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Subject CS2 
2019 Study Guide 

Introduction 

This Study Guide has been created to help guide you through Subject CS2.  It contains all the 
information that you will need before starting to study Subject CS2 for the 2019 exams, and you 
may also find it useful to refer to throughout your Subject CS2 journey. 

The guide is split into two parts: 

 Part 1 contains general information about the Core Principles subjects 

 Part 2 contains specific information about Subject CS2. 

Please read this Study Guide carefully before reading the Course Notes, even if you have studied 
for some actuarial exams before.   
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1.1 Before you start 

When studying for the UK actuarial exams, you will need: 

 a copy of the Formulae and Tables for Examinations of the Faculty of Actuaries and the 
Institute of Actuaries, 2nd Edition (2002) – these are often referred to as simply the 
Yellow Tables or the Tables 

 a ‘permitted’ scientific calculator – you will find the list of permitted calculators on the 
profession’s website.  Please check the list carefully, since it is reviewed each year.   

These are both available from the Institute and Faculty of Actuaries’ eShop.  Please visit 
www.actuaries.org.uk. 
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1.2 Core study material 

This section explains the role of the Syllabus, Core Reading and supplementary ActEd text.  It also 
gives guidance on how to use these materials most effectively in order to pass the exam. 

Some of the information below is also contained in the introduction to the Core Reading 
produced by the Institute and Faculty of Actuaries. 

Syllabus 

The Syllabus for Subject CS2 has been produced by the Institute and Faculty of Actuaries.  The 
relevant individual Syllabus Objectives are included at the start of each course chapter and a 
complete copy of the Syllabus is included in Section 2.2 of this Study Guide.  We recommend that 
you use the Syllabus as an important part of your study.   

Core Reading 

The Core Reading has been produced by the Institute and Faculty of Actuaries.  The purpose of 
the Core Reading is to assist in ensuring that tutors, students and examiners have clear shared 
appreciation of the requirements of the syllabus for the qualification examinations for Fellowship 
of the Institute and Faculty of Actuaries.   

The Core Reading supports coverage of the syllabus in helping to ensure that both depth and 
breadth are reinforced.  It is therefore important that students have a good understanding of the 
concepts covered by the Core Reading. 

The examinations require students to demonstrate their understanding of the concepts given in 
the syllabus and described in the Core Reading; this will be based on the legislation, professional 
guidance etc that are in force when the Core Reading is published, ie on 31 May in the year 
preceding the examinations.   

Therefore the exams in April and September 2019 will be based on the Syllabus and Core Reading 
as at 31 May 2018.  We recommend that you always use the up-to-date Core Reading to prepare 
for the exams.   

Examiners will have this Core Reading when setting the papers.  In preparing for examinations, 
students are advised to work through past examination questions and will find additional tuition 
helpful.  The Core Reading will be updated each year to reflect changes in the syllabus, to reflect 
current practice, and in the interest of clarity. 

Accreditation 

The Institute and Faculty of Actuaries would like to thank the numerous people who have helped 
in the development of the material contained in this Core Reading. 
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ActEd text 

Core Reading deals with each syllabus objective and covers what is needed to pass the exam.  
However, the tuition material that has been written by ActEd enhances it by giving examples and 
further explanation of key points.  Here is an excerpt from some ActEd Course Notes to show you 
how to identify Core Reading and the ActEd material.  Core Reading is shown in this bold font.   

Note that in the example given above, the index will fall if the actual share price goes below the 
theoretical ex-rights share price.  Again, this is consistent with what would happen to an 
underlying portfolio. 

After allowing for chain-linking, the formula for the investment index then becomes: 
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where ,i tN  is the number of shares issued for the ith constituent at time t; 

 ( )B t  is the base value, or divisor, at time t.   

Here is an excerpt from some ActEd Course Notes to show you how to identify Core Reading for R 
code. 

The R code to draw a scatterplot for a bivariate data frame, <data>, is: 

 plot(<data>) 

Further explanation on the use of R will not be provided in the Course Notes, but instead be 
picked up in the Paper B Online Resources (PBOR).  We recommend that you refer to and use 
PBOR at the end of each chapter, or couple of chapters, that contains a significant number of R 
references.   

Copyright 

All study material produced by ActEd is copyright and is sold for the exclusive use of the 
purchaser.  The copyright is owned by Institute and Faculty Education Limited, a subsidiary of the 
Institute and Faculty of Actuaries.  Unless prior authority is granted by ActEd, you may not hire 
out, lend, give out, sell, store or transmit electronically or photocopy any part of the study 
material.  You must take care of your study material to ensure that it is not used or copied by 
anybody else. 

Legal action will be taken if these terms are infringed.  In addition, we may seek to take 
disciplinary action through the Institute and Faculty of Actuaries or through your employer. 

These conditions remain in force after you have finished using the course. 

This is Core 
Reading 

This is 
ActEd 
text 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2: Study Guide Page 5  

The Actuarial Education Company © IFE: 2019 Examinations 

1.3 ActEd study support 

This section gives a description of the products offered by ActEd.   

Successful students tend to undertake three main study activities: 

1. Learning – initial study and understanding of subject material 

2. Revision – learning subject material and preparing to tackle exam-style questions 

3. Rehearsal – answering exam-style questions, culminating in answering questions at exam 
speed without notes. 

Different approaches suit different people.  For example, you may like to learn material gradually 
over the months running up to the exams or you may do your revision in a shorter period just 
before the exams.  Also, these three activities will almost certainly overlap.   

We offer a flexible range of products to suit you and let you control your own learning and exam 
preparation.  The following table shows the products that we produce.  Note that not all products 
are available for all subjects. 

LEARNING 

 

Course Notes 

 

LEARNING & 

REVISION 

Assignments 

Combined 
Materials Pack 

(CMP) 

Assignment 
Marking 

Tutorials 

Online 
Classroom 

REVISION 

 

Flashcards 

REVISION & 

REHEARSAL 

Revision Notes 

ASET 

REHEARSAL 

 

Mock Exam 

Mock Marking 

 
The products and services are described in more detail below. 
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‘Learning’ products 

Course Notes 

The Course Notes will help you develop the basic knowledge and understanding of principles 
needed to pass the exam.  They incorporate the complete Core Reading and include full 
explanation of all the syllabus objectives, with worked examples and questions (including some 
past exam questions) to test your understanding. 

Each chapter includes: 

 the relevant syllabus objectives 

 a chapter summary  

 a page of important formulae or definitions (where appropriate) 

 practice questions with full solutions.   

Paper B Online Resources (PBOR) 

The Paper B Online Resources (PBOR) will help you prepare for the computer-based paper.  
Delivered through a virtual learning environment (VLE), you will have access to worked examples 
and practice questions.  PBOR will also include the Y Assignments, which are two exam-style 
assessments. 

‘Learning & revision’ products 

X Assignments 

The Series X Assignments are written assessments that cover the material in each part of the 
course in turn.  They can be used to both develop and test your understanding of the material. 

Combined Materials Pack (CMP) 

The Combined Materials Pack (CMP) comprises the Course Notes, PBOR and the Series X 
Assignments. 

The CMP is available in eBook format for viewing on a range of electronic devices.  eBooks can be 
ordered separately or as an addition to paper products.  Visit www.ActEd.co.uk for full details 
about the eBooks that are available, compatibility with different devices, software requirements 
and printing restrictions.   

X / Y Assignment Marking 

We are happy to mark your attempts at the X and/or Y assignments.  Marking is not included with 
the Assignments or the CMP and you need to order both Series X and Series Y Marking separately.  
You should submit your script as an attachment to an email, in the format detailed in your 
assignment instructions.  You will be able to download your marker’s feedback via a secure link on 
the internet. 
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Don’t underestimate the benefits of doing and submitting assignments: 

 Question practice during this phase of your study gives an early focus on the end goal of 
answering exam-style questions. 

 You’re incentivised to keep up with your study plan and get a regular, realistic assessment 
of your progress. 

 Objective, personalised feedback from a high quality marker will highlight areas on which 
to work, and help with exam technique. 

In a recent study, we found that students who attempt more than half the assignments have 
significantly higher pass rates. 

There are two different types of marking product: Series Marking and Marking Vouchers. 

Series Marking 

Series Marking applies to a specified subject, session and student.  If you purchase Series Marking, 
you will not be able to defer the marking to a future exam sitting or transfer it to a different subject 
or student. 

We typically provide full solutions with the Series Assignments.  However, if you order Series 
Marking at the same time as you order the Series Assignments, you can choose whether or not to 
receive a copy of the solutions in advance.  If you choose not to receive them with the study 
material, you will be able to download the solutions via a secure link on the internet when your 
marked script is returned (or following the final deadline date if you do not submit a script).   

If you are having your attempts at the assignments marked by ActEd, you should submit your scripts 
regularly throughout the session, in accordance with the schedule of recommended dates set out in 
information provided with the assignments.  This will help you to pace your study throughout the 
session and leave an adequate amount of time for revision and question practice.   

The recommended submission dates are realistic targets for the majority of students.  Your scripts 
will be returned more quickly if you submit them well before the final deadline dates. 

Any script submitted after the relevant final deadline date will not be marked.  It is your 
responsibility to ensure that we receive scripts in good time. 

Marking Vouchers 

Marking Vouchers give the holder the right to submit a script for marking at any time, irrespective of 
the individual assignment deadlines, study session, subject or person.   

Marking Vouchers can be used for any assignment.  They are valid for four years from the date of 
purchase and can be refunded at any time up to the expiry date.   

Although you may submit your script with a Marking Voucher at any time, you will need to adhere 
to the explicit Marking Voucher deadline dates to ensure that your script is returned before the date 
of the exam.  The deadline dates are provided with the assignments. 
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Tutorials  

Our tutorials are specifically designed to develop the knowledge that you will acquire from the 
course material into the higher-level understanding that is needed to pass the exam.   

We run a range of different tutorials including face-to-face tutorials at various locations, and Live 
Online tutorials.  Full details are set out in our Tuition Bulletin, which is available on our website at 
www.ActEd.co.uk. 

Regular and Block Tutorials 

In preparation for these tutorials, we expect you to have read the relevant part(s) of the Course 
Notes before attending the tutorial so that the group can spend time on exam questions and 
discussion to develop understanding rather than basic bookwork. 

You can choose one of the following types of tutorial: 

 Regular Tutorials spread over the session 

 a Block Tutorial held two to eight weeks before the exam. 

The tutorials outlined above will focus on and develop the skills required for the written Paper A 
examination.  Students wishing for some additional tutor support working through exam-style 
questions for Paper B may wish to attend a Preparation Day.  These will be available Live Online or 
face-to-face, where students will need to provide their own device capable of running Excel or R 
as required. 

Online Classroom 

The Online Classroom acts as either a valuable add-on or a great alternative to a face-to-face or 
Live Online tutorial, focussing on the written Paper A examination.   

At the heart of the Online Classroom in each subject is a comprehensive, easily-searched collection 
of tutorial units.  These are a mix of: 

 teaching units, helping you to really get to grips with the course material, and  

 guided questions, enabling you to learn the most efficient ways to answer questions and 
avoid common exam pitfalls.   

The best way to discover the Online Classroom is to see it in action.  You can watch a sample of 
the Online Classroom tutorial units on our website at www.ActEd.co.uk. 

‘Revision’ products 

Flashcards 

For most subjects, there is a lot of material to revise.  Finding a way to fit revision into your 
routine as painlessly as possible has got to be a good strategy.  Flashcards are a relatively 
inexpensive option that can provide a massive boost.  They can also provide a variation in 
activities during a study day, and so help you to maintain concentration and effectiveness. 
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Flashcards are a set of A6-sized cards that cover the key points of the subject that most students 
want to commit to memory.  Each flashcard has questions on one side and the answers on the 
reverse.  We recommend that you use the cards actively and test yourself as you go. 

Flashcards are available in eBook format for viewing on a range of electronic devices.  eBooks can 
be ordered separately or as an addition to paper products.  Visit www.ActEd.co.uk for full details 
about the eBooks that are available, compatibility with different devices, software requirements 
and printing restrictions.   

The following questions and comments might help you to decide if flashcards are suitable for you: 

 Do you have a regular train or bus journey? 

Flashcards are ideal for regular bursts of revision on the move. 

 Do you want to fit more study into your routine? 

Flashcards are a good option for ‘dead time’, eg using flashcards on your phone or sticking 
them on the wall in your study. 

 Do you find yourself cramming for exams (even if that’s not your original plan)? 

Flashcards are an extremely efficient way to do your pre-exam memorising. 

If you are retaking a subject, then you might consider using flashcards if you didn’t use them on a 
previous attempt. 

‘Revision & rehearsal’ products 

Revision Notes 

Our Revision Notes have been designed with input from students to help you revise efficiently.  
They are suitable for first-time sitters who have worked through the ActEd Course Notes or for 
retakers (who should find them much more useful and challenging than simply reading through 
the course again).   

The Revision Notes are a set of A5 booklets – perfect for revising on the train or tube to work.  
Each booklet covers one main theme or a set of related topics from the course and includes: 

 Core Reading with a set of integrated short questions to develop your bookwork 
knowledge 

 relevant past exam questions with concise solutions from the last ten years 

 other useful revision aids. 

ActEd Solutions with Exam Technique (ASET) 

The ActEd Solutions with Exam Technique (ASET) contains our solutions to eight past exam 
papers, plus comment and explanation.  In particular, it highlights how questions might have been 
analysed and interpreted so as to produce a good solution with a wide range of relevant points.  
This will be valuable in approaching questions in subsequent examinations. 
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‘Rehearsal’ products 

Mock Exam 

The Mock Exam consists of two papers.  There is a 100-mark mock exam for the written Paper A 
examination and a separate mock exam for the computer-based Paper B exam.  These provide a 
realistic test of your exam readiness.     

Mock Marking 

We are happy to mark your attempts at the mock exams.  The same general principles apply as for 
the Assignment Marking.  In particular: 

 Mock Exam Marking applies to a specified subject, session and student.  In this subject it 
covers the marking of both papers. 

 Marking Vouchers can be used for each mock exam paper.  (Note that you will need two 
marking vouchers in order to have the two mock papers marked.) 

Recall that: 

 marking is not included with the products themselves and you need to order it separately 

 you should submit your script via email in the format detailed in the mock exam 
instructions 

 you will be able to download the feedback on your marked script via a secure link on the 
internet. 
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1.4 Skills 

Technical skills 

The Core Reading and exam papers for these subjects tend to be very technical.  The exams 
themselves have many calculation and manipulation questions.  The emphasis in the exam will 
therefore be on understanding the mathematical techniques and applying them to various, 
frequently unfamiliar, situations.  It is important to have a feel for what the numerical answer 
should be by having a deep understanding of the material and by doing reasonableness checks. 

As a high level of pure mathematics and statistics is generally required for the Core Principles 
subjects, it is important that your mathematical skills are extremely good.  If you are a little rusty 
you may wish to consider purchasing additional material to help you get up to speed.  The course 
‘Pure Maths and Statistics for Actuarial Studies’ is available from ActEd and it covers the 
mathematical techniques that are required for the Core Principles subjects, some of which are 
beyond A-Level (or Higher) standard.  You do not need to work through the whole course in order 
– you can just refer to it when you need help on a particular topic.  An initial assessment to test 
your mathematical skills and further details regarding the course can be found on our website at 
www.ActEd.co.uk. 

Study skills 

Overall study plan  

We suggest that you develop a realistic study plan, building in time for relaxation and allowing 
some time for contingencies.  Be aware of busy times at work, when you may not be able to take 
as much study leave as you would like.  Once you have set your plan, be determined to stick to it.  
You don’t have to be too prescriptive at this stage about what precisely you do on each study day.  
The main thing is to be clear that you will cover all the important activities in an appropriate 
manner and leave plenty of time for revision and question practice. 

