range of its data type.
elements

In all probability, in 90% of your applications you will use at most six types: String, Integer, Long,
Single, Boolean and Date. The Variant type is often used automatically when type is not important. A
Variant-type field can contain text or numbers, depending on the data that is actually entered. It is flexible
but it is not very efficient in terms of storage.

2.2 Declaring variables

Declaring a variable means giving it a name, a data type and sometimes an initial value. The declaration
can be explicit or implicit.

An explicit declaration: variable is declared in the Declarations Section or at the beginning of a
Procedure. An explicit declaration looks like:

Dim MyNumber As Integer

Now the variable MyNumber exists and a 2-byte space has been reserved for it.

An implicit declaration: the variable is declared "on the fly", its data type is deduced from other
variables. For example:

Dim Totall As Integer 'Explicit declaration
Dim Total2 As Integer 'Explicit declaration
Total3 = Totall + Total2 'Implicit declaration

Total3 is not formally declared but is implied, it is "arrived at" from the other declarations.

It is never a good idea to have implicit declarations. It goes against the rules for clarity, readability and
ease of use of the code.

To make sure that this rule is followed, start the Declarations with the Option Explicit clause. This tells
the compiler to consider implicit declarations as errors and forces the programmer to declare everything
explicitly.

Other examples of declarations:
Dim MyName As String

Dim StudentDOB As Date
Dim Amount5, Amount6, Amount?7

In the last example the type assigned to each variable will be: Variant. It is the default type when none is

20| Page

specified.
There can be multiple explicit declarations in a statement:

Dim EmpName As String, SalaryMonth As Currency, SalaryYear As Currency

In this final example, what are the types assigned to the three variables:

Dim Amountl, Amount2, Amount3 As Single

All Single-precision floating point, you say. Wrong! Only Amount3 is Single. Amount1 and Amount2
are considered Variant because VB specifies that each variable in a statement must be explicitly declared.
Thus Amountl and Amount?2 take the default data type. This is different from what most other languages
do.

2.3 Constants

A constant is a value that does not change during the execution of a procedure. The constant is defined
with:

Const ValuePi = 3.1416

The Scope of variables

The term Scope refers to whether the variable is available outside the procedure in which it appears. The
scope is procedure-level or module-level.

A variable declared with Dim at the beginning of a procedure is only available in that procedure. When
the procedure ends, the variable disappears. Consider the following example:
Option Explicit
Dim Total2 As Integer

Private Sub Command1_Click ()
Dim Totall As Integer
Static Total3 As Integer
Totall =Totall + 1
Total2 =Total2 + 1
Total3 =Total3 + 1

End Sub

Private Sub Command2_Click ()
Dim Totall As Integer
Totall =Totall + 1
Total2 = Total2 + 1
Total3 =Total3 + 1

End Sub

Every time Buttonl is clicked, Totall is declared as a new variable during the execution of that clicked

21| Page

event. It is a procedure-level variable. It will always stay at 1. The same for the Button2 event: Totall is
a new variable in that procedure. When the procedure ends, Totall disappears.

Total2 is declared in the Declarations section. It is a module-level variable, meaning it is availablg\to
every control in this Form. When Buttonl is clicked, it increments by 1 and it retains that valueSWhen
Button2 is clicked, Total2 is incremented from its previous value, even if it came from the B@ittonl event.
Total3 shows another way of retaining the value of a local variable. By declaring it with Static instead of
Dim, the variable acts like a module-level variable, although it is declared in a procedure.

Another scope indicator that you will see when you study examples of code is Private and Public. This
determines whether a procedure is available only in this Form (module) or if it is available to any module
in the application. For now, we will work only with Private procedures.

24 Operators

2.4.1 Mathematical and Text operators

Operator |Definition Example Result

A Exponent (power of) |42 16

* Multiply 5*4 20

/ Divide 20/ 4 5

+ Add 3+4 7

- Subtract 7-3 4

Mod Remainder of division 20 Mod 6 2

\ Integer division 20\ 6 3

& String concatenation "Joan" & " " & "Smith" |"Joan Smith"

Note that the order of operators is determined by the usual rules in programming. When a statement
includes multiple operations the order of operations is:
Parentheses (), *,/,\, Mod, +, -

2.4.2 Logical operators

Operator |Definition Example Result
= Equal to 9=11 False
> Greater than 11>9 True

22| Page

23| Page

< Less than 11<9 False
>= Greater or equal [15>=15 True
<= Less or equal 9<=15 True
<> Not equal 9<>9 False
AND Logical AND |(9=9) AND (7 =6) False
OR Logical OR (9=9) OR(7=6) [True

Chapter 3: Control Structures

3.1 Selection
3.1.1 If..Then...Else

If conditionl Then
statementsl
Else
statements2
End If

If conditionl is True, then statementsl block is executed; Else, conditionl is not True, therefore
statements2 block gets executed. The structure must be terminated with the End If statement.

The Else clause is optional. In a simple comparison, statementsl get executed or not.
If condition1 Then

statements1
End If

3.1.2 Select Case

Can be used as an alternative to the If... Then...Else structure, especially when many comparisons are
involved.

Select Case ShirtSize

Case 1

SizeName.Caption = “Small”
Case 2

SizeName.Caption = “Medium”
Case 3

SizeName.Caption = “Large”
Case 4

SizeName.Caption = “Extra Large”
Case Else

SizeName.Caption = “Unknown size”

End Select

3.2 Repetition /loop/ iteration
3.21 Do...Loop

Used to execute a block of statements an unspecified number of times.

24| Page

Do While condition
statements
Loop
First, the condition is tested; if condition is True, then the statements are executed. When it gets to the

Loop it goes back to the Do and tests condition again. If condition is False on the first pass, the statements
are never executed.

3.2.2 For...Next

When the number of iterations of the loop is known, it is better to use the For...Next rather than the
Do...Loop.

For counter = start To end
statements
Next
1) The counter is set to the value of start.
2) Counter is checked to see if it is greater than end; if yes, control passes to the statement after the Next;

if not the statements are executed.
3)At Next, counter is incremented and goes back to step 2).

More will be covered on Control strucures as it becomes necessary in upcoming lessons. Meanwhile,if
you want to know more, consult the VB Language Reference.

Assignment
To practise your coding and editing skills, try modifying the Football example by adapting it for different

sports. For example, in American football, which is similar to rugby, there are 4 different ways to score,
as shown here:

Touchdown 6 points
Field goal 3 points
2-point Convert or Safety 2 points

Convert 1 point

25| Page

Chapter 4 Designing Application

Introduction §

When you start to work on a VB Project you are no longer just a programmer - you are now a developer.
You will have to get much more involved in the whole design process. Unless you are designing an
application for your own use you will have to work with a team of specialists including, but not limited
to, users, analysts, GUI designer, programmers, testers, network specialist, webmaster and
marketing people. The whole process is iterative - do part of it, check it, get input, go back and correct it,
do the next part, and so on. Nobody expects you to do a whole project in one fell swoop - it would
probably be a disaster if you did do it that way.

The importance of Users

Any project that you develop has to involve Users. They are the people who will sit in front of your
interface for eight hours a day and decide if they like it or not. If they don't like it, no matter how efficient
the code and how many millions of dollars were spent developing it, they will find ways to sabotage it.

Get users involved from the start. If you are developing a product to specs, that is to be sold to some
client eventually, there has to be someone who knows what that eventual client needs. Find a typical user
of the product to use as a sounding board. Remember: you are just the developer; no matter how cool you
think it would be to use all purple text on orange backgrounds, it is the user who will tell you what is cool
and what is not. As you develop more and more parts of the application, run them by the user to check for
accuracy, completeness, clarity, etc.

Here's an example of how to design for clarity. Given that 01/02/03 is a date, what date is it? If you are
an American, you probably automatically assume that it is January 2nd, 2003. If your user is French,
however, he would assume that it is February 1st, 2003. And if you are working with this Professor, who
has a very definite opinion on the subject, he would say that it is February 3rd, 2001 and should always be
written as 2001-02-03. If all your forms are designed as: "Enter date" with a blank box beside it, you are
headed for trouble.

race between software engineers striving to build bigger and better idiot-proof programs,
produce bigger and better idiots. So far, the Universe is winning.

That's just a joke, by the way. Most users are not idiots. Sometimes they appear confused because they are
trying to solve the problem and they can't figure out how. But that's not their job. Their job is to explain
clearly what it is they need. Your job is to figure out how to provide it. Don't underestimate users. Be
patient, be understanding without being condescending and be humble. There's a lot of things that the user
knows how to do that you don't.

26| Page

4.1 Creating the User Interface

The user interface that you design is the most visible and perhaps the most important part of-the
application. The term commonly used for this type of interface is: GUI (Graphical User Interface). It's
pronounced "goo-wee", not "guy". It is graphical because it consists of buttons, menus, icons, etc. An
example of a non-GUI is DOS (remember that?) where everything is text. User interface refers to the fact
that it is the part of the application between the user, in front of the screen, and the code behind the
screen. How well the user can interact with the code depends on the quality of the interface.

Guiding principles

e The user isin control. The user must feel he is in charge of the application. He must have a
certain amount of control over such things as window size, window position, choice of fonts, etc.
There should definitely be a "Preferences" item in the menu.

o Consistency is maintained throughout the application. The user can move to any part of the
application and not have to re-learn how things work. Consistency in the choice of icons, in date
formats, in error messages means that the user can concentrate on the work. As much as possible,
the application should be consistent with Windows standard. For example, "Move to the Recycle
Bin" is different from "Delete" - the user has come to expect that an item in the Recycle Bin can
be recovered if need be.

o Application should be "forgiving'', or "fault-tolerant”. Users will make mistake. A single
error should not bring the application crashing to the floor. If there is no room for errors, users
will be afraid to experiment, to discover on their own how to do things. It will slow the learning
process considerably.

o Always supply feedback. The user should always know that something is going on, especially if
it's in the background and may take several minutes to run. Display an hourglass or a progress
meter or a status bar so that the user doesn't start to hit keys at random to get something to
happen. It only takes a few seconds of inactivity for the user to get frustrated and think that the
program is "hanging".

o Don't neglect esthetics. The visual aspect is important. The environment should be pleasing to
the eye. The presentation style should help in understanding the information presented.

e Interface should be simple without being simplistic. There should be a balance between
simplicity and functionality. Popup menus, for example, allow you to increase the functionality
without having to encumber the screen with all kinds of details which are not used 95% of the
time.

On the importance of language

Throughout the project you are going to be doing, you should give some thought to the quality of the
language used. As a teacher of technology, | am constantly defending the compulsory language courses
included in the curriculum. | have to point out that your mastery of the language, or lack thereof, projects

27| Page

an image of who and what you are. This is the 21st Century - image is everything!

When | was young, a long, long time ago, in a galaxy far, far away, teachers used to say all the time:
"Sloppy work is the sign of a sloppy mind!". There is a lot of truth in that. If you can't be bothefed to
display the interface correctly, what does that say about the rest of your work? Professionalisiti should be
evident in every part of what you create. If what is seen by the public is of poor quality, there is reason to
believe that the work behind the interface (90% of the application) is also poor.

If you are developing an application for yourself, nobody cares what it looks like. If it's a small project for
a client that you know, you may be able to get away with some mistakes. Usually however, a project is
broader in scope and you don't know the audience. Remember that you are now working in the global
village. The interface you write and display may be seen, via the Internet, by millions and millions of
critical users. Even if it's not your reputation riding on it, the reputation of your client may be. And you
can be sure that he will take it seriously, even if you don't. If language is not your area of expertise, get
help from somebody whose area it is.

4.2 Interface style

One of the first decisions you have to make is whether to go SDI (Single Document Interface) or MDI
(Multiple Document Interface). If you have worked with Windows for any length of time, you have
probably seen both. Notepad is an SDI - you can only have one document open at any time. Word is an
MDI - you can open a number of documents and switch between them at will. An MDI application
imposes different constraints on the developer because of the need to juggle several different forms at the
same time. It usually requires more experience in the development process. For the purposes of this
tutorial, we will work only with SDI applications.

Design considerations

e What is the purpose of the application? Is it a once-a-year thing or one that is in use 24/7? The
user will forget the details if he only uses it once a year and you will have to be a lot more
specific with the Help functions.

e Who is the intended audience? Beginning users will need more directions than experienced users.

