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Course outline 

  

                            PPuurrppoossee      To prepare a learner to think logically in readiness for the programming courses           in 

BIT   

OObbjjeeccttiivveess  By the end of the course unit a learner shall be able to: 

 To appreciate basic principles of Boolean algebra, logic, set theory permutations and combination 

and graph theory.  

  

CCoouurrssee  CCoonntteenntt 

 Boolean algebra:  

- Axiomatic definition of Boolean algebra 

- Proposition and proposition functions  

- Truth values and truth tables  

 Logic; Predicate logic; Propositional logic; Logical reasoning; Conceptualizing variables; Open 

sentence; Truth sets, propositions; Truth values and table;  Logical equivalence; Negation of 

statements; Conjunctions; Disjunctions; Tautology, contradiction etc; Contapositive, converse, 

inverse.  

 Set theory; Set algebra, recussive definition sets; Orderings; Relations partially ordered sets; 

Lattices; Conceptualizing elements, finite and infinite; Universal empty and disjoint, subsets; Venn 

diagram union; Intersection; Complement; Difference; Number elements and logical arguments; 

Sets of sets; The power set and Cartesian product  

 Mathematical inductions; Proof by induction; Contrapositive and contradiction.  

 Permutations and combinations  

 Graph theory; Directed and undirected graphs; Sub graphs, circuits; Paths; Cycles; Coactively; 

Adjacency and incidence matrices; Elements of transport network.   

  

AAsssseessssmmeennttss    A learner is assessed through ;  

 Continuous Assessment Tests (CATs) (30%)  

 End of semester examination (70%) 

 Total = (100%) 

 

RReeqquuiirreedd  tteexxtt  bbooookkss     

Sharma J., Discrete Mathematics, McMillan  

Abraham K. & Baker TP, Discrete Mathematics for Computer Scientists and Mathematicians, Prentice Hall 

Other support materials  

Various application manuals and journals 
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CHAPTER 1 

BOOLEAN ALGEBRA 
 
 

Learning objectives: 

By the end of the chapter a student shall be able to know: 

a) Axiomatic definition of Boolean 

b) laws of Boolean algebra 

c) Proposition and proposition functions 

d) Truth values and truth tables 

 

1.1 Axioms 
 

 

Mathematical theories distinguish between axioms and theorems. 

Axioms cannot be proven, but are accepted as facts. 

Theorems can be proven from axioms by using logical inference. 
 

 
 

An example of using axioms 

 
A Boolean logic is a set with operators: and (∧), or (∨), not (A), 

the elements ―true‖ and ―false‖ and the axioms: 

A ∧ (B ∧ C ) = (A ∧ B) ∧ C  A ∨ (B ∨ C ) = (A ∨ B) ∨ C 

 
associativity 

 
A∧B =B ∧A A∨B =B ∨A 

 
commutativity 

 
A ∨ (A ∧ B) = A A ∧ (A ∨ B) = A 

 
absorption 

 
A ∨ (B ∧ C ) = (A ∨ B) ∧ (A ∨ C ) A ∧ (B ∨ C ) = (A ∧ B) ∨ (A ∧ C ) 

 
distributivity 
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A∨A=1 A∧A=0 

complements 

De Morgan‘s law is a theorem which can be proven from the 

axioms. 

 

 
 

Definition of Boolean algebra 

A Boolean algebra B consists of a set S containing distinct elements 0 and 1, 

binary operators + and . on S, and a unary operator ' on S satisfying the following 

laws. 

 
a) Associative laws: (x + y) + z = x + (y + z) 

(x . y) . z = x . (y . z)  for  all x, y, z ∊ S. 

b) Commutative laws: 

x + y = y + x, x . y = y . x  for  all x, y ∊ S. 

c)  Distributive laws: 

x . (y + z) = (x. y) + (x . z) 

x + (y . z) = (x + y) . (x + z)  for  all x, y, z ∊ S. 

d) Identity laws: 

x + 0 = x, x . 1 = x  for  all x ∊ S. 

e) Complement laws: 

x + x' =1, x . x' = 0 for  all x ∊ S. 

If B is a Boolean algebra, we  write B = (S, +, ., ', 0, 1). 

EXAMPLE 

 
In a Boolean algebra, 

if x + y =1 and xy = 0, then y = x' 
 

Proof. 
 

 

Y = y1 

= y(x  + x') 

= yx + yx' 

= 0 + yx' 

= xx' + yx' 

= x'x + x'y 

= x' (x + y) 

= x' 1 

= x' 
 

 
 

Let B =  (S, +, ., ', 0, 1) be a Boolean algebra. The following properties hold. 
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a) Idempotent laws: 

x + x = x, xx = x  for  all x ∊ S. 

b) Bound laws: 

x + 1 = 1, x0 = 0 for  all x ∊ S. 

c)  Absorption laws: 

x + xy = x, x(x  +y) = x  for  all x, y ∊ S. 

d) Involution law: 

(x')' = x  for  all x ∊ S. 

e) 0 and 1 laws: 

0' = 1, 1' = 0. 

f)   De Morgan's laws for  Boolean algebras: 

(x + y)' = x'y', (xy)' = x' + y' for  all x, y ∊ S. 

Proof of (a), (b), and (c ) above. 

a) x = x + 0 

= x + (xx') 

= (x + x)(x  + x') 

= (x + x)1 

= x + x 

b) x + 1 = (x + 1)1 

= (x + 1)(x + x') 

= x +1x' 

= x + x'1 

= x + x' 

= 1 

= x0 + 0 

= x0 +xx' 

= x(0 + x') 

= x(x' + 0) 

= xx' 

= 0 

c)  x + xy = x1 + xy 

= x(1 + y) 

= x(y  + 1) 

= x1 

= x 

 
Proving de Morgan‘s law 

 

A ∨  B = (A ∨  B) ∧  

1 

 

= (A ∨  B) ∧  ((A ∧  B) ∨  A ∧  B) 

 

= (A ∧  A ∧  B) ∨  (A ∧  A ∧  B) ∨  (B ∧  A ∧  B) ∨  (B ∧  A ∧  B) 

 

= 0 ∨  (A ∧  A ∧  B) ∨  0 ∨  (B ∧  A ∧  B) 
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= (A ∧  A ∧  B) ∨  (B ∧  A ∧  B) 

 

= ((A ∨  B) ∧  A ∧  B) 

 

= ((A ∨  B) ∧  A ∧  B) ∨  0 

 

= ((A ∨  B) ∧  A ∧  B) ∨  (A ∧  B ∧  A ∧  B) 

 

= A ∧  B ∧  ((A ∨  B) ∨  (A ∧  B)) 

 

= A ∧  B ∧  ((A ∨  B) ∨  (A ∧  B) ∨  (A ∧  B)) 

 

= A ∧  B ∧  (((A ∨  (A ∧  B)) ∨  (B ∨  (A ∧  B))) 

 

= A ∧  B ∧  (A ∨  B ∨  B ∨  A) 

 

=A∧ B ∧ 1=A∧ B 
 

 
 

1.2 Proposition and proposition functions 

 
A sentence that is either true or  false, but not both, is called a proposition. 

Example: 

a) The only positive integers that devide 7 are 1 and 7 itself 

b) Earth is the only planet in the universe that has life 

c)  All cows eat meat 

 
Sentence that is not proposition 

Buy  two tickets for  friday cinema 

Note: Propositions are the basic building blocks of any theory of logic. 

Definition : Let p and q be propositions. 

The conjunction of p and q, denoted  p ∧ q, is the proposition 

p and q. 

The disjunction of p and q, denoted p ∨ q, is the proposition 

 
p  or  q 

Propositions such as p ∧ q and p ∨  q that result from combining propositions are 

called compound propositions. 

 
Example: 

 
If p: 1 + 1 =3, 

q: A decade is 10 years, 
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then the conjunction of p and q is 

p ∧ q: 1 + 1 = 3 and a decade is 10 years. 

 
The disjunction of p and q is 

p ∨ q: 1 + 1 = 3 or  a decade is 10 years. 
 
 
 

 
The truth values of propositions such as conjunctions and disjunctions can be 

described by truth tables. The truth table of proposition P made up of the 

individual propositions p1,......,pn lists all possible combinations of truth values for 

p1,....,pn, T denoting true and F denoting false, and for  each such combination 

lists the truth value of P. 
 

 
 

Definition: The truth value of compound proposition p ∧ q is defined by the truth 

table 

 
Example: 

 

P  q  p ∧ q 

T T T 

T F F 

F T F 

F F F 
 

 
 
 
 

If p: 1 + 1 = 3, 

q: A decade is 10 years, 

 
then p is false, q is true, and the conjunction 

 
 

 

is false. 

p ∧ q: 1 + 1 = 3 and a decade is 10 years 

 

 
 

Definition: The truth value of compound proposition p ∨ q is defined by the truth 

table 
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Example: 

 

P  q  p ∨ q 

T T T 

T F T 

F T T 

F F F 
 

 
 
 
 

If p: 1 + 1 = 3, 

q: A decade is 10 years, 

 
then p is false, q is true, and the disjunction 

 
 

 

is true. 

p ∨ q: 1 + 1 = 3 or a decade is 10 years 

 
 
 
 
 
 
 

 

Definition: The negation of p, denoted p, is the proposition 

not p. 

The truth value of the proposition is defined by the truth table 
 

 
 

p  p 

T  F 

F  T 
 

 

1.3 Chapter Review Questions 

a) What is a proposition? 

b) What is a truth table? 

c) What is the disjunction of p and q? How is it denoted? 

d) Give the truth table for the negation of p. 

e) which of these inferences are valid? 

 
The days are becoming longer. 
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The nights are becoming shorter if the days are becoming longer. 

Hence, the nights are becoming shorter. 

The earth is spherical implies that the moon is spherical. 

The earth is not spherical. 

Hence, the moon is not spherical. 
 

 

The new people in the neighbourhood have a beautiful boat. 

They also have a nice car. 

Hence, they must be nice people. 

All dogs are carnivorous. 

Some animals are dogs. 
 

 

Therefore, some animals are carnivorous. 
 
 
 

SUGGESTED  FURTHER READING 
 

 

Ritchard Johnsonbaugh, Discrete Mathematics 6th  edition, pg 1­6 
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CHAPTER 2 

LOGIC 

Learning objectives: 
By the end of the chapter a student shall be able to know:  

a) Predicate logic. 

b) Propositional logic Logical reasoning 

c) Conceptualizing variables open sentence 

d) Truth values and table Logical equivalence 

e) Negation of statements conjunctions Disjunctions 

f) Tautology, contradiction etc contrapositive, converse, inverse 

 
 
 
 

2.1 Propositional and Predicate Logic ­ Syntax & Semantics 
 

Propositional logic: “and, or, not” and variables. 
 

 
 

Propositional logic does not have quantifiers: 

―All poodles are dogs.‖ 

―There is at least one black swan.‖ 
 

―Only supervisors are allowed to fill in the form.‖ 
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―No person can solve this problem.‖ 
 

These sentences cannot be expressed in propositional logic. 
 

Predicate logic 
 

Quantifiers: all, at least one 
 

 
 

First order logic: quantifiers for individuals. 

―All squirrels eat nuts.‖ 

 
 

 

Second order logic: quantifiers for predicates. 

S = ―squirrels eat nuts‖ 

―All S involves chewing.‖ 
 

 
 

Third order logic: ... 
 

Syntax and semantics 
 

Predicate logic is a formal language (like a programming language)  with rules for syntax (i.e. how to 

write expressions) and semantics (i.e. how to formalise the meaning of expressions). 
 