Aim to manage your study so as to allow plenty of time for the concepts you meet in these 
courses to ‘bed down’ in your mind.  Most successful students will probably aim to complete the 
courses at least a month before the exam, thereby leaving a sufficient amount of time for 
revision.  By finishing the courses as quickly as possible, you will have a much clearer view of the 
big picture.  It will also allow you to structure your revision so that you can concentrate on the 
important and difficult areas. 

You can also try looking at our discussion forum on the internet, which can be accessed at 
www.ActEd.co.uk/forums (or use the link from our home page at www.ActEd.co.uk).  There are 
some good suggestions from students on how to study. 

Study sessions 

Only do activities that will increase your chance of passing.  Try to avoid including activities for the 
sake of it and don’t spend time reviewing material that you already understand.  You will only 
improve your chances of passing the exam by getting on top of the material that you currently 
find difficult. 
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Ideally, each study session should have a specific purpose and be based on a specific task, 
eg ‘Finish reading Chapter 3 and attempt Practice Questions 1.4, 1.7 and 1.12 ‘, as opposed to a 
specific amount of time, eg ‘Three hours studying the material in Chapter 3’. 

Try to study somewhere quiet and free from distractions (eg a library or a desk at home dedicated 
to study).  Find out when you operate at your peak, and endeavour to study at those times of the 
day.  This might be between 8am and 10am or could be in the evening.  Take short breaks during 
your study to remain focused – it’s definitely time for a short break if you find that your brain is 
tired and that your concentration has started to drift from the information in front of you. 

Order of study 

We suggest that you work through each of the chapters in turn.  To get the maximum benefit from 
each chapter you should proceed in the following order: 

1. Read the Syllabus Objectives.  These are set out in the box at the start of each chapter. 

2. Read the Chapter Summary at the end of each chapter.  This will give you a useful overview 
of the material that you are about to study and help you to appreciate the context of the 
ideas that you meet. 

3. Study the Course Notes in detail, annotating them and possibly making your own notes.  Try 
the self-assessment questions as you come to them.  As you study, pay particular attention 
to the listing of the Syllabus Objectives and to the Core Reading. 

4. Read the Chapter Summary again carefully.  If there are any ideas that you can’t 
remember covering in the Course Notes, read the relevant section of the notes again to 
refresh your memory. 

5. Attempt (at least some of) the Practice Questions that appear at the end of the chapter. 

6. Where relevant, work through the relevant Paper B Online Resources for the chapter(s).  
You will need to have a good understanding of the relevant section of the paper-based 
course before you attempt the corresponding section of PBOR. 

It’s a fact that people are more likely to remember something if they review it several times.  So, 
do look over the chapters you have studied so far from time to time.  It is useful to re-read the 
Chapter Summaries or to try the Practice Questions again a few days after reading the chapter 
itself.  It’s a good idea to annotate the questions with details of when you attempted each one.  This 
makes it easier to ensure that you try all of the questions as part of your revision without repeating 
any that you got right first time. 

Once you’ve read the relevant part of the notes and tried a selection of questions from the 
Practice Questions (and attended a tutorial, if appropriate), you should attempt the 
corresponding assignment.  If you submit your assignment for marking, spend some time looking 
through it carefully when it is returned.  It can seem a bit depressing to analyse the errors you 
made, but you will increase your chances of passing the exam by learning from your mistakes.  
The markers will try their best to provide practical comments to help you to improve. 
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To be really prepared for the exam, you should not only know and understand the Core Reading but 
also be aware of what the examiners will expect.  Your revision programme should include plenty of 
question practice so that you are aware of the typical style, content and marking structure of exam 
questions.  You should attempt as many past exam questions as you can. 

Active study 

Here are some techniques that may help you to study actively. 

1. Don’t believe everything you read.  Good students tend to question everything that they 
read.  They will ask ‘why, how, what for, when?’ when confronted with a new concept, 
and they will apply their own judgement.  This contrasts with those who unquestioningly 
believe what they are told, learn it thoroughly, and reproduce it (unquestioningly?) in 
response to exam questions. 

2. Another useful technique as you read the Course Notes is to think of possible questions 
that the examiners could ask.  This will help you to understand the examiners’ point of 
view and should mean that there are fewer nasty surprises in the exam room.  Use the 
Syllabus to help you make up questions. 

3. Annotate your notes with your own ideas and questions.  This will make you study more 
actively and will help when you come to review and revise the material.  Do not simply 
copy out the notes without thinking about the issues. 

4. Attempt the questions in the notes as you work through the course.  Write down your 
answer before you refer to the solution.   

5. Attempt other questions and assignments on a similar basis, ie write down your answer 
before looking at the solution provided.  Attempting the assignments under exam 
conditions has some particular benefits: 

 It forces you to think and act in a way that is similar to how you will behave in the 
exam. 

 When you have your assignments marked it is much more useful if the marker’s 
comments can show you how to improve your performance under exam conditions 
than your performance when you have access to the notes and are under no time 
pressure. 

 The knowledge that you are going to do an assignment under exam conditions and 
then submit it (however good or bad) for marking can act as a powerful incentive to 
make you study each part as well as possible. 

 It is also quicker than trying to write perfect answers. 

6. Sit a mock exam four to six weeks before the real exam to identify your weaknesses and 
work to improve them.  You could use a mock exam written by ActEd or a past exam 
paper. 

You can find further information on how to study in the profession’s Student Handbook, which 
you can download from their website at: 

www.actuaries.org.uk/studying 
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Revision and exam skills 

Revision skills 

You will have sat many exams before and will have mastered the exam and revision techniques 
that suit you.  However, it is important to note that due to the high volume of work involved in 
the Core Principles subjects, it is not possible to leave all your revision to the last minute.  
Students who prepare well in advance have a better chance of passing their exams on the first 
sitting. 

Unprepared students find that they are under time pressure in the exam.  Therefore it is 
important to find ways of maximising your score in the shortest possible time.  Part of your 
preparation should be to practise a large number of exam-style questions under timed exam 
conditions as soon as possible.  This will: 

 help you to develop the necessary understanding of the techniques required 

 highlight the key topics, which crop up regularly in many different contexts and questions 

 help you to practise the specific skills that you will need to pass the exam. 

There are many sources of exam-style questions.  You can use past exam papers, the Practice 
Questions at the end of each chapter (which include many past exam questions), assignments, 
mock exams, the Revision Notes and ASET. 

Exam question skill levels 

Exam questions are not designed to be of similar difficulty.  The Institute and Faculty of Actuaries 
specifies different skill levels that questions may be set with reference to.  

Questions may be set at any skill level:  

 Knowledge – demonstration of a detailed knowledge and understanding of the topic 

 Application – demonstration of an ability to apply the principles underlying the topic 
within a given context 

 Higher Order – demonstration of an ability to perform deeper analysis and assessment of 
situations, including forming judgements, taking into account different points of view, 
comparing and contrasting situations, suggesting possible solutions and actions, and 
making recommendations. 

Command verbs 

The Institute and Faculty of Actuaries use command verbs (such as ‘Define’, ‘Discuss’ and 
‘Explain’) to help students to identify what the question requires.  The profession has produced a 
document, ‘Command verbs used in the Associate and Fellowship written examinations’, to help 
students to understand what each command verb is asking them to do. 
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It also gives the following advice: 

 The use of a specific command verb within a syllabus objective does not indicate that this 
is the only form of question which can be asked on the topic covered by that objective.   

 The Examiners may ask a question on any syllabus topic using any of the agreed command 
verbs, as are defined in the document. 

You can find the relevant document on the profession’s website at: 

https://www.actuaries.org.uk/studying/prepare-your-exams 
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1.5 The examination 

What to take to the exam 

IMPORTANT NOTE: The following information was correct at the time of printing, however it is 
important to keep up-to-date with any changes.  See the profession’s website for the latest 
guidance. 

For the written exams the examination room will be equipped with: 

 the question paper 

 an answer booklet 

 rough paper 

 a copy of the Yellow Tables. 

Remember to take with you: 

 black pens 

 a permitted scientific calculator – please refer to www.actuaries.org.uk for the latest 
advice. 

Please also refer to the profession’s website and your examination instructions for details about 
what you will need for the computer-based Paper B exam. 

Past exam papers 

You can download some past exam papers and Examiners’ Reports from the profession’s website 
at www.actuaries.org.uk.  However, please be aware that these exam papers are for the 
pre-2019 syllabus and not all questions will be relevant. 
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1.6 Queries and feedback 

Questions and queries 

From time to time you may come across something in the study material that is unclear to you.  
The easiest way to solve such problems is often through discussion with friends, colleagues and 
peers – they will probably have had similar experiences whilst studying.  If there’s no-one at work 
to talk to then use our discussion forum at www.ActEd.co.uk/forums (or use the link from our 
home page at www.ActEd.co.uk). 

Our online forum is dedicated to actuarial students so that you can get help from fellow students 
on any aspect of your studies from technical issues to study advice.  You could also use it to get 
ideas for revision or for further reading around the subject that you are studying.  ActEd tutors 
will visit the site from time to time to ensure that you are not being led astray and we also post 
other frequently asked questions from students on the forum as they arise. 

If you are still stuck, then you can send queries by email to the relevant subject email address (see 
Section 2.6), but we recommend that you try the forum first.  We will endeavour to contact you as 
soon as possible after receiving your query but you should be aware that it may take some time to 
reply to queries, particularly when tutors are away from the office running tutorials.  At the 
busiest teaching times of year, it may take us more than a week to get back to you. 

If you have many queries on the course material, you should raise them at a tutorial or book a 
personal tuition session with an ActEd tutor.  Information about personal tuition is set out in our 
current brochure.  Please email ActEd@bpp.com for more details. 

Feedback 

If you find an error in the course, please check the corrections page of our website 
(www.ActEd.co.uk/paper_corrections.html) to see if the correction has already been dealt with.  
Otherwise please send details via email to the relevant subject email address (see Section 2.6). 

Each year our tutors work hard to improve the quality of the study material and to ensure that 
the courses are as clear as possible and free from errors.  We are always happy to receive 
feedback from students, particularly details concerning any errors, contradictions or unclear 
statements in the courses.  If you have any comments on this course please email them to the 
relevant subject email address (see Section 2.6). 

Our tutors also work with the profession to suggest developments and improvements to the 
Syllabus and Core Reading.  If you have any comments or concerns about the Syllabus or Core 
Reading, these can be passed on via ActEd.  Alternatively, you can send them directly to the 
Institute and Faculty of Actuaries’ Examination Team by email to 
education.services@actuaries.org.uk. 

 

w
w
w
.m

as
om

om
si
ng

i.c
om

http://www.ActEd.co.uk/forums
http://www.ActEd.co.uk
mailto:ActEd@bpp.com
http://www.ActEd.co.uk/paper_corrections.html
mailto:education.services@actuaries.org.uk


Page 18  CS2: Study Guide 

© IFE: 2019 Examinations The Actuarial Education Company 

2.1 Subject CS2 – background 

History 

The Actuarial Statistics subjects (Subjects CS1 and CS2) are new subjects in the Institute and 
Faculty of Actuaries 2019 Curriculum.   

Subject CS2 is Risk Modelling and Survival Analysis. 

Predecessors 

The topics covered in the Actuarial Statistics subjects (Subjects CS1 and CS2) cover content 
previously in Subjects CT3, CT4, CT6 and a small amount from Subject ST9:  

 Subject CS1 contains material from Subjects CT3 and CT6. 

 Subject CS2 contains material from Subjects CT4, CT6 and ST9. 

Exemptions 

You will need to have passed or been granted an exemption from Subjects CT4 and CT6 to be 
eligible for a pass in Subject CS2 during the transfer process.   

Links to other subjects 

 This subject assumes that the student is competent with the material covered in CS1 − 
Actuarial Statistics – and the required knowledge for that subject.   

 CM1 – Actuarial Mathematics and CM2 – Financial Engineering and Loss Reserving apply 
the material in this subject to actuarial and financial modelling. 

 Topics in this subject are further built upon in SP1 – Health and Care Principles, SP7 – 
General Insurance Reserving and Capital Modelling Principles, SP8 – General Insurance 
Pricing Principles and SP9 – Enterprise Risk Management Principles. 
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2.2 Subject CS2 – Syllabus and Core Reading 

Syllabus 

The Syllabus for Subject CS2 is given here.  To the right of each objective are the chapter numbers 
in which the objective is covered in the ActEd course. 

Aim 

The aim of Subject CS2 is to provide a grounding in mathematical and statistical modelling 
techniques that are of particular relevance to actuarial work, including stochastic processes and 
survival models and their application. 

Competences  

On successful completion of this subject, a student will be able to: 

1. describe and use statistical distributions for risk modelling 

2. describe and apply the main concepts underlying the analysis of time series models 

3. describe and apply Markov chains and processes 

4. describe and apply techniques of survival analysis 

5. describe and apply basic principles of machine learning. 

Syllabus topics 

1. Random variables and distributions for risk modelling (20%) 

2. Time series (20%) 

3. Stochastic processes (25%) 

4. Survival models (25%) 

5. Machine learning (10%) 

The weightings are indicative of the approximate balance of the assessment of this subject 
between the main syllabus topics, averaged over a number of examination sessions. 

The weightings also have a correspondence with the amount of learning material underlying each 
syllabus topic.  However, this will also reflect aspects such as: 

 the relative complexity of each topic, and hence the amount of explanation and support 
required for it 

 the need to provide thorough foundation understanding on which to build the other 
objectives 

 the extent of prior knowledge which is expected 

 the degree to which each topic area is more knowledge or application based. 
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Detailed syllabus objectives  

1 Random variables and distributions for risk modelling (20%) 

1.1 Loss distributions, with and without risk sharing (Chapters 15 and 18) 

 1.1.1 Describe the properties of the statistical distributions which are suitable for 
modelling individual and aggregate losses. 

 1.1.2 Explain the concepts of excesses (deductibles), and retention limits. 

 1.1.3 Describe the operation of simple forms of proportional and excess of loss 
reinsurance. 

 1.1.4 Derive the distribution and corresponding moments of the claim amounts paid by 
the insurer and the reinsurer in the presence of excesses (deductibles) and 
reinsurance. 

 1.1.5 Estimate the parameters of a failure time or loss distribution when the data is 
complete, or when it is incomplete, using maximum likelihood and the method of 
moments. 

 1.1.6 Fit a statistical distribution to a dataset and calculate appropriate goodness of fit 
measures. 

1.2 Compound distributions and their applications in risk modelling  (Chapters 19 and 20) 

 1.2.1 Construct models appropriate for short term insurance contracts in terms of the 
numbers of claims and the amounts of individual claims. 

 1.2.2 Describe the major simplifying assumptions underlying the models in 1.2.1. 

 1.2.3 Define a compound Poisson distribution and show that the sum of independent 
random variables each having a compound Poisson distribution also has a 
compound Poisson distribution. 

 1.2.4 Derive the mean, variance and coefficient of skewness for compound binomial, 
compound Poisson and compound negative binomial random variables. 

 1.2.5 Repeat 1.2.4 for both the insurer and the reinsurer after the operation of simple 
forms of proportional and excess of loss reinsurance. 

1.3 Introduction to copulas  (Chapter 17) 

 1.3.1 Describe how a copula can be characterised as a multivariate distribution function 
which is a function of the marginal distribution functions of its variates, and 
explain how this allows the marginal distributions to be investigated separately 
from the dependency between them. 

 1.3.2 Explain the meaning of the terms dependence or concordance, upper and lower 
tail dependence; and state in general terms how tail dependence can be used to 
help select a copula suitable for modelling particular types of risk. 
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 1.3.3 Describe the form and characteristics of the Gaussian copula and the 
Archimedean family of copulas. 

1.4 Introduction to extreme value theory (Chapter 16) 

 1.4.1 Recognise extreme value distributions, suitable for modelling the distribution of 
severity of loss and their relationships 

 1.4.2 Calculate various measures of tail weight and interpret the results to compare the 
tail weights. 

2 Time series (20%) 

2.1 Concepts underlying time series models (Chapters 13 and 14) 

 2.1.1 Explain the concept and general properties of stationary, (0)I , and integrated, 

(1),I  univariate time series. 