¢ How many different forms will be needed (you can have several forms without being MDI) and
how will they be connected?

e What are the menus going to say? Will toolbars be used to replicate menu functions?
e How are errors going to be identified to the user? How will they be corrected?
e How much Help (in the form of a Help function) is going to be provided?

e How will consistency be maintained across the application? It is important that all forms have the
same "look and feel" in terms of colors, fonts, menus, toolbars, etc.

28| Page

For this lesson we will need a new Project, call it Lesson4.vbp, which will only be used to create and tiy:
out various controls.

To refresh your memory, since the previous two lessons have been rather theoretical, you selectithe New
tab, and Standard EXE for the type. As soon as The Form opens, you Save the new Project, Give the
Form a name, let's say it's Lesson4.frm and then you give the Project a name: Lesson4.vbp. Note that
you do not have to specify the extensions, .frm and .vbp, because they will be assigned automatically.

Chapter exercise
The Form
We covered it too briefly in Lessonl so we'll go over it again. The Form is the first object you see when

you Open the application. It is the window into which all the controls will appear, where you will input
data and see results.

im. Project]l - Form1 [Form] =] E3 Proiect - Projectl a
im. Lessond Test Form - | -
(ool orI ooyl EI---EPI‘DiEEtl(LESSDI'I4-‘-'|JD) ﬂ
=5 Forms
L[Formil (Lesson4.frm) 'I
Properties - Form1 pd
[Lol |Furn11Fnrrn -]
Alphabetic I Categorized I
(Marne) Forml -
Appearance 1-3D
AutoRedraw False
EackColor [s:HOOFFFFCOR:
EorderStyle 2 - Sizable
! Lessan<4 Tesk Farm
_lip_ontrols True
—ontrolBox True
Drawlode 13 - Copy Pen
Cr avaSkyle 0 - Solid
D awiideh 1
Enabled True

There's not too much you can do with the form, at this time. Basically, you adjust the BackColor and the
StartUpPosition (where it will open on the screen when you Run it) and then you start putting controls
onit.

The Label

This is probably the first control you will master. It is used to display static text, titles and screen output
from operations. The important properties to remember:

Caption - the text that is displayed in the label

BackColor and ForeColor - colors of the background and the text

BackStyle - Opaque or Transparent - whether the background is visible or not

Font - font and size of text

Alignment - text centered, left or right

Multiline- True or False - if True, you can have several lines of text, delimited by <CR> in the
label - by default, it is set to False

29| Page

i, Project1 - Form1 [Form]

im. Lezsond Test Form

Frame & PictureBox

Properties - Labell]

ILahEIl Label =
alphabetic Categorized |
El |Appearance =
Appearance 1-30
Backiolor B =Hoocooooog:
Backstyle 1 - Opaque
Borderskyle 0 - Mone
Capkion Standard label con
ForeColar (] &Haoooon =]
E Behavior
Draglcon (Mone) —
Dragiode 0 - Manual
Frahled Trie

When you want to group several controls together - name and address, for example - you use a Frame.
The frame backcolor can be the same as the form's and only the frame borders will be obvious, or it can
be a different color and stand out.

You create the frame before the controls. When you create controls in a frame, they are tied to the frame
and move with it. The frame caption is the text that appears at the top of the frame - you use it to define

the group.

The PictureBox is like a Label with a picture in it instead of text. The Picture property determines the
name of the file, .BMP or .GIF, that will be displayed. It can be used for a company logo, etc.

|
General |
’7 :
A el
=
v o

E8 =8

=
=

=
=

1B

30| Page

im. Project1 - Form1 [Form]

Standard label control

.. ~2COMTROLS IN FRAME

-MYCOMPANY .COM-

Project - Projectl

B

IEE Projectl {Lessond.vhp) ;l
=3 Farms -
Properties - Label2 »

L

|Lahel2 Label
Alphabetic Categorized |

El Appearance
Appearance
BackColor

| v

1-30
[] aHs000000Fs:
0 - Transparel ;I

Backstyle

Borderstyle 0 - Mone

Caption MY COMPANY, CON

ForeColor B ~HO00000FF::
E Behavior

Draglcon

(MNone) —

http://www.profsr.com/vb/vbless04.htm#Start

TextBox & CommandButton

The TextBox is like a Label but, it is used to input data into the program. The data typed in is in the Text
property of the control.

When the program is Run, only the controls that can be manipulated will be activated. For example, if the
form contains 3 Labels, 3 TextBoxes and 3 Buttons, when it is Run, the cursor will not stop at the labels.

When the user hits the Tab key, the cursor will go to the first TextBox or Button - not necessarily the first
one on the form but, the first one that was created. That is called the Tab order and you have to specify
it.

On the form there is only one control at any given time that has the cursor on it - it is said to have Focus.
If you type data, the control with Focus will receive it. You change the Focus with Tab or by clicking on a
different control.

Up until now we haven't bothered with the names of controls (the Name property).
Once we start to code, however, it does become important. There are all kinds of
occasions in code where you have to call upon a certain control. It can get very
confusing when your 12 buttons are called Command1...Command12. What did
Command7 do, again? Give each control a name (except for titles, etc. that you never
refer to) so that you will be able to identify it easily. It is recommended that you use a
prefix when assigning a name; cmd for a CommandButton, Ibl for a Label, txt for a
TextBox. Thus, txtNumber where you input the value can be distinguished from
IbINumber where you display the result.

The CommandButton is used to initiate actions, usually by clicking on it. The Caption property
determines the text to display on the face of the button. The Default property, if set to true, means that the
button will be activated (same as Clicked) if the <Enter> key is hit anywhere in the form. If Cancel is set
to True, the button will be activated from anywhere in the form by the <Esc> key.

31| Page

Hopefully, you have now run this program several times, each time you added a new control, in fact.
Admittedly, nothing much happened except to confirm that the controls were appearing in the right place

on the form

Here now is an example of the code we could write to perform simple tasks: input name and city and
display the information in a label when the Continue button is clicked. The Exit button will end execution

Ich_e:-cil: CommandButton =]

s
i
- \

Alphabetic ICategDrized I

[Marme) ch_exit
1-3D

EackCalor] aHs000000F
Zancel False

_apkion Exit

—ausest alidation True

Dref aulk False
DizabledPicture (Mone)
DownPickure (MNone)
Diraglcon (MNone)
Dragiode 0 - Manual
Enabled True

Font M3 Sans Serif j

of the program and the Cancel button (or the Esc key) will clear the fields.

32| Page

I{General} j I{I]Et:laratiuns}

bptiun Explicit
Dim ClientName As 23tring
Dim ClientCity As 3tring

Private 3ub Form Load()
lb result.Caption = "™ ©
th_name.Text = " ©
th city.Text = " ©

End 3Sub

Private 3ub cbh_continue Click()
ClientMName = th_ name.Text
ClientCity = th_city.Text

lb result.Caption = "Client iz " & ClientName
& " and lives in "™ & ClientcCity
End 3Suhb

Private 3ub cbh_cancel Click()
Form Load
End 3Suhb

Private 3ub cbh_exit Click()
Mnload HMe
End

End 3Sub

i

il

A few explanations: the Form_Load event occurs when the form first opens. This is where we initialize
things - we want the TextBoxes and the result Label to be empty when we start off so, we set them to a
blank space.

The actual processing is done after the data have been entered and we hit the Continue button. The
processing logic is put in the Continue_button_clicked event.

When you hit the <Esc> key or you click on the Cancel button, you want to annul the entry you're doing
and start over again. That's the same as opening the form so, we just tell the program to execute the
Form_Load procedure which we already have.

The Exit button uses the pronoun Me to Unload. Me means the form currently active without having to
name it.

Multiple forms

For the next series of examples we will use a new Form. It is not necessary to create a new Project; any
Project can have several Forms in it.

33| Page

With the Project open on the current Form, go to: Menu --> Project --> Add form. Select New form ip
the creation window and, voila! Next time you save the Project, it will ask you to hame this new Fotti.
You can name it Lesson4B.frm for example.

One more detail: when you Run the Project, you want to tell it which Form to open.

Go to the Project Manager window, right click on the Project name and select Project properties. In
the Project properties window, the ListBox on the right says "Startup object”. Select the Form you
want to open when you Run. You can change the Startup object at any time to run the different forms
that you created.

Check boxes & Option buttons

These two controls are used when the user must choose from a list of options. The difference between the
two is that with Check boxes he can select several at one time but, with Option buttons, he must select
only one among several.

The example below illustrates the use of Check boxes and Option buttons. To capture the information
entered by means of these controls, you must test the property: Value. In a Check box, Value = 1 if box
is checked and = 0 if not. In an Option button, Value = True if selected and = False if not.

. Form2 M=l

Check boxes and
Option buttons

—Accessanes
Prirter v M oritar v
Moderm [HIC v
— Processor—— Operating Syztem—
Pertiurm T Windows 33
Pestium || o Windows NT &
Pentium 1] .

You selected a Pentium |1 with Windows NT
and accessories: printer monitar NIC

Caricel | E st |

The code, although somewhat long, is not very complicated. Most of the time, processing consists of

34|Page

checking the content of .Value. It is fairly standard procedure, especially with Option buttons, to ensure
that at least one button has been selected and to display an error message if it has not.

It:h_t:urrﬁrm j ICIit:k

Option Explicit

Private 3ub Form Load()

ck_printer.Value = 0
ck monitor.Value = 0
ck_modem.Valuse = 0

ck nic.Value = 0
opt_pent.Valuse = False
opt_pentZ.Value = False
opt_pentd.Value = False

opt_windd.Value = False
opt_winnt.Value = False
1b msg.Caption = "
End 3ub
cb_confirm j ICIick

Private 3ub cbh_confirm Click()
Dim PriName Az 3tring, OsNamwe Lz 3tring
Dim AecPr, AccMn, AccHMod, Acclic

'Check if Processor was selected - if no
'display error message; 1f wves, get its name|
If opt_pent.Value = False _

Lnd opt_pentiz.Value = False _

Lnd opt pentld.Value = Falzse Then
M=gBox ("You must select a Processor'™)
opt_pent.3ecFocus
El=e
If opt_pent.Value = True Then
Priame = "Pentium"
Elzelf opt_penti = True Then
Priame = "Pentiwm II"
El=e
Priame = "Pentiwm III™
End If
End If

35| Page

'The MzgBox function allows you to display %)
'a meszadge window azZ a result of some error. <Sg>
'Zee "MzgEBox function”™ in Help for details. Q§$0
'JetFocus iz a Method that lets you return Focous Q$

"[the cursor) Lo a specified okhject, in this case
'one of the option buttons, after an error check.
'Zee "ZetFocus Method™ in Help.

'Check if O3 was selected - 1f no
'dizplay error message; 1f yes, get its name.
If opt_win28.Value = False _
ind opt winnt.Value = False Then
MzgBox ("You must sSelect an Operating system™)
opt _win35.3etFocus
El=se
If opt _winB&.Value = True Then
OsMame = "Windows 95"
El=se
OsMame = "Windows NTY
End If
End If

'"Werify which accessories were checked in order
'to build output lakbel.
IT ck _printer.Value = 1 Then

LegPr = " printer
End If
IT ck wonitor.Value = 1 Then
AecMn = " monitor™
End If
IT ck_mwodem.Value = 1 Then
AecMod = " modem™
End If
IT ck_ nic.Value = 1 Then
Aoclie = " NICH
End If
lb m=g.Caption = "You selected a " & Priame
£ " with "™ & OsWName &£ Chr(13)
& "and accessories: " & AccPr & AocMn

& AocMod £ AccNic

'If wou want to force a line change in & Lakel,
'"insert a Chr(l3i) -the carriage return character-
'in the string.

End Sub
I

36| Page

. &
Private Sub ch_cancel Clicki) %O

Form Load ((\(b’

End Sub :
Frivate Sub ch_exit Clicki() §

Tnload Me
End
End Sub

Assignment 3

Create the Payroll form shown below. Number of hours must be entered as well as the appropriate rate.
Gross salary = rate * hours. Net salary = gross salary - deductions.

. Payroll form =]

Weekly Payroll
Employee name
Joan ‘Waynhe
Hours worked D eduction amount
37.00 £100.00

Fate C $15.00

$370.00 Net Salan®d 270 00

LESSON 5 - More standard controls
Tuesday, August 02, 2011

Working with arrays

37| Page

Before we get to today's lesson on common controls, we will cover a bit of programming theory on
Arrays.

In VB, arrays work in much the same way as they do in all other languages you have studied. By
definition an array is an indexed variable, meaning it is one variable with many parts, each pati~oeing
referenced by an index number. The index number being numeric, it can be manipulated by {&op
statements, incremented, decremented, etc. An array can contain any valid data type and, if it is of the
Variant type, can even contain elements of different types.