 
 

Syntax: well­formed formulas 
 

 
 

logical symbols: and, or, not, all, at least one, brackets, 

variables, equality (=), true, false 

predicate and function symbols 
 

 
 

(for example, Cat(x) for ―x is a Cat‖) 
 

 
 

term: variables and functions 
 

 
 

(for example, Cat(x)) 
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formula: any combination of terms and logical symbols 
 

 
 

(for example, ―Cat(x) and Sleeps(x)‖) 

sentence: formulas without free variables 

(for example, ―All x: Cat(x) and Sleeps(x)‖) 

 

 

Semantics:  meaning 
 

 
 

The meaning of a term or formula is a set of elements. The  meaning of a sentence is a truth value. 

The function that maps a formula into a set of elements is called an interpretation. 

An interpretation maps an intensional description (formula/sentence) into an extensional description 

(set or truth value). 

Validity 

A sentence is ...  satisfiable if it is true under at least one interpretation. 
 

 
 

valid if it is true under all interpretations. invalid if 

it is false under some interpretation. contradictory 

if it is false under all interpretations. 

 
 

Example: ―All x: Cat(x) and Sleeps(x)‖ 
 

If this is interpreted on an island which only has one cat that  always sleeps, this is satisfiable. 

Since not all cats in all interpretations always sleep, the sentence is  not valid. 

 
 
 
 

Reasoning (Charles Sanders Peirce) 
 
 

Induction: Every dog I know has ears. =⇒  Dogs have ears. 

(from specific examples to general) 

Deduction: Dogs bark. Bobby is a dog. =⇒  Bobby barks. 

(from general to specific) 
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Abduction: Sherlock Holmes: the murderer was left­handed. 

Smith is left­handed. =⇒  Smith is the murderer. 

(based on shared attributes) 
 

 
 
 
 

2.2 More Complex Sentences 
 

We need to apply operators to construct more complex sentences from atoms. 
 

Negation: 

          applied to an atom negates the atom: 

 
        loves(kermit,  voiceof(misspiggy)) 

 
''Kermit does not love Miss Piggy's voice'' 

 

 

Conjunction: 

          combines two conjuncts: 

 
loves(misspiggy,  kermit)           loves(misspiggy,  

voiceof(kermit)) 

 
''Miss Piggy loves Kermit and Miss Piggy loves Kernit's voice'' 

Notice it is not correct syntax to write in logic 

loves(misspiggy,  kermit)           

voiceof(kermit) 

because we have tried to conjoin a sentence (truth valued) with an object. Logic operators must 

apply to truth­valued sentences. 

 
Disjunction: 

 

 

combines two disjuncts: 

 
loves(misspiggy,  kermit)           loves(misspiggy,  

voiceof(kermit)) 

 
''Miss Piggy loves Kermit or Miss Piggy loves Kermit's voice'' 

 
Implication: 

 

 

combines a condition and conclusion 
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loves(misspiggy,  voiceof(kermit))         loves(misspiggy,  kermit) 

 
''If Miss Piggy loves Kermit's voice then Miss Piggy loves Kermit'' 

 
The language we have described so far contains atoms and the connectives       ,       ,        and 

       . This defines the syntax of propositional Logic. It is normal to represent atoms in propositional 

logic as single upper­case letters but here we have used a more meaningful terminology for the atoms 

that extends easily to Predicate Logic. 
 
 
 
 

2.3 Propositional logic 
 

Every logic comprises a (formal) language for making statements about objects and reasoning about 

properties of these objects. This view of logic is very general and actually we will restrict our 

attention to mathematical objects, programs, and data structures in particular. Statements in a 

logical language are constructed according to a predefined set of formation rules (depending on 

the language) called syntax rules. 
 

 
 

One might ask why a special language is needed at all, and why English (or any other natural 

language) is not adequate for carrying out logical reason­ing. The first reason is that English (and 

any natural language in general) is such a rich language that it cannot be formally described. The 

second reason, which is even more serious, is that the meaning of an English sentence can be 

ambiguous, subject to different interpretations depending on the context and implicit 

assumptions. If the object of our study is to carry out precise rigor­ous arguments about 

assertions and proofs, a precise language whose syntax can be completely described in a few 

simple rules and whose semantics can be defined unambiguously is required. 
 

 
 

Another important factor is conciseness. Natural languages tend to be verbose, and even fairly 

simple mathematical statements become exceedinglylong (and unclear) when expressed in them. 

The logical languages that we shall define contain special symbols used for abbreviating 

syntactical constructs. 
 

 
 

A logical language can be used in different ways. For instance, a language can be used as a 

deduction system (or proof system); that is, to construct proofs or refutations. This use of a 

logical language is called proof theory. In this case, a set of facts called axioms and a set of 

deduction rules (inference rules) are given, and the object is to determine which facts follow from 

the axioms and the rules of inference. When using logic as a proof system, one is not concerned 

with the meaning of the statements that are manipulated, but with the arrangement of these 

statements, and specifically, whether proofs or refutations can be constructed. In this sense, 

statements in the language are viewed as cold facts, and the manipulations involved are purely 

mechanical, to the point that they could be carried out by a computer. This does not mean that 

finding a proof for a statement does not require creativity, but that the interpetation of the 
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statements is irrelevant. This use of logic is similar to game playing. Certain facts and rules are 

given, and it is assumed that the players are perfect, in the sense that they always obey the rules. 

Occasionally, it may happen that following the rules leads to inconsistencies, in which case it may 

be necessary to revise the rules. 
 

 
 
 

However, the statements expressed in a logical language often have an intended meaning. The second 

use of a formal language is for expressing statements that receive a meaning when they are given 

what is called an in­terpretation. In this case, the language of logic is used to formalize properties 

of structures, and determine when a statement is true of a structure. This use of a logical language 

is called model theory. One of the interesting aspects of model theory is that it forces us to 
 

 
 

have a precise and rigorous definition of the concept of truth in a structure. Depending on the 

interpretation that one has in mind, truth may have quite a different meaning. For instance, 

whether a statement is true or false may depend on parameters. A statement true under all 

interpretations of the parameters is said to be valid. A useful (and quite reasonable) mathematical 
 

assumption is that the truth of a statement can be obtained from the truth (or falsity) of its parts 

(substatements). From a technical point of view, this means that the truth of a statement is 

defined by recursion on the syntactical structure of the statement. The notion of truth that we 

shall describe (due to Tarski) formalizes the above intuition, and is firmly justified in terms of the 

concept of an algebra 
 

The two aspects of logic described above are actually not independent, and it is the interaction 

between model theory and proof theory that makes logic an interesting and effective tool. One 

might say that model theory and proof theory form a couple in which the individuals complement 

each other. 
 

 
 
 
 

In propositional logic, there are atomic assertions (or atoms, or propositional letters) and compound 

assertions built up from the atoms and the logical connectives, and , or , not, implication and 

equivalence. The atomic facts are interpreted as being either true or false. In propositional logic, 

once the atoms in a proposition have received an interpretation, the truth value of the proposition 

can be computed. Technically, this is a consequence of the fact that the set of propositions is a 

freely generated inductive closure. 
 

 
 

Certain propositions are true for all possible interpretations. They are called tautologies. Intuitively 

speaking, a tautology is a universal truth. Hence, tautologies play an important role. 
 

 
 

For example, let ―John is a teacher,‖ ―John is rich,‖ and ―John is a rock singer‖ be three atomic 

propositions. Let us abbreviate them as A,B,C. 
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and the rules of propositional logic, which is probably not the case. In this  

Consider the following statements: 

―John is a teacher‖; 

It is false that ―John is a teacher‖ and ―John is rich‖; 

If ―John is a rock singer‖ then ―John is rich.‖ 

We wish to show that the above assumptions imply that 
 

 
 

It is false that ―John is a rock singer.‖ 
 

 
 

This amounts to showing that the (formal) proposition 
 
 

(∗ ) (A and not(A and B) and (C implies B)) implies (not C) 
 

 
 

is a tautology. Informally, this can be shown by contradiction. The statement 
 
 

(∗ ) is false if the premise (A and not(A and B) and (C implies B)) is true 
 

 
 

and the conclusion (not C) is false. This implies that C is true. Since C is 
 

 
 

true, then, since (C implies B) is assumed to be true, B is true, and since A is 

assumed to be true, (A and B) is true, which is a contradiction, since not(A 

and B) is assumed to be true. 

Of course, we have assumed that the reader is familiar with the semantics 
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chapter, such matters will be explained in detail. 

definition  under certain operations defined below. 

 

 

 
 
 
 
 

 
Syntax of Propositional Logic 

 
 
 
 

The Language of Propositional Logic 
 

 
 

Propositional formulae (or propositions) are strings of symbols from a count­ 
 

 
 

able alphabet defined below, and formed according to certain rules 
 

(The alphabet for propositional formulae) This alphabet 

consists of: 

(1) A countable set PS of proposition symbols: P0 ,P1 ,P2 ...; 
 
 

(2) The logical connectives: ∧  (and), ∨  (or), ⊃  (implication), ¬ (not), 
 

 
 

and sometimes ≡  (equivalence) and the constant ⊥  (false); 
 

 
 

(3) Auxiliary symbols: ―(‖ (left parenthesis), ―)‖ (right parenthesis). 

The set of propositional formulae (or propositions) is defined as 

the inductive closure  of a certain subset of the alphabet of 
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Definition: The Propositional formulae is  the set of propositional 

(3) Whenever A, B are in P ROP , (A ∨  B), (A ∧  B), (A ⊃  B) 

and 

 

 

 

 
 

formulae (or propositions) is the inductive closure of the set PS ∪  {⊥ } under 
 

 
 

the functions C¬ , C∧  , C∨  , C⊃  and C≡  , defined as follows: For any two strings 
 

 
 

A, B over the alphabet of definition. 
 

C¬ (A) = ¬A, 
 
 

C∧  (A, B) = (A ∧  B), 
 

 
 

C∨  (A, B) = (A ∨  B), 
 

 
 

C⊃  (A, B) = (A ⊃  B) and 
 

 
 

C≡  (A, B) = (A ≡  B). 
 

 
 

The above definition is the official definition of proposition as an inductive 

closure, but is a bit formal. For that reason, it is often stated less formally as 

follows: 

The set P ROP of propositions is the smallest set of strings over the 

alphabet of definition 3.2.1, such that: 

(1) Every proposition symbol Pi is in P ROP and ⊥  is in P ROP ; 
 

 
 

(2) Whenever A is in P ROP , ¬A is also in P ROP ; 
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(A ≡  B) are also in P ROP .  

 

 

 
 

(4) A string is in P ROP only if it is formed by applying the rules 
 

 
 

(1),(2),(3). 
 

 
 

The official inductive definition of P ROP will be the one used in proofs. 
 
 
 

 

2.4 Semantics of Propositional Logic 
 

We have defined the syntax of propositional Logic. However, this is of no use without talking about the 

meaning, or semantics, of the sentences. Suppose our logic contained only atoms; e.g. no logical 

connectives. This logic is very silly because any subset of these atoms is consistent; e.g. 

beautiful(misspiggy) and ugly(misspiggy) are consistent because we cannot represent 

ugly(misspiggy)                beautiful(misspiggy) So we now need a way in our 

logic to define which sentences are true. 
 
 
 
 
 

 
 

 

Example:  Models Define Truth 
 

Suppose a language contains only one object constant misspiggy and two relation constants ugly 

and beautiful. The following models define different facts about Miss Piggy. 
 

M=       : In this model Miss Piggy is neither ugly nor beautiful. M={ugly(misspiggy)}: 

In this model Miss Piggy is ugly and not beautiful. M={beautiful(misspiggy)}: In this 

model Miss Piggy is beautiful and not ugly. M={ugly(misspiggy),  

beautiful(misspiggy)}: In this model Miss Piggy is both ugly and beautiful. The last 

statement is intuitively wrong but the model selected commits the truth of the atoms in the 

language. 
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Compound Sentences 
 

So far we have restricted our attention to the semantics of atoms: an atom is true if it is a member of the 

model M; otherwise it is false. Extending the semantics to compound sentences is easy. Notice that in 

the definitions below        and        do not need to be atoms because these definitions work 

recursively until atoms are reached. 
 