 2.1.2 Explain the concept of a stationary random series. 

 2.1.3 Explain the concept of a filter applied to a stationary random series. 

 2.1.4 Know the notation for backwards shift operator, backwards difference operator, 
and the concept of roots of the characteristic equation of time series. 

 2.1.5 Explain the concepts and basic properties of autoregressive (AR), moving average 
(MA), autoregressive moving average (ARMA) and autoregressive integrated 
moving average (ARIMA) time series. 

 2.1.6 Explain the concept and properties of discrete random walks and random walks 
with normally distributed increments, both with and without drift. 

 2.1.7 Explain the basic concept of a multivariate autoregressive model. 

 2.1.8 Explain the concept of cointegrated time series. 

 2.1.9 Show that certain univariate time series models have the Markov property and 
describe how to rearrange a univariate time series model as a multivariate 
Markov model. 

2.2 Applications of time series models (Chapters 13 and 14) 

 2.2.1 Outline the processes of identification, estimation and diagnosis of a time series, 
the criteria for choosing between models and the diagnostic tests that might be 
applied to the residuals of a time series after estimation. 

 2.2.2 Describe briefly other non-stationary, non-linear time series models. 

 2.2.3 Describe simple applications of a time series model, including random walk, 
autoregressive and cointegrated models as applied to security prices and other 
economic variables. 
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 2.2.4 Develop deterministic forecasts from time series data, using simple extrapolation 
and moving average models, applying smoothing techniques and seasonal 
adjustment when appropriate. 

3 Stochastic processes (25%) 

3.1 Describe and classify stochastic processes. (Chapter 1) 

 3.1.1 Define in general terms a stochastic process and in particular a counting process. 

 3.1.2 Classify a stochastic process according to whether it: 

 operates in continuous or discrete time 

 has a continuous or a discrete state space 

 is a mixed type 

  and give examples of each type of process. 

 3.1.3 Describe possible applications of mixed processes. 

 3.1.4 Explain what is meant by the Markov property in the context of a stochastic 
process and in terms of filtrations. 

3.2 Define and apply a Markov chain. (Chapter 2) 

 3.2.1 State the essential features of a Markov chain model. 

 3.2.2 State the Chapman-Kolmogorov equations that represent a Markov chain. 

 3.2.3 Calculate the stationary distribution for a Markov chain in simple cases. 

 3.2.4 Describe a system of frequency based experience rating in terms of a Markov 
chain and describe other simple applications. 

 3.2.5 Describe a time-inhomogeneous Markov chain model and describe simple 
applications. 

 3.2.6 Demonstrate how Markov chains can be used as a tool for modelling and how 
they can be simulated. 

3.3 Define and apply a Markov process. (Chapters 4 and 5) 

 3.3.1 State the essential features of a Markov process model. 

 3.3.2 Define a Poisson process, derive the distribution of the number of events in a 
given time interval, derive the distribution of inter-event times, and apply these 
results. 

 3.3.3 Derive the Kolmogorov equations for a Markov process with time independent 
and time/age dependent transition intensities. 
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 3.3.4 Solve the Kolmogorov equations in simple cases. 

 3.3.5 Describe simple survival models, sickness models and marriage models in terms of 
Markov processes and describe other simple applications. 

 3.3.6 State the Kolmogorov equations for a model where the transition intensities 
depend not only on age/time, but also on the duration of stay in one or more 
states. 

 3.3.7 Describe sickness and marriage models in terms of duration dependent Markov 
processes and describe other simple applications. 

 3.3.8 Demonstrate how Markov jump processes can be used as a tool for modelling and 
how they can be simulated. 

4 Survival models (25%) 

4.1 Explain the concept of survival models. 

 4.1.1 Describe the model of lifetime or failure time from age x  as a random 
variable. (Chapter 6) 

 4.1.2 State the consistency condition between the random variable representing 
lifetimes from different ages. (Chapter 6) 

 4.1.3 Define the distribution and density functions of the random future lifetime, the 
survival function, the force of mortality or hazard rate, and derive relationships 
between them. (Chapter 6) 

 4.1.4 Define the actuarial symbols t xp  and t xq  and derive integral formulae for them.  

    (Chapter 6) 

 4.1.5 State the Gompertz and Makeham laws of mortality. (Chapter 6) 

 4.1.6 Define the curtate future lifetime from age x and state its probability 
function. (Chapter 6) 

 4.1.7 Define the symbols xe  and xe  and derive an approximate relation between 

them.  Define the expected value and variance of the complete and curtate future 
lifetimes and derive expressions for them.  (Chapter 6) 

 4.1.8 Describe the two-state model of a single decrement and compare its assumptions 
with those of the random lifetime model. (Chapter 3) 

4.2 Describe estimation procedures for lifetime distributions. 

 4.2.1 Describe the various ways in which lifetime data might be censored. (Chapter 7) 

 4.2.2 Describe the estimation of the empirical survival function in the absence of 
censoring, and what problems are introduced by censoring. (Chapter 7) 
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 4.2.3 Describe the Kaplan-Meier (or product limit) estimator of the survival function in 
the presence of censoring, compute it from typical data and estimate its 
variance. (Chapter 7) 

 4.2.4 Describe the Nelson-Aalen estimator of the cumulative hazard rate in the 
presence of censoring, compute it from typical data and estimate its 
variance. (Chapter 7) 

 4.2.5 Describe models for proportional hazards, and how these models can be used to 
estimate the impact of covariates on the hazard. (Chapter 8) 

 4.2.6 Describe the Cox model for proportional hazards, derive the partial likelihood 
estimate in the absence of ties, and state the asymptotic distribution of the partial 
likelihood estimator. (Chapter 8) 

4.3 Derive maximum likelihood estimators for transition intensities. (Chapters 3 and 4) 

 4.3.1 Describe an observational plan in respect of a finite number of individuals 
observed during a finite period of time, and define the resulting statistics, 
including the waiting times. 

 4.3.2 Derive the likelihood function for constant transition intensities in a Markov 
model of transfers between states given the statistics in 4.3.1. 

 4.3.3 Derive maximum likelihood estimators for the transition intensities in 4.3.2 and 
state their asymptotic joint distribution. 

 4.3.4 State the Poisson approximation to the estimator in 4.3.3 in the case of a single 
decrement. 

4.4 Estimate transition intensities dependent on age (exact or census). (Chapter 9) 

 4.4.1 Explain the importance of dividing the data into homogeneous classes, including 
subdivision by age and sex. 

 4.4.2 Describe the principle of correspondence and explain its fundamental importance 
in the estimation procedure. 

 4.4.3 Specify the data needed for the exact calculation of a central exposed to risk 
(waiting time) depending on age and sex. 

 4.4.4 Calculate a central exposed to risk given the data in 4.4.3. 

 4.4.5 Explain how to obtain estimates of transition probabilities, including in the single 
decrement model the actuarial estimate based on the simple adjustment to the 
central exposed to risk. 

 4.4.6 Explain the assumptions underlying the census approximation of waiting times. 

 4.4.7 Explain the concept of the rate interval. 
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 4.4.8 Develop census formulae given age at birthday where the age may be classified as 
next, last, or nearest relative to the birthday as appropriate, and the deaths and 
census data may use different definitions of age. 

 4.4.9 Specify the age to which estimates of transition intensities or probabilities in 4.4.8 
apply.  

4.5 Graduation and graduation tests (Chapters 10 and 11) 

 4.5.1 Describe and apply statistical tests of the comparison of crude estimates with a 
standard mortality table testing for: 

 the overall fit 

 the presence of consistent bias 

 the presence of individual ages where the fit is poor 

 the consistency of the ‘shape’ of the crude estimates and the standard 
table. 

For each test describe: 

 the formulation of the hypothesis 

 the test statistic 

 the distribution of the test statistic using approximations where 
appropriate 

 the application of the test statistic.  

 4.5.2 Describe the reasons for graduating crude estimates of transition intensities or 
probabilities, and state the desirable properties of a set of graduated estimates.  

 4.5.3 Describe a test for smoothness of a set of graduated estimates.  

 4.5.4 Describe the process of graduation by the following methods, and state the 
advantages and disadvantages of each:  

 parametric formula 

 standard table 

 spline functions  

  (The student will not be required to carry out a graduation.)  

 4.5.5 Describe how the tests in 4.5.1 should be amended to compare crude and 
graduated sets of estimates.  

 4.5.6 Describe how the tests in 4.5.1 should be amended to allow for the presence of 
duplicate policies.  

 4.5.7 Carry out a comparison of a set of crude estimates and a standard table, or of a 
set of crude estimates and a set of graduated estimates. 
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4.6 Mortality projection (Chapter 12) 

 4.6.1 Describe the approaches to the forecasting of future mortality rates based on 
extrapolation, explanation and expectation, and their advantages and 
disadvantages. 

 4.6.2 Describe the Lee-Carter, age-period-cohort, and p-spline regression models for 
forecasting mortality. 

 4.6.3 Use an appropriate computer package to apply the models in 4.6.2 to a suitable 
mortality dataset. 

 4.6.4 List the main sources of error in mortality forecasts. 

5 Machine learning (10%) 

5.1 Explain and apply elementary principles of machine learning. (Chapter 21) 

 5.1.1 Explain the main branches of machine learning and describe examples of the 
types of problems typically addressed by machine learning. 

 5.1.2 Explain and apply high-level concepts relevant to learning from data. 

 5.1.3 Describe and give examples of key supervised and unsupervised machine learning 
techniques, explaining the difference between regression and classification and 
between generative and discriminative models. 

 5.1.4 Explain in detail and use appropriate software to apply machine learning 
techniques (eg penalised regression and decision trees) to simple problems. 

 5.1.5 Demonstrate an understanding of the perspectives of statisticians, data scientists, 
and other quantitative researchers from non-actuarial backgrounds. 
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Core Reading 

The Subject CS2 Course Notes include the Core Reading in full, integrated throughout the course. 

Accreditation 

The Institute and Faculty of Actuaries would like to thank the numerous people who have helped 
in the development of the material contained in this Core Reading. 

Further reading 

The exam will be based on the relevant Syllabus and Core Reading and the ActEd course material 
will be the main source of tuition for students. 
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2.3 Subject CS2 – the course structure 

There are five parts to the Subject CS2 course.  The parts cover related topics and have broadly 
equal marks in the paper-based exam.  The parts are broken down into chapters.  

The following table shows how the parts, the chapters and the syllabus items relate to each other.  
The end columns show how the chapters relate to the days of the regular tutorials.  We have also 
given you a broad indication of the length of each chapter.  This table should help you plan your 
progress across the study session. 

Part Chapter Title 
No of 
pages 

Syllabus 
objectives 

5 full 
days 

1 

1 Stochastic processes  35 3.1 

1 

2 Markov chains 70 3.2 

3 
The two-state Markov model and the Poisson 
model 

41 4.1.8, 4.3 

4 Time-homogeneous Markov jump processes 71 
3.3.1-3.3.5, 
4.3.1-4.3.3 

2 

5 
Time-inhomogeneous Markov jump 
processes 

56 
3.3.1, 

3.3.3-3.3.8 
2 6 Survival models 36 4.1.1-4.1.7 

7 Estimating the lifetime distribution 59 4.2.1-4.2.4 

3 

8 Proportional hazards models 42 4.2.5-4.2.6 

3 

9 Exposed to risk 32 4.4 

10 Graduation and statistical tests 62 
4.5.1-4.5.3, 
4.5.5, 4.5.7 

11 Methods of graduation 31 4.5.4-4.5.7 

12 Mortality projection 54 4.6 

4 

13 Time series 1 71 
2.1.1-2.1.2, 
2.1.4-2.1.6, 
2.1.9, 2.2.3 

4 14 Time series 2 61 
2.1.3, 2.1.7-

2.1.8, 2.2 

15 Loss distributions 45 
1.1.1, 

1.1.5-1.1.6 

16 Extreme value theory 45 1.4 
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5 

17 Copulas 57 1.3 

5 

18 Reinsurance 45 1.1.2-1.1.5 

19 Risk models 1 38 1.2.1-1.2.4 

20 Risk models 2 43 
1.2.1-1.2.2, 

1.2.5 

21 Machine learning 78 5.1 
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2.4 Subject CS2 – summary of ActEd products 

The following products are available for Subject CS2: 

 Course Notes 

 PBOR (including the Y Assignments) 

 X Assignments – five assignments: 

– X1, X2, X3: 80-mark tests (you are allowed 2¾ hours to complete these)  

– X4, X5: 100-mark tests (you are allowed 3¼ hours to complete these)  

 Series X Marking 

 Series Y Marking 

 Online Classroom – over 150 tutorial units 

 Flashcards 

 Revision Notes  

 ASET – four years’ exam papers, ie eight papers, covering the period April 2014 to 
September 2017 

 Mock Exam 

 Mock Exam Marking 

 Marking Vouchers. 

We will endeavour to release as much material as possible but unfortunately some revision 
products may not be available until the September 2019 or even April 2020 exam sessions.  
Please check the ActEd website or email ActEd@bpp.com for more information. 

The following tutorials are typically available for Subject CS2: 

 Regular Tutorials (five days) 

 Block Tutorials (five days) 

 a Preparation Day for the computer-based exam. 

Full details are set out in our Tuition Bulletin, which is available on our website at 
www.ActEd.co.uk. 
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2.5 Subject CS2 – skills and assessment 

Technical skills 

The Actuarial Statistics subjects (Subjects CS1 and CS2) are very mathematical and have relatively 
few questions requiring wordy answers. 

Exam skills 

Exam question skill levels 

In the CS subjects, the approximate split of assessment across the three skill types is: 

 Knowledge – 20% 

 Application – 65% 

 Higher Order skills – 15%. 

Assessment 

Assessment consists of a combination of a 3¼-hour written examination and a 1¾-hour 
computer-based practical examination. 
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2.6 Subject CS2 – frequently asked questions 

Q:   What knowledge of earlier subjects should I have? 

A: Knowledge of Subject CS1, Actuarial Statistics, is assumed. 

Q: What level of mathematics is required? 

A: Good mathematical skills are essential for Subject CS2.  Calculus and algebra (including 
matrices) are used extensively in this course. 

If your maths is a little rusty you may wish to consider purchasing additional material to 
help you get up to speed.  The course ‘Pure Maths and Statistics for Actuarial Studies’ is 
available from ActEd and it covers the mathematical techniques that are required for the 
Core Principles subjects, some of which are beyond A-Level (or Higher) standard.  You do 
not need to work through the whole course in order – you can just refer to it when you 
need help on a particular topic.  An initial assessment to test your mathematical skills and 
further details regarding the course can be found on our website. 

Q:  What should I do if I discover an error in the course? 

A: If you find an error in the course, please check our website at: 

www.ActEd.co.uk/paper_corrections.html 

to see if the correction has already been dealt with.  Otherwise please send details via 
email to CS2@bpp.com. 

Q: Who should I send feedback to? 

A: We are always happy to receive feedback from students, particularly details concerning 
any errors, contradictions or unclear statements in the courses.   

If you have any comments on this course in general, please email CS2@bpp.com. 

If you have any comments or concerns about the Syllabus or Core Reading, these can be 
passed on to the profession via ActEd.  Alternatively, you can send them directly to the 
Institute and Faculty of Actuaries’ Examination Team by email to 
education.services@actuaries.org.uk. 
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Stochastic processes 

 

 

 

Syllabus objectives 

3.1 Describe and classify stochastic processes. 

3.1.1 Define in general terms a stochastic process and in particular a counting 
process. 

3.1.2 Classify a stochastic process according to whether it: 

(a) operates in continuous or discrete time 

(b) has a continuous or a discrete state space 

(c) is a mixed type 

and give examples of each type of process. 

3.1.3 Describe possible applications of mixed processes. 

3.1.4 Explain what is meant by the Markov property in the context of a stochastic 
process and in terms of filtrations. 
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0 Introduction 

In this chapter we define the concept of a stochastic process.  A stochastic process is a family or 
set of ordered random variables.  The order is indicated by indexing each random variable in the 
family by a subscript.  Usually the ordering is a result of the random variables being observed over 
time, so tX  is a random variable that models the value of the stochastic process at time t .  The 

random variables in the set can be dependent on one another reflecting the nature of the process 
being modelled. 