An array is declared like any other variable, with the addition of an index:
Dim Department(6) As String

will declare an array of 7 elements of the String type (we assume that it will be 7 Department names). The
only problem with this declaration is that the index goes from 0 to 6. So, if you want the name of the sixth
Department you have to specify Department(5), which can be confusing at times.

To work around this problem you can specify the starting index in the declaration:

Dim Months(1 To 12) As String

Thus, Months(1) is January and Months(12) is December.
You don't even have to start at 1. If your Sections are numbered 101 - 120 you can define an array:

Dim Sections(101 To 120) As Integer
One common method of manipulating arrays is to use For...Next loops:
Private Zub Commandl Clickl)
Dim Ient Az Integer 'declare loop counter
Dim DeptTotali(l To 20) As Single 'declare arravy
For Ient = 1 Tao 20 'initialize
DeptTotal(Icnt) = 0 'all array elements to O

Next Icnt

End Sub

Private Zub Commandi Clicki)
'To record monthly sales amount in array
'to be totaled by Diwvision, etc.

DeptTotal (DeptNumber) = MonthlySales

End Sub

38| Page

An array can also be assigned to a variable in code. Look at the following example and understand that
that is not an implicit declaration. The variable "Week" is declared as Variant. It is assigned an array

value in code.

Private Zub Commandi Clickl)

Dim Week, Day0oflecsk

Week = Arrav("Mondavy™, "Tuesday™, "lednesday™)

Day0oflieek = Week(0) 'first index i= 0O

lb result.Caption = Day0fleck 'result will be "Monday™
End Suhl

Now, when we get to the next set of controls, different kinds of Lists, these notions may prove useful.

ListBox

With the ListBox control the user can select items from a list of choices. Although the list of choices can
be entered in the List property of the control, as in the example below, this is not a very good habit to get
into. It is essentially "hardcoding" data into the program and it can cause maintenance headaches.

Cooiiooiiiiooiiiiooii uistd ListBox =]
CoLloiiiioiiiiiiiioiits Mlphabetic Categnrized|
.+ PlayersMame .- El Font :I
j;;lTEHH Faont M3 Sans Serif
SRR | | [
o gPlaver's Tearg SRS IntegralHeight Tr.ue
N =5 = : ItemCrata i Lisk)

Fiants 0 :
- |Bears : {Lisk) -

| | [| - .
© o | Cowboys : = Misc Giants -
S (Marne) Eeats
SRS SRS SRR Calurins [owbeys
il HelpConkte:xtID
il Index
""""""""""""" Mouselcon
_______________________ -
LIl MausePainter an—cm——l
il MultiSelect 0 - Mane
il Tag

The common technique for loading a ListBox is to do it in code, with the Form_Load event. This way, if
items have to be added it is a simple matter to add a line of code.

39| Page

Form j ILuad

Private Jub Form Load()
'When the form loads, the first thing
'we do iz Lo assign the names Lo the
'list of teawms
lst_team.dddItem "Giants™
lst_team.dddItem "Redskins"
lst_team.dddItem "Cowbowys"
lst_team.dddItem "Eears"
lst_team.dddItem "Jers"

End Sub

It is sometimes difficult to distinguish an object's Properties and its
Methods. In the example above we used Ist_team.Addltem. What is
Addltem? It is a Method. How do | know? Well, to tell them apart, think
of grammar. A property is a characteristic, something that the object is, a
color, a size - it is like an adjective. A Method is an action, something
that it does, in fact, a verb. When you see object.something_descriptive, it
is a Property. When you see object.some_action, it is a Method.

In the example shown, Addltem is a Method because it is the action of adding items to the ListBox.
If you wanted to remove an item from the list in code, there is a Removeltem Method for the ListBox.
Ist_team.Removeltem 2 would remove the 3rd team - remember that it starts at 0.
When the Form opens, it will load the list in Form_load before the ListBox is displayed. If there are too
many items for the space allocated to the ListBox, it will create a vertical scroll bar.
When the user selects one of the teams from the list, we have to have a way of capturing that information
in a variable. That is done with the Text property of the ListBox:

TeamName = Ist_team.Text

ComboBox

The ComboBox is called that because it's a combination of a ListBox and a TextBox. It has the advantage
over the ListBox of not taking up space until it is actually used which means that it makes it easier to
position on the Form.

But the combo has the disadvantage, sort of, that the user can enter his own information, in addition to
what is in the list. This may make data validation harder because the choices are not limited. When you
want to force the user to make a choice only among the specified items, use a ListBox, even if it is a bit
more awkward. If the user is allowed to override the choices, uses a ComboBox.

As in the ListBox, use the Text property to get the information input.

Label3.Caption = cbo_position. Text

40| Page

. Reqgistration =] E3

REGISTRATION

Flayer's Hame Ficture
Fed Green 4‘

Flayer's Team Fozition

Quarterback,
Receiver
Running back,
Tackle

Running back, Cowboys

File “igwer |

Option Explicit

Private 3ub Form Load()
'WMhen the form loads, the first thing
'we do iz to assigh the names Lo Lhe
'list of teams
lst_team. AddItem "Giants"
lzt_team. AddItem "Redskins"
lzt_team.AddItem "Cowboys"
lzt_team.AddItem "Bears"
lzt_team. AddItem "Jets"
'Mext, Load the combo for Poszition
cho_position.Addltem "Guard"”
cho_position. iddltem "Tackle'
cho_position.iddltem "Quarterback”
cho_pozition. iddltem "Receiwver"”
cho_position. iddltem "Centre'
cho_position.Addltem "Running back"
End 3Zuhb

Private Sub cbhb go Click()
Labeli.Caption = cho position.Text
£ ", ™ & 13t team.Text
End Suhb

41| Page

As you can see, it is fairly simple to load the ListBox and the ComboBox during the From_Load event Q®
The only other detail to note is that the order in which the items appear in the Combo is not the sams&
the order in which the items were added. That is intentional - it is done with the Sorted propiéé&‘

ComboBox. It can also be done for the ListBox.

DriveListBox, DirListBox, FileListBox
For this next example we need to create a new form, Formz2, in the current Project.

Specifications: While in Form1, the Registration form, we need to be able to hit a button which will call-
up a new form, the DirList form, which will look like the example below. This form will allow us to
select a type of file that we want to see and then to select a file, in a directory, in a drive that will be
specified. If the file selected is an executable, we will run the file. If it is a text file we will call-up
Notepad to edit it, and if it is a graphics file we will call-up the image editor.

In fact, this allows us to call an external program from inside a form. If, for example, we wish to edit the
player's picture before storing it, we can open the picture file with the image editor, change it, and
continue with the rest of the form.

. Form2 M=l E3

3DRUT.ExE S [MITCHDRI.] =

SCCSTAT.EXE
ARP.EXE

cd3Z exe
COPLAYER.EXE

CHANGECP.EXE & /11D /S
a3

I DATA
(L Actives Contral C
[aim95
Programs [EXE . COM, B (0 4 Users
Text files . THT, wWRI (2 Application D ata
Graphics [GIF. JPEG] [aPw DATA j

CHARMAP.EXE

There are 3 new controls on this form, plus the buttons and the ListBox. Since you almost always have
only one of each of those controls on the form, we won't bother to change the names of the controls in this
example - we keep them as: Drivel, Dirl, and Filel.

The control that shows the current drive is called a DriveListBox. The name of the active drive is in the
control's Drive property. The selected drive can be changed, in code, by writing: Drivel.Drive = "'D:",
for example.

Don't bother looking for the .Drive property in the Properties window for
Drivel - you won't find it. Same with Dirl.Path and List1.FileName.
That's because Drive is a runtime property. That is, one that is only
available when the program runs. Makes sense when you think about it.
You can design the DriveListBox to have the size, the color and the font

42| Page

you want but you can't tell it which drive will be active at runtime. That
will have to come from the system.

VB is full of these details. Every control has properties that are only
accessible at runtime, through code. The only way to find them is to look
in the documentation. A big Reference Manual is handy and the Help
function helps a lot with this, too.

The current directory is in the DirectoryListBox. The name is in the Dirl.Path property.

The default event associated with Drivel and Dirl is called a Change event. That's because nothing has
to be done with those controls until they are actually changed. Remember, when the program runs they
are automatically loaded with the current drive and the current directory active.

The current file selected is in the FileListBox, in the Filel.FileName property. This one is not
automatically loaded because there is no current active file. You select a file by clicking on it, generating
a Click event.

Study the code and then look at the explanations below. To keep the code section from getting too long,
explanations have not been included as comments.

[N =] [oir sions)

Option Explicit
DIim Filelelected Az 3tring
Dim BunPrograun Lz Itring
Dim Result

Private 3Zub Form Load()
lst_types.AddItem "Programs (EZE, COM, BAT)™
lst_types.dddIcem "Text files (DOCZ, TET, WRI)"™
lst_types.dddItem "Graphics (GIF, JPEG) ™
lst_types.Listlndex = 0
If lst_types.ListlIndex = 0O Then

Filel.Pattern = "+.EXE; *,COM; #*,BAT"™
ElselIf lst types.ListIndex = 1 Then

Filel.Pattern = "+.DoC; *,TXT; *.WURI"™
Else

Filel.Pattern = "+.IF; *.JPEG"
End If

End Sub

Private 3Sub Driwvel Change ()
irl.Path = Drivel.Driwve
End Sub

Private 3ub Dirl Change (]
Filel.FileMNamwes = Dirl.Path
End Sub

43 |Page

Friwvate Zubh cb_start Clickr)

If Filel.FileMame = ™" Then
M=sgBox ("3Select a file to run'™)
Exit Sub
End If
FileS3elected = Filel.Path
If Right (FileSelected, 1) = ", " Then
FileS3elected = Filelelected £ Filel.FilelName
El=se
FileZelected = FileSelected £ ™" & Filel.Filelame
End If

Jelect Case lst types.ListIndex

Case 0O
Fesult = 2hell (Filefelected, wvbhbNormalFocus)
Case 1
FunProgram = "C:%WFProgram Files) Aoccoessoriesh Wordpad.exe™
Fesult = S2hell (RunProgram & " " £ File3elected, vhNormalFocus)
Case 2
FunProgram = "DI:YVWiewerh lviewpro.exe"
Fesult = S2hell (RunProgram & " " £ File3elected, vhNormalFocus)
End Select
End Sub

Friwvate 3uh lst types Clicki)
If 1=t types.ListIndex = 0 Then

Filel.Pattern = "* _ EXE; *.COM; *_BAT"
ElseIf 1st types.ListIndex = 1 Then

Filel.Pattern = "* DOC; *_ TET; *.WRI™
Else

Filel.Pattern = "*_ GIF; *.JPEG"
End If

End Sub

Private Zub Filel Dh1Click()
ch_start_Click
End Zub

Frivate 3ubh cbh exit Clicki)
mload He
End Sub

Program notes:

e First task in Form_Load is to load the list of file types. We only want to display files that are

Executable, Text or Graphics. The .EXE is selected by default - ListIndex =0.

e The FileListBox Pattern property creates the filter for the selection.

44 |Page

e Whenever we change the Drive selection or the Directory selection, a Change event is generateg:
When the Drive changes, the Directory's path changes and when the Directory changes, the list'of
files changes.

e When you click on the Start button you first have to check if a file is selected. If not,\issue a
message.

o The Right() function, which we will look at in Lesson7, checks to see if the rightmost character of
the filename is a \. If it is it means that the file is in the root directory. If it isn't, we have to add a \
between the path and the filename.

o Based on the type of file selected, we execute the Shell function which runs an executable
program. vbNormalFocus is the window style argument that tells the program to run in a normal
window.

e When we click on a file type, the Pattern property for the FieList must change.
e A double-click on a filename does the same as hitting the Start button.

e Remember, we called this Form from the Registration form. When we're done with this, we want
to close it and go back to the calling form. The Exit button does an Unload of the current form
but, it does not execute an End statement because that would cause the Project to end.

This final section of code is in the Registration form. It is the code for the Viewer button which calls the
DirList form.

The only thing to do is to Load the form using its FormName (from the Name property) and then to
execute its Show method. The argument vbModeless means that the form does not get exclusive focus.
The opposite of vbModeless is vbModal. A modal form is one which requires action from the user
before it can be closed. Usually, error messages are modal - you have to respond, usually by hitting the
OK or Cancel button, and you can't click on another form to send this one to the background, and you
can't close it with the close box. A modeless form can be sent to the background and it can be closed at
any time.