Conjunction: 

          is true in M iff        and        are true in M individually. 

So the conjunct 

loves(misspiggy,  kermit)           loves(misspiggy,  voiceof(kermit)) 
is true only when both 

 

 

Miss Piggy loves Kermit; and 

Miss Piggy loves Kermit's voice 
 

 

Disjunction: 

          is true in M iff at least one of        or        is true in M. 

So the disjunct 

loves(misspiggy,  kermit)           loves(misspiggy,  voiceof(kermit)) 
is true whenever 

 

 

Miss Piggy loves Kermit; 

Miss Piggy loves Kermit's voice; or 

Miss Piggy loves both Kermit and his voice. 

 
Therefore the disjunction is weaker than either disjunct and the conjunction of these disjuncts. 

 

 

Negation: 

          is true in M iff        is not true in M. 
 

 

Implication: 

          is true in M iff        is not true in M or        is true in M. 

 

We have been careful about the definition of . When people use an implication         they 

normally imply that        causes       . So if        is true we are happy to say that        is 

true iff        is true. But if        is false the causal link causes confusion because we can't tell 

whether         should be true or not. Logic requires that the connectives are truth functional and so the 
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truth of the compound sentence must be determined from the truth of its component parts. Logic defines 

that if        is false then        is true regardless of the truth of       . 
 

So both of the following implications are true (provided you believe pigs do not fly!): 
 

fly(pigs)         beautiful(misspiggy) 
 

fly(pigs)                beautiful(misspiggy) 
 

 

Example:  Implications and Models 
 

In which of the following models is 

ugly(misspiggy)                beautiful(misspiggy) true? 
 

M=         Miss Piggy is not ugly and so the antecedent fails. Therefore the implication holds. (Miss 

Piggy is also not beautiful in this model.) 

M={beautiful(misspiggy)} 

Again, Miss Piggy is not ugly and so the implication holds. 

M={ugly(misspiggy)} 

Miss Piggy is not beautiful and so the conclusion is valid and hence the implication holds. 

M={ugly(misspiggy),  beautiful(misspiggy)} 

Miss Piggy is ugly and so the antecedent holds. But she is also beautiful and so  

beautiful(misspiggy) is not true. Therefore the conclusion does not hold and so the 

implication fails in this (and only this) case. 
 

 
 

2.5 Truth Tables 
 

Truth tables are often used to calculate the truth of complex propositional sentences. A truth table represents all 

possible combinations of truths of the atoms and so contains all possible models. A column is created for each 

of the atoms in the sentence, and all combinations of truth values for these atoms are assigned one per row. So if 

there are        atoms then there are        initial columns and         rows. The final column contains the 

truth of the sentence for each combination of truths for the atoms. Intervening columns can be added to store 

intermediate truth calculations. Below are two 

sample truth tables: 
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T T T  T T T T T 

T F F  T T F T T 

F T T  T F T F T 

F F T  T F F F F 

 F T T T T 

 F T F T T 

 F F T T T 

 F F F T T 

 
 
 

 

 
 

Therefore we can determine equivalence by drawing truth tables that represent the sentences in the 

various models. If the initial and final columns of the truth tables are identical then the sentences are 

equivalent. Examples of equivalences include: 
 

          and  

        and  

          and         ( is commutative) 

          and        ( is associative) 

Unlike        and        ,        is not commutative: 

loves(misspiggy,  voiceof(kermit))         loves(misspiggy,  kermit) 
 

is very different from 
 

loves(misspiggy,  kermit)         loves(misspiggy,  voiceof(kermit)) 
 

Similarly        is not associative. 
 
 

2.6 Syntax of Predicate Logic 
 

Propositional logic is fairly powerful but we must add variables and quantification to be able to reason 

about objects in atoms and express properties of a set of objects without listing the atom corresponding 

to each object. 
 

We shall adopt the Prolog convention that variables have an initial capital letter. (This is contrary to 

many Mathematical Logic books where variables are lower case and constants have an initial capital.) 
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When we include variables we must specify their scope or quantification. The first quantifier we want 

is the universal quantifier        (for all). 
 

        X.loves(misspiggy,  X) 
 

This allows X to range over all the objects and asserts that Miss Piggy loves each of them. We have 

introduced one variable but any number is allowed: 
 

        XY.loves(X,  Y) 
 

Each of the objects love all of the objects, even itself! Therefore       XY. is the same as       X. 

Y. Quantifiers, like connectives, act on sentences. So if Miss Piggy loves all cute things (not just 

Kermit!) we would write 
 
 

rather than 

 

        C.[cute(C)  ->  loves(misspiggy,  C)] 

 
loves(misspiggy,        C.cute(C)) 

because the second argument to loves must be an object, not a sentence. 
 

When the world contains a finite set of objects then a universally quantified sentence can be converted 

into a sentence without the quantifier; e.g.        X.loves(misspiggy,  X) becomes 
 

loves(misspiggy,  misspiggy)         loves(misspiggy,  kermit)  

loves(misspiggy,  animal)         ... 
 

Contrast this with the infinite set of positive integers and the sentence 
 

        N.[odd(N)         even(N)] 
 

The other quantifier is the existential quantifier        (there exists). 
 

        X.loves(misspiggy,  X) 

This allows X to range over all the objects and asserts that Miss Piggy loves (at least) one of them. 

Similarly 

        XY.loves(X,  Y) 

asserts that there is at least one loving couple (or self­loving object). 
 

Note: We shall be using First Order Predicate Logic where quantified variables range over object 

constants only. We are defining Second Order Predicate Logic if we allow quantified variables to range 

over functions or predicates as well; e.g. 
 

        X.loves(misspiggy,  X(kermit)) includes loves(misspiggy, 

voiceof(kermit)) 
 

        X.X(misspiggy,  kermit) (there exists some relationship linking Miss Piggy and 

Kermit!) 
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2.7 Semantics of First Order Predicate Logic 
 

Now we must deal with quantification. 
 

        : 

          holds in a model iff        holds for all objects in our domain. 
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        : 

 

holds. 

 
 

holds in a model iff there is some object in our domain so that  
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Example:  Available Objects affects Quantification 
 

If  misspiggy is the only object in our domain then 

ugly(misspiggy)                beautiful(misspiggy) is 

equivalent to 

        X.ugly(X)                

beautiful(X) 

If there were other objects then there would be more atoms and so the set of models would be 

larger; e.g. with objects misspiggy and kermit the possible models are all combinations 

of the atoms ugly(misspiggy), beautiful(misspiggy) ugly(kermit), 

beautiful(kermit). Now the 2 sentences are no longer equivalent. 
 

1. Although, every model in which 

        X.ugly(X)                beautiful(X) holds, 

ugly(misspiggy)                beautiful(misspiggy) also holds 

2. there are models in which ugly(misspiggy)                

beautiful(misspiggy) 

holds, 

but       X.ugly(X)                beautiful(X) does not 

hold; e.g. M = {ugly(kermit), beautiful(kermit)}. 

What about M = {ugly(misspiggy)}, beautiful(misspiggy)? 

 

 

 

2.8 Biconditional proposition 
 

 

Definition: If p and q are propositions, the compound proposition 

p if and only if q is called a biconditional proposition and is denoted 

p ↔ q 
 
 
 
 

P  q  p ↔ q 

T T T 

T F F 

F T F 

F F T 
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Example:  The statement 
 

 

1 < 5 if and only if 2 < 8 

can be written symbolically as 
 

 

if we define 

 

 

 

p ↔ q 
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p: 1 < 5, q: 2 < 8. 

since both p and q are true, the statement p ↔ q is true. 

 

2.9 Logical equivalence 
 

 

Definition: Suppose that the compound propositions P and Q are made up of the 

proposition p1,........,p2. We say that P and Q are logically equivalent and write 

 
P ≡ Q, 

provided that given any truth values of p1,....,pn, either P and Q are both true or  P 

and Q are both false. 
 
 
 

Example:  By writing the truth tables for  P = p∨q and Q= p ∧ q, we  can verify 

that given any truth values of p and q, either P and are both true or  P and Q are 

both false: 
 

 
 
 
 

 

P  q  p∨q 
 

p ∧ q 

T T F F 

T F F F 

F T F F 

F F T T 

 

 

Thus P and Q are logically equivalent. 
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2.10 Contrapositive, converse, inverse 
 

 

Definition:  The contrapositive (or  transposition) of the conditional proposition 

p → q is the proposition   q → p. 

Notice the difference between the contrapositive and the converse.  The converse 

of a conditional proposition merely reverses the roles of p and q, whereas the 

contrapositive reverses the roles of p and q and negates each of them. 
 
 
 

 

Example: 
 

Write the proposition 
 

 

If 1 < 4, then 5 > 8 

symbolically. Write the converse and the contrapositive both 

symbolically and in words. Find the truth value of each proposition. 

If we  define 

p: 1 < 4, q: 5 > 8, 

then the given proposition may be written symbolically as 

p → q. 
 

 
 

The converse is 
 

 

q → p 
 

or, in words, 

 
if 5 > 8, then 1 < 4. 

 

The contrapositive is 

 
or, in words, 

 

 

q → p 

 

If 5 is not greater than 8, then 1 is not less than 4. 

We see that  p → q is false,q → p is true, and  q → p is false. 
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An important fact is that a conditional proposition and its contrapositive 

are logically equivalent. 

 
Proof: The  conditional proposition   p → q and its   contrapositive q → p are 

logically equivalent. 

 
 

P  q 

 
p → q 

 
p → q 

T T T T 

T F F F 

F T T T 

F F T T 

 

shows that p → q and its   contrapositive q → p are logically equivalent. 

 

 2 .11 Tautology 

 
A tautology is a logical statement in which the conclusion is equivalent to the 

premise. More colloquially, it is formula in propositional calculus which is always 

true 

If      is a tautology, it is written    . A  sentence whose  truth table contains only 

'T' is called a tautology. The following  sentences are examples of tautologies: 

 
where     denotes  AND,       denotes "is  equivalent to,"      denotes  NOT,  

denotes  OR, and      denotes  implies. 
 
 
 
 
 
 

2.12Chapter review Questions  

Are these sentences satisfiable, valid, invalid or contradictory? If a sentence is satisfiable or invalid, provide an 

interpretation which makes it true (or false). 

i. 1+1=1 
 

ii. A ∩  B = not(not A ∪  not B) 

iii. All x: ToBe(x) or not ToBe(x) 
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CHAPTER 3 

SET THEORY 

Learning objectives: 
By the end of the chapter a student shall be able to know:  

a) Set algebra 

b) Recursive definition sets 

c) Orderings 

d) Relations partially ordered sets Conceptualizing elements, finite and infinite 

Universal empty and disjoint, subsets 

e) Venn diagram union Intersection Complement Difference 

f) Number elements and logical arguments 

g) Sets of sets 

h) The power set and Cartesian product 

3.1 ALGEBRA OF SETS 

 

Set Algebra and Proofs Involving Sets 

 
There are a lot of rules involving sets; you‘ll probably become familiar with the 

most important ones 

simply by using them a lot. Usually you can check informally (for  instance, by 

using a Venn diagram) 

 
whether a rule is correct; if necessary, you should be able to write a proof. In most 

cases, you can give a 

proof by going back to the definitions of set contructions in terms of elements. 
 