As in all statistical modelling we will collect a sample of data from the process being modelled.  So 
for example, tX  might model the price of a stock at time t , and we have observations of the 

stock price for the last 6 trading days.  We can use these data to describe the process and to 
analyse the nature of its past behaviour over time.  The data may also be used to estimate the 
parameters of our stochastic process model.  We could then use the estimated stochastic process 
model to predict the future behaviour of the stock price.  It is the dependence between the 
random variables in the set that allows us to make predictions by extrapolating past patterns into 
the future. 
 

 
We start with some definitions and then give examples of different types of processes.  The final 
parts of the second section discuss some of the properties that a stochastic process may possess, 
ie stationarity, independent increments and the Markov property.   

In Section 3 we look at several examples of stochastic processes, and use these to illustrate the 
definitions and properties we have given in the previous section.  Some of these examples will be 
discussed in more detail in later chapters. 

timeX0 

  

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 Model
Samplex1 x2 x3 x4 x5 x6 x0 

observe

describe & analyse

predict

X12 X13 X14 X15 X16 X17   

now
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1 Types of stochastic processes 

We begin with the definition of a stochastic process. 

Stochastic process 

A stochastic process is a model for a time-dependent random phenomenon.  So, just as a 
single random variable describes a static random phenomenon, a stochastic process is a 
collection of random variables ,tX  one for each time t  in some set J .   

The process is denoted  :tX t J .   

The set of values that the random variables tX  are capable of taking is called the state 
space of the process, S .   

The values in the set J  are called the time set or time domain of the process.  This terminology 

should be familiar – if  y f x , the values taken by x  are the domain (or support) of the 

function and the values taken by y  are the range of the function. 

The set of random variables may be dependent.  So in order to describe their statistical properties 
we will need to know their joint distribution.  If the random variables in the set were independent 
(as is the case for example with statistical models of the sampling process) it would be sufficient 
to know the (marginal) distribution of each random variable in the set. 

The random variables in the set need not be identically distributed.  However, we will discover 
that processes that have identically distributed random variables are particularly important in the 
study of stochastic processes. 

The state space of the stochastic process will include all of the values that can be taken by any of 
the random variables in the set.  However, for particular random variables in the set, some of 
these values may have a zero probability of occurring. 

For example, we might model the closing value of the FTSE100 index by a stochastic process 

 .tX   The random variable tX  models the value at the end of day t.   

Question 

Explain whether the state space and time set for this process are discrete or continuous. 

Solution 

The state space is technically discrete as share prices are measured in pence.  However, as there 
are very many distinct values that are close together, it is often easier to use a continuous random 
variable to model the share price, which results in a continuous state space. 
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If time is measured in days, then the values of the process are recorded at times 1, 2, 3, ….  So the 
time set is discrete. 

 
A possible model might say that the value of tX  depends on the values at the end of the two 

previous trading days 1tX   and 2tX  .  If this dependence does not change with t , then we could 

use the model to predict future vales of tX .  These predictions may not be exact even if the 

model is good. 

The first choice that one faces when selecting a stochastic process to model a real life 
situation is that of the nature (discrete or continuous) of the time set J  and of the state 
space S . 

While the process being modelled could have its value recorded continuously or at very frequent 
discrete times, we may choose to model only the values at discrete or less frequent discrete time 
points.  This may be because we are only able to record measurements at these times.  This could 
be because of physical limitations on the measurement process or because the measurement 
process is very expensive and we cannot afford more frequent measurements.  Aside from these 
considerations we may be content just to model the process at these time points because, for 
example, predictions using this frequency will be perfectly adequate for our needs.  No purpose is 
served by using a more elaborate model than is necessary. 

There is no requirement that the labels used in the set J  should be actual calendar times, merely 
that they should put the random variables in order.   

In statistical modelling it is common to approximate (the state space of) discrete random variables 
by continuous random variables when the number of discrete values becomes large enough.  So, 
for example, we often approximate a discrete binomial random variable by a continuous normal 
random variable when the binomial random variable has more than 20 or 30 discrete values.  We 
know that the continuous model is not an exact representation of what is being modelled but it is 
adequate for our purposes and is easier to use. 

1.1 Discrete state space with discrete time changes 

Here is an example of a process with a discrete state space and discrete time changes. 

A motor insurance company reviews the status of its customers yearly.  Three levels of 

discount are possible  0, 25%, 40%  depending on the accident record of the driver.  In this 

case the appropriate state space is   0, 25, 40S and the time set is   0, 1, 2,J  where 

each interval represents a year.  This problem is studied in Chapter 2. 

The time set often starts at 0 (whether continuous or discrete).  Time 0 is taken to be the start, so 
that after one unit of time (day, minute etc) we have 1t  . 

In principle the company could record the discount status of each policyholder on a continuous 
basis, but discount levels are usually only changed on the annual renewal date of the policy.  So it 
makes sense just to model and record these values.  A model with more frequent recording will 
be more complicated (and expensive) yet is unlikely to be more useful in managing a portfolio of 
motor policies. 
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The time set is discrete.  The state space contains three discrete values. 

1.2 Discrete state space with continuous time changes 

A life insurance company classifies its policyholders as Healthy, Sick or Dead.  Hence the 

state space   , , .S H S D  As for the time set, it is natural to take  [0, )J  as illness or 

death can occur at any time.  On the other hand, it may be sufficient to count time in units of 

days, thus using   0, 1, 2,...J .  This problem is studied in some detail in Chapters 4 and 5. 

The description suggests that the time set could be continuous or discrete with very frequent 
recording.  In using the model it is important that we are able to answer questions like ‘What is 
the probability that a life that is healthy at time s  is sick at time t ?’  This suggests that a model 
with a continuous time domain will be more useful.   

Here the state space contains three discrete values. 

1.3 Continuous state space 

Claims of unpredictable amounts reach an insurance company at unpredictable times; the 
company needs to forecast the cumulative claims over [0, ]t  in order to assess the risk that 

it might not be able to meet its liabilities.  It is standard practice to use [0, )  both for S  and 

J  in this problem.  However, other choices are possible: claims come in units of a penny 
and do not really form a continuum.  Similarly the intra-day arrival time of a claim is of little 

significance, so that  0,1,2,...  is a possible choice for J  and/or S . 

The intra-day arrival time is the time at which a claim arrives on a particular day. 

The choice of a discrete or continuous time set is influenced by the availability of data, eg are 
cumulative claims figures recorded on a daily basis, or are figures only available at the end of each 
quarter?  The choice is also influenced by the purpose of the modelling, eg are predictions of the 
cumulative claims at the end of each quarter sufficient or are predictions needed more 
frequently? 

Claim amounts may be recorded in pence or to the nearest pound and so in principle the state 
space is discrete, but it contains a very large number of non-negative values and so a continuous 
approximation is perfectly adequate. 

An important class of models having a continuous state space and a discrete time set is time 
series.  Many economic and financial stochastic processes fall into this class, eg daily prices at the 
close of trading for a company’s shares.  Time series are studied in Chapters 13 and 14. 

1.4 Displaying observed data 

When we take observations on a process, we obtain a sample of each of the random variables in 
the set making up the stochastic process.   
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In displaying the data we want to convey information about three features.  These are: 

 the size of the values, ie to give an idea of the means of the random variables in the set  

 the volatility of the values, ie to give an idea of the variances of the random variables in 
the set  

 the relationships between the values of the random variables, ie to give an idea of the 
covariances between the random variables in the set.   

We do this by plotting tX  against t .  Even when the time set is discrete we can join up the 

plotted points with straight lines.  There are no observations on these lines, but they can help to 
show the ‘shape’ of the time series.  You may have seen plots like this in newspapers, eg showing 
the price of a stock each day or the interest rate at the end of each quarter.  Plots like this can be 
used even when the state space of the process is discrete.   

Question 

You are thinking of moving to live in Edinburgh.  As part of your research into what it’s like to live 
in Edinburgh you have collected the following sets of data: 

 the maximum daily temperature each day since 1 January 2015 

 whether or not it rained for each day since 1 January 2015 

 the number of cyclists injured in road accidents since 1 January 2015. 

(i) For each data set choose an appropriate state space and a time set.  In each case state 
whether the state space and the time set are discrete or continuous, and give the units of 
measurement, eg dollars, weeks. 

(ii) Imagine that you have data for each process.  Draw sketches to display these samples of 
data. 

Solution 

Maximum daily temperature 

(i) State space and time set 

We would use a discrete time set, say the non-negative integers 0,1,2t   , where t  represents 

the number of days since 1 January 2015. 

In practice we might only quote temperature to the nearest degree, so if the number of possible 
values was small we could use a discrete state space.  Alternatively, we might prefer to use a 
continuous state space if for example we were recording temperatures to the nearest 0.1 of a 

degree and we thought values might range from 30 C   to 40 C  . 
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(ii) Sketch 

time (days)

temperature (
 ° C)

 

Daily rainfall 

(i) State space and time set 

We would use a discrete time set, say the non-negative integers 0,1,2t   , where t  represents 

the number of days since 1 January 2015. 

The state space would be discrete consisting of two values: (yes: it rained) and (no: it didn’t rain). 

(ii) Sketch 

We can display the data in a similar way to the temperature data, but there will be more ‘flat’ 
sections in the plot. 

 
Injured cyclists 

(i) State space and time set 

In principle there will be a value for this random variable at every point in time.  So we would use 
a continuous time set, say the non-negative numbers 0t  , where t  represents time since 
1 January 2015. 

The state space would be discrete – it would be the set of non-negative integers.  Only if we 
thought that the number of possible values was very large would it be appropriate to 
approximate this discrete state space by a continuous one. 

time (days)

yes

no
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(ii) Sketch 

The display would be similar to the previous ones, except that here there is no need to use lines 
to link observations to show the shape.  Because the time set is continuous and the process jumps 
when each event occurs, we use ‘blobs’ to show which value should be used at the points of 
discontinuity. 

time 

number injured

 
 

1.5 Processes of mixed type 

Just because a stochastic process operates in continuous time does not mean that it 
cannot also change value at predetermined discrete instants; such processes are said to be 
of mixed type.  As an example, consider a pension scheme in which members have the 
option to retire on any birthday between ages 60 and 65.  The number of people electing to 
take retirement at each year of age between 60 and 65 cannot be predicted exactly, nor can 
the time and number of deaths among active members.  Hence the number of contributors 
to the pension scheme can be modelled as a stochastic process of mixed type with state 

space   1,2,3,S  and time interval  [0, )J .  Decrements of random amounts will occur 

at fixed dates due to retirement as well as at random dates due to death. 

So this process is a combination (or mixture) of two processes:  

 a stochastic process modelling the number of deaths, which has a discrete state space and 
a continuous time set  

 a stochastic process modelling the number of retirements, which has a discrete state 
space and a discrete time set.   

We model the total number of decrements and observe the initial number of members less the 
total number of decrements in (0, )t .  This is a mixed process. 

Question 

You run a business that sells and provides service for a range of expensive sports cars.  Each car 
sells for between £40,000 and £50,000 (cash only) and you sell about 10 to 20 each year.  The ‘life 
blood’ of the business is the regular servicing and maintenance of the cars you have sold 
previously. 

Describe the characteristics of a stochastic process that might be a suitable model for the balance 
on your company’s bank account. 
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Solution 

There are two processes at work: 

 the day to day transactions of the business.   

These will tend to produce a ‘smoothly’ changing bank balance as there are lots of 
transactions and the majority are for relatively small amounts.  We have a continuous 
state space and a continuous time domain. 

 the very infrequent transactions which result from car sales.   

These will produce big jumps in the bank balance.  The state space will consist of a limited 
number of discrete values and the time domain will be continuous. 

The combination of the two processes suggests that a mixed process would be appropriate. 

 
As a rule, one can say that continuous time and continuous state space stochastic 
processes, although conceptually more difficult than discrete ones, are also ultimately more 
flexible (in the same way as it is easier to calculate an integral than to sum an infinite 
series). 

It is important to be able to conceptualise the nature of the state space of any process 
which is to be analysed, and to establish whether it is most usefully modelled using a 
discrete, a continuous, or a mixed time domain.  Usually the choice of state space will be 
clear from the nature of the process being studied (as, for example, with the Healthy-Sick-
Dead model), but whether a continuous or discrete time set is used will often depend on the 
specific aspects of the process that are of interest, and upon practical issues like the time 
points for which data are available. 

1.6 Counting processes 

A counting process is a stochastic process, X , in discrete or continuous time, whose state 
space S  is the collection of natural numbers {0,1,2,...} , with the property that ( )X t  is a 

non-decreasing function of t . 
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2 Defining a stochastic process 

2.1 Sample paths 

Having selected a time set and a state space, it remains to define the process  :tX t J  

itself.  This amounts to specifying the joint distribution of 
1 2
, , ...,

nt t tX X X  for all 1 2, , ..., nt t t  

in J  and all integers n .  This appears to be a formidable task; in practice this is almost 
invariably done indirectly, through some simple intermediary process (see Section 2.3 and 
Section 3). 

Consider a simple model of the price of a stock measured in pence.  Each trading day 0, 1, 2,t    

the price increases by 1 pence or decreases by 1 pence with probabilities p and 1 p  respectively.  

The changes each day are independent.  Let the price at time t be denoted tX  and assume 

0 100X  , so that the initial price (time 0 in our model) is £1.   

This completely determines a stochastic process, even though we haven’t explicitly given all the 

joint distributions.  The time set (measured in days) is  0,1,2,J   .  The state space (measured 

in pence) is the set of non-negative integers  0, 1, 2, . 

In fact, what we’ve done is to specify the process in terms of its increments at each time.  These 
changes 1t t tZ X X    form another stochastic process – the intermediary process, which we 

referred to above.   

The stochastic process of these increments is: 

1 with probability

1 with probability 1
t

p
Z

p

 
 

 

Since we have assumed that these random variables are independent,  t t JZ   is a set of 

independent and identically distributed (IID) random variables.  However, the tX ’s themselves 

are not independent.  The value of tX  is the previous value plus a random change of 1 .  The 

value therefore depends very much on the previous value and so they are not independent.  For 
example 10( 110) 0P X    but 10 1( 110| 99) 0P X X   .   

The tX ’s cannot be identically distributed either since, for example, the possible values that 1X  

can take are just 99 or 101 , whereas the possible values of 2X  are 98, 100 and 102 ; 

corresponding to two days of price falls, a one day fall and a one day rise and two days of rises. 

The unconditional variance of tX  increases as t  increases since we are less certain about where 

the share price might be.  (By unconditional here we mean that we are not conditioning on 
previous values, other than 0X .) 

The process  t t JZ   is an example of a white noise process. 
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White noise 

White noise is a stochastic process that consists of a set of independent and identically distributed 
random variables.  The random variables can be either discrete or continuous and the time set 
can be either discrete or continuous. 

Let’s consider the stock price model a little more.  Here we have defined a stochastic process, 

 t t JX   in terms of its increments  t t JZ   such that: 

1t t tX X Z   

where tZ  is a given white noise process.   

Knowing the probabilities p and 1 p  allows us to calculate the joint probability distributions of 

1
, ,

nt tX X  for all n and all 1 , , nt t .  So we have a complete specification of tX . 

Question 

Calculate 2 5 0( 102, 103| 100)P X X X    for the stock price model discussed above. 

Solution 

We can do this by considering all the different ways of starting from 100 at time 0, arriving at 102 
at time 2, and finishing at 103 at time 5.  In order for this to occur, the price must increase on the 

first two days, which happens with probability 2p .  Independently, it must then increase on 

another two days and decrease on one day, not necessarily in that order.  The decrease in price 
can occur at times 3, 4 or 5, giving three different possibilities.  Each of these has probability 

2(1 )p p .  So: 

 2 2 4
2 5 0( 102, 103| 100) 3 (1 ) 3 (1 )P X X X p p p p p         

 
Other joint probabilities can be calculated in the same way, so all the joint distributions can be 
determined and the stochastic process tX  is completely specified. 