Private 3ub cbh_wiewer Click()
Load DirList
DirList.3how vhModeless

End 3Sub

Private 3ub cbh_exit Click()
Mnload HMe
End

End 3Sub

45| Page

5. Menu and Debug @fb

51 Creating a Menu

If you've worked with Windows applications before you have worked with menus. Every Windows
application has one.

The menu gives the users access to functions that are not defined as controls (editing, formatting, etc) and
also repeats certain functions that are coded as controls (Exit button, for example). Menus offer a variety
of functionalities to define the application: we can include sub-menus, checked items, enabled/disabled
functions, toolbar icons. The VB IDE that you are using certainly displays all of those tools, as in the
diagram below.

i, Project] - Microsoft Yizual Basic [design] - [Project] - DirList [Form]]
[z File Edit Wiew Project Format Debug Bun Query Diagram Tools Add-Ins ‘Window Help

“E'E'E|ﬁ'n tlign Mo)y 0o | MR YR

Make Same Size »
(PR =
— [Size ta Grid

. Directory list form

Horizonkal Spacing i [Aake Equal

‘ertical Spacing g J,'.”.f Increase

ADDSCCUS.DLL 0 Decrease
Agzigna.frm
BIELIO.MDE
C2ExE Qrder »
CWPACK EXE

DATAYIEW . DLL b Lock Controls Files

Egbilllsé'_ffrrrnn-. ll - S Microsoft Wisual Stuc

Center in Form 4

iﬂi Remove

For this lesson, we will use the Registration form we created in Lesson 5 and we will add a menu to it.

The easiest way to create a menu is to do it with the Application wizard when creating the application.
But since we're not here to do things the easy way, we'll have to rough-it. In this case, roughing-it is not
much harder. We use the Menu Editor that can be found in the Menu bar --> Tools. Using the Editor is
fairly obvious. We just build up the menu bar on the first level and then, we add sub-menus using the
arrow keys to add an elipsis before the captions. Thus, &File is on the menu bar and ...&Open is under
&File. ltems can be inserted anywhere using the Insert button.

You may have noticed the use of the ampersand (&) in the captions (the Caption is the part that will

display in the menu bar, not the name). That is standard Windows practice. It creates a Hot-key, meaning
a function that can be called from the keyboard using the <Alt> key. Putting an & before a letter in a

46 |Page

caption makes that letter the hot-key for the function; <Alt><F> will call-up File, <Alt><E> will call-up
Edit, and so on. Just make sure that the same hot-key is not used for 2 functions on the same level. Inahe
menu bar for VB above, note that <Alt><F> is used for File but, <Alt><o0> is used for Format. Thée-hot-

key for each function is the letter underlined so there should'nt be any confusion.

The other consideration when creating the menu is to give each menu item a specific name. In this case
we use the prefix mnu_ to identify menu items. These are important because they will be refered to in
code and it should be clear that mnu_exit is the Exit function in the menu whereas cb_exit is the Exit
command button.

i Registration O] x|
ile Edit

I

. ITE"“'I Index: I Shotkeuk: I(Nune} j

[.. HelpConte:xtID: I] MNegotiatePosition: ||:| - Mone vI

- - Player'z T
: [Checked ¥ Enabled v wisible [windowList
ﬂﬂﬂﬂ ek I Insert | Delete |

--------- B0 pEn
................ EMiEwer
-------- Lal |..&Print

[Dl soEft
SRR [

---------- redMove
""""" cefResize

You can run the application at any time while you create the menu, just to verify that it displays correctly.
Of course, if you click on a menu item, nothing happens. Just like controls, menu items have to be coded
to work. So, we go to the code window and write the code for each of the menu items that we want to
activate. Fortunately, some of it is automatic. Clicking on a menu item will automatically open lower-
level items, if there are any. We just code for the lowest-level item. For example, for File-->Open--
>Viewer, there is no code for File, nor for Open but, we must write the code to execute for when Viewer
is clicked.

For this example we will code a few simple operations to show how it is done. From this it is just a
question of expanding the menu to display more functions.

47 |Page

'Click on mwenu Exit =same a= click on button Exit
Frivate Zub mnu exit Click()
ch_exit Click
End 3Sub
'Inwvoke Move mwethod for thizs form (HMe)
'Look at Form object —-->»> Methods in Help
Frivate Zub mnu move Click()
Me.Mowve 0O, O

End 3Sub
'Inwvoke PrintForm method for this form (Me)
'ZSends image of form to printer - uzeful for hardcopy

Frivate Zub wnu print Clicki)
Me.PrintForm
End 3Sub
'Parameterz of Mowve are: left edge, top edge, width, height
'Measuremwents in twips (see Lesson 7))
Frivate Suh mwnu resize Clicki()
Me.Mowe 2000, 3000, 6000, 5000
End Sub
'Load and Show formw DirlList
Frivate Subh mwnu viewer Clicki()
Load DirLi=st
DirlList.Show vhModeless
End Suhb

= =R

When working with forms, there is always a certain amount of data validation that has to be done. Data
validation consists of making sure the data is correct before doing calculations and so on. Usually, until
the data is all correct certain functions such as calling the database or going to the next form have to be
made unavailable - we say that the function is disabled.

To complete the example, let's say that we want to disable the Viewer option if the player's name has not
been entered. To do this we add some code in the Go button. The code consists of setting the Enabled
property to False if we want to disable a control or menu item; we set the property to True to enable the
control again. When disabled, the Caption goes gray and the code cannot be executed. In the case of
Viewer, where we have both a button and a menu function, we must remember to disable both.

Priwvate Sub cbhb_go Click()
Lakeli.Caption = cho_position.Text
£ ", "™ & 1lat tesm.Text
If th_namwe.Text = "" Then
mnu_wiewer.Enslhled = False
ch_wiewer.Enabled = False
th_name.3etFocus
El=e
mnu_wiewer .Enalbled = True
ch_wviewer.Enabled = True
End If
End Suhb

48 |Page

Debugging code

After six lessons of this tutorial, it would be surprising if you had never had a bug in the code'you've been
writing. By now you should have written some original code for yourself, not just the examples supplied
with the lessons. Whenever you write code there is the possibility of making mistakes. Heck! even
Professors make them, although very rarely. It can be very frustrating to try to find an error when you
don't know where to begin to look. But there are techniques that can help.

Do you know where the term "bug", for a program error, comes from? In case you've
never heard the story before, here it is, as told by Grace Hopper, one of the pionneers
of programming.

In the late 40's even a simple computer was a big thing: 1000's of vacuum tubes and
1000's of square feet of floor space. A group of programmers were working late one
hot summer night. To help to dissipate all the heat generated by those tubes, all the
windows were open. At one point the program that they were working on bombed-out.
Eventually they found the problem: a moth had flown in and had become lodged in the
wiring, creating a short-circuit. Afterwards, every time a program would crash the
programmer would exclaim, "There must be a bug in the machine!". To this day that
has remained one of the mainstays of programmers: when the program goes wrong,
blame the hardware!

One of the first techniques to master is the use of breakpoints. A breakpoint is a flag at a given point in
code where program execution will be suspended to give you time to look at the content of variables or at
the status of properties. When VB hits a breakpoint when running a program, the code window opens and
an immediate window opens at the bottom of the screen. You can look at variables or properties in the
immediate window and then, either do Start to resume execution or do Step, using <F8> to step through
the execution, one statement at a time.

Again we will use the code from Lesson 5. In the code window, click the column to the left of a line of
code. This will create a breakpoint indicated by a red dot (you remove the breakpoint by clicking on the
red dot). When you run the program it will stop at the breakpoint. In the immediate window, look at the
content of different variables or properties. Step through the code with <F8>; the active statement is
indicated by the yellow arrow. All the logic represented by IF or LOOP or DO statements will be
executed according to the conditions present. If the yellow arrow jumps to a line that you don't expect,
find the reason why.

49 | Page

. M@ Private Sub cb go Click(}
Lakbeli.Caption = cho_ position.Text
& ", " & lst team. Text
If th _neame.Text = "" Then
wnu viewer.Enabled = Falsze
ch wiewer.Enabled = False
[y th_ name.ZetFocus
Else
mnu viewer.Enabled = True
ch wiewer.Enabled = True
End If
End 3Sub

== |

print lakel3.Caption
Labels
? th_name.Text ' 2 =2ame as print

? mnu_wviewer.Enabled 'done on first brekpoint
True

? mnu_wviewer.Enabled ‘'done after stepping-through
Fal=se

|
KN —

Another technique to learn is called ""error trapping™. It consists in intercepting errors that can occur at
execution rather than programming mistakes, although not providing for user errors can be considered a
programming mistake.

Let's build a simple example. The user will input 2 numbers, a numerator and a denominator. The
program will divide the numerator by the denominator and display the result. Easy so far. However, if the
user inputs 0 for the denominator, the program crashes because programming cannot make sense of
division by zero. So, we want to trap the error and process it before it displays an error message to the
user. We will use the On Error GoTo ... statement. This tells the program that if there is some kind of
run-time error, go to the error-processing-routine named. We have to create a line label to identify the
error routine; a line label has a colon at the end, like error_rtn:, in the example. At the same time, there is
an Err object created and it contains, among other things, a Number property that will identify the
error. For example, if Err.Number = 11, the error was a division by zero; Err.Number = 6 represents an
overflow situation.

50| Page

Private 3ub cb_calc Click()
Dim nuwer, denohn, answer, msdg
On Error GoTo error rtn

numer = Textl.Text
denom = Textz.Text
anawer = numwer / denom

Labelsd.Caption = answer

Exit 2ub 'needed, otherwise continue thru error rtn
'try it with breakpoint and step
Error_rth: 'this i3 a line label
If Err.Nunber = 11 Then 'error 11 = diwvide by O
msg = MagBox ("Cannot divide by zero™, whOECancel)
End If
If wsg = 1 Then 'QFE hbutton was pressed in msgbox,
Texti.3etFocus 'get another number
Elze 'Cancel button was pressed,
ch_exit Click 'end program
End If
End 3Suhb

Private 3ub ch_exit Click()
Mnload He
End

End 3Suhb

It is worth noting that line labels in code do not end processing in any way. When the logic gets to a line
label it keeps on going. The programmer has to make sure that the processing of errors in the error_rtn is
not done automatically every cycle (that is called "falling through" the next routine and it's a common
error).

Manipulating text

Whenever you are entering data, creating files or databases, you are working with text strings. Text
strings contain characters that can be copied, deleted, cut and reassembled but they also have important
visual characteristics: size, color, weight, transparency, etc. In this lesson we will look at different ways
of manipulating those text strings.

String functions

Here is a list of the basic functions that work with strings:

e Len(string): returns the length of string, the number of characters it contains.

e Left(string, number): returns the number of characters specified by number from the left end of
string.

51| Page

e Right(string, number): returns the number of characters specified by number from the right end
of string.

e Mid(string, position, number): returns the number of characters specified by number.starting at
character number position from the left end of string.

e InStr(stringl, string2): returns the position of string2 in stringl - returns 0 if string2 is not
found in stringl.

e LTrim(string), RTrim(string) and Trim(string): returns string with non-significant spaces
removed from the left, the right or both, respectively.

e LCase(string), UCase(string): returns string converted to lower-case or upper-case, respectively.

Option Explicit
Dim =2tringl Lz String, =stringZ As 2tring
Dim answer Az 2tring
Dim result Az Integer, nunber As Integer
Dim position Az Integer

Private Zub cb_go Click()

stringl = "It was the hest of times, " & _

"it was the worst of times.™
2tringZ = "hezt of time="
rezult = Len(string) 'will return 13
anzwer = Lefti(ztringl, &) 'will return "It waz"
answer = Right(stringl, &) 'will return "time=s."™
anzwer = Mid(stringl, S, 8) 'will return "the hezt"
rezult = In2tristringl, =stringZ) 'will return =

anzwer = UCase(stringd) 'will return TEEZT OQOF TIMEZ™

End Sub

Formatting Numbers, Dates and Times

The Label control is still the easiest way of displaying the result of calculations. Whatever the answer is,
just move it to Label5.Caption and it will appear on the form. Unfortunately, it does not always appear the
way you want to see it. No problem if the result is a string but, what if it is a dollar amount or a date of
some kind. That will require some formatting of the result before displaying it. We use the Format
function:

52| Page

Label5.Caption = Format(result, "*formatting characters'")

Numbers

For example, given that:
Dim result As Single

result = 3456.7

Label5.Caption = Format(result, "*00000.00"") ‘displays: 03456.70
Label5.Caption = Format(result, ""###H# #4') ‘displays: 3456.7
Label5.Caption = Format(result, "##,##0.00"") 'displays: 3,456.70

Label5.Caption = Format(result, ""$##,##0.00") "displays: $3,456.70

Here is a list of what the formatting characters mean:

Represents a digit, with non-significant

0 leading and trailing zeros
Represents a digit, without non-

S > .
significant leading and trailing zeros
Decimal placeholder

, Thousands separator

$+-() . .

space Literal character; displayed as typed

When displaying dollar amounts, it is good practice to always use the 0 placeholder with the decimal so
that 10 cents does not come out as $.1 or $0.1 Using the formatting string **$#0.00™ ensures that the value
follows standard rules and comes out as $0.10.