 
 

Sets under the operations of union, intersection, and complement satisfy various 

laws or  identities: 

 
Laws of the algebra of sets 

a) Idempotent laws 

A ∪ A= A,  A ∩ A= A 
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b) Associative laws 

(A ∪ B) ∪ C= (A ∪ B) ∪ C,  (A ∩ B) ∩ C = A ∩ (B ∩ C) 

c)  Commutative laws 

A ∪ B =B ∪ A,  A ∩ B = B ∩ A 

d) Distributive laws 

A ∪ (B ∩ C)= (A ∪ B) ∩ (A ∪ C),  A ∩ (B ∩ C)= (A ∩ B) ∪ (A ∩ C) 

e) Identity laws 

A ∪ Ф= A,  A ∩ ᑌ= A 

A ∪ ᑌ= ᑌ,  A ∩ Ф=  Ф 

f)   Involution laws 

(Ac)c = A 

g) Complement laws 

A ∪ Ac  =  ᑌ, A ∩ Ac=   Ф 

ᑌc =  Ф,  Ф  = ᑌ 
h)  DeMorgan's laws 

(A ∪ B)c   = Ac  ∩ Bc     , (A ∩ B) = Ac  ∪ Bc
 

 
 
 

 
Example. (Distributivity) Let A, B, and  C be sets. Prove that 

 

 
 

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). 
 

 
 

If X and Y are sets, X = Y if and only if for  all x, x ∈ X if and only if x ∈ Y . 

Let x be an arbitrary element of the universe. 

 
x ∈ A ∩ (B ∪ C) ↔ x ∈ A ∧ x ∈ (B ∪ C)  Definition of ∩ 

 
↔ x ∈ A ∧ (x ∈ B ∨ x ∈ C)  Definition of ∪ 

 
↔ (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C) Distributivity of ∧ over ∨ 

 
↔ (x ∈ A ∩ B) ∨ (x ∈ A ∩ C)  Definition of ∩ 

 
↔ x ∈ (A ∩ B) ∪ (A ∩ C)  Definition of ∪ 

I‘ve shown that 

x ∈ A ∩ (B ∪ C) ↔ x ∈ (A ∩ B) ∪ (A ∩ C). 
 

 
 

By definition of set equality, this proves that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). 
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The idea of the proof was to reduce everything to statements about elements. 

 
Then I used logical rules 

to manipulate the element statements. 
 

 
 

Note: It‘s  also true that 

 
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). 

Example. (DeMorgan‘s Law) Let A and B be sets. Prove that 

A∪B =A∩B A ∩ B = A ∪ B. 
 

 
 

and 

 
I‘ll just prove the first statement; the second is similar. This proof will illustrate 

how you can work with 

complements. I‘ll use the logical version of DeMorgan‘s law to do the proof. 
 
 
 
 
 

Let x be an arbitrary element of the universe. 

x∈A∪B ↔ x∈A∪B 

Definition of complement 

 
↔ ∼ (x ∈ A ∪ B)  Definition of ∈ 

 
↔ ∼ (x ∈ A ∨ x ∈ B)  Definition of ∪ 

 
↔ ∼ (x ∈ A)∧ ∼ (x ∈ B)  DeMorgan‘s law 

 
↔ (x ∈ A) ∧ (x ∈ B)  Definition of ∈ 

 
↔ (x ∈ A) ∧ (x ∈ B)  Definition of complement 
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↔ x∈A∩B  Definition of ∩ 

Therefore, A ∪ B = A ∩ B. 

Example:    Set Algebra and Proofs Involving Sets 
 

 

There are a lot of rules involving sets; you‘ll probably become familiar with the most important ones 

simply by using them a lot. Usually you can check informally (for instance, by using a Venn diagram) 

whether a rule is correct; if necessary, you should be able to write a proof. In most cases, you can give a 

proof by going back to the definitions of set contructions in terms of elements. 

Example. (Distributivity) Let A, B, and C be sets. Prove that 
 

A ∩  (B ∪  C) = (A ∩  B) ∪  (A ∩  C). 

 

If X and Y are sets, X = Y if and only if for all x, x ∈  X if and only if x ∈  Y . 

 
Let x be an arbitrary element of the universe. 

 

x ∈  A ∩  (B ∪  C) 

↔  

x ∈  A ∧  x ∈  (B ∪  C) Definition of ∩  

 

↔   x ∈  A ∧  (x ∈  B ∨  x ∈  C) Definition of ∪  
 

↔   (x ∈  A ∧  x ∈  B) ∨  (x ∈  A ∧  x ∈  C) Distributivity of ∧  over ∨  
 

↔   (x ∈  A ∩  B) ∨  (x ∈  A ∩  C) Definition of ∩  
 

↔   x ∈  (A ∩  B) ∪  (A ∩  C) Definition of ∪  

 
I‘ve shown that 

 

x ∈  A ∩  (B ∪  C) ↔  x ∈  (A ∩  B) ∪  (A ∩  C). 

 

By definition of set equality, this proves that A ∩  (B ∪  C) = (A ∩  B) ∪  (A ∩  C). 

 
The idea of the proof was to reduce everything to statements about elements. Then I used logical 

rules 

 
to manipulate the element statements. 

 

 

Note: It‘s also true that 
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A ∪  (B ∩  C) = (A ∪  B) ∩  (A ∪  C). 

 
Example. (DeMorgan‘s Law) Let A and B be sets. Prove that 

 

A∪ B =A∩ B  A ∩  B = A ∪  B. 

 
and 

 

 

I‘ll just prove the first statement; the second is similar. This proof will illustrate how you can work 

with 

 
complements. I‘ll use the logical version of DeMorgan‘s law to do the proof. 

 

 

Let x be an arbitrary element of the universe. 

 

x∈ A∪

B 

↔   x∈ A∪ B 

 
/ Definition of complement 

 

↔   ∼  (x ∈  A ∪  B) Definition of ∈  / 
 

↔   ∼  (x ∈  A ∨  x ∈  B) Definition of ∪  
 

↔   ∼  (x ∈  A)∧  ∼  (x ∈  B) DeMorgan‘s law 

 

↔   (x ∈  A) ∧  (x ∈  B) Definition of ∈  
 
 

↔   (x ∈  A) ∧  (x ∈  B) Definition of complement 

 

↔   x∈ A∩ B Definition of ∩  
 

Therefore, A ∪  B = A ∩  B. 
 

 
 

Example:  Let A and B be sets. Prove that A ∩  B ⊂  A. 

 
This example will show how you prove a subset relationship. 

 

By definition, if X and Y are sets, X ⊂  Y if and only if for all x, if x ∈  X, then x ∈  Y . 

 

Take an arbitrary element x. Suppose x ∈  A ∩  B (conditional proof). I want to show that x ∈  A. 

 

x ∈  A ∩  B means that x ∈  A and x ∈  B, by definition of intersection. But x ∈  A and x ∈  B 

implies 

 

x ∈  A (decomposing a conjunction), and this is what I wanted to show. Therefore, A ∩  B ⊂  A. 
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By the way, you usually don‘t write the logic out in such gory detail. The proof above could be 

shortened 

 
to: 

 

x ∈  A ∩  B means that x ∈  A and x ∈  B, so in particular x ∈  A. Therefore, A ∩  B ⊂  A. 

 
The ―in particular‖ substitutes for decomposing the conjunction. 

 

 

The procedure I‘ve followed is so common that it‘s worth pointing it out. 
 

To prove a subset relationship (an inclusion) X ⊂  Y , take an arbitrary 

 
element of X and prove that it must be in Y . 

 

 

In the next example, I‘ll need the following facts from logic. First, P ∨  ∼  P is a tautology: 
 
 
 

 

P  ∼ P P∨  ∼  P 

T  F T 

F T T 

 

Also, P ∧  (a tautology) ↔  P : 
 

 
 

P a tautology P ∧  (a tautology) 

T 
 

 

F 

T 
 

 

T 

T 
 

 

F 

 

 
 
 

In effect, this means that I can drop tautologies from ―and‖ statements. I‘ll just call this ―Dropping 

tautologies‖ in the proof below. 
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Example. Prove that (A − B) ∪  (B − A) = (A ∪  B) − (A ∩  B). 

 

x ∈  (A − B) ∪  (B − A) ↔  
 

x ∈  (A − B) ∨  x ∈  (B − A) ↔  
 

(x ∈  A ∧  x ∈  B) ∨  (x ∈  B ∧  x ∈  A) 

↔  

Definition of union 

 
Definition of complement 

 

[x ∈  A ∨  (x ∈  B ∧  x ∈  A)] ∧  [x ∈  B ∨  (x ∈  B ∧  x ∈  A)] ↔  

 
Distributivity 

 

(x ∈  A ∨  x ∈  B) ∧  (x ∈  A ∨  x ∈  A)] ∧  (x ∈  B ∨  x ∈  B) ∧  (x ∈  B ∨  x ∈  A) ↔  

 
Distributivity 

 

(x ∈  A ∨  x ∈  B) ∧  (x ∈  B ∨  x ∈  A) ↔  

 
Dropping tautologies 

 

(x ∈  A ∨  x ∈  B) ∧  (∼  x ∈  B∨  ∼  x ∈  A) ↔  
 

(x ∈  A ∨  x ∈  B)∧  ∼  (x ∈  B ∧  x ∈  A) ↔  
 

(x ∈  A ∪  B)∧  ∼  (x ∈  A ∩  B) ↔  

 
intersection 

Definition of ―not in‖ 

DeMorgan 

Definition of union and 

 

x ∈  (A ∪  B) − (A ∩  B) Definition of complement 

 

Therefore, (A − B) ∪  (B − A) = (A ∪  B) − (A ∩  B). 
 

 
 
 
 
 

Example:  Let A be a set. Prove that 
 

A∪ ∅ =A  and A ∩  ∅  = ∅ . 
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This example will show how you can deal with the empty set. 
 

To prove A ∪  ∅  = A, let x be an arbitrary element of the universe. First, by definition of ∪ , 

 

x ∈  A ∪  ∅  ↔  (x ∈  A) ∨  (x ∈  ∅ ). 

 

I‘ll show that [(x ∈  A) ∨  (x ∈  ∅ )] ↔  (x ∈  A). To prove P ↔  Q, I must prove P →  Q and Q →  P . 

 

First, if x ∈  A, then (x ∈  A) ∨  (x ∈  ∅ ) (constructing a disjunction). 
 

Next, suppose (x ∈  A) ∨  (x ∈  ∅ ). The second statement x ∈  ∅  is false for all x, by definition of 
∅ . But 

 

the ∨ ­statement is true by assumption, so x ∈  A must be true by disjunctive syllogism. This proves that 
if 

 

(x ∈  A) ∨  (x ∈  ∅ ), then x ∈  A. 

 

This completes my proof that [(x ∈  A) ∨  (x ∈  ∅ )] ↔  (x ∈  A). So 

 

x ∈  A ∪  ∅  ↔  (x ∈  A) ∨  (x ∈  ∅ )  Definition of ∪  

 

↔  x∈ A Proved above 
 

Therefore, A ∪  ∅  = A. 

 

To prove that A ∩  ∅  = ∅ , I must prove that for all x, x ∈  A ∩  ∅  if and only if x ∈  ∅ . 

 

As usual, x be an arbitrary element of the universe. To prove x ∈  A ∩  ∅  if and only if x ∈  ∅ , I 
must 

prove that the two implications 
 

(x ∈  A ∩  ∅ ) →  x ∈  ∅  and x ∈  ∅  →  (x ∈  A ∩  ∅ ) 

 
are true. I‘ll do this by showing that, in each case, the antecedent (i.e. the ―if‖ part of the statement) is 

 

false — since by basic logic, if P is false, then P →  Q is true. 
 
 
 

 

For the first implication, consider the statement x ∈  A ∩  ∅ . By definition of intersection, 
 

x ∈  A ∩  ∅  ↔  (x ∈  A ∧  x ∈  ∅ ). 
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Now x ∈  ∅  is false, by definition of the empty set. Therefore, the conjunction x ∈  A ∧  x ∈  ∅  is 

also false. 
 