Question 

For the stock price model described above: 

(i) calculate: 

(a) 2 4 0( 100, 103| 100)P X X X    

 (b) 2 4 0( 100, 102| 100).P X X X    

(ii) write down the joint distribution of 2 4,X X  given 0 100X  . 
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Solution 

(i) Probabilities 

(a)    2 4 0100, 103| 100 2 1 0 0P X X X p p        

(There are two ways of going from 0 100X   to 2 100X  , each having a probability 

(1 )p p .  It is impossible to go from 2 100X   to 4 103X   because there are not enough 

steps to produce an increment of 3 .) 

(b)   2 3
2 4 0100, 102| 100 2 (1 ) 2(1 )P X X X p p p p p       . 

(ii) Joint distribution 

To work out the joint distribution of 2 4 and X X  we would calculate each possibility as in (i) above.  

To be transparent, we’ve included below a table of the probabilities for the various paths from 
time 0t   through to 4t  , given 0 100X  .   

Path  Probability  Path  Probability  

100 101 102 103 104  4p  100 99 100 101 102 3(1 )p p  

100 101 102 103 102 3(1 )p p  100 99 100 101 100 2 2(1 )p p  

100 101 102 101 102  3(1 )p p  100 99 100 99 100 2 2(1 )p p  

100 101 102 101 100 2 2(1 )p p  100 99 100 99 98  3(1 )p p  

100 101 100 101 102 3(1 )p p  100 99 98 99 100 2 2(1 )p p  

100 101 100 101 100  2 2(1 )p p  100 99 98 99 98  3(1 )p p  

100 101 100 99 100 2 2(1 )p p  100 99 98 97 98  3(1 )p p  

100 101 100 99 98 3(1 )p p  100 99 98 97 96 4(1 )p  

 
From this table we can derive the joint distribution of 2X  and 4X : 

4 3
2 4 2 4

3 2 2
2 4 2 4

2 2 3
2 4 2 4

3 4
2 4 2 4

2 4

( 98, 96) (1 ) ( 100, 102) 2 (1 )

( 98, 98) 2 (1 ) ( 102, 100) (1 )

( 98, 100) (1 ) ( 102, 102) 2 (1 )

( 100, 98) 2 (1 ) ( 102, 104)

( 100, 10

P X X p P X X p p

P X X p p P X X p p

P X X p p P X X p p

P X X p p P X X p

P X X

       

       

       

      

  2 20) 4 (1 )p p 
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We can think of a random event as an experiment with outcomes of varying probability.  The 
outcome of a given experiment would be a realisation of that random variable.  A sample path is 
then just the sequence of outcomes of a particular set of experiments. 

For example, suppose we toss a coin at times  0,1,2,3,4 .  The outcome of each toss 

(ie experiment) will be a head H or tail T, so that the expression HHTHT  denotes an example 
sample path.  The set of all sample paths will be represented by the set of all sequences of H and 
T of length five. 

Sample paths 

A joint realisation of the random variables tX  for all t  in J  is called a sample path of the 

process; this is a function from J  to S .   

To say that a sample path is a function from J  to S  means that with each time, ie with each 
member of J , we associate the outcome of the experiment carried out at that time, which is a 
member of S . 

The properties of the sample paths of the process must match those observed in real life (at 
least in a statistical sense).  If this is the case, the model is regarded as successful and can 
be used for prediction purposes.  It is essential that at least the broad features of the real 
life problem be reproduced by the model; the most important of these are discussed in the 
next subsections. 

Suppose we toss a biased coin 1,000 times and on each toss the coin only has a one in four chance 
of landing tails say (a very biased coin!).  A naive model of the series of tosses with equal 
probabilities for heads and tails would lead to sample paths that tended to have similar numbers 
of heads and tails.  The real life experiments, however, would differ substantially.  This 
discrepancy between observed sample paths and predicted paths would highlight the weakness 
of the model. 

2.2 Stationarity 

Stationarity is defined as follows. 

Strict stationarity 

A stochastic process is said to be stationary, or strictly stationary, if the joint distributions 
of 

1 2
, , ...,

nt t tX X X  and   1 2
, , ...,

nk t k t k tX X X  are identical for all 1 2, , , nt t t  and 

  1 2, , , nk t k t k t  in J and all integers n.  This means that the statistical properties of the 

process remain unchanged as time elapses. 

Here ‘statistical properties’ refers to probabilities, expected values, variances, and so on.  A 
stationary process will be statistically ‘the same’ over the time period 5 to 10 and the time period 
from 120 to 125, for example.   
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In particular, the distribution of tX  will be identical to the distribution of t kX   for all t  and k 

such that t  and t k  are in J .  Moreover, this in turn implies that expectations ( )tE X  and 

variances var( )tX  must be constant over time.  The failure of any one of these conditions to hold 

could be used to show a process is not stationary.  Showing that they all hold may be difficult 
though. 

Question 

Consider a process defined by the equation: 

1t t tX X Z  ,   1,2,3,...t    

where, for 0,1,2,...t  : 

 
1 with probability

1 with probability 1
t

p
Z

p

 
 

 

and 0 0X  . 

Calculate 10( 10)P X   and 2( 10)P X  .  Hence comment on the stationarity of the process. 

Solution 

  10
10 10P X p   but  2 10 0P X   .  Since 2X  and 10X  do not have the same distribution, the 

process is not stationary. 

 
The process described in the question above is known as a simple random walk.  The stock price 
model described earlier is technically not a random walk since it does not start at 0.  For the stock 
price model, 0 100X  . 

Recall the example of Section 1.2 with the three states Healthy, Sick and Dead.  One would 
certainly not use a strictly stationary process in this situation, as the probability of being 
alive in 10 years’ time should depend on the age of the individual. 

For example, the probability of a life aged 50 surviving to age 60 is not likely to be the same as the 
probability of a life aged 75 surviving to age 85.   

Strict stationarity is a stringent requirement which may be difficult to test fully in real life.  
For this reason another condition, known as weak stationarity is also in use.  This requires 

that the mean of the process     tm t E X  is constant and that the covariance of the 

process: 

            cov ,s t s tX X E X m s X m t  

depends only on the time difference t s . 
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The time difference t s  is referred to as the lag.  Recall also that the covariance can be written: 

 cov( , ) ( ) ( ) ( )s t s t s tX X E X X E X E X   

If a process is strictly stationary then it is also weakly stationary.  However, a weakly stationary 
process is not necessarily strictly stationary. 

Weak stationarity considers only the first two moments of the joint distribution of the set of 
random variables tX .   

Weak stationarity 

A process is weakly stationary if: 

 ( )tE X  is constant for all t , and 

 cov( , )t t kX X   depends only on the lag, k .   

To be weakly stationary a process must pass both these tests.  If it fails either of the tests then it is 
not weakly stationary.  So when checking for stationarity, start with the easier condition (the 
mean), then check the covariances. 

To carry out these checks we need to use the properties of the expectation and variance 
functions.  Recall that: 

 var( ) cov( , )t t tX X X  

ie the variance is equal to the covariance at lag 0.  So var( )tX  will be constant for a weakly 

stationary process.  In addition, if ,W X  and Y  are random variables and ,a b  and c  are 

constants, then the following hold with no assumptions required: 

 cov( , ) cov( , )Y X X Y  

 cov( , ) 0X c   

 cov( , ) cov( , )aX bY ab X Y  

 cov( , ) cov( , ) cov( , )X Y W X W Y W   . 

Question 

Show that: 

 cov( , ) cov( , ) cov( , )aX bY cW d ac W X cb W Y     

by using the properties of the covariance function given above. 
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Solution 

We have: 

 

cov( , ) cov( , ) cov( , )

cov( , ) cov( , ) cov( , ) cov( , )

cov( , ) cov( , ) 0 0

cov( , ) cov( , )

aX bY cW d cW aX bY d aX bY

cW aX cW bY d aX d bY

ac W X cb W Y

ac W X cb W Y

     

   

   

 

 

 

2.3 Increments 

Increments 

An increment of a process is the amount by which its value changes over a period of time, 
eg  t u tX X  (where  0u ).   

The increments of a process often have simpler properties than the process itself. 

Example 

Let tS  denote the price of one share of a specific stock.  It might be considered reasonable 

to assume that the distribution of the return over a period of duration u , t u

t

S
S

, depends on 

u   but not on t  .  Accordingly the log-price process  logt tX S  would have stationary 

increments: 

 
   log t u

t u t
t

SX X
S

 

even though tX  itself is unlikely to be stationary. 

Independent increments 

A process tX  is said to have independent increments if for all t and every u > 0 the 

increment  t u tX X  is independent of all the past of the process   : 0sX s t . 

In the last example it is a form of the efficient market hypothesis to assume that  logt tX S  

has independent increments.   

The efficient markets hypothesis is covered in Subject CM2. 

The example of Section 1.3 can also be modelled by a process with stationary independent 
increments.  Many processes are defined through their increments: see Section 3. 
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We have already seen that a random walk may be defined through its increments.  The increment 
with 1u   is the process 1 1 1t t t tX X X Z       we discussed before.  These are independent 

of the past of the process tX .  In fact for any 0u   the increment t u tX X   is independent of the 

past values of the process.  (Here u  has to be a positive integer.) 

2.4 The Markov property 

A major simplification occurs if the future development of a process can be predicted from 
its present state alone, without any reference to its past history.  

Suppose that we are at time s  and the value of the process at time s  is x .  (In symbols we have 

sX x ). 

Stated precisely the Markov property reads: 

            
1 21 2| , , , , |

nt s s s n s t sP X A X x X x X x X x P X A X x  

for all times     1 2 ns s s s t , all states 1 2, , ..., nx x x  and x  in S  and all subsets A  

of S .  This is called the Markov property. 

The necessity to work with subsets A S  (rather than just having tX a S  ) is to cover the 

continuous state space cases.  For these the probability that tX  takes on a particular value is zero.  

We therefore need to work with probabilities of tX  lying in some interval of S, or more generally 

in some subset.  For discrete state spaces the Markov property has the following simplification. 

Markov property for a stochastic process with a discrete state space 

A stochastic process with a discrete state space has the Markov property if: 

 
1 21 2| , , , , |

nt s s s n s t sP X a X x X x X x X x P X a X x           

for all times 1 2 ns s s s t      and all states 1, , , na x x  in S. 

It can be argued that the example of Section 1.2 can be modelled by a Markov process: if 
there is full recovery from the sick state to the healthy state, past sickness history should 
have no effect on future health prospects. 

Markov result 

A process with independent increments has the Markov property. 
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Proof 

      

         

      

    





1 2

1 2

1 2

1 2

| , , , ,

| , , , ,

|

|

n

n

t s s s n s

t s s s s n s

t s s

t s

P X A X x X x X x X x

P X X x A X x X x X x X x

P X X x A X x

P X A X x

 

The first equality here uses the fact that we are given sX x  so that t t sX X X x   .  The 

second equality follows from the assumption that the increment t sX X  is independent of past 

increments.  Finally, the third equality uses the fact that sX x  again. 

If we need to check whether or not a stochastic process is Markov, then: 

 we can first check if it has independent increments, if yes then it is Markov. 

 if it does not have independent increments, then it may still be Markov if it satisfies the 
Markov definition. 

 sometimes it is very difficult to check a process using the Markov definition, so we may 
need to resort to some general reasoning arguments to try and demonstrate that the 
Markov definition is satisfied. 

Question 

Consider a discrete-time process on the integers defined as follows:  1t t tX X I   where tI  are 

random variables taking the value +1 or –1 with probabilities 1tX
tp e   and 11 tX

tq e    

respectively.  Explain whether this process has: 

(a) independent increments 

(b) the Markov property. 

Solution 

(a) The increments, 1t tX X  , depend on the value of 1tX  .  So the process does not have 

independent increments.   

(b) It is Markov, however, since our knowledge of past values additional to the current value 
is irrelevant.   

 
To recap: a process with independent increments has the Markov property, but a Markov process 
does not necessarily have independent increments.  The two properties are not equivalent. 
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2.5 Filtrations 

The following structures underlie any stochastic process tX : 

 a sample space  : each outcome   in   determines a sample path  tX   

 a set of events F : this is a collection of events, by which is meant subsets of  , to 
which a probability can be attached 

 for each time t , a smaller collection of events tF F  : this is the set of those events 

whose truth or otherwise are known at time t .  In other words an event A  is in tF  if 

it depends only on sX ,  0 s t . 

As t  increases, so does  : ,t t uF F F t u .  Taken collectively, the family   0t tF  is known 

as the (natural) filtration associated with the stochastic process , 0tX t ; it describes the 

information gained by observing the process or the internal history of tX  up to time t . 

This is the key thing to know about the (natural) filtration – that tF  gives the history of the 

process up to time t .  If we had a process with a discrete time set 0, 1, 2, ...t  , then we could 

write the history of the process up to time n  as follows: 

 1 1 2 2 1 1 0 0, , , ..., ,n n n n n nX x X x X x X x X x         

Alternatively, we could denote this set of events by nF . 

However, if we had a process with a continuous time set, we couldn’t list the complete set of 
events up to time n , even if we used the ‘…’ notation.  (This is because there is an uncountable 
number of points in the set [0, ]n .)  So in this case the complete history of the process up to time 

n  has to be represented in terms of the filtration. 

The process tX  can be said to have the Markov property if: 

         t s t sP X x F P X x X  

for all   0t s . 

When a Markov process has a discrete state space and a discrete time set it is called a 
Markov chain; Markov chains are studied in Chapter 2.  When the state space is discrete but 
the time set is continuous, one uses the term Markov jump process; Markov jump 
processes are studied in Chapters 3, 4 and 5.   

Using the preliminaries in this section we can now show by a series of examples how to 
define a stochastic process. 
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3 Examples 

In each of the examples in this section we try to appreciate which of the following properties 
hold: 

 stationarity in the weak sense 

 independent increments 

 the Markov property. 

3.1 White noise 

Consider a discrete-time stochastic process consisting of a sequence of independent 
random variables 1,..., ,...nX X .  

The Markov property holds in a trivial way. 

Even though the process does not have independent increments, the Markov definition is 
satisfied since the future development of the process is completely independent of its past. 

The process is stationary if and only if all the random variables nX  have the same 

distribution.  Such sequences of independent identically distributed (IID for short) random 
variables are sometimes described as a discrete-time white noise.  

White noise processes are normally defined as having a mean of zero at all times, that is 
 ( ) [ ] 0tm t E X  for all values of t .  They may be defined in either discrete or continuous 

time.  In a white noise process with a mean of zero, the covariance of the process, 

       cov( , ) ( ) ( )s ts t E X m s X m t , is zero for s t .  The main use of white noise 

processes is as a starting point to construct more elaborate processes below. 

3.2 General random walk 

Start with a sequence of IID random variables 1,..., ,...jY Y  and define the process:  


 

1

n
n j

j
X Y   

with initial condition 0 0X .   

The formula for the random walk can also be written as:  

 1n n nX X Y   , 1,2,3,...n    

This is a process with stationary independent increments, and thus a discrete-time Markov 
process.  It is known as a general random walk.  The process is not even weakly stationary, 
as its mean and variance are both proportional to n .   

The log of the closing value of the FTSE100 index could be modelled by a general random walk, 
the value one day being the value on the previous day plus some random adjustment. 
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In the special case where the steps jY  of the walk take only the values 1  and 1 , the 

process is known as a simple random walk. 

In addition, if: 

 
1 with probability 0.5

1 with probability 0.5jY


 
 

the process is known as a simple symmetric random walk. 

3.3 Poisson process 

A Poisson process with rate   is a continuous-time integer-valued process tN ,  0t , with 

the following properties: 

(i) 0 0N  

(ii) tN  has independent increments 

(iii) tN  has Poisson distributed stationary increments: 

  
            ,

!

n t s

t s
t s e

P N N n s t
n


,   0, 1, ...n  

Property (iii) can also be expressed as follows: 

  ( )t sN N Poisson t s   for  0 s t  

This is a Markov jump process with state space   0,1,2,...S .  It is not stationary: as is the 

case for the random walk, both the mean and variance increase linearly with time. 