Dates and Times

When working with dates and times, you need to know that there is a function that will obtain the current
date and time from the system clock. The function is: Now() and you can use it directly as in:

Label5.Caption = Now()

53| Page

The result is the current date and time formatted according to what you specified in the Windows,Control
Panel for your system. If you want to format the result, because you don't want to see the time,for
example, there are formatting characters for date and time, as there are for numbers. The maikrcharacters
are:

vy year without the century - eg: 00
yyyy |year with century - eg: 2000

m month number - eg: 12

mmm |short name of month - eg: dec
mmmm long name of month - eg: december

d day of the month, without zero - eg: 8
dd day of the month, with zero - eg: 08

dddd name of the day of the week - eg: Monday

h hour, without zero - eg: 7
hh hour, with zero - eg: 07
mm minutes - eg: 45

SS seconds - eg: 55

Thus, if Now() is July 8, 2000,
Label5.Caption = Format(Now(), "'dddd, yyyy mmmm dd"")
returns: Saturday, 2000 July 08

Of course any other date can be formatted for display:

Label5.Caption = Format(DateOfBirth, "yyyy-mm-dd"")
Named Formats

In addition to the formatting string, there are several named formats that can be used to determine the
output format. These named formats are VB constants that you call when you need them:

General

Number with no thousands separator
Number

54| Page

Currency Thousands separator, two digits to the right of decimal

Displays at least one digit to the left and two digits to the right of

Fixed decimal

Thousands separator, at least one digit to the left and two digits to the
Standard . .

right of decimal
Percent Multiplies by 100, add percent sign to the right

General Date |Display determined by Control panel settings; displays date and time
Long Date Long date format specified for system
Short Date Short date format specified for system

Long time setting specified by system; includes hours, minutes,

Long Time seconds

Short Time Shows hours and minutes

Dim DateHired As Date

DateHired = ""1995-10-25"

Label5.Caption = Format(DateHired, ""Long Date'")
returns: October 25, 1995

Manipulating blocks of text

The TextBox and the ComboBox controls contain several properties which will allow you to manipulate
blocks of text, in addition to single characters.

If you have to input a large quantity of text in a TextBox, for example, you do not want to see it all in a
single line. There are 2 properties that you set that will make the data easier to see:

e MultiLine = True allows you to have several lines of input, all separated by <Enter>.

e ScrollBars = 2 - Vertical will create scrollbars, useful to read text.

55| Page

------------------- (Mone)
S DDl MouseRainker |0 - Default
True LI
OLEDragMode |0 - Manual

OLEDropMode |0 - Mone
"""""""" RightToleft False
ot e | ek | fleas 2-vertial
TahTrndew 12

Then there are 3 properties to work with a block of selected text in the control:

o SelStart an integer number identifying the start of selected text, the position of the first character
in the block - starts at 0.

o SelLength an integer number identifying the number of characters selected in the block.

e SelText a string containing the selected text.

Note that this kind of manipulation is usually done with the mouse. However, you do not have to code for
the mouse events. It is automatic - when you select text in a control, the appropriate events, MouseDown,
MouseUp and MouseMove, are triggered by the control.

Useful objects: Screen and Clipboard

The Screen object represents the complete Windows environment. It allows access to all Forms and
Controls. It has 2 important properties that we need:

e ActiveForm returns the name of the Form currently active.

e ActiveControl returns the name of the Control that currently has focus.

In the example that follows we will use these properties to avoid having to name the form and the control
in code. This is a way of implementing re-usability of code, an important design principle - we can write
code that can be re-used in many applications without having to be re-written.

The Clipboard object is the system clipboard that you know from all your other Windows applications.

It is the object that temporarily stores text or graphics between applications. In the case of the Clipboard
object, it has 3 important methods that we will use:

e Clear empties the Clipboard.
e SetText puts the selected text into the Clipboard.

o GetText gets the contents of the Clipboard.

56| Page

Example

For the purposes of this example, we will use the Registration Form from Lesson 5.
We will add a Comment TextBox to the form. This textbox will be multiline, with a vertical scrollbar.
Then, we will add items to the menu to allow us to edit the text entered in Comments. We want to be able

to Cut, Copy, Paste and Delete blocks of text.

To change the Menu, we again call upon the Menu Editor. We add the new functions under the Edit
item. To insert a separator bar, just put a single hyphen in the Caption and give it a Name, mnu_sep1,
for example. The menu should look like this:

%]

Menu Editor

Caption: | &Edit QK |
Mame: I rni_edit Cancel |
Index: I Shorkcut: I(Nune} j

HelpContextID: II:I MeqgokiatePosition: ID-NDHE vI

[checked ¥ Enabled ¥ wisible [windowList

ﬂ ﬂ ﬂ ﬂ Mext I Insert | Celeke |
wePrink ;I

- Ecuit

- vEMOove
R esize
a0k
CBopy

wedPaste
coDelete

—
-
—

Then we code the menu events. Note that we use the Screen properties exclusively in this example. Even
if we are working in a control which is called txt_comments, there is nothing in the code that refers
specifically to that control. We can copy this whole section to any form in any application and it will
work without a hitch.

57| Page

T R = [<icx

Private Jub wnu cut Click()
'Make =sure clipbhoard is empty
Cliphoard.Clear
'Copy selected text to Cliphoard
Clipbhoard.3etText Zcreen.lictiveControl.3elText
'Delete selected text
Joreen. ActiveControl.3elText = "

End 3Sub

Private Jub wnu copy Click()
'Make =sure clipbhoard is empty
Cliphoard.Clear
'Copy selected text to Cliphoard
Clipbhoard.3etText Zcreen.lictiveControl.3elText
'Jelected text iz not deleted - stays in Control
End 3Sub

Private Jub mwnu paste Clicki)
'Place text from clipboard into active control
Joreen.ActiveControl.3elText = Cliphoard.GetText
End 3Sub

Private Jub wnu delete Click()
'Delete selected text
Joreen. ActiveControl.3elText = "
End 3Sub

il

0

Graphics

When working with graphics (pictures, diagrams, images) the first thing to master in the environment is
the coordinate system. That is the 2-dimensional grid that defines locations on the screen in terms of
(x,y) coordinates. x is the horizontal position as measured from the left edge and y is the vertical position
as measured from the top. (0,0) is the upper left-hand corner of the screen, form or other container.

By default, all VB measurements are in twips. A twip is 1/20 of a printer's point (of which there are 72
per inch). Thus, there are 1440 twips in an inch, 567 in a centimeter. The measurements refer to printed
size; because there are great variations between monitors, sizes may vary.

You can change the units of measure yourself by setting the ScaleMode property for objects or controls.

ScaleMode Meaning

0 User-defined.

58| Page

1 Twips - 1440 per inch.

2 Points - 72 per inch.

3 Pixels - number per inch depends on monitor.

4 Characters - character = 1/6 inch high and 1/12 inch wide.
5 Inches.

6 Millimeters.

7 Centimeters.

Examples:

Me.ScaleMode =5 ‘sets scale to inches for this form
pic_EmployeePic.ScaleMode =3 'sets scale to pixels for control

Adding Pictures
You can display pictures in 3 places in your application:

e Onaform
e Inapicture box
e Inanimage control

The PictureBox control and the Image control are very similar in operation. However the PictureBox is
more flexible in its methods and properties and is the one you should use most of the time. There is little
use for the Image.

In all 3 cases you will display a picture contained in a graphics file (.BMP, .GIF, .JPEG, .WMF, etc). The
name of the file containing the picture will be entered in the Picture property of the control or form.

In a form, the picture cannot be resized or moved, so it should be of the correct size before you use it. The
picture will serve as background and other controls that you put on the form will be displayed over it.
The PictureBox’s AutoSize property must be set to True, otherwise the control's size will not change to
accomodate the picture, as in the example below.

59| Page

im. Graphics form [_ (O] x|

Thiz picture ig an

s

v Thiz iz an Image caontral -
a3 it iz flat in appearance

Thiz iz a PictureBax with
AutoSize at Falze - it iz more
30 in appearance

In the above example the pictures were all added to the controls at design time.

You can also insert or remove a picture at run time. You use the LoadPicture function, as in:

pic_departmentlogo = LoadPicture("'C:\Pictures\acctnglogo.omp’)

Removing the picture is done with the LoadPicture function without a file name:

pic_departmentlogo = LoadPicture (""")

Drawing controls

There are 2 controls in the toolbox which allow you to draw directly on the form - the Line control and
the Shape control.

Both are easy to use and fairly obvious. The main properties of each that have to be manipulated are:
BorderColor for the color of the line or shape and BorderStyle to use a solid or dashed line.

In addition, the Shape control has: Shape for rectangle, circle, etc., FillColor and FillStyle to determine
how the shape will be filled and BackStyle for transparent or opaque.

60| Page

im. Graphics form

Thiz iz an Imaage caontral -

it iz flat in appearance

g0 Thiz iz an oval
done with Shape
cantral

Thiz is a PictureBox with . T e
dutoSize at Falze - it is more BD?derII:nangr s?;ﬁn white

30 in appearance

Multimedia

Multimedia refers to devices other than the screen or the printer to play sounds, watch videos or record
music. This is done through the use of the Multimedia control. Don't look for it in the toolbox, it's not
there. It is an additional control that you must load.

First, create anew form in Project Lesson7 and call it "multimed.frm". Then, in the menu, at Project -->
Components, find the item "Microsoft Multimedia Control 6.0" and check the box next to it. Hit OK
and that's it. The Multimedia control should now appear in your toolbox.

If you select the multimedia control and put it down on the form, you will have a button bar like all the
ones you've seen on CD players, recorders, etc. In the DeviceType property you specify what type of
device this control controls:

DeviceType Device

CDAudio CD Audio player

DAT Digital audio tape player
Overlay Overlay

Scanner Scanner

Ver Videotape player and recorder
Videodisc Videodisc player

Other Other devices not specified

6l|Page

Example: a simple CD player

We create a new form in Lesson7 and call it multimed.frm. After adding the Multimedia control to the
toolbox, we put a MM control on the form. Since we will only be using the one MM control, we'll leave
its name as MMControl1. The only property we have to change at this time is the DeviceType, to tell it
that we are using the CD player, so we write CDAudio in DeviceType. We add a few labels to complete
the form and we get:

. Project] - multimed [Form]

i, Multimedia form ”E

....................................... Eg Projectl {Lesson7.vbp)

....................................... E% Forms

.................... .1 graphics (graphics.Frm)
p oo CDF}Iayer o I i B P 7 1 acenn 7 Frera'
L o o coooo NN Properties - MM Controll

{MMControll MMContral

T m] w0 Alphabetic |Categu:urizeu:||

--------------------------------------- (About)

N M T SRPOE L1l Custom)
....... Track playing: DTN Kame MMCantrall

--------- AukoEnable True

[e anaan : s - - RackEnabled False
::::::::::::Ll:::::::::::::::: Backiisible True

....................................... BDFdEFSt';.-'|E 1- I'I'IEiFiXEdSiI'Il;“E

....................................... ':aLISES"."alldatICII'I Tr-LIE
DevicaType COodio
....................................... Drag:[l:l:lrl {NDFIE:'

....................................... DragMDde 0 - vBManual

DeviceType

T | Speciies the type of MCT devics to open,

=

Now we have to write the code to operate the CD player.

Before we start to write the code there are a few things to know about the MM control. There is a Track
property which contains the number of the current track. But its most important property is called the
Command property and it can take on several values that, in fact, operate the device.

Command .