 
 
 

 

3.2 Recursive Definition 
 

 

Recursive definition of sets have two parts, a basis step and recursive step. In the 

basis step, primitive elements ( at least one) are specified. In the recursive step, 

rules for  generating new elements in the set from those already known to be in 

the set are provided. 

 
Example:   Consider a set of multiples of 3. 

Let A denote  this set. The recursive definition to define A is as: 

i. 3 ∊ A 

ii.  if x ∊ A then x + 3 ∊ A 

We can enumerate elements of A as {3, 6, 9, 12, 15, ….} 
 
 
 

Example:   Let B be the set defined recursively as follows: 

i. 2 ∊ B 

ii.  if n ∊ B, then n2 ∊ B. Describe the set by listing method. 

Here B is defined recursively. By basis step, 2 ∊ B. 

Let n = 2, then by recursive step, 4 ∊ B. 

Now  let n = 4, then 16 ∊ B. Continuing in the similar way, we  get 

B = {2, 4, 16, 256, 65536, ….} 

 
Example: Let C = {a, aa, ba, aaa, aba, baa, bba, ….}. 

 
C consists of words from symbols from {a, b} that end in letter a. 

Define C recursively as, 

solution 
 

C can be defined recursively as, 

i. a ∊ C 

ii.  if x ∊ C, then ac ∊ C and bx ∊ C (concatenation operation) 

Step (ii) is recursive step in which string concatenation operation is used to 

genarate member strings of C from existing member strings. 

 
Example: A set S is defined recursively as follows. Find at least five elements of S. 

i. 1∊ S 

ii.  if x ∊ S then 2x ∊ S. 

Using above recursive definition we  get S as S = {1, 2, 4, 8, 16, 32, …} 
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3.3 Ordering 

 
We define set as an unordered collection of distinct objects. The order in which 

the set elements are listed does not matter. The sequence has no  relevance. 

Hence, the sets {a, b,c} and {b,c, a} both represent  the same set. 

 
The ordered set is defined as ordered collection of distinct objects. {3, 6, 7, 8, 9} 

Week days = {Sun, Mon, Tue, Wed, Thurs, Frid, Sat}. 

Enumerated data type set in many programming languages are examples of 

ordered sets. 

 
Example: Let S be any collection of sets. The relation ⊆ of set inclusion is a partial 

ordering of S, specifically, 

A ⊆ A for  any set A; if A ⊆ B and B ⊆ A then A = B; and if 

A ⊆ B and B ⊆ C then A ⊆ C 

 
Example: Consider the set N of positive integers. We say ―a divides b ‖, 

written a/b, if there exists an integer c such that ac =b. For  example, 2/4, 3/12, 
7/21, and so on. This relation of divisibility is partial ordering of N. 

 
Example: Consider the set Z of integer. 

 
Define aℝb if there is a positive integer r such that b = ar.

 

For  instance, 2ℝ8 since 8 = 23. Then ℝ is a partial ordering of Z. 

 

3.4 Lattices 
 

 

Let L be a nonempty set closed under two binary operations called meet and join, denoted respectively 

by  ∧ and ∨. 

 
Then L is called a lattice if the following axioms hold where a, b, c are elements in 

L: 
 
 
 

i. Commutative  law: 

a ∧ b = b ∧ a 

a ∨ b = b ∨ a 

ii.  Associative law: 

w
w
w
.m

as
om

om
si
ng

i.c
om



 

 

(a ∧ b) ∧ c = a ∧ ( b ∧ c) 

(a ∨ b) ∨ c = a ∨ ( b ∨ c) 

iii. Absorption law: 

a ∧ ( a ∨ b) = a 

a ∨ ( a ∧ b) = a 

 
Example:  Let L be a lattice. Then 

i. a ∧ b = a if and only if a ∨ b = b. 

Proof: 

Suppose  a ∧ b = a. Using the absorption law in the first step we have: 

b =b ∨ (b ∧ a) = b ∨ (a ∨ b) = b ∨ a = a ∨ b. 

Now suppose ab =b. Again 

using the absorption law in the first step we have: 

a =a ∧ (a ∨ b ) = a ∧ b 
 

 

Thus ab =a if and only if a ∨ b = b. 
 
 
 
 
 
 

 
Finite and Infinite sets 

 

 

A set is a collection of objects. If a set is finite and not too large, we can describe it by listing the 

elements in it. For example, the equation 

 
A = {1, 2, 3, 4} 

describes set A made up of the four elements 1, 2, 3, and 4.  A set is described by its elements and not 

by any particular order in which the elements might be listed. 

 
If a set is a large finite set or an infinite set, we can describe it by listing a property necessary for 

membership. For example, the equation 

 
B = {x|x is a positive, even integer} 

describes the set B made up of all positive, even integers; that is, B consists of the integers 2, 4, 6, and 

so on. The vertical bar ―|‖ is read ―such that.‖ 

The set with no elements is called the empty set ( or null or void) set and is denoted ᑌ. Thus  ᑌ = {}. 

Suppose that X and Y are sets. If every element of X is an element of Y, we say that X is a subset of Y 

and write X ⊆ Y. 

 
Example: If 

 

 

C = {1, 3} and A = {1, 2, 3, 4}, 
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then C is a subset of A. 

Any set X is a subset of itself, since any element in X is in X. If X is a subset of Y and X does not equal 

Y, we say that X is a proper subset of Y. The empty set is a subset of every set. The set of all subsets 

( proper or not) of a set X, denoted Ƿ (X), is called the power set of 

X. Example:  If A = {a, b, c}, the members of Ƿ (A) are 

ᑌ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}. 

 
All but {a, b, c} are proper subsets of A. For  this example, 

 
∣A∣ = 3, ∣ Ƿ (A)∣ = 23 = 8 

 
Given two sets X and Y, there are various ways to combine X and Y to form a new 

set. The set 

X ∪ Y = { x | x ∊ X or x ∊ Y } 

 
is called the union of X and Y.   The union consists of all elements belonging to 

either X or  Y ( or both). 
 

 
 
 
 
 

The set 

 
X ∩ Y = { x | x ∊ X or x ∊ Y } 

 
is called the intersection of X and Y. The intersection consists of all elements 

belonging to both X and Y. 

 
Sets X and Y are disjoint if X ∩ Y = ᑌ. A collection of sets S is said to be 

pairwise disjoint if whenever X and Y are distinct sets in S, X and Y are disjoint. 
 

The set  
X -Y = { x | x ∊ X or x ∉ Y } 

 

is called the difference ( or  relative complement). The difference X -Y 

consists of all elements in X that are not in Y. 
 

 
 

Example: If A = {1, 3, 5} and B = { 4, 5, 6}, then 

 
A ∪ B = {1, 3, 4, 5, 6} 

A ∩ B = {5} 

A - B = {1, 3} 

B - A = {4, 6}. 
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Example: The sets 
 

 

{1, 4, 5} and B = {2, 6} 
 

are disjoint. The collection of sets 

 
S = {{1, 4, 5}, {2, 6}, {3}, {7, 8}} 

is pairwise disjoint. 

Sometimes we  are dealing with sets all of which are subsets of a set ᑌ. This set   ᑌ 

is called a universal set  or  a universe. The set  ᑌ must be explicitly given or 

inferred from the context. Given a universal set ᑌ and a subset X of ᑌ, the set 

ᑌ – X is called the complement of X and is written 

 
Example: Let A ={1, 3, 5}. If  ᑌ , a universal set, is specified as ᑌ = {1, 2, 3, 4, 

5}, then Ᾱ  = {7, 9}. The complement obviously depends on  the universe in which 
we  are working. 

 
 
 

 
The union of two sets A and B is the set of elements, which are in A or in B or in 

both. It is denoted by A ∪ B and is read ‗A union B‘ 
 

 
 

Example : 
 

 

Given U = {1, 2, 3, 4, 5, 6, 7, 8, 10} 
 

X = {1, 2, 6, 7} and Y = {1, 3, 4, 5, 8} 

Find X ∪  Y and draw a Venn diagram to illustrate X ∪  Y. 

Solution: 
 

X ∪  Y = {1, 2, 3, 4, 5, 6, 7, 8} ← 1 is written only once. 
 

 
 
 
 

If X ⊂  Y then X ∪  Y = Y. We will illustrate this relationship in the following example. 
 

Example: 
 

 

Given U = {1, 2, 3, 4, 5, 6, 7, 8, 10} 
 

X = {1, 6, 9} and Y = {1, 3, 5, 6, 8, 9} 

Find X ∪  Y and draw a Venn diagram to illustrate X ∪  Y. 

Solution: 
 

X ∪  Y = {1, 3, 5, 6, 8, 9} 
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The complement  of the set X ∪ Y is the set of elements that are members of the universal set U but are 

not in X ∪ Y. It is denoted by (X ∪  Y ) ‘ 
 

Example: 
 

 

Given: U = {1, 2, 3, 4, 5, 6, 7, 8, 9} 
 

X = {1, 2, 6, 7} and Y = {1, 3, 4, 5, 8} 

a) Draw a Venn diagram to illustrate ( X ∪  Y ) ‘ 

b) Find ( X ∪  Y ) ‘ 

Solution: 
 

a) First, fill in the elements for X ∩  Y = {1} 

Fill in the other elements for X and Y and for U 

Shade the region outside X ∪  Y to indicate (X ∪  Y ) ‘ 
 

 

b) We can see from the Venn diagram that 

(X ∪  Y ) ‘ = {9} 

Or we find that X ∪  Y = {1, 2, 3, 4, 5, 6, 7, 8} and so 

(X ∪  Y ) ‘ = {9} 
 

 
 
 
 

Example: 
 

 

Given U = {x : 1 ≤ x ≤10, x is an integer}, A = The set of odd numbers, B = The set of factors of 24 and 

C = {3, 10}. 
 

a) Draw a Venn diagram to show the relationship. 

b) Using the Venn diagram or otherwise, find: 

i) (A ∪  B ) ‘ ii) (A ∪  C ) ‘ iii) (A ∪  B ∪  C ) ‘ 

Solution: 
 

 

A = {1, 3, 5, 7, 9}, B = {1, 2, 3, 4, 6, 8} and C = {3, 10} 

a) First, fill in the elements for A ∩  B ∩ C = {3}, A ∩  B {1, 3}, 

A ∩  C = {3}, B ∩  C = {3} and then the other elements. 
 

b) We can see from the Venn diagram that 

i) (A ∪  B ) ‘ = {10} 
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ii) (A ∪  C ) ‘ = {2, 4, 6, 8} 

iii) (A ∪  B ∪  C ) ‘ = { } 
 
 
 
 
 
 

Venn diagrams provide pictorial views of sets. In venn diagram, a rectangle 

depicts a universal set. Subsets of the universal set are drawn as circles. The 

inside of a cirle represents the members of that set. 
 

 

3.5 Sets  

Sets  are simply collections of items.  A set may contain your favorite even numbers, 

the days of the week, or the names of your brothers and sisters. The items contained 

within a set are called elements, and elements in a set do not "repeat". 

The elements of a set are often listed by roster. 

A roster is a list of the elements in a set, separated by commas and surrounded by French curly braces. 
 

 
Let set A be the numbers 3, 6, 9. 

A = {3, 6, 9} (in roster notation) 

 
 

 
(5 is not in set A) 

 
 

Let B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

A = {3, 6, 9} 

Set A is a subset of set B, since every element in set A is also an element of set B. The 

notation is:  
 
 

 

The empty set is denoted with the symbol: 
 

Sets are often represented in pictorial form with a circle containing the elements of the 

set. 

Such a depiction is called a Venn Diagram. 
 