The process counts the number of events (that are occurring at a rate   per unit time) that occur 
between time s  and time t .  It is an example of a counting process.  Counting processes are 
defined in Section 1.6. 

This process is of fundamental importance when counting the cumulative number of 

occurrences of some event over  0,t , irrespective of the nature of the event (car accident, 

claim to insurance company, arrival of customer at a service point).  A detailed study of this 
process and its extensions is one of the subjects of Chapter 4. 

Since the increments have a Poisson distribution they can only take the values 0,1,2,…  It follows 
that the process must be increasing, that is t sN N  for all s and t such that t s .  The 

expectations must therefore be increasing, and the process is not weakly stationary.   

In fact, the process can only increase by one step at a time, making it a natural counting process.  
It is very often used to model the number of insurance claims made by time t .  The rate 
parameter   is the expected number of claims arriving per unit time. 

We will see in Chapter 4 that there are other equivalent definitions of a Poisson process. 
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3.4 Compound Poisson process 

Start with a Poisson process , 0tN t  and a sequence of IID random variables , 1jY j .  A 

compound Poisson process is defined by: 

 


 
1

, 0
tN

t j
j

X Y t  (1.1) 

We additionally assume that the random variables jY  are independent of tN . 

When 0tN   we define 0tX  .  The jY  may be discrete or continuous random variables.  For 

example, tN  could be the number of storms up to time t , and jY  could be the number of claims 

arising from the j th storm (discrete), or the cost of claims from the j th storm (continuous). 

This process has independent increments and thus the Markov property holds.  It serves as 

a model for the cumulative claim amount reaching an insurance company during  0, : tt N  is 

the total number of claims over the period and jY  is the amount of the j th claim.   

A common application consists of estimating the probability of ruin: 

       ( ) 0 for some 0tu P u ct X t  

for a given initial capital u, premium rate c, tX  defined as in (1.1), and some fixed 

distribution of the claim sizes.  

If we receive income from premiums at a rate of c  per unit of time, then by time t  we will have 
received an amount ct .  Also, tX  models the cumulative amount of claims incurred by the 

company.  Starting with an initial surplus of u  we will therefore have a surplus of tu ct X   at 

time t .  The probability of ruin is therefore just the probability that at some point in the future 
we will be ruined, ie the probability that the surplus is less than 0. 

3.5 Time series 

A time series is a set of observations indexed in time order, eg the closing value of the FTSE100 
share price index at the end of each week.  The observations are usually equally spaced in time, in 
which case they can be considered to be realisations of the random variables 1 2 3, , ,...X X X  .  The 

values of 1 2 3, , ,...X X X  are related to each other, and should not be considered as a set of 

independent random variables (except in the trivial case of a white noise process).   

By definition, a time series has a discrete time set and a continuous state space, so that

1 2 3, , ,...X X X  are continuous random variables.   

Time series will be studied in detail in Chapters 13 and 14. 
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Chapter 1 Summary 

Stochastic processes 

A stochastic process is a model for a time-dependent random phenomenon, a collection of 
random variables { : }tX t J , one for each time t  in the time set J .  The time set may be 

discrete or continuous.  The set of values that the tX  are capable of taking is called the state 

space S.  The state space may also be discrete or continuous. 

Defining such a process amounts to specifying the joint distribution of 
1 2

, ,.. ,
nt t tX X X  for all 

1 2, ,..., nt t t  in the time set J  and all integers n. 

Sample paths 

A joint realisation of the random variables tX  for all t  in J  is called a sample path of the 

process; this is a function from J  to S .   

Stationarity 

If the statistical properties of a process do not vary over time, the process is stationary.  This 
makes the modelling process much easier. 

Mathematically, stationarity requires the joint distribution of any set of values 

1 2
{ , , , }

nt t tX X X  to be the same as the joint distribution of 
1 2

{ , , , }
nt k t k t kX X X   , ie 

when all times are shifted across by k .  This is the strict definition. 

In practice, it is only necessary to have weak stationarity.  This requires only the first two 
moments not to vary over time, ie ( )tE X  and var( )tX  are constant, and 

1 2
cov( , )t tX X

depends only on the lag 2 1t t . 

Independent increments 

An increment of a stochastic process (that has a numerical state space) is just the change in 
the value between two times, ie 

2 1t tX X .  If this is independent of the past values of the 

process up to and including time 1t  then the process is said to have independent 

increments. 
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Filtration 

We often need to look at expectations of the future value of a process, conditional on the 
known past history.  For example, for a discrete-time process, we might be interested in 

1 2 1[ | , , , ]n nP X X X X  . 

For a continuous-time process this presents a theoretical difficulty, since it is impossible to 
list the values at all past times.  The filtration notation F  is used here, and we write, for 
example, [ | ]t sP X F  to represent the probability distribution at a future time t , conditional 

on the values up to the earlier time s . 

The filtration notation can be used for both discrete-time and continuous-time processes. 

Markov property 

If the probabilities for the future values of a process are dependent only on the latest 
available value, the process has the Markov property. 

Mathematically, for a process with time set {1, 2, 3, ...}  and a discrete state space: 

 
1 1 2 2 1 1

1 1

( | , , , )

( | )

n n n n n n

n n n n

P X x X x X x X x

P X x X x

   

 

   

  


 

For a continuous-time process with a discrete state space, we need to express this in the 
form: 

 ( | ) ( | )n n s n n sP X x F P X x X    

For a continuous-time process with a continuous state space, we need to express this in the 
form: 

 ( | ) ( | )n s n sP X A F P X A X    

White noise 

White noise is a stochastic process that consists of a set of independent and identically 
distributed random variables.  The random variables can be either discrete or continuous 
and the time set can be either discrete or continuous.  White noise processes are stationary 
and have the Markov property. 
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Random walk

Suppose that 1 2 3, , ,...Y Y Y   is a sequence of IID random variables and suppose that: 

 
0

1 2 1

0

, 1,2,3,...n n n n

X

X Y Y Y X Y n



      
  

Then nX  is a (general) random walk.  nX  has a discrete time set.  If the random variables jY  

are discrete, then nX  has a discrete state space.  If the random variables jY  are continuous, 

then nX  has a continuous state space. 

In the special case when each jY  can only take the values 1  and 1 , nX  is said to be a 

simple random walk.  In addition, if ( 1) ( 1) 0.5j jP Y P Y      , nX  is said to be a simple 

symmetric random walk.   

Poisson process 

tN  is a Poisson process with rate   if it is a continuous-time, integer-valued process with 

the following properties: 

 0 0N    

 tN  has independent increments 

 tN  has Poisson distributed stationary increments: 

( )[ ( )]
( )

!

t s n

t s
e t s

P N N n
n

   
    , 0 , 0,1,2,...s t n     

Compound Poisson process 

Suppose that: 

 1 2 tt NS Y Y Y      

where  1 2 3, , ,...Y Y Y   is a sequence of IID random variables, tN  is a Poisson process with rate 

 , and the random variables jY  are independent of tN .  Then tS  is a compound Poisson 

process with rate  . 

Like a Poisson process, a compound Poisson process has a continuous time set.  If the 
random variables jY  are discrete, then tS  has a discrete state space.  If the random variables 

jY  are continuous, then tS  has a continuous state space. 

Time series 

A time series is a set of observations indexed in time order.  A time series has a discrete time 
set and a continuous state space. 
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The practice questions start on the next page so that you can 
keep the chapter summaries together for revision purposes.  
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Chapter 1 Practice Questions 

1.1 For a stochastic process nX  with time set J  and state space S , define the terms:  

(i) stationary   
 
(ii) weakly stationary  
 
(iii) increment   
 
(iv) Markov property.  

1.2 A moving average (stochastic) process, nX , has a discrete time set and a continuous state space 

and is defined as: 

      1 1 2 2 3 3n n n n nX Z Z Z Z    

where { , }nZ n  are independent and identically distributed 2(0, )N   random variables and 

1 2 3, ,    are constants. 

(i) Prove that nX  is weakly stationary.    

(ii) Explain whether the Markov property holds.  

(iii) Deduce whether the process has independent increments.  

1.3 Explain whether a random walk has the Markov property.  

1.4 (i) (a) Define a Poisson process with rate  .   

 (b) Define a compound Poisson process.  

(ii) Identify the circumstances in which a compound Poisson process is also a Poisson process. 

(iii) The cumulative amount of claims reaching an insurance company is modelled using a 
compound Poisson process.   

 (a) Explain why the compound Poisson process has the Markov property.   

 (b) Comment on whether this seems reasonable for the given insurance model. 

 (c)  State whether the compound Poisson process is weakly stationary. 

 (d) Explain whether you expect the cumulative insurance claims to follow a weakly 
stationary process.  

1.5 Define a simple symmetric random walk and identify its time set and state space.  
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1.6 The price of an ordinary share is modelled as a stochastic process  ; 0, 1, 2, 3,nX n  with initial 

condition  0 0 0X x , where: 

 


 0
1

     1
n

n j
j

X x U n  

and nU  is a white noise process.  

(i) Show that the process ln nX ,  0n  has independent increments.  

(ii) Explain why nX  is a Markov process.  

1.7 Calculate the covariance between the values ( )X t  and ( )X t s  taken by a Poisson process ( )X t  

with constant rate   at the two times t  and t s , where 0s  . [2] 

1.8 (i) nX  is a stochastic process with a discrete state space and a discrete time set.  Show that if 

non-overlapping increments of this process are independent, then the process satisfies 
the Markov property. [2] 

(ii) Show that a white noise process in discrete time with a discrete state space does not have 
independent increments, but is a Markov process. [2] 

    [Total 4] 

1.9 An insurer has initial capital of u  and receives premium income continuously at the rate of c  per 
annum.  Let ( )S t  denote the total claim amount up to time t . 

(i) Describe a model that would allow the insurer to estimate its probability of ruin (ie the 
probability that its claims outgo is more than its available funds).  State any assumptions 
that you make.  [3] 

(ii) Write down an expression for the probability of ruin in terms of u , c  and ( )S t .  [1] 

    [Total 4] 

1.10 (i) In the context of a stochastic process denoted by { : }tX t J , define the terms: 

 (a) state space 

 (b) time set 

 (c) sample path. [2] 

(ii)  Stochastic process models can be placed in one of four categories according to whether 
the state space is continuous or discrete, and whether the time set is continuous or 
discrete.  For each of the four categories: 

 (a) state a stochastic process model of that type 

 (b) give an example of a problem an actuary may wish to study using a model from 
that category. [4] 

    [Total 6] 

Exam style 

Exam style 

Exam style 

Exam style 
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Chapter 1 Solutions 

1.1 (i) Stationary 

A stochastic process nX  is stationary if the joint distributions of 
1 2

, , ,
mt t tX X X  and 

  
1 2

, , ,
mt k t k t kX X X  are identical for all 1 2 1 2, , , , , , ,m mt t t t k t k t k J     and all 

integers m .      

(ii) Weakly stationary 

The process is weakly stationary if the expectations  tE X  are constant with respect to t and the 

covariances  cov ,t t kX X  depend only on the lag k.  

(iii) Increment 

If t  and t u  are in J  then the increment for duration u  will be  t u tX X .      

(iv) Markov property 

The Markov property states that: 

    1 21 2| , , , |
m mt t t t m t t mP X A X x X x X x P X A X x        

for all times     1 2 mt t t t J , all states 1 2, , , mx x x S  and all subsets A  of S .  

1.2 (i) Weak stationarity 

The jZ  are independent and identically distributed, and the j  are constants.  So:  

    1 2 3 1 2 3( ) 1 ( ) 1 0 0nE X E Z                 

and: 

  2 2 2 2 2 2 2
1 2 3 1 2 3var( ) var( ) var( ) var( ) var( ) 1nX Z Z Z Z                

which is constant. 

The covariance at lag 1 is: 

 

 

 

 

1

1 1 2 2 3 3 1 1 2 1 3 2

1 1 2 2 3

2
1 1 2 2 3

cov ,

cov ,

var( ) var( ) var( )

n n

n n n n n n n n

X X

Z Z Z Z Z Z Z Z

Z Z Z
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The covariance at lag 2 is: 

 

 

 

 

2

1 1 2 2 3 3 2 1 1 2 3 1

2 1 3

2
2 1 3

cov ,

cov ,

var( ) var( )

n n

n n n n n n n n

X X

Z Z Z Z Z Z Z Z

Z Z

     

  

   



           

 

           

The covariance at lag 3 is: 
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The covariances at lags 4, 5, 6 … are 0.  

So the covariance depends only on the lag and not on the value of n .  Thus the process nX  is 

weakly stationary.   

(ii) Markov? 

For a Markov process, the value of nX  only depends on the most recently known value.  

However, nX  depends on the previous X  values so it does not possess the Markov property.  

(iii) Independent increments? 

If the increments of a process are independent, then that process must have the Markov 
property.  Since we’ve said that this process is not a Markov process, it cannot have independent 
increments.    

1.3 A random walk has independent increments, so it has the Markov property.  

1.4 (i)(a) Poisson process 

A Poisson process tN ,  0t , with rate   is a continuous-time, integer-valued process such that: 

 0 0N  

 tN  has independent increments 

 ( ( ))t sN N Poisson t s   for  0 s t .  
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(i)(b) Compound Poisson process 

Let   1n nX 
  be independent identically distributed random variables.  A compound Poisson 

process with rate   is defined for  0t  to be: 

    1 2 tt NS X X X  

where tN  is a Poisson process and  0tS  when 0tN  .  

(ii) When a compound Poisson process is also a Poisson process 

tS  is also a Poisson process if the random variables jX  can only take the value 0 or 1.  

The situation where 1jX   for all j  is a special case of this. 

(iii)(a) Markov property 

It is sufficient to show that the compound  Poisson process has independent increments, since 
then the Markov property must hold.  However, having independent increments is part of the 
definition of the compound Poisson process.    

(iii)(b) Reasonableness 

This is consistent with insurance claims, since we would only expect the cumulative insurance 
claims by time t  to depend on the most recently known value.  For example, if we know the 
cumulative claims after day one are £1,000, and by day ten are £15,000, we wouldn’t expect the 
older value of £1,000 to add any useful information to the more recent value of £15,000.  

(iii)(c) Weak stationarity 

The process cannot be stationary since, for example, ( )tE S  changes with t .  

(iii)(d) Is cumulative claim amount weakly stationary? 

We wouldn’t expect ( )tE S  to be constant since the cumulative claims generally increases with 

time.  This would be a constant only in the trivial case where the individual claim amounts are £0, 
which is rather uninteresting.  

In order to show that a process is not stationary, it is sufficient to show that any one of the 
conditions fails to hold. 
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1.5 A simple symmetric random walk is defined by the equation: 

 


 
1

n

n j
j

X Y    

where the random variables jY  are independent and identically distributed with common 

probability distribution: 

    1 1
1    and   1

2 2j jP Y P Y        

The word ‘symmetric’ is important as it denotes a particular process that is equally likely to ‘step’ 
upwards or downwards in its walk. 

In addition, the process starts at 0, ie 0 0X .  

The simple symmetric random walk has a discrete state space consisting of the values, 

 , 2, 1, 0, 1, 2,      and a discrete time set consisting of the values  0, 1, 2, .  

1.6 (i) Independent increments 

By definition: 

 0 0
1 1

ln ln ln ln
n n

n j j
j j

X x U x Z
 

       

where  lnj jZ U  is a white noise process, ie are a set of independent and identically distributed 

random variables.  Then: 

   1ln ln lnn n n nX X U Z   

Because  , 0, 1,nZ n  are independent, ln nX  has independent increments.  

(ii) Markov process 

ln nX  has independent increments  

  ln nX  is a Markov process 

    exp lnn nX X  is a Markov process.   

because exponentiation merely rescales the state space of the process.  