Meaning
value
Open Opens the device
Close Closes the device
Eject Ejects the CD

62| Page

Play Plays the device
Pause Pauses the device
Next Goes to next track

Goes to beginning of current track. If used within 3

Prev seconds of most recent Prev, goes to beginning of previous
track

Record Initializes recording

Save Saves the open device file

Seek Step backward or forward a track

Stop Stops the device

Step Step forward through tracks

Understand that both Track and Command are run-time properties because they are meaningless at design
time. For example, to open the CD player:

MMControll.Command = "Open" ‘we assign the value "Open" to the Command property

To pause:

MMControll.Command = ""Pause' ‘'we assign the value "Pause" to the Command property

Now, as you have seen, the trick is to know with which events to associate the code that has to be written.
The first one is fairly obvious: when we load the form, the Form_Load event, we will open the device.
Now, one we haven't used before. When we unload the form, we will close the device. The reason is that,
once launched, the device will keep on playing, even if the form is closed. So, just click on the
Form_Unload event and write the code there. Finally, just to see that things are running smoothly, we
will use the StatusUpdate event for the MM control to display the track being played every time the status
of MMControll changes (change track, pause, play are all status changes).

As you will see, once the CD starts playing, you can use the buttons in the MM toolbar to control what it
does.

63| Page

|s MControid 'I IStatusUpdate

Private Jub Form Load()

HMControll.Command = "Open™
HMControll.Command = "Play"™
End Sub

FPrivate Jub Form Tnload(Cancel As Integer)

HMControll.Command = "Stop™
HMControll.Command = "Close™
End Sub

Private Jub MMControll 3tatusUpdate ()
bl track.Caption = MMControll.Track
End Suhb

FPrivate Jub ch_exit Click()
UTnload Me
End

End Suhb

. Multimedia form M=l E3

CD Player

Track playing: 2

E =it |

You may notice that some of the buttons for the CD Player are not used during play. If you want you can
hide these buttons from the control by using the (Custom) property. This will open an editor window
that will allow you to customize the MMControl.

64| Page

Property Pages | roject - Project A x|

&
General Contrals |F'i|:ture| :
(o [FrevEnabled > [~ PlayEnabled
¥ Prevvisible ¥ | Playizible Jl
- [T MextEnabled ° [T RecordEnabled Properties - MMControll x|
™ Mestisible ™ Recordvisible {MMControll MMContral =]
Alphabetic i
(> I™ StepEnabled — ™ StopEnabled F |Cate'3':'”ze'j|
I7 Stepiizible IF StopVizible % -
[T BackEnabled [T EjectEnabled (Mame) MM ontroll
| A
[T Backvisible — | ¥ Ejectvisible AukoEnable True
BackEnabled False
T [~ PauseEnabled Backvisible False
¥ Pausetizible BorderSkyle 1 - mciFixedSingle
ausesyalidation | True
DeviceType CDAudio
Ciragloon (Mone)
oK Cancel apply Help CragMode 0 - vbManual LI

LESSON 8 - Working with files
Storing data

Data comes in many forms. It can be a list of DVVDs you own and want to keep track of, the description of
all the online college courses you intend to take or even the movie stars you intend to date!

In the previous lessons, you have learned how to manipulate the VB environment to produce forms, do
calculations, edit text and so on. However, everything you've done so far is a one-shot deal. Even if you
did create the Payroll form, you can use it to calculate the net pay for any number of employees but, you
can't save any of that information.

That's where data storage comes in. There are many ways to store data for future use. The most popular
and powerful method is to create a database. But that can get quite involved and it does require a certain
amount of analysis knowledge and skill. The next two lessons will cover how to create and use databases
in VB.

A much more accessible method and one which you have certainly used many times before, is to create a
data file. A file is a collection of data on a given subject, stored on a storage medium, usually a disk or
CD. There are executable files, usually with the .EXE extension, library files (.DLL), Word document
files (.DOC) and a hundred other types. Many applications call for data to be stored and then read back
later for further processing. Think of a simple application: an Address book to store people's names,
addresses and phone numbers. You could create an Address book database and indeed, it is often the first
one you learn how to do in database courses. However, the task is more suited to data file processing. You
just want to create a form to input names, addresses and phone numbers and then you want to store all the
information entered in a file so that you can print it or look-up numbers when needed. In this lesson we
will learn how to create our own files to store and retrieve data.

65| Page

Defining new terms

Record: one logical section of a file that holds a related set of data. If the file contains Student
information, a record would hold the information on one student: name, address, studentID, etc. If
there are 5,000 students registered, the file contains 5,000 records.

Field: part of a record that defines a specific information. In the Student record, FirstName,
LastName, StudentID, are fields. The field is the lowest element in the file. Even if the
information consists of one character, Sex is M or F, it is still considered a separate field. The
field is the equivalent of the variable - we call it a variable when it is used to store data in
memory and call it a field when it stores in a file.

1/0: stands for Input/Output. Whenever you work with a file you have to have ways of reading
data from the file (that's Input) and ways of writing data to the file (that's Output). 1/0
operations consist of all those commands that let you read and write files.

Types of files

There are basically three types of files you can work with:

Sequential file: this is a file where all the information is written in order from the beginning to
the end. To access a given record you have to read all the records stored before it. It is in fact like
listening to a tape - you can go forward or back but you can't jump directly to a specific song on
the tape. In fact, in the old days, magnetic tape was the most commonly used medium to store
data and all files were organized this way. Now, it is still useful when there is a small amount of
data to store, a file of application settings, for example. It can even be of use when there is a large
amount of data to be stored, provided it all has to be processed at one time, eg: a file of invoices
to produce a statement at month-end.

Random file: a file where all records are accessible individually. It is like a CD where you can
jump to any track. This is useful when there is a large quantity of data to store and it has to be
available quickly: you have to know if a part is in stock for a customer who is on the phone; the
program doesn't have time to search through 10,000 records individually to locate the correct one.
This method of storage became popular when hard-disk drives were developed.

Binary file: this is a special, compacted form of the random file. Data is stored at the byte level
and you can read and write individual bytes to the file. This makes the file access very fast and
efficient. We won't be covering this type of file in these exercises. If you need to find out more
about it, go to the VB Reference Manual.

Opening and closing files

To begin our work on files we will look at some commands that are common to both Sequential and
Random files. After that we will look at the specific processing commands for each type of file.

66| Page

The first command to include in a program that needs to work with files is the Open command. Open
assigns the file to a numbered file handle, also called a channel, or sometimes a buffer. The formaf ¢f
the command is:

Open "Filename' [For Mode] [AccessRestriction] [LockType] As #FileNumber

For example:

Open "MyFile.txt" For Random Read Lock Read As #1

e MpyFile.txt is the name of the file in the disk directory.

o For Random means that access to the records can be random; if access is not specified, For
random is the default value.

o Read restricts access to Read-only - the user cannot write or change the records.

e Lock Read means that only the person reading the record can have access to it at any given time;
it is not shared among users.

o As#1 means the file is assigned file handle #1; for all processing in the program, it will always be
refered to as #1, not its Filename.

AccessRestriction and LockType are parameters that are used mostly with files in a network
environment. You use them when you want the file to be shared or not, and you want to prevent certain
users from changing or deleting things that they shouldn't. For the rest of this lesson we will not be using
those parameters.

Access Mode

For Mode in the Open statement indicates how the file will be used. There are five access modes:

Input: open for sequential input; the file will be read sequentially starting at the beginning.

o Output: open for sequential output; records will be written sequentially starting at the beginning;
if the file does not exist, it is created; if it does exist, it is overwritten.

e Random: open for random read and write; any specific record can be accessed.

e Append: sequential output to the end of an existing file; if the file does not exist it is created; it
does not overwrite the file.

e Binary: open for binary read and write; access is at byte level.

If access mode is not specified in the Open statement, For Random is used by default.

Once processing is finished, you need to Close all the files that have been opened. The format for the
Close statement is:

Close #FileNumberl [, #FileNumber?2] ...

67| Page

You can close any number of files with one Close statement. Eg:

Close #1, #2, #3

The following statement closes all open files:

Close

Writing and Reading a Sequential file

There are two commands that allow you to write data to a sequential file: Print and Write. They work in
almost the same way but, the Print command does not separate the fields in the file in quite the same way
which makes the data harder to read afterwards. There is really no valid reason to use Print when creating
a sequential file. In the rest of this lesson we will use Write exclusively.

The format of the Write command is:

Write #FileNumber, OutputL.ist

where FileNumber is the number the file was opened with and OutputList is one or more variables you
want to write to the file.

Address Book Example

In this exercise we will create a simple address book file to keep track of people's names, addresses and
phone numbers.

To handle the various forms that we have to use, we will develop a new technique for these lessons: the
use of a Menu of choices. Note that that is not the same as a Menu bar used in a form. In this case we are
just going to line-up a series of buttons for the different forms that have to be called. There has also been
a small change to the display format - from now on all the forms are maximized (they occupy the full
screen) - this is often easier for the user to work with, rather than have a number of different forms
overlapping on the screen. To get the form to run maximized, change the Form property WindowState -
> 2 - Maximized.

This is what the menu should look like:

68| Page

Lesson 8 Menu N

Sequential Output

R andom Output

R andom Input

E =it

The code for the menu consists of loading and showing the various forms. The EXit button exits the Menu
itself. Any open files are closed by the individual forms.

69| Page

T A = | <

Priwate Sulb ch SI0out Click()
Load 3Adresout
Shdresout.Show vhbMadeless

End Sul

Priwvate Sulb ch 3Tn Clicki()
Load 3aAdresIn
ShdresIn. Show vhModeless
End Sul

Priwate Sulb ch ROout Click ()
Load Riadresout
Ridresout.Show wvhMadeless

End Sul

Priwvarte Sub ch REIn Clicki()
Load RadresIn
RidresIn. Show vhModeless
End Sul

Priwvate Sub ch Exit Click()
Tnload Me
End

End Sul

File design

It has been determined that the file will store 7 fields of information. First and last names could be
together and we could have a work phone number but, the Analyst (who gets paid big bucks to think this
stuff up) has determined that 7 is what is required. It has also been decided that the file will be called
"AdrsBook.txt" and will be stored in "C:\VBApps" - we need to know this for the Open statement.

It must also be determined, before we start to code, what the File mode is going to be when we output to
the file. We could use "Output" but that would mean that every time that we want to add a new listing, we
wipe-out the file. Not very practical! Therefore, we will use "Append" so that all new entries are added to
the end of the existing file.

Finally, once the controls are in place on the form, we have to finalize the order in which we Tab through
them when working from the keyboard. That is called the Tab order. To set the tab order, we use the
Tablndex property for each control. It starts at 0 and goes up for every control in order. When the form
opens, the control with Tablndex=0 gets focus; when you tab from that, focus goes to Tablndex=1, and so
on. Controls that don't get focus - Labels, Pictures, etc. - do have a Tabindex but their TabStop property
is set to False. If you don't want Tab to stop on a control, set its TabStop to False.

Here is what the Sequential Output form will look like when we use it:

70| Page

Address Book

First name [Jane

Last name Ciae

Address [1234 Ay Ave.

City Chicago

State IL

ZIF 44444

FPhane [555.6739

W Tibe Cancel E =it

Once the file has been created we can use Notepad to look at it. Notice that the last entry, the one on the

form above, is not yet in the file. It gets written only when you hit the Write button. Each field entered is
stored as a separate line in the file. When we read them, we read in the same order as that in which they

were written.

Bl AdisBook_txt - Notepad

File Edit Search Help
[rBiz1

"Clinton™

1688 Pennsylvania Ave."
"Washington"

npC

'*QgQggg*
“LLL-PRES™
"Monica"
“Lewinsky"

16088 Pennsylvania Ave. "
"Washington"

npCe

'*QgQggg*
"“LLL-BILL"
“Jean-Luc®
“Picard"

123 Hain St.”
"Hars

g1

‘*opapaape”
"LLLLL-LLLLGLLG™

71| Page

Creating the Sequential Output form

The form SAdresOut is used to capture data from the user and then output that data to the AdrsBaaK.txt
file. The design of the form is what you see in the diagram above.

As you can see, we need 7 TextBox controls to capture the 7 fields. To simplify the code, we will use a
technique we haven't used before in these lessons: the Control Array. You may have seen that come up
before if you tried to copy and paste controls. What we do is: create one TextBox control, give it a name -
we call it "txt_field" -, and then copy that control and paste it 6 times on the form. When you paste a
control, since it has the same name as the existing one, the editor asks whether you want to give it a new
name or create a control array. In this case we tell it to create the control array. This means that, instead of
7 different TextBoxes, we will have an array of TextBoxes, named txt_field(0) to txt_field(6). As you can
see from the code, this allows us to use For ... Next loops to do things like clear the controls and write to
the file.