A Venn diagram is a drawing, in which circular areas represent groups of items usually 

sharing common properties.  The drawing consists of two or more circles, each 

representing a specific group or set. This process of visualizing logical relationships 

was devised by John Venn (1834­1923). 
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Each Venn diagram begins with a rectangle representing the universal set.  Then each set 

of values in the problem is represented by a circle. Any values that belong to more than 

one set will be placed in the sections where the circles overlap. 
The universal set is often the "type" of values that are solutions to the problem.  For example, the 

universal set could be the set of all integers from ­10 to +10, set A the set of positive integers in that 

universe, set B the set of integers divisible by 5 in that universe, and set C the set of elements ­1, ­ 5, 

and 6. 
 
 

 

 
 
 
 
 
 

 

The Venn diagram at the left shows two sets A and B that overlap.  The universal set is 

U.  Values that belong to both set A and set B are located in the center region labeled 

  where the circles overlap.  This region is called the "intersection" of the two 

sets. 
(Intersection, is only where the two sets intersect, or overlap.) 

 

 

The notation  represents the entire region covered by both sets A and B (and the 

section where they overlap).  This region is called the "union" of the two sets. (Union, 

like marriage, brings all of both sets together.) 
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If we cut out sets A and B from the picture above, the remaining region in U, the 

universal set, is labeled ,  and is called the complement  of the union of sets 

A and B. 

A complement of a set is all of the elements (in the universe) that are NOT in the set. 
 
 

 

NOTE*:  The complement  of a set can be represented with several differing 

notations. 

The complement of set A can be written as 

 
 

 
 

* A statement from the NY SED says that students should be familiar with all notations for complement 

of a set. 

The SED Glossary shows the first two notations, while the  SED Sample Tasks show the third. 
 
 
 
 
 

 

Example: 
Let U (the universal set)  = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (a subset of the positive integers) 

A = {2, 4, 6, 8} 

B = {1, 2, 3, 4, 5}       Union ­ ALL 

elements in BOTH sets                    Intersection ­ 

elements where sets overlap         Complement ­ 

elements NOT in the set 

 
 

 

 ** One of the most interesting features of Venn diagrams is the areas or 

sections where the circles overlap one another ­­ implying that a sharing is 

occurring.This ability to represent a "sharing of conditions" makes Venn diagrams useful 
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tools for solving complicated problems.  Consider the following example: 
 

 

Example: 
 

Twenty­four dogs are in a kennel. Twelve of the dogs are black, six of the dogs have 

short tails, and fifteen of the dogs have long hair. There is only one dog that is black 

with a short tail and long hair. Two of the dogs are black with short tails and do not have 

long hair.  Two of the dogs have short tails and long hair but are not black. If all of the 

dogs in the kennel have at least one of the mentioned characteristics, how many dogs are 

black with long hair but do not have short tails? 

 
 

 

Solution: 
 

Draw a Venn diagram to represent the situation described in the problem. 

Represent the number of dogs that you are looking for with x. 
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Notice that the number 

of dogs in each of the three categories is labeled OUTSIDE of the circle in a 

colored box.  This number is a reminder of the total of the numbers which may 

appear anywhere inside that particular circle. 
 
 
 

After you have labeled all of the conditions listed in the problem, use this 

OUTSIDE box number to help you determine how many dogs are to be labeled in 

the empty sections of each circle. 
 

 

Once you have EVERY section in the diagram labeled with a number or an 

expression, you are ready to solve the problem. 
 

 

Add together EVERY section in the diagram and set it equal to the total number 

of dogs in the kennel (24). Do NOT use the OUTSIDE box numbers. 
 

 

9 ­ x + 2 + 1 + 1 + 2 + x + 12 ­ x = 24 
 

 

27 ­ x = 24 
 

 
x = 3 (There are 3 dogs which are black with long hair but do not have a short 
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tail.) 
 

 
 

The union of two sets A and B is the set of elements, which are in A or in B or in both. It is denoted by 

A ∪  B and is read ‗A union B‘ 
 

 
 

Example : 
 

 

Given U = {1, 2, 3, 4, 5, 6, 7, 8, 10} 
 

X = {1, 2, 6, 7} and Y = {1, 3, 4, 5, 8} 

Find X ∪  Y and draw a Venn diagram to illustrate X ∪  Y. 

Solution: 
 

X ∪  Y = {1, 2, 3, 4, 5, 6, 7, 8} ← 1 is written only once. 

 
 
 
 
 

If X ⊂  Y then X ∪  Y = Y. We will illustrate this relationship in the following example. 
 

Example: 
 

 

Given U = {1, 2, 3, 4, 5, 6, 7, 8, 10} 
 

X = {1, 6, 9} and Y = {1, 3, 5, 6, 8, 9} 

Find X ∪  Y and draw a Venn diagram to illustrate X ∪  Y. 

Solution: 
 

X ∪  Y = {1, 3, 5, 6, 8, 9} 
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The complement  of the set X ∪ Y is the set of elements that are members of the universal set U but are 

not in X ∪ Y. It is denoted by (X ∪  Y ) ‘ 
 

Example: 
 

 

Given: U = {1, 2, 3, 4, 5, 6, 7, 8, 9} 
 

X = {1, 2, 6, 7} and Y = {1, 3, 4, 5, 8} 

a) Draw a Venn diagram to illustrate ( X ∪  Y ) ‘ 

b) Find ( X ∪  Y ) ‘ 

Solution: 
 

a) First, fill in the elements for X ∩  Y = {1} 

Fill in the other elements for X and Y and for U 

Shade the region outside X ∪  Y to indicate (X ∪  Y ) ‘ 

 
 

b) We can see from the Venn diagram that 

(X ∪  Y ) ‘ = {9} 

Or we find that X ∪  Y = {1, 2, 3, 4, 5, 6, 7, 8} and so 

(X ∪  Y ) ‘ = {9} 
 

 
 
 
 

Example: 
 

 

Given U = {x : 1 ≤ x ≤10, x is an integer}, A = The set of odd numbers, B = The set of factors of 24 and 

C = {3, 10}. 
 

a) Draw a Venn diagram to show the relationship. 

b) Using the Venn diagram or otherwise, find: 

i) (A ∪  B ) ‘ ii) (A ∪  C ) ‘ iii) (A ∪  B ∪  C ) ‘ 

Solution: 
 

 

A = {1, 3, 5, 7, 9}, B = {1, 2, 3, 4, 6, 8} and C = {3, 10} 
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a) First, fill in the elements for A ∩  B ∩ C = {3}, A ∩  B {1, 3}, 

A ∩  C = {3}, B ∩  C = {3} and then the other elements. 

 

b) We can see from the Venn diagram that 

i) (A ∪  B ) ‘ = {10} 

ii) (A ∪  C ) ‘ = {2, 4, 6, 8} 

iii) (A ∪  B ∪  C ) ‘ = { } 
 
 
 
 
 

 

An ordered pair of elements, written (a, b), is considered distinct from the 

ordered pair (b, a), unless, of course, a = b. To put it another way, (a, b) = (c, d) 

if and only if a = c and b = d. If X and Y are sets, we  let X * Y denote the set of all 

ordered pairs (x, y) where  x ∊ X and  x ∊ Y.  We call  X * Y the cartesian product 

of X and Y. 

 
Example:   If X = {1, 2, 3} and Y = {a, b}, then 

 
X * Y = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)} 

Y * X = {(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)} 

X * X = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)} 

Y * Y = {(a, a), (a, b), (b, a), (b, b)}. 

 

3.6 chapter Review Questions 

Let the universe be the  set  ᑌ = {1, 2, 3,.....,10}. 
Let A = {1, 4, 7, 10}, B = {1, 2, 3, 4, 5}, and C = {2, 4, 6, 8}. 
List the elements of each set. 

a) A ∪ B 

b) A ∩ B 

c) A - B 

d) B - A 

 
A group of 191 students, of which 10  are taking French, business, and music; 36 
are taking French and business; 20  are taking French and music; 18  are taking 
business and music; 65  are taking French; 76  are taking business; and 63  are 

w
w
w
.m

as
om

om
si
ng

i.c
om



 

 

taking music. 
e) How many are taking French and music but not business? 

f) How many are taking business and neither french nor music? 

g)  How many are taking French or business (or both)? 

h)  How many are taking none of the three subjects? 
 
 
 

Let X = {1, 2} and Y = {a, b, c}. List the elements in each set. i.

 X*Y 

ii.  X*X 

iii. Y*X 

iv.  Y*Y 
 

 

Suggested further reading 
 

 

Richard Johnsonbaugh, Discrete Mathematics 5th edition,page 55­60 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

w
w
w
.m

as
om

om
si
ng

i.c
om



 

 

CHAPTER 4 

PERMUTATION AND COMBINATIONS 

 

Learning objectives: 

By the end of the chapter a student shall be able to know: 

Permutation 

Combinations 

 
 

4.1 Permutations 
 

BY THE PERMUTATIONS of the letters abc  we mean all of their possible arrangements: 
 

abc acb 

bac bca 

cab cba 
There are 6 permutations of three different things.  As the number of things (letters) increases, their permutations 

grow astronomically.  For example, if twelve different things are permuted, then the number of their permutations 

is 479,001,600. 

 

Now, this enormous number was not found by counting them.  It is derived theoretically from the 

Fundamental Principle of Counting: 

 

If something can be chosen, or can happen, or be done, in m different ways, and, after that has happened, 

something else can be chosen in n different ways, then the number of ways of choosing both of them is m ∙ n. 

 

For example, imagine putting the letters a, b, c, d into a hat, and then drawing two of them in succession.  We can 

draw the first in 4 different ways: either a or b or c or d.  After that has happened, there are 3 ways to choose the 

second.  That is, to each of those 4 ways there correspond 3. Therefore, there are 4∙ 3  or 12 possible ways to 

choose two letters from four. 

ab means that a was chosen first and b second; ba means that b was chosen first and a second; and so 

on. 
 

Let us now consider the total number of permutations of all four letters. There are 4 ways to choose the 

first.  3 ways remain to choose the second, 2 ways to choose the third, and 1 way to choose the last. 

Therefore the number of permutations of 4 different things is 
 

4∙ 3∙ 2∙ 1 = 24 
 

Thus the number of permutations of 4 different things taken 4 at a time  is 4!.  (See  Topic 19.) 
 

(To say taken 4 at a time is a convention.  We mean, "4! is the number of permutations of 4 different 

things taken from a total of 4 different things.") 
 

In general, 
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8P3   = 

nPk   = 

The number of permutations of n different things taken n at a time 

is n!. 
 

Example 1.   Five different books are on a shelf.  In how many different ways could you arrange them? 
 

Answer.   5! = 1∙ 2∙ 3∙ 4∙ 5 = 120 
 

Example 2.   There are 6! permutations of the 6 letters of the word square. 

a)  In how many of them is r the second letter?  _ r _ _ _ _ 

b)  In how many of them are q and e next to each other? 

Solution. 
 

a)  Let r be the second letter.  Then there are 5 ways to fill the first spot. After that has happened, there 

are 4 ways to fill the third, 3 to fill the fourth, and so on.  There are 5! such permutations. 
 

b)  Let q and e be next to each other as qe.  Then we will be permuting the 5 units qe, s, u a, r..  They 

have 5! permutations.  But q and e could be together as eq.  Therefore, the total number of ways they 

can be next to each other is 2∙ 5! = 240. 
 

Permutations of less than all 
 

We have seen that the number of ways of choosing 2 letters from 4 is 4∙ 3 = 12.  We call this 
 

"The number of permutations of 4 different things taken 2 at a time." 
 

We will symbolize this as  4P2: 
 

4P2 = 4∙ 3 
 

The lower index 2 indicates the number of factors.  The upper index 4 indicates the first factor. 
 

For example,  8P3  means "the number of permutations of 8 different things taken 3 at a time."  And 

 
 
 

 
For, there are 8 ways to choose the first, 7 ways to choose the second, and 6 ways to choose the third. 