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-01: Stochastic processes Page 33 

The Actuarial Education Company © IFE: 2019 Examinations 

1.7 The key to many results for continuous-time stochastic processes is to realise that the random 
variables representing behaviour in non-overlapping time periods are independent.  Here the 
non-overlapping time periods are (0, )t  and ( , )t t s .  So… 

     
   

 

cov ( ), ( ) cov ( ), ( ) ( ) ( )

cov ( ), ( ) cov ( ), ( ) ( )

var ( ) 0

X t X t s X t X t X t s X t

X t X t X t X t s X t

X t

t

    

   

 



 

since ( ) ( )X t Poisson t . [2] 

1.8 (i) Proof 

We have: 

 
 

 
            

         

    

      





1 1 2 2 3 3

1 1 2 2

| , , , ,

| , , ,

n n m n m n m n m n m n m n m

n n m n m n m n m n m n m

P X a X x X x X x X x

P X X x a X x X x X x
 

for all times  0m  and all states 1 2, , , ,n m n ma x x x      in the state space, S. [1] 

 

 

 

 

         

 



     

    

  

1 1 2 2| , , ,

|

|

n n m n m n m n m n m n m

n n m n m

n n m

P X X x a X x X x X x

P X X x a X x

P X a X x

 

if non-overlapping increments are independent.  So nX  has the Markov property. [1] 

(ii) White noise process 

For a discrete time, discrete state white noise process   : 1,2,3,nZ n , where nZ  are 

independent and identically distributed random variables with mean   and variance 2 , we 

have: 

              2
1 1 2 1 1cov , cov ,n n n n n nZ Z Z Z Z Z   

So non-overlapping increments are not independent. [1] 

However: 

                  1 1 2 2| , , ,n n n m n m n m n m n m n m n nP Z z Z z Z z Z z P Z z  

and:  

        |n n n m n m n nP Z z Z z P Z z  

because the random variables are independent.  So the process satisfies the Markov property. [1] 
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1.9 (i) Model  

Let ( )N t  denote the number of claims received by the insurer up to time t .  ( )N t  can be 

modelled as a Poisson process. [1] 

Let jX  denote the amount of the j th claim.  Then the cumulative claim amount up to time t  is 

given by: 

   1 2 ( )( ) N tS t X X X  

If we assume that the random variables jX  are independent and identically distributed, and they 

are independent of ( )N t , then ( )S t  is a compound Poisson process.   [2] 

(ii) Probability of ruin  

The probability of ruin for the insurer is the probability that, for some time t , its claims outgo up 
to time t  is greater than its initial capital plus premium income up to time t .  In symbols, this is: 

    ( )   for some 0P S t u ct t  [1] 

1.10 This is Subject CT4, September 2005, Question A2. 

(i)(a) State space 

The state space of the stochastic process { : }tX t J  is the set of values that the random variables 

tX  can take.  The state space can be discrete or continuous. [½] 

(i)(b) Time set 

The time set for this stochastic process is J , which contains all points at which the value of the 
process can be observed.  The time set can be discrete or continuous. [½] 

(i)(c) Sample path 

A sample path is a joint realisation of the random variables tX  for all t J .   [1] 

(ii)(a) Examples of stochastic processes 

Discrete state space, discrete time set 

Examples include Markov chains, simple random walks and discrete-time white noise processes 
that have discrete state spaces. [½] 

Discrete state space, continuous time set 

Examples include Markov jump processes (of which the Poisson process is a special case) and 
counting processes.  [½] 

Continuous state space, discrete time set 

Examples include general random walks and time series. [½] 
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Continuous state space, continuous time set 

Examples include Brownian motion, diffusion processes and compound Poisson processes where 
the state space is continuous. [½] 

Brownian motion and diffusion processes are covered in Subject CM2. 

(ii)(b) Examples of problems an actuary may wish to study 

Discrete state space, discrete time set 

An example of this is a no claims discount system.  The random variable tX  represents the 

discount level given to a policyholder in year t , 1,2,...t  . [½] 

Discrete state space, continuous time set 

An example of this is the health, sickness, death model, which can be used to value sickness 
benefits.  The random variable tX  takes one of the values healthy, sick or dead for each 0t  . [½] 

Continuous state space, discrete time set 

An example of this is a company’s share price at the end of each trading day.  Another example is 
the annual UK inflation rate.   [½] 

Continuous state space, continuous time set 

An example of this is the cumulative claim amount incurred on a portfolio of policies up to time .t  
Another example is a company’s share price at time t , where t  denotes time since trading 
began.      [½] 
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Markov chains 

 

  

 

Syllabus objectives 

3.2 Define and apply a Markov chain. 

3.2.1 State the essential features of a Markov chain model. 

3.2.2 State the Chapman-Kolmogorov equations that represent a Markov chain. 

3.2.3 Calculate the stationary distribution for a Markov chain in simple cases. 

3.2.4 Describe a system of frequency-based experience rating in terms of a 
Markov chain and describe other simple applications. 

3.2.5 Describe a time-inhomogeneous Markov chain model and describe simple 
applications. 

3.2.6 Demonstrate how Markov chains can be used as a tool for modelling and 
how they can be simulated. 
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0 Introduction 

Recall from Chapter 1 that the Markov property means that the future value of a process is 
independent of the past history and only depends on the current value.  Any process satisfying 
the Markov property is a Markov process.  The term Markov chain refers to Markov processes in 
discrete time and with a discrete state space. 
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1 An example of a Markov chain 

As an example, consider the no claims discount (NCD) model run by motor insurance companies.  
A company might offer discounts of say 0%, 30% and 60% of the full premium.   

A policyholder’s status is determined by the following rules: 

 All new policyholders start at the 0% level. 

 If no claim is made during the current year, then the policyholder moves up one discount 
level or remains at the 60% level. 

 If one or more claims are made, the policyholder moves down one level, or remains at 0% 
discount. 

This can be modelled using the state space  0%,30%,60%S  .  When the policy is renewed each 

year, the policyholder moves to another level, or remains at the same level, with various 
probabilities depending on the chance of making a claim.  Assume the chance of claiming is 

independent of the current level and that 3
4

(no claim)P  .   

This is an example of a discrete-time process that satisfies the Markov property (because the 
future only depends on the current level, and not on the past history).  Hence this is a Markov 
chain. 

One way of representing a Markov chain is by its transition graph. 

0%
discount

30%
discount

60%
discount

0.75 0.75

0.75

0.250.25

0.25

 

The states are represented by the circles, and each arrow represents a possible transition.  Staying 
in a state for one time period is also a possible transition, so we need an arrow to show this.  Next 
to each arrow is written the corresponding transition probability.  The arrows at either end 
correspond to policyholders who remain in the 0% or 60% states.  Policyholders in the 30% 
discount state will always move to another state because of the rules of the discount scheme.   

The transition probability between two states in unit time is therefore given explicitly.  These can 
be written in the form of a transition matrix: 

31
4 4

31
4 4

31
4 4

0

0

0

P
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The ( , )i j th  entry in the matrix, ie i th  row and j th  column, gives the probability of moving in one 

step from state i  to state j .  In order for this notation to make sense, we need the states to be 

labelled to correspond with the matrix entries.  In the example described above, the state ‘0%’ 
corresponds to 1i  , the state ‘30%’ corresponds to 2i  , and the state ‘60%’ corresponds to 

3i  . 

The entries in each row sum to 1.  This can be interpreted as saying that at the end of each year, 
some transition into another state must occur or the process stays where it is.  The sum of the 
probabilities of the mutually exclusive and exhaustive events that can happen when the process is 
in state i  is 1.   

It turns out that to calculate transition probabilities over 2 steps, we use the matrix 2P , and for 

three steps we use 3P , and so on.  This greatly simplifies the analysis of such situations.  This is 
the basic content of the Chapman-Kolmogorov equations, which we discuss in Section 2.  The 
one-step transition probabilities will generally be given, and we will have to construct general 
transition probabilities by applying the Chapman-Kolmogorov equations. 

There is an added complication however.  In the stochastic process we’ve just looked at, the 
transition matrix does not depend on the current time.  Such a process is said to be 
time-homogeneous.  In general, however, we need to consider the possibility that even the 
one-step transition matrices can vary with time.  It takes a while to get used to working with the 
matrix notation, but the theory itself is not too difficult. 

In Section 3 we concentrate on the time-homogeneous case, which simplifies things.  We look at 
the time-inhomogeneous case in Section 4. 

Section 5 contains several examples, including further discussion of the NCD model introduced 
above.  We also consider random walks on both finite and infinite state spaces. 

In Section 6, we study the long-term behaviour of Markov chains.  This is important.  For example, 
in the NCD case above, we would expect after a while that the process would settle down, and 
that the same proportion of policyholders would be in each discount level at any one time.  This 
does not mean that each individual stays put, but that, although each individual moves around, 
the process as a whole reaches an equilibrium or stationary position.   

Mathematically, the problem of finding the proportion of people who are in each state in the long 
run can easily be tackled using the transition matrices defined above.  The problem reduces to 
solving a set of simultaneous equations. 

Not all Markov chains have a single stationary distribution.  Some chains may have no stationary 
distribution and some chains may have more than one stationary distribution.  Chains with a 
single stationary distribution may be such that this distribution is never reached. 

We will describe three classifications of Markov chains, and use these classifications to define 
categories so that all those chains in the same category have the same long-run behaviour.  For 
one category there is a unique long-term stationary distribution that will be reached after a 
sufficient length of time.  We will describe how to find this unique stationary distribution. 
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2 The Chapman-Kolmogorov equations 

Recall from Chapter 1 that the term Markov chain is reserved for discrete-time Markov 
processes with a finite or countable state space S; so a Markov chain is a sequence of 
random variables 0 1, , ... , , ...nX X X  with the following property: 

                0 0 1 1 1 1, ,..., ,n m m m n mP X j X i X i X i X i P X j X i  (2.1) 

for all integer times n m  and states 0 1 1, ,..., , ,mi i i i j  in S . 

This definition of the Markov property is appropriate only when the time set is discrete (as is the 
case for a Markov chain).  In general, it need not be.   

The Markov property (2.1) has the following interpretation: given the present state of the 
process  ,mX i  the additional knowledge of the past is irrelevant for the calculation of the 

probability distribution of future values of the process. 

Some knowledge of the past may be incorporated in mX .  It is the additional information 

contained in the earlier values of the process that does not provide any help in predicting the 
future behaviour of the process. 

The conditional probabilities on the right-hand side of (2.1) are the key objects for the 
description of a Markov chain; we call them transition probabilities, and we denote them by: 

      
( , )m n

n m i jP X j X i p  

So ( , )m n
i jp  is the probability of being in state j  at time n  having been in state i  at time m . 

In particular, we can define the one-step transition probabilities: 

 ( , 1)
1( | ) m m

m m i jP X j X i p 
     

These tell us in a probabilistic sense what will happen at the next step at any time m .  These 
one-step transitions therefore describe the immediate future.  The NCD transition matrix P  is an 
example of this. 

If we know all such probabilities, then intuitively we should be able to calculate any long-term 
transition probability, from time m  to time n m , by considering a sequence of such one-step 
transitions.  This can be deduced from the following fundamental result. 

The transition probabilities of a discrete-time Markov chain obey the Chapman-Kolmogorov 
equations: 

    


  , ,( , ) m l l nm n

i j i k k j
k S

p p p  

for all states ,i j  in S  and all integer times  m l n . 
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( , )m l
ikp   ( , )l n

kjp  

Before giving a proof of this result we should be clear about its interpretation.  We can split any 
path between times m  and n  into two parts by introducing some fixed intermediate time l .  
Assume at this time we are in some state k .   

 

i k j

m nl

state

time

 

The associated transition probability for the whole of that path will then be the product of the 

transition probabilities for each part, namely ( , ) ( , )m l l n
ik kjp p .  So ( , ) ( , )m l l n

ik kjp p  is the probability of 

going from state i  at time m  to state j  at time n , via state k  at time l .  The probabilities are 

‘chained together’, which is the reason we call these processes Markov chains. 

If we start in state i  at time m , and finish in state j  at time n , then in general there will be 

several possibilities for this intermediate state k.  To take into account all of these different paths 
we must therefore sum over all the mutually exclusive and exhaustive possibilities.  This gives us 
the right-hand side of the above equation.  We have used the phrase ‘finish in’ here rather than 
‘go to’, because it could be that the transitions involve staying in the same state, ie no movement 
at all. 

Although the above equations may appear to be rather daunting at first, it should be noted that 

they can be simplified vastly by considering the transition probability ( , )m n
ijp  as the ,i j th  entry of 

a transition matrix ( , )m nP .  The above equations can then be written using matrix multiplication as 
( , ) ( , ) ( , )m n m l l nP P P .  We discuss this approach in more detail in the next section.  First we derive 

the Chapman-Kolmogorov equations mathematically. 

Proof 

Students should understand this proof, but they will not be expected to reproduce it in the 
examination.  This is based on the Markov property (2.1) and on the law of total probability 
in its conditional form. 

If 1 2, ,..., ,...kA A A   form a complete set of disjoint events, ie: 

 




    
1

, ,k k j
k

A A A k j  

then for any two events B, C :  

 




             
1

, k k
k

P B C P B C A P A C  

( , )m n
ijp   
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Now let B  be ‘ nX j ’, let C  be ‘ mX i ’, and let kA  be ‘ lX k ’. 

Thus: 

 




                    

            





,n m n m l l m
k S

n l l m
k S

P X j X i P X j X i X k P X k X i

P X j X k P X k X i

 

using the Markov property (note l m ). 

This is the stated result. 

The Chapman-Kolmogorov equations allow us to calculate general transition probabilities in 

terms of the one-step transition probabilities ( , 1)n n
ijp .   

For example, if we wish to calculate the two-step transition probabilities, we can take the 
intermediate time 1l m   and apply the equations.  Once we have the two-step transition 
probabilities we can use them to calculate the three-step transitions and, by iterating the 
procedure, the transition probabilities of any order can be found. 

Hence the distribution of a Markov chain is fully determined once the following are 
specified: 

 the one-step transition probabilities ( , 1)n n
ijp  

 the initial probability distribution    0kq P X k . 

Indeed we can deduce from these the probability of any path: 

 


      0 0 1 1 2 1,

0,1 (1,2) ( 1, )
0 0 1 1 ,, ,..., ...

n n

n n
n n i i i i i i iP X i X i X i q p p p  

It is therefore convenient, where possible, to determine states in a manner that forms a 
Markov chain.  The model in Section 5.2 illustrates this. 

This is referring to the fact that a chain may be given in a form that isn’t Markov.  In these cases 
we can’t apply the techniques described above to tackle the problem.  However, it is sometimes 
possible to change the state space so that the process is given as a Markov chain.  For example, 
this is the case for Model 5.2, which we will meet later in this chapter.  Generally, when this can 
be done, it will simplify the analysis of the problem.   

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 8  CS2-02: Markov chains 

© IFE: 2019 Examinations The Actuarial Education Company 

3 Time-homogeneous Markov chains 

A simplification occurs if the one-step transition probabilities are time-independent: 

 ( , 1)n n
ijijp p  (2.2) 

In this case, we say that the Markov chain is time-homogeneous.   

It follows easily from (2.2) that general transition probabilities depend only on time 
differences: 

 
     

l
l m m ijP X j X i p  (2.3) 

This equation defines ( )l
ijp  to be ( , )m l m

ijp  .  However, the definition only makes sense if the 

left-hand side is independent of m. 

We refer to (2.3) as the l -step transition probability.  For time-homogeneous Markov chains, 
the Chapman-Kolmogorov equations read: 

   


 ( ) ( ) ( )n m l m n l

ij ik kj
k S

p p p      for  m l n   

This has a very simple interpretation.  The transition matrix P  of a time-homogeneous 
Markov chain is a square N N  matrix where N  is the number of states in S  (possibly 

infinite), with the elements ijP  being the one-step transition probabilities ijp : 

 ij ijP p  

The l -step transition probability ( )l
ijp  can be obtained by calculating the entry  ,i j  of the 

l -th power of the matrix P : 

 ( )l l
ij ij

p P  

Recall that the ( , )i j th entry in a matrix A  is denoted by  ijA  (or just ijA );  i  refers to the row 

number, and j  to the column.  Expressions such as  12A  and  31A  represent numbers and not 

matrices.  Similarly  ijA  is a number, namely the ( , )i j th entry of the matrix A .   