The Cancel button simply clears all the TextBoxes and does not executes a Write operation. The Exit
button closes the open files and unloads the form which returns us automatically to the Menu form. There
is no End statement, as that would cause the program to end.

form g

Option Explicit

Private Jub Form Load()
'Make sure all TextEBoxes are blank

Dim intCnt As Integer

For intCnt = 0 To 6
txt_field(intCnt).Text = "~

Iext intCnt

'Tou can specify any path vou want for the file:
'Open "CiWWEAppsh AdrsEook.txt™ For Qutput As #1

'Mow, 1f we want Lo keep adding to the file instead of
'overwriting it ewvery time, we change the Open

'to read: For Append instead of For Output

'and use this next statement for the Open:

DOpen "C:WWEAppsh AdrsBook.txt™ For Append Az #1
End Zub

The code to write to the file is fairly straightforward. Once information has been entered into the 7
TextBoxes, we use a FOR ... NEXT loop to execute the Write command. The reason for this is that the
Write command outputs only one field at a time. So, we have to do 7 writes to output the whole record.
After the TextBoxes have been written-out, we clear them to create the next record.

72| Page

Frivate 3ub cbhb _write Clicki()
Dim intCnt iz Intedger
Dim intCntz 4z Integer

For intCnt = 0 To &
Urite #1, txt_field(intCnt).Text
MNext intCnt

For intcntZ = 0 To &
txt_field(intCntiZ).Text = "
MNext intCnt:i
End 3Sub

Private Zub cbhb_cancel Clicki)
Dim intCnt iz Intedger
For intcCnt = 0 To &
txt_field(intCnt] .Text = "
MNext intCnt

txt_field(0).ZecFocus
End 3Sub

Private Zub cbhb Exit Clicki)
Close
Tnhload Me

End 3Sub

Working with a Random file

For this exercise we will use the same Menu form that we started with but we'll create a new output file
which we will call "PhoneBook.txt". Since this file format is different from the sequential, we can't use
the same file to test the code. The PhoneBook file will have almost the same content as the AdresBook
file. The only difference is that we'll add a field for Personld at the beginning of each record. That will
allow us to retrieve records using a record number.

User-defined data type

In addition to data types like String, Integer, Date and so on, you can also define your own data type. This
type is called structure or structs in other languages. We will use it in our application to simplify our 1/O
operations since our 1/0 commands, Put and Get only handle one field at a time. What we do with the

73| Page

http://www.profsr.com/vb/vbless08.htm#Start

user-defined data type is to create a new variable which contains a whole record.

The user-defined variable must be declared in a module. That's a program at the application level, ot tied
to any specific event. To create a module: Menu bar --> Project --> Add module --> Open. \&hen you
save the module, it will take the .BAS extension. The information contained in modules is aviailable to all
the forms in the application. This is what your first module should contain:

A = | |0oc'o otions)

Type PhoneRec
FPerzonld Az Integer
Fhamwe Az 3tring * 15
Lhsmwe Az 3tring * 15
Jtreet As 3tring * 20
City Az String * 15
State Az String ¥ 2
Zip As 3tring * S
Phone Az 3tring * &

End Type

The Type statement creates a new data type; in this case, it's PhoneRec. Once it's been defined, the new
type can be used like any other type, String or Integer, etc. to declare a variable:

Dim InRecord As PhoneRec

The individual fields in the structured variable can be accessed using dot notation:
Label5.Caption = InRecord.Fname
txt_city. Text = InRecord.City

When you define the fields within the new type, it's important to determine the length of each string.
Random access is sensitive about record lengths. When you define a String field like: Fname As String *
15 you determine that the size of the field will always be 15 characters. This is important for the
processing to work properly! Just make sure that the size you assign is big enough to handle most
situations. You do not have to worry about the Integer field because its size is standard.

Writing and Reading records
The command to write records to the Random file is Put. Its format is:
Put #Filenumber, [RecordNumber], Variable

RecordNumber is optional and, if it's omitted, variable is written in Next record position after last Put or
Get statement.

The command to read records from a Random file is: Get. Its format is:

74| Page

Get #FileNumber, [RecordNumber], Variable

If RecordNumber is omitted, next record is read from the file.

Creating the Random file

To create the PhoneBook file, we will need a new form which is just a copy of the SAdresOut form with
the additional Person number TextBox, which is in fact the record number. Then we'll write the code,
making use of the user-defined data type "PhoneRec" described earlier. This form, "RAdresOut",

obtains the next record number from the file, accepts input from the user and writes- the record out to the
file.

Address Book

Perzon nurmber

Firzt name

Last name

Address

City

State

ZIP

Phone

Write Cancel E st

75| Page

76 |Page

Form ——— Em

Option Explicit
Iiim OutRec As PhoneRec
Dim position As Integer
Dim lastrecord As Integer

Priwvate 3ub Form Loadi()
'Make sure all TextBoxes are blank
Dim intCnt As Integer
For intCnt = 0 To 7
txt fieldiintcnt).Text = "¢
Next intCnt

'To keep this example separate from
'"the Sequential file create a new file.
Open "C:WWEAppsh PhoneBook.txt™ For Random Az #1

'"Bead the file until the end
"'Get without position iz a "Read next™.
I'o While Mot ECF (1)
Get #1, , OutRec
Loop
'ZJeek(l) returns number of current record,
'which iz End so, subtract 1 to get last walid.

lastrecord = Jeekil) - 1
position = lastrecord
End Sub

Private Zub cbhb _write Clickl)
Dim intCht Az Integer

On Error GoTo errBRtn

position = position + 1 'add 1 to record nunber
txt fieldi(0).Text = pozition

OutBec.Personld = position

CutRec.Fname = txt field(l].Text

CutRec.Lname = txt field(Z].Text

DutRec.dtreet = txt field(3).Text

DutRec.City = txt field(4).Text

DutRec.dtate = txt field(5) .Text

CutRec.Zip = txt field(s] .Text

CutRec.Phone = txt field(7) .Text

Put #1, position, OutRec 'write output

For intCnt = 0 Ta 7 'olear TextBoxes
txt fieldiintCnt].Text = "
INext intCht
errRtmn:
Resume Next 'hasically, ighore error
End Subl

To read records from the file, we have to specify a record number. This number is accepted into the
Person number TextBox and then used to locate the appropriate record in the file.

The error-trapping routine is useful in this procedure because you are almost certain to encounter the
"Reading past End-of-file" error when you enter a Person number that does not exist.

[Gerera g e

Option Explicit
Dim InPec Az PhoneReco

Private ZSulb Form Load(]
'Make sure all TextEBoxes are blank

Dim intCht Az Integer
For intCnt = 0 To 7

txt fieldiintCnt].Text = "
Next intCnt

COpen "C:WVEBLppsh PhoneBook.t®Xt™ For Random Az #1
End Sub

77| Page

Private Zub cbh _read Click()
On Error GoTo errRtn

Dim intCnt Az Intedger

Dim intCntZ iz Integer

Dim position

position = txt_field(0].Text

Get #1, position, InReco

txt_field(l).Text = InRec.Fname
txt_fieldi(Z).Text = InRec.Lname
txt_field(3).Text = InRec.3treet
txt field(4).Text = InRec.City
txt field(5).Text = InRec.3tate
txt field(6).Text = InRec.Ziip
txt field(?).Text = InRec.Phone

errRtn:
Fezsuwe MNext 'montinue processing at
'next sStatement - ignore error
End Sub

Working with a database
Creating the database

In the final 2 lessons in this tutorial, we will be developing a VB Project on "Project Management". The
actual database we will be using has already been modelled and created in the tutorial on Database
Design and SQL, Lesson 2.

The Project Management example

ezConsulting Inc. is a company doing IT systems consulting work with a large number of clients. At any
given time there are dozens of projects on the go, each employing several employees. In a given period
(in this case, weekly) an employee could work on several different projects. In order to track costs and
revenues for each project, each employee will submit a timesheet every week showing the number of
hours spent on each project. And, since all employees are attached to only one department, costs and
revenues can be calculated by department.

It has already been determined that the ProjectMgt database will consist of the following tables:

o Employees: details on every employee - ID, name, address, telephone, date hired, salary,
chargeout rate, department

e Projects: details of every project - project number, title, budget, start date, end date
e Departments: lookup table of departments - number, name, head

o Timesheets (Master/Detail): tables to store time spent on projects - date, employee, project,
number of hours

78| Page

The first task to be developed in the application consists of table maintenance. For each of thegwain
tables, Employees, Projects and Departments, there have to be ways to add new records, remgve records
that are no longer needed and change records when appropriate. For example, new employees are hired
and other employees leave, the name of a department is changed or a new project is started. Each of these
maintenance operations will require a separate form.

Once the maintenance functions are in place, and they have to be (remember: referential integrity
dictates that you can't accept a timesheet for a non-existant employee or non-existant project), we can
start working on the operational functions, entering timesheets and producing reports. There will be
forms for these tasks also.

To make it easier to access the different forms, we will create an Application Menu like we did in the

previous lesson. The layout of the Menu form is standard and the code consists of a series of Load and
Show statements for the various forms.

ezGonguliing lac

— Maintenance functions

Projects |
Departrments
— Operational functions
Timesheets | Feports |
Exit |
Top

79| Page

http://www.profsr.com/vb/vbless09.htm#Start

Version problems

VB 6 and Access 2000 have compatibility problems. Because VB 6 was released before Access
2000, it does not normally recognize the Access 2000 format. In the example that follows, look
at the Connect property of the Data control. If you don't have Access 2000 in the choices when
you open "Connect", you have an older version of VB. If you try to connect to an Access 2000
database, you will get a message saying that you have an "Unrecognized database format"'. If
you have an older version of VB6, you will have to get the fix for it. You may be aware that
Microsoft regularly publish upgrades to their software products (not that they admit that there
are problems with them!). Those upgrades are called Service Packs. Right now, Visual Studio
(which includes Visual Basic) is at Service Pack 5. By the time you read this that may have
changed. So, to fix your compatibility problem you will have to download the latest Visual
Studio Service Pack from Microsoft.

There is a quick fix to the problem, which is what we've done here to save you the trouble of
having to download. You can convert your Access 2000 database to Access 97 and use your old
VB.

To do that in Access 2000, go to Tools -->Database utilities -->Convert and that will do the
trick until you have the time to upgrade VB.

This will also come in handy later when we look at a VB Add-in called Visual Data Manager.
Unfortunately, that Add-in does not work at all with Access 2000, even with the VB Service
Pack. If you want to use it you will have to convert the database.

The Data Control
To begin the application, we will first create a new form for Projects maintenance: ProjMaint.

The first control we will place on the form, once we've set the basic form properties and saved it, is called
the Data Control. It is the object which links a form to a database and allows you to access the fields in
the tables making up the database. It's called Data in the Toolbox.

VB provides other objects that allow you to link to databases. ADO (ActiveX Data Objects) are certainly
more powerful and more efficient than the Data Control. However, they do require a lot more coding and
are more difficult to implement. Also, they are not available in the Standard Edition of VB, only in the
Professional and Enterprise Editions. In simple applications, the Data Control, slow as it is, gives you a
tool that is easy to implement and will provide most of the functionality you need.

80|Page

http://www.microsoft.com/

—

Propertiez - Datal x "b@
|Datal Data Bl <
Alphabetic Categarized | ..§
Wisible True “;I

E Data
BOFACkion 0 - Mawve Firsk
Zanneck Access
DatabaseMame | CHVBApPSIProje
DefaultCursorTyp O - DefaulbCurs:
Default Type 2 - Uselet
ECFACkion 0 - Mawe Lask
Exclusive False
Options]
Readonly False
RecordsetType |1 - Dynaset
ecordSource Projects ;I
= Font
Fonk M35 Sans Serif ﬂ

The arrow buttons on the control are used to navigate through the database records:

M| 4

Frojects

First record and Previous

Next and Last record

The buttons correspond to 4 methods of the DC which you can use when you have to navigate using

code. They are:

MoveFirst
MovePrevious
MoveNext
Movel ast

Let's look at the important properties of the Data Control:

e Name: the name to use in code - Datal is default - eventually we'll have several data controls on

the form - we'll call this one dta_proj.

e Connect: the kind of database - in this case it's Access - could be Foxpro, dBaselV, etc.

o DatabaseName: the name and path of the database the control is connected to.

e RecordSource: the name of the database table being used.