In general, 

nPk  =  n(n − 1)(n − 2)∙  ∙  ∙  to k factors 
 

Factorial representation 
 

We saw in the Topic on factorials, 
 

 
 
 

5! is a factor of 8!, and therefore the 5!'s cancel. 
 

Now, 8∙ 7∙ 6 is 8P3.  We see, then, that  8P3  can be expressed in terms of factorials as 
 

    8!     8! 

(8 − 3)!  
=  

5! 

In general, the number of arrangements ­­ permutations ­­ of n things taken k at a time, can be 

represented as follows: 
 

    n!   

(n − k)! 
.   .   .   .   .   .   .   .   .   .   .   .(1)

 

The upper factorial is the upper index of P, while the lower factorial is the difference of the indices. 
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n 

Example 3.   Express  10P4  in terms of factorials. 
 

Solution.  10P =  
 10! 
6! 

The upper factorial is the upper index, and the lower factorial is the difference of the indices.  When the 

6!'s cancel, the numerator becomes 10∙ 9∙ 8∙ 7. 

This is the number of permutations of 10 different things taken 4 at a time. 

Example 4.   Calculate  nPn. 
 
 

Solution.  nP =  
    n!   

(n − n)! 
=  

 n! 
0! 

=  
 n! 
1 

 

=  n! 

nPn  is the number of permutations of n different things taken n at a time ­­ it is the total number of 

permutations of n things: n!.  The  definition  0! = 1  makes line (1) above valid for all values of k:  k = 

0, 1, 2, .  .  . , n. 
 

Problem 1.   Write down all the permutations of xyz. 
 

To see the answer, pass your mouse over the colored area. 

To cover the answer again, click "Refresh" ("Reload"). 
 

xyz, xzy, yxz, yzx, zxy, zyx. 
 

Problem 2.   How many permutations are there of the letters pqrs? 
 

4! = 1∙ 2∙ 3∙ 4 = 24 
 

Problem 3.   a)  How many different arrangements are there of the letters of the word numbers? 
 

7! = 5,040 
 

b)  How many of those arrangements have b as the first letter? 
 

Set b as the first letter, and permute the remaining 6. Therefore, there are 6! such arrangements. 

c)  How many have b as the last letter ­­ or in any specified position? 

The same. 6!. 
 

d)  How many will have n, u, and m together? 
 

Begin by permuting the 5 things ­­ num, b, e, r, s.  They will have 5! permutations.  But in each one of 

them, there are 3! rearrangements of num. Consequently, the total number of arrangements in which n, 

u, and m are together, is 3!∙ 5! = 6∙ 120  =  720. 
 

Problem 4.   a)  How many different arrangements (permutations) are there of the digits 01234? 
 

5! = 120 
 

b)  How many 5­digit numbers can you make of those digits, in which the 

b)  first digit is not 0, and no digit is repeated? 

Since 0 cannot be first, remove it. Then there will be 4 ways to choose the first digit.  Now replace 0.  It 

will now be one of 4 remaining digits. Therefore, there will be 4 ways to fill the second spot, 3 ways to 

fill the third, and so on. The total number of 5­digit numbers, then, is 4∙ 4! = 4∙ 24 = 96. 
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c)  How many 5­digit odd numbers can you make, and no digit is 

c)  repeated? 
 

Again, 0 cannot be first, so remove it. Since the number must be odd, it must end in either 1 or 3.  Place 

1, then, in the last position.  _ _ _ _ 1.  Therefore, for the first position, we may choose either 2, 3, or 4, 

so that there are 3 ways to choose the first digit.  Now replace 0.  Hence, there will be 3 ways to choose 

the second position, 2 ways to choose the third, and 1 way to choose the fourth. Therefore, the total 

number of odd numbers that end in 1, is 3∙ 3∙ 2∙ 1 = 18.  The same analysis holds if we place 3 in the 

last position, so that the total number of odd numbers is 2∙ 18 = 36. 
 

Problem 5. 
 

a)   If the five letters a, b, c, d, e are put into a hat, in how many different 

a)   ways could you draw one out? 5 
 

b)   When one of them has been drawn, in how many ways could you 

a)   draw a second? 4 
 

c)   Therefore, in how many ways could you draw two letters?   5∙ 4 = 20 
 

This number is denoted by 5P2. 
 

d)   What is the meaning of the symbol 5P3? 
 

The number of permutations of 5 different things taken 3 at a time. 

e)   Evaluate 5P3. 5∙ 4∙ 3 = 60 

Problem 5.   Evaluate 
 

a)   6P3  = 120 b)   10P2  = 90 c)   7P5  = 2520 
 

Problem 6.   Express with factorials. 
 

a)   nP 
   n!   

(n − k)! 
b)   12P 

12! 
5! 

c)   8P 
8! 
6! 

d)   mP 
m! 
m! 

 

 
 
 
 

4.2 Permutations and Combinations 
 
 
 

Certain types of probability calculations involve dividing the number of outcomes associated 

with an event  by the total number of possible outcomes. For simple problems it is easy to 

count the outcomes, but in more complex situations manual counting can  become laborious 

or impossible. 
 

Fortunately, there  are formulas for determining the number of ways in which members of a set 

can be arranged. Such  arrangements are  referred to as permutations or combinations, 

depending on whether the order in which the members are arranged is a distinguishing factor. 
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The number of different orders in which members of a group can be arranged for a group of r 

members taken  r at a time is: 
 

(r)(r­1)(r­2)...(1) 

This is more easily expressed as simply r!. 

When order is a distinguishing factor, a group of n members taken  r at a time results in a 

number of permutations equal to the first r terms  of the following multiplication: 
 
 

(n)(n­1)(n­2)... 
 
 

This can be expressed as:  

 

nPr  =  n! / (n ­ r)! 
 

 
 

In combinations, order is not a distinguishing factor: 
 

 
 

nCr  =   nPr / (r!) =   n! / (n ­ r)!r! 

 

 
 

For the special case of possible pairs in a group of n members, assuming order in a pair is not 

important, then: 
 

r = 2 
 
 

and the number of possible pairs is:  

 

n(n ­ 1) / 2. 
 

 

Example: How many  two­element subsets of {1,2,3,4} are there that do not contain the pair of 

elements 2 and 4 ? 

 
Solution: 4! / (2!)(2!) = 6, but the subset {2,4} is not to be counted, so the answer is 5. 

 

 

Given n items taken  r at a time, to find the number of combinations in which x particular items 

are not present, simply reduce n by x and  solve as one would a normal combination problem. 
 
 
 

Combinations of Groups 
 

 

If Group A has x members, Group B has y members, and Group C has z members, there  are 

(x)(y)(z) possible combinations assuming that one  member from each of the three  groups is 

used in each combination, and  assuming that the order is not a distinguishing factor. In 

general, if more than one member is taken  at a time from each group,  the number of 
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combinations is the product  of  nCr  (or  nPr  if appropriate) associated with each particular 

group. 

 
Permutaion 

 
An ordering of objects, such as the names on the ballot, is called a 

permutation. 

 
Example: There are six permutations of three elements. If the elements are 

denoted A, B, C, the  six permutations are 

 
ABC, ACB, BAC, BCA, CAB, CBA. 

 
Theorem: There are n!  Permutations of n elements. 

e.g. 

n!  = n(n -1)(n – 2)........2. 1 

e.g. 

10! = 10.9.8.7.6.5.4.3.2.1 = 3,628,800 permutations of 10 elements 

 
Combinations 

A selection of objects without regard to order is called a combination. 

Example: In how many ways can we  select a committee of three from a group 

of 10 distinct persons? 
 
 

 

answer is 

Since a committee is an unordered group of people, the 

 

C( 10, 3) = 10.9.8.7! / (10 – 3)! 3! = 10.9.8 / 3! = 120 

 

4.2 chapters Review Questions 

a) How  many permutations are there of a, b, c, d? 

b) In how many ways can we  select a chairperson, vice-chairperson, and 

recorder from a group of 11 persons? 

c)  In how many ways can we  select a committee of four from a group of 12 

persons? 

 
Suggested further reading 

 

 

Richard Johnsonbaugh, Discrete Mathematics 5th edition,page 174­ 18
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CHAPTER 5 

GRAPH THEORY 

Learning 

objectives: 

By the end of the chapter a student shall be able to know:  

 

a) Directed and undirected graphs 

b) Sub graphs 

c) Paths 

d) Cycles (circuit) 

e) Adjacency and incidence vatices 

f) Elements of transport network 

5.1 Directed and undirected graphs 

 
A graph ( or  undirected graph) G consists of a set V of vertices ( or  nodes) and 

a set E of edges (or  arcs) such that each edge e ∊ E is associated with an 

unordered pair of vertices. If there is a unique edge e associated with the 

vertices v and w, we  write e = (v, w) or  e = (w, v). In this context, (v, w) 

denotes an edge between v and w in an undirected graph and not an ordered 

pair. 

 
A directed graph ( or  digraph) G consists of a set V of vertices ( or  nodes) and a 

set E of edges ( or arcs) such that each edge e∊ E is associated with an 

ordered pair of vertices. If there is a unique edge e associated with the ordered 

pair (v, w) of vertices, we  write e = (v ,w), which denotes an edge from v to w. 

 
An edge e in a graph (undirected or  directed) that is associated with the pair of 

vertices v and w is said to be incident on v and w, and v and w are said to be 

incident on e and to be adjacent vertices 

5.2 Paths:  

If we  start at a vertex v0, travel along an edge to vertex v1, travel along another 

edge to vertex v2, and so on, and eventually arrive at vertex vn, we  call the 

complete tour a path from v0 to vn. 
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An undirected graph 

In graph theory an  undirected graph G has two kinds of incidence matrix: 

unoriented and oriented. The incidence matrix (or  unoriented incidence 

matrix) of G is a p × q  matrix (b
ij
), where p and q are the numbers of  vertices and 

edges respectively, such that b
ij 

= 1 if the vertex v
i  
and edge x

j  
are incident and 0 

otherwise. 

For  example the incidence matrix of the undirected graph shown on the right is a 

matrix consisting of 4 rows (corresponding to the four vertices) and 4 columns 

(corresponding to the four edges): 
 
 
 
 
 
 

 
The incidence matrix of a directed graph D is a p × q matrix [b

ij
] where p and q 

are the number of vertices and edges respectively, such that b
ij 

= − 1 if the edge 

x
j  

leaves vertex v
i
, 1 if it enters vertex v

i  
and 0 otherwise. (Note that many 

authors use the opposite sign convention.) 

An oriented incidence matrix of an undirected graph G is the incidence matrix, 

in the sense  of directed graphs, of any orientation of G. That is, in the column of 

edge e, there is one +1 in the row  corresponding to one vertex of e and one −1 in 

the row  corresponding to the other vertex of e, and all other rows have 0. All 

oriented incidence matrices of G differ only by negating  some set of columns. In 

many uses, this is an insignificant difference, so one can speak of the oriented 

incidence matrix, even though that is technically incorrect. 

The oriented or  unoriented incidence matrix of a graph G is related to the 

adjacency matrix of its line graphL(G) by the following theorem: 
 

 

where A(L(G)) is the adjacency matrix of the line graph of G, B(G)  is the incidence 

matrix, and I
q  

is the identity matrix of dimension q. 
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The integral cycle space of a graph is equal to the  null  space of its oriented 

incidence matrix, viewed as a matrix over the  integers or  real or  complex  

numbers.  The binary cycle space is the null  space of its oriented or  unoriented 

incidence matrix, viewed as a matrix over the two-element field. 

 
Signed and bidirected graphs 

The incidence matrix of a  signed graph is a generalization of the oriented 

incidence matrix. It is the incidence matrix of any  bidirected graph that orients 

the given signed graph. The column of a positive edge has a +1 in the row 

corresponding to one endpoint and a −1 in the row  corresponding to the other 

endpoint, just like an edge in an ordinary (unsigned) graph. The column of a 

negative edge has either a +1 or  a −1 in both rows. The line graph and Kirchhoff 

matrix properties generalize to signed graphs. 