8l|Page

e BOFAction and EOFAction: action to take when trying to read before the beginning of file or
past the end of file - we'll look at those later.

e Recordset: this is a run time property, and it's an important one - it represents the restit of the
guery executed to the database - it contains all the records required by this Data Coniyol - when
you navigate through the database, you are actually navigating through the recordset, which is
then mapped back to the database - that is why the methods of the Data Control refer to the

Recordset property.

Next we add the controls needed to look at the fields in the records. In many instances we will need to
make changes to the data. Therefore, we'll use a TextBox for each of the fields so that we can both
diaplay and enter data as needed. Each TextBox will be a bound control, meaning that it is bound or tied
to a specific field from the database. When we navigate through the database using the arrow buttons the
content of each TextBox will always reflect the content of the current field. To bind the control to the

database field we use its Data properties:

o DataSource is the name of the Data Control - remember that the DC specifies the name of the
database to use and the name of the table to access - tip: enter this one before the DataField.

o DataField is the name of the field to bind - that field is selected from the content of the table.

................... R H ::_. -_---:-------.—-\,--_.--:-----1_
o gZbonsueling lac o |l il
i Properties - txt_num E
- Projectaumber . - TiHe. - o
UM el e Ith_num TextBox ;I
:.ITEHH .::::::::ITEHtE : o
W Alphabetic Categorized |
e Wisible True Al
o |Text3 il El Data
i DataField p_number
. Stagtdate. - - - oo oo Enddate . - - CrakaFarmat
| Textd s Testd DR DataMember
S DataSource dka_proj
i = DDE
T T : . LinkIterm

Add |:: [elete o Rezet |j E =it |j LinkMode 0 - None
i LinkTimeout 50
:::::::::..........................::::::: I_"-lle:lFlil:
oo ML Projects bl =] Font =

82|Page

http://www.profsr.com/vb/vbless09.htm#Start

Notice that we've also added several buttons to the form. These buttons represent the most comiion
actions we have to perform on the records.

Important note: when you work with bound controls you have to remember that every time you move
off a record, the record is automatically modified in the database - every change you make to a TextBox is
reflected immediately in the table. That is why there is no Update button - the function is done
automatically.

The Reset button allows you to cancel any changes you may have made to the fields - if you modified
information and then change your mind about updating it, the Reset will skip the automatic update and

return the fields to their original state. This is a method of the Data Control object and is written as:
dta_proj.UpdateControls

There are 2 ways to Add new records to the table:

o inthe Data Control, dta_proj, set the EOFAction property = 2 - this will allow the user to go to
Last Record and do a Next, which will add a blank record to the table;

o use the AddNew method of the Data Control, as in:

dta_proj.Recordset. AddNew

To Delete the current record, you must use the Delete method followed by a MoveNext to move off the
deleted record:

dta_proj.Recordset.Delete

dta_proj.Recordset.MoveNext

83|Page

o ook
Private Sub ch _add Clicki)

dta proj.Recordset. AddNew

txt budget.Text = "

txt num.3etFocus
End Suhk

Private Sub ch del Clicki)
dta proj.Recordset.Delete
dta proj.Recordset. Movelext
End Suhk

Private 3Sub ch exit Click()
Tnload HMe
End 3Sub

Private 3ub ch reset Click()
dta proj.UpdateControls
End 3Sub

g

Validating data

Before the data you are entering get permanently transfered to the database, you often want to make sure
they are correct. That is called data validation. We look here at two simple ways of validating data.

Let's say that the specs for the Projects maintenance part of the application call for three verifications:
e abudget amount must be entered;
o the budget amount must not exceed $1,000,000

e the project end-date cannot be earlier than the start-date.

For the first two we'll use the Validate event of the control. This event is triggered when the
CausesValidation property in the TextBox is set to True. Before losing focus, the validation is done.
The parameter assigned to the event when it is generated automatically (it's called Cancel) represents the
KeepFocus property. If you set it to true in code when you encounter a validation problem, it keeps focus
on the current control until the problem is corrected.

The second technique is to use the LostFocus event. When focus moves off the control, you do the

84|Page

http://www.profsr.com/vb/vbless09.htm#Start

validation. If there is an error, you evoke the SetFocus method to put focus back to the control with the
error.

'"WValidate event triggered by

'CausesValidation property of control

Private Jub txt _budget Validate (Cancel As Boolean)
'"Error if budget not entered or
'budget > 1,000,000 [arbitrary)

If txt_budget.Text = "" Then
M=gEBox [("Must enter budget amount'™)
Cancel = True 'EKeepFocus on current control

Elzelf txt_budget.Text > 1000000 Then
M=gEBox [("Budget amount too big™)
Cancel = True
End If
End Sub

Private Jub txt_end LostFocus()
'"Error if end date i= before start date
If txt_end.Text < txt_start.Text Then

M=gBox [("Incorrect end date'™)
txt_end.ZetFocus
End If
End Sub

Finding a specific record

When you navigate with the arrow buttons or the Move... methods you are necessarily moving one record
at a time. Very often there is a need to access a specific record in the database. For example, it might be to
change the ending-date for the project called "XYZ Corp. Payroll System".

In this example we assume that the search will be conducted on Project title. It could be on Number or
End-date if necessary and it would just involve minor changes to the code. We also assume that the user
does not want to enter the full project title and will only input the first few characters; we will therefore
make use of the "Like" operator to match the recordset to the search string.

First, we create a new TextBox, called txt_findTitle, to enter the search string. We will give this
TextBox the Tablndex 0 because we want it to be the first control read when we look at a record. As
soon as we move off the TextBox, the LostFocus event is triggered and checks whether the user has
entered a search string or not. If there is no input into the search string, the user can work with the current
record in the form. If there is a search string specified, the appropriate record will be loaded into the form.

The FindFirst method of the DC will locate the first occurence in the recordset matching the "content"
parameter. If there are more than one records that match, the user then navigates forward using the
arrows. The format of the FindFirst method is:

85|Page

DataControl.Recordset.FindFirst "*fieldname = 'searchstring

If the fieldname contains a string value, you have to use single quotes to name the searchstring; yot'can
use the other comparison operators in place of the =.

This technique can be adapted to search any field in the recordset for a specific record. There are also
FindNext, FindPrevious and FindLast methods for the Data Control recordset.

ezGoasulting lac

Fird Title: I:,:_.r.z

Project number Title
99-44 IK‘(Z Corp Payrall System

Budget
BEREER

Start date End date
2000-05-05 |2EIEIEI-1 010

Add | Delete | Fleset | Esit |

II{I{IPmEcm kM

Priwvate Jub txt_ FfindTitle LostFocus()
Dim content
'Build search string:
'append ¥ Lo the end in order to use
'the "like"™ operator:
'uzer only has to enter first characters
content = Trim(txt findTitle.Text] & "*"
content = "p title like '"™ & content & "'
'If search string was entered, FindFirst
'will locate first occurence of it

If txt_findTitle.Text <> "M Then
dta proj.Recordset.FindFirst content
End If
End 3Sub

LESSON 10 - Working with a database ...part 2
Tuesday, August 02, 2011

86|Page

.\9
é)\ﬁ\
®°®
)
&
Using multiple tables §
Our ProjectMgt application contains an Employee table and a Department table linked through the
employee's department number.
E Employee : Tahle
e Id e Lname e Fname e-Dept e Office | e Phone | e HireDate | e HourlyRate
LARAARN Latreille hichael 10 F2250 2134 19590-10-10 $45.00
| (22222 =mith John 20 53000 3120 1955-05-09 2000
| (33333 Bourget Louise 20 53200 3330 19589-12-12 50,00
| |44444 Bashir tohamed 10 F2350 2150 1985-01-11 $35.00
| |95555 Moguyen Han al B2200 2200 1992-03-03 $30.00
| 77T Moguyen Luu 20 B2200 2200 1992-03-03 2000
#* 0 $0.00

—r

B Department : Table

d_Number d_Name d Head .|
i M SvstermsAnalysis Lucy Tremblay
| 20 Pragramrming Joseph Mubala
0 Metwork support Arnold Schrmit

o

Now, if we create a form for Employee maintenance using the same technique we used in the previous
lesson, we can access all fields in the Employee table using one data control, Datal. This is what the
basic form will look like, before we get to put in the usual improvements:

87|Page

. Employee Maintenance _ O] x|

oo

3000
1985-03-09

But suppose | want to select the employee's department from a list rather than keying in the department
number.

For this we need a new control - it's called the DBL.ist control. It's not in the standard toolbox, we have to
get it.

For that: go to the menu bar -->Project -->Components -->Microsoft Data Bound List Controls 6.0 and
put a check in the box then click OK.

Once you've done that two new controls appear in the toolbox.

88|Page

i

File Edit Wiew Project Format Debug Rum Query Diagram Tools Add-Ins windo
[B-m-Blel 2@ o o], | |¥Eas
X

Cantrals I Designersl Inzertable Elhiec:tsl

General

ik

A IEI_D| [] Microsoft Chart Control 6.0 (OLEDE)
[Micrasaft Comm Conkral 6.0 i »
EI — [Microsaft Common Dialog Control 6,0 (SP3) =) = =
[Microsaft Data Bound Grid Control 5,0 (5P3) - E_ ooo
WV = 4k licrosaft Data Bound Lisk Contraols 6.0 = a- | o8
[Microsaft DataGrid Contral 6.0 (CLEDE) I
ER = [Micrasoft Datalist Conkrols 6.0 (OLEDE) =
e B [Microsaft DataRepeater Contral 6,0 (OLEDE) i e
=l [Micrasaft DirectAnimation Media Contrals
= [Micrasaft DTiC Framewark,
- [Micrasaft Flexarid Contral 6.0
[} [Microsaft Forms 2.0 Object Library =
Microsoft Higrarchical FlexGrid Contral 6.0 (OLE = &
B 4] | »
[Selected Items
[H]

—Micrasaft Data Bound Lisk Cantrals 6.0
Location: CiWINDOWSISYSTEMIDELISTSZ OCH

Now to get the department names to appear in the list.
That means | will have to access the Department table, in addition to the Employee table.
Remember: you need one data control for every table you want to access.

So first, create a second data control, Data2, on the form. It doesn't matter where we put it, we're going to
make it invisible anyway.

Data2 has to have the same Connect property and the same DatabaseName as Datal but, the
RecordSource must specify: Department.

89|Page

S
\ .

&

$

I """ m aLar SRl L L L LAaLar (Lo]

")

|Dataz Data w§
DBLish Alphabetic Categorized |

CLEDropMode 0 - Mone

RightToLeft False
Wisible True
E Data
BOFACtion 0 - Mowe Firsk
Connect Access

DatabaseMame CappsYE ProiMgt),
DefaultCursorType |0 - DefaulkCursor

DefaultType 2 - Uselek

ECFACkion 0 - Mowe Lask

Exclusive False

Qpkions 0

ReadCnly False

RecardsetTyvpe 1 - Dvnasek

Recordsource Departrnent
= Font

Font M5 Sans Serif

Now to get the list right.

First, we delete the department_number TextBox. Then we add a DBL.ist.
Now we specify the DBL.istl properties. Careful! This is where most people hit a snag!

The Data properties: these specify where the data entered will be stored. We are in the Employee table.
That's Datal. So, the data entered will go into DataSource: Datal and the field into which it is going is
DataField: e-Dept.

The List properties: these tell the control where to get the information to show in the list. Since we want
it from the Department table, we specify RowSource: Data2. What will appear in the list is the
Department name so we choose ListField: d_Name. Finally, there has to be a link between Data2 and
Datal. That is always the field which is the primary key in the list table and that is the BoundColumn:
d_Number.

90| Page

DBList1

|DBList1 DEList >
Alphabetic Categorized |
Tabstop True
Visible True
E Data
DataBindings
CiataField e-Dept
DataFormat
Datardember
DaktaSource Data dlata ertered
goes to e-dept
El[Font field in Datal
Fonk M3 Sans Serif
[l |List
BoundColurmn | d_Mumber
InteqralHeight True
ListField d_Mame The lizt in the
Data boxis frl:un'!
Bl Misc Drata?andis
relatec-y
(About) dept-number

And once everything is cleaned-up, the Data2 control is hidden, we get the final result:

91| Page

. Employee Maintenance O] x|

3000
1985-03-03

92| Page