 
The definitions of incidence matrix apply to graphs with  loops and  multiple edges. 

The column of an oriented incidence matrix that corresponds to a loop is all zero, 

unless the graph is signed and the loop is negative;  then the column is all zero 

except for  ±2 in the row  of its incident vertex. 

Hypergraphs 

Because the edges of ordinary graphs can only have two vertices (one at each 

end), the column of an incidence matrix for  graphs can only have two non-zero 

entries. By contrast, a  hypergraph can have multiple vertices assigned to one 

edge; thus, the general case describes a hypergraph. 

[edit] Incidence structures 

The incidence matrix of an  incidence structure C is a p × q matrix [b
ij
], where p 

and q are the number of points and lines respectively, such that b
ij 

= 1 if the 

point p
i 
and line L

j 
are incident and 0 otherwise. In this case the incidence matrix 

is also a  biadjacency matrix of the  Levi graph of the structure. As there is a 

hypergraph for  every Levi graph, and vice-versa, the incidence matrix of an 

incidence structure describes a hypergraph. 

Finite geometries 

An important example is a  finite geometry. For  instance, in a finite plane, X is the 

set of points and Y is the set of lines. In a finite geometry  of higher dimension, X 

could be the set of points and Y could be the set of subspaces of dimension one 

less than the dimension of Y; or X could be the set of all subspaces of one 

dimension d and Y the set of all subspaces of another dimension e. 

[edit] Block designs 

Another example is a  block design. Here X is a finite set of "points" and Y is a class 

of subsets of X, called "blocks", subject to rules that depend on the type of design. 

The incidence matrix is an important tool in the theory of block designs. For 

instance, it is used to prove the fundamental theorem of symmetric 2-designs, 

that the number of blocks equals the number of points. 

 

5.3 Subgraphs:  

A connected graph consists of one ―piece,‖ while a graph that is not 

connected consists of two or  more ―pieces.‖ These ―pieces‖ are called 

subgraphs 

w
w
w
.m

as
om

om
si
ng

i.c
om

http://en.wikipedia.org/wiki/Cycle_space
http://en.wikipedia.org/wiki/Null_space
http://en.wikipedia.org/wiki/Integers
http://en.wikipedia.org/wiki/Real_numbers
http://en.wikipedia.org/wiki/Complex_numbers
http://en.wikipedia.org/wiki/Complex_numbers
http://en.wikipedia.org/wiki/Field_(mathematics)
http://en.wikipedia.org/wiki/Signed_graph
http://en.wikipedia.org/wiki/Bidirected_graph
http://en.wikipedia.org/wiki/Loop_(graph_theory)
http://en.wikipedia.org/wiki/Multiple_edges
http://en.wikipedia.org/wiki/Hypergraph
http://en.wikipedia.org/w/index.php?title=Incidence_matrix&action=edit&section=6
http://en.wikipedia.org/wiki/Incidence_structure
http://en.wikipedia.org/wiki/Biadjacency_matrix
http://en.wikipedia.org/wiki/Levi_graph
http://en.wikipedia.org/wiki/Hypergraph
http://en.wikipedia.org/wiki/Finite_geometry
http://en.wikipedia.org/w/index.php?title=Incidence_matrix&action=edit&section=8
http://en.wikipedia.org/wiki/Block_design


 

 

Definition: Let v and w be vertices in agraph G. 
 
 

 

vertices. 

A simple path from v to w is apath from v to w with no  repeated 

 
A cycle ( or circuit) is a path of nonzero length from v to v with no 
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repeated edges 
 
 

Directed and Undirected 

Graphs 

 
• A graph is a mathematical structure consisting of a set of vertices 

and a set of edges connecting the vertices. 

Formally: G = (V, E), where V is a set and E ⊆ V × V . 

 
• G = (V, E) undirected if for  all v, 

w ∈ V : (v, w) ∈ E 

⇐⇒ (w,  v) ∈ E. 

Otherwise directed. 
 
 

A 

directed 

graph 

 
G = (V, E) with vertex set 

 
V = 0, 1, 2, 

3, 4, 5, 6 and edge set 

E = (0, 2), (0, 4), (0, 5), (1, 0), (2, 1), (2, 5), (3, 1), (3, 6), (4, 0), (4, 5), 

(6, 3), (6, 

5) . 

5.4 chapter Review questions 

a) Define undirected graph 

b) How many edges are incident on a vertex in an n-cube? 
 

FURTHER READING 
 

 

•   Diestel, Reinhard (2005), Graph Theory, Graduate Texts in 

Mathematics, 173 (3rd ed.), Springer-Verlag, ISBN 3-

540- 

26183-4 . 

•    Coxeter, H.S.M.  Regular Polytopes, (3rd edition, 1973), Dover 

edition,  ISBN 0-486-61480-8 (Section 9.2 Incidence matrices, 

pp. 166-171) 
 

•   Jonathan L Gross, Jay Yellen, Graph Theory and its applications, 

second edition, 2006 (p 97, Incidence Matrices for unidrect 

graphs; p 98, incidence matrices for digraphs) 
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UNIVERSITY EXAMINATION 2009/2010 

SCHOOL OF APPLIED AND SOCIAL SCIENCES 

DEPARTMENT OF INFORMATION TECHNOLOGY 

SEMSTER I EXAMINATION FOR BACHELOR FOR BUSINESS INFORMATION 

TECHNOLOGY 

 BIT 1201: BASIC DISCRETE MATHEMATICS 

DATE:      JULY 2010                                                                  TIME: 2HRS                                        

INSTRUCTIONS 

Answer Question One And Any Other Two 

Q1. A) Draw the truth table for the following Boolean expression Z=A.B+¯A¯B  (5mks) 

      b) Simplify ¯A.B+¯A.B by using demorgans law and rules of Boolean algebra (4mks) 

     c) let A={1,2,3,4} 

               B={3,4,5,6,7} 

               C={2,3,5,7} 

        Find (i) AUB 

                 (ii) AnC                                                                         (4mks) 

    d) which of the following statements are true 

         (i) 1+2=3 

         (ii) I am ugly and you are clever 

         (iii) All those over 2 meters tall are over 200yrs old.     (3mks) 

e) In  hockey a match can be won, draw or lost. If a team play 5 matches how many different 

sequences of results are possible?                                                 (4mks) 

f)Using induction method prove that 1+2+3+4+…..+n=n(n+1)/2                                         

(5mks) 

g) 3 boys A,B and C are throwing a ball among themselves such that A always throws the ball 

to B, but B and C are just as likely to throw the ball to A as they are to each other. Illustrate 

the information given above in form of a graph and show the probabilities on the arcs (5mks)  

Mt Kenya  University 
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Q2. A) complete the following truth table  

 

p q ­p ­q ­pʌ­q ­pv­q ­pvq ­(pʌ­q) 

        

                                               

                                                                                                                                                      

(10mks) 

       b) construct a switchingcicuit to meet the requirements of the Boolean expression 

Z=A.Q+A.P+A.P.Q.  hence construct the truth table for this circuit.                                                            

(10mks) 

 

Q3. A) design a circuit with four switches A,B,C and D according to the following table. 

 

        

A B C D 

1 1 1 1 

1 1 0 1 

0 1 1 1 

0 1 0 1 

                                                                                                                                                     

(10mks) 

      b) Verify that the proposition (pʌq)ʌ-(pνq) is a contradiction   (5MKS) 

      c) Show that  hν - (hʌm )        is a tautology                                (5mks) 

 

Q4. A) In a survey of 60 people, it was found that 25 read Nation, 26 read times, and 26 read 

fortune. Also 9 read both Nation and times, 8 read both times and fortune, and 8 read none of 

the magazines. 

(i) Find the number of people who read all the 3 magazines 

(ii) Draw the Venn diagram to represent the above information. 

(iii) Determine the number of people who read exactly one magazine (14MKS) 

 

(b) Show that A={2,3,4,5} is a proper subset of C={1,2,3,4,5,…..8,9}   (3mks)      

 

(c ) Show that  A={2,3,4,5} is not a subset of B={X:xɛN, x is even}        (3mks) 

 

 

Q5 (a) Prove by induction that  1  ɜ+2  ɜ+3  ɜ+……..+n =ɜ ¼n2(n+1)2       (5mks) 
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       (b) 9 players are available to play for a tennis team of 4 players. In how many ways can 

the team be selected if 2 of the players are brothers and must either both be included or both 

be excluded, and if two other players have recently quarreled and should not both play in the 

team  (12mks) 

 

       (c) How many different signals, each consisting of eight flags hung in vertical line, can be 

formed with 4 indistinguishable red flags, 3 indistinguishable white flag, and a blue flag?    

(3mks) 
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UNIVERSITY EXAMINATION 2010/2011 

SCHOOL OF PURE AND APPLIED SCIENCES 

DEPARTMENT OF INFORMATION TECHNOLOGY 

EXAMINATION FOR BACHELOR OF BUSINESS INFORMATION TECHNOLOGY 

UNIT CODE: BBIT 1201 TITLE: DISCRETE MATHEMATICS 

 
DATE: NOVEMBER, 2010       TIME: 2 HOURS                                                                                                                                                                                                                                                                                                                                                                       
  

INSTRUCTIONS: Answer Question ONE and any other TWO questions. 

QUESTION ONE 

a) Write the converse, inverse and the contra positive of the following sentence.”If the Sun 

shines brightly today , then it will set early”      

 (4mks) 

b) Define the terms: Tautology, Logical equivalence and a propositional function. 

 (3mks) 

c) State three methods of proving theorems     

 (3Mks) 

d) Explain the meaning of the term lattice      

 (2mks) 

e) How many ways are there to select 5 players from a 10-member tennis team to make a trip to 

a match at another school?       

 (3mks) 

f) Differentiate between the cardinality of a set and the Cartesian product  of sets(4mks) 

  

g) What is a partially ordered set       

 (2mks) 

h) Simplify the following Boolean expressions     

 (5mks) 

a.  

 

b. + +  

       i)   Draw the venn diagram showing the intersection between two sets A and B.  (2 

mks) 
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QUESTION TWO 

Use a relevant method of proving theorems to: 

a) Prove that the following formula for the sum of a finite number of terms of a geometric 

progression is given by, 

   

 (7mks) 

b) Prove  that   is irrational.       

 (7mks) 

c) Prove the theorem “the integer n is odd if and only if  is odd                                              (6mks) 

 

QUESTION THREE 

a) Represent each of the following graphs using an adjacency matrix 

i) 

(4mks) 

ii) 

  (4mks) 

 

b) Draw the graphs with the following adjacency matrices 

 

i)      (6mks) 
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               ii)     (6mks) 

 

 

QUESTION FOUR 

a) What is the Cartesian product   where ,      (6mks)   

 b) Find the power set of the set       

 (4mks) 

 

c) Let A, B and C are sets. Show that =  using identities  

 (4mks) 

 

d) uppose that f is defined recursively by; 

f (0)=3 

f (n+1)=2f(n)+3. 

Find f (1), f(2), f(3) and f(4)       

 (4mks) 

 

e) What is a Venn diagram?        

 (2mks) 

 

QUESTION FIVE 

a) Show that the propositions and   are logically equivalent  

 (6mks) 

b) Let R(x,y,z) denote the statement   .Find the truth values of R(0,0,1),R(1,1,2) and 

R(2,3,13).         

 (6mks) 

c) Draw the truth tables for negation and the implication of a proposition p and q 

 (4mks)    

d) Explain the meaning of the following terms.  

i) Open sentence 

ii)  Logical Reasoning        

 (4mks) 
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