Recall also that powers are written in the same way as for ordinary numbers.  For example, 2A  
means AA , as writing two matrices side by side denotes matrix multiplication. 

In the same way that we can think of the transition probabilities as the entries of a matrix, we can 
think of probability distributions ( )nP X i  as the entries of a row vector (1 N  matrix, N  being 

the number of elements in the state space, as above).   
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In this chapter we use the following notation: 

 the random variable 0X  denotes the state occupied at time 0  

 the vector 0X  gives the probability of being in each state at time 0 

 kq  denotes the k th entry of the vector 0X , ie 0( )kq P X k  . 

For a time-homogeneous Markov chain, we have seen that, 1( ) k ki
k S

P X i q p


   . 

The distribution of 1X  can now also be viewed as a row vector, 1X , with i th  entry k ki
k S

q p

 .  

The probabilities 1( )P X j , j S  can be expressed in matrix form as: 

1 0X X P  

This is a shorthand notation for the original equation with summation over indices. 

The order in which we multiply numbers doesn’t matter.  However, the order in which we 
multiply matrices does matter.  In fact, the expression 1 0X PX  doesn’t even make sense, as we 

cannot multiply a row vector on the left by an N N  matrix (unless N happens to equal 1).  If 

instead of a row vector we have a column vector, say the transposed vector 0
TX , then this order 

does make sense.  For example, the following equation is valid 1 0
T TTX P X . 

Question 

For a time-inhomogeneous process, the one-step transition matrices are dependent on time and 

so can be labelled ( , 1)n nP  , where n refers to the time.   

(i) Give a matrix equation representing the distribution of the random variable 5X  in terms 

of the initial distribution and transition matrices.   

(ii) Explain how this simplifies for a time-homogeneous chain. 

Solution 

(i) Matrix equation 

With the given notation: 

(0,1) (1,2) (2,3) (3,4) (4,5)
5 0X X P P P P P  

(ii) Simplification 

In the time-homogeneous case, (0,1) (1,2) (2,3) (3,4) (4,5)P P P P P P     .  So 5
5 0X X P . 
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The normalisation condition 


 1ij
j S

p  holds for all i , ie each row of P  must add up to one.  

More generally: 


 ( ) 1l

ij
j S

p  for all i  

It is often revealing to draw the transition graph of a Markov chain: this is a diagram in 
which each state in S  is represented as a node of the graph and an arrow is drawn from 

node i  to node j  whenever  0ijp , indicating that a direct transition from state i  to state 

j  is possible.  The value of ijp  can be recorded above the arrow. 

Question 

Consider a Markov process with state space  0,1,2S   and transition matrix, P: 

 

0

0.5 0 0.5

0.5 0.7 0.2

p q

P

p

 
   
  

 

(i) Determine the values of p  and q . 

(ii) Calculate the transition probabilities (3)
ijp . 

(iii) Draw the transition graph for the process represented by P . 

Solution 

(i) Values of p and q 

Since each row must sum to one we have 0.6p   from the third row and 0.4q   from the first 

row. 

(ii) Transition probabilities 

We use the fact that  3 3( )ijijp P : 

3

3
0.6 0.4 0 0.56 0.24 0.20 0.6 0.4 0 0.476 0.364 0.160

0.5 0 0.5 0.35 0.55 0.10 0.5 0 0.5 0.495 0.210 0.295

0.1 0.7 0.2 0.43 0.18 0.39 0.1 0.7 0.2 0.387 0.445 0.168

P

      
              
      
      

 

We can work out powers of matrices either way round since 2 2 3P P PP P  .  In fact, for any three 

matrices A, B and C, we have    A BC AB C . 
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(iii) Transition graph 

The transition graph is: 

0 1

2

0.5
0.6

0.4

0.7

0.5

0.2

0.1
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4 Time-inhomogeneous Markov chains 

For a time-inhomogeneous Markov chain, the transition probabilities cannot simply be 
denoted by ijp  because they will depend on the absolute values of time, rather than just the 

time difference.   

For a time-inhomogeneous chain, the one-step transition probabilities are denoted by ( , 1)n n
ijp . 

The value of ‘time’ can be represented by many factors, for example the time of year, age or 
duration. 

So for a time-inhomogeneous Markov chain, the probability of going from state i  at time 0 to 
state j  at time n  is not necessarily the same as going from state i  at time m  (  0m ) to state j  

at time m n , even though both time intervals are of length n .  For a time-inhomogeneous 
chain, the transition probabilities depend not only on the length of the time interval, but also on 
when it starts.   

Question 

The stochastic process X  is defined as follows: 

 0 0X  

  1n n nX X Y ,  1,2,3,...n     

where nY  can only take the values 0 and 1, and the corresponding probabilities are: 

  1
1

( 1)
4

P Y   

 
    
 

1
1

( 1) 1
6

n
n

X
P Y

n
, 1,2,3,...n   

Draw the transition diagram for nX  covering all transitions that could happen in the first three 

time periods, including transition probabilities.   

Solution 

The possible values of 1X  are 0 and 1, and the corresponding probabilities are: 

    1 1
1

( 1) ( 1)
4

P X P Y   

    1
1 3

( 0) 1
4 4

P X   
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So the transition diagram for the first time period is: 

 

0

3
4

1

X0

1
4

0

X1

  

If the process is in state 0 at time 1, it may be in state 0 or state 1 at time 2.  The corresponding 
probabilities are: 

          
 

2 1 2 1
1 0 1

( 1| 0) ( 1| 0) 1
6 1 6

P X X P Y X   

     2 1
1 5

( 0| 0) 1
6 6

P X X   

Adding these to the diagram gives: 

 

0

3
4

1 1

0 0

X0 X1 X2

5
6

1
4

1
6

 

Similarly, if the process in state 1 at time 1, it may be in state 1 or state 2 at time 2.  The 
corresponding probabilities are: 

 

         
 

2 1 2 1
1 1 1

( 2| 1) ( 1| 1) 1
6 1 3

P X X P Y X
  

 
    2 1

1 2
( 1| 1) 1

3 3
P X X
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So the transition diagram covering all the transitions that could happen in the first two time 
periods is: 

 

0

3
4

1 1

2

0 0

2
3

X0 X1 X2

5
6

1
4

1
6

1
3

 

We can consider the third time period in a similar way. 

If the process is in state 0 at time 2, it may be in state 0 or state 1 at time 3.  The corresponding 
probabilities are: 

 
3 2 3 2

1 0 1
( 1| 0) ( 1| 0) 1

6 2 6
P X X P Y X          

    

 
    3 2

1 5
( 0| 0) 1

6 6
P X X

  

If the process is in state 1 at time 2, it may be in state 1 or state 2 at time 3.  The corresponding 
probabilities are: 

 

         
 

3 2 3 2
1 1 1

( 2| 1) ( 1| 1) 1
6 2 4

P X X P Y X
  

 
    3 2

1 3
( 1| 1) 1

4 4
P X X

  

If the process is in state 2 at time 2, it may be in state 2 or state 3 at time 3.  The corresponding 
probabilities are: 

 

         
 

3 2 3 2
1 2 1

( 3| 2) ( 1| 2) 1
6 2 3

P X X P Y X
  

 
    3 2

1 2
( 2| 2) 1

3 3
P X X
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Adding these to the diagram, it becomes: 

 

3

0

3
4

1 1 1

2 2

0 0 0

2
3

X0 X1 X2 X3

5
6

5
6

1
4

1
6

1
6

1
3

1
3

2
3

1
4

3
4

 

 
Looking at the defining equation for nX  in the question immediately above, ie 1n n nX X Y  , we 

see that the process X  has the Markov property.  In contrast, the process Y  does not have the 
Markov property as the probability distribution for 1nY   depends on nX , which itself depends on 

all of 1 2, ,..., nY Y Y . 

The defining equation for nX  is similar to that for a general random walk, which we defined in 

Section 3.2 of Chapter 1.  X  is not a random walk, however, as the random variables 1 2 3, , ,...Y Y Y  

are not identically distributed. 
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5 Models 

Throughout the rest of this chapter we will refer to the models in the following sections by their 
section number.  For example, Model 5.1 will mean the model in Section 5.1. 

5.1 A simple model of a No Claims Discount (NCD) policy 

The No Claims Discount system (NCD) in motor insurance, whereby the premium charged 
depends on the driver’s claim record, is a prime application of Markov chains.  We present 
two simple models and we suggest various possible improvements. 

A motor insurance company grants its customers either no discount (state 0) or 25% 
discount (state 1) or 50% discount (state 2).  A claim-free year results in a transition to the 
next higher state the following year (or in the retention of the maximum discount); similarly, 
a year with one claim or more causes a transition to the next lower state (or the retention of 
the zero discount status). 

Under these rules, the discount status of a policyholder forms a Markov chain with state 

space  0,1, 2S  ; if the probability of a claim-free year is ¾, the transition graph and 

transition matrix are: 

1/4

1/4 1/4

3/4

3/43/4

State 2
50%

discount

State 1
25%

discount

State 0
0%

discount

 
The transition matrix is given by: 

31
4 4

31
4 4

31
4 4

0

0

0

P
 
 

  
 
 

 

The probability of holding the maximum discount in year 3n   given that you do not qualify 
for any discount in year n  is: 

   3 3 9
160,2 1,3

p P   

 3
0,2p   denotes the probability of going from state 0 to state 2 in 3 time steps.  This is equal to 

 3

1,3
P , the entry in the first row and the third column of the matrix 3P  (the cube of the matrix 

P ).  So we could calculate 3P  and identify the  1,3 th  entry.  This turns out to be 9
16 .  However, 

calculating the cube of P  is time-consuming and is not actually necessary given that we only need 
one probability and there aren’t that many possible paths. 
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One alternative approach is the following.  Given that the policyholder does not qualify for any 
discount in year n , we must be starting in state 0.  We want the probability of ending in state 2 
after three (one-step) transitions.  This can only happen if our path is:  

  0 0 1 2  with probability  3 31
4 4 4   

or:  

  0 1 2 2  with probability  3 3 3
4 4 4    

The sum of these gives the result 9
16 .  So we see that the matrix representation is a notation for 

the way we have always calculated probabilities. 

However, if there are many possible paths, the above approach can be tedious.  Probably the 
most efficient way to proceed with a problem like this is to work as follows.   

Since we know that the distribution at time n  is (1,0,0) , we can calculate the probability 

distribution at time 1n  by post-multiplying the vector (1,0,0)  by the transition matrix P .  This 

gives: 

  
 
 

, 0
1 3

,
4 4

 

Then post-multiplying  
 
 

, 0
1 3

,
4 4

 by the transition matrix P , we obtain the probability 

distribution at time 2n , which is: 

  
 
 

,
1 3 9

,
4 16 16

  

Post-multiplying this by P  gives us the probability distribution at time  3n .  However, since we 
just need the probability of being on maximum discount in year  3n , we only have to multiply 

the vector  
 
 

,
1 3 9

,
4 16 16

 by the last column of P .  We find that the probability distribution at time 

 3n  is of the form: 

  
 
 

,
9

*, *
16

 

So the required probability is 
9

16
. 

Question 

Calculate the probability in the above model of starting with a discount level of 25% and ending up 
4 years later at the same level. 
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Solution 

Repeated post-multiplication of the vector  0, 1, 0  by the transition matrix P  gives: 

 

  1 3
0, 1, 0 , 0,

4 4

1 3 9
, ,

16 8 16

7 3 45
, ,

64 16 64

33
*, , *

128

   
 

   
 

   
 

   
 

 

So the required probability is 
33

128
. 

Alternatively, we can consider each possible sample path separately and sum the probabilities as 
follows.  The only paths are:   

1 0 0 0 1     with probability  3 31 1 1
4 4 4 4 256
     

1 0 1 0 1     with probability  3 3 91 1
4 4 4 4 256
     

1 0 1 2 1     with probability   3 3 91 1
4 4 4 4 256
     

1 2 1 0 1     with probability   3 3 91 1
4 4 4 4 256
     

1 2 1 2 1     with probability   3 3 91 1
4 4 4 4 256
     

1 2 2 2 1     with probability   3 3 3 1 27
4 4 4 4 256
     

Adding up probabilities for each path we get 66 33
256 128

  as above. 

 

Time-inhomogeneous model 

For a time-inhomogeneous case of this model, the probability of an accident would be 
time-dependent to reflect changes in traffic conditions.  This could be due to general annual 
trends in the density of traffic and/or propensity to claim.   

The probability of an accident may also be affected by changes in weather conditions, which is 
another possible reason for using a time-inhomogeneous model. 
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The transition graph and matrix would then become: 

 

State 0
0%

discount

State 1
25%

discount

State 2
50%

discount

 

 
and: 

 
   
 
 

00 01 02

10 11 12

20 21 22

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

P t P t P t
P t P t P t P t

P t P t P t
 

In fact, the transition matrix simplifies to: 

 
00 01

10 12

21 22

( ) 0( )

( ) ( ) 0 ( )

0 ( ) ( )

P P tt

P t P t P t

P t P t

 
   
 
 

  

5.2 Another model of an NCD policy 

In the model in Section 5.1 there are 3 discount levels, namely 0%, 25% and 50%. 

Modify the previous model as follows: there are now four levels of discount: 

 0 : no discount 
 1 : 25% discount 
 2 : 40% discount 
 3 : 60% discount 

The rules for moving up the discount scale are as before, but in the case of a claim during 
the current year, the discount status moves down one or two steps (if this is possible) 
according to whether or not the previous year was claim-free. 

So the discount level next year depends on the number of claims during this year and last year.  If 
there is a claim this year, then we move down one level if last year was claim-free and two levels 
if there was a claim last year. 

00( )P t  

01( )P t 12( )P t

22( )P t

21( )P t10( )P t
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Under these rules, the discount status nX  of a policyholder does not form a Markov chain 

on  0,1,2,3S   because: 

1 10 2, 1 0n n nP X X X         

whereas: 

 1 10 2, 3 0n n nP X X X         

      1 10 2, 1n n nP X X X  is the probability of a policyholder being on 0% discount in 

year 1n  given that they were on 40% discount in year n  and 25% discount in year 1n .  This 
probability is zero since there was no claim in year 1n .  (If there had been, the policyholder 
wouldn’t have moved up to 40% discount.) 

The Core Reading equations above show that the future value of the process depends not only on 
its current value, but also on the past.  Earlier we commented that it is sometimes possible to 
transform a chain that isn’t Markov into one that is.  We can do this here by altering the state 
space.   

To construct a Markov chain  , 0, 1, 2,nY n   , one needs to incorporate some information 

on the previous year into the state; in fact this is necessary only for state 2, which we split 
as: 

 2 : 40% discount and no claim in the previous year 

 2 : 40% discount and claim in the previous year 

We can see why it’s only state 2 that needs to be split, by reasoning as follows: 

 If the policyholder is on 0% discount this year and makes a claim, the discount level next 
year will be 0%. 

 If the policyholder is on 25% discount this year and makes a claim, the discount level next 
year will be 0%. 

 If the policyholder is on 40% discount this year and makes a claim, the discount level next 
year will be either 0% or 25%, depending on whether the policyholder claimed last year. 

 If the policyholder is on 60% discount this year, last year must have been claim-free.  So, if 
a claim is made this year, the discount level next year will 40%.   
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Assuming as before a probability of ¾ of no claim in any given year, we have a Markov 

chain on the state space  0,1, 2 , 2 , 3S     with transition graph: 

State 0
0%

discount

State 1
25%

discount

State 2+
40%

discount

3/4 3/4

1/4

1/4

State 2-
40%

discount
1/4

State 3
60%

discount

3/4

1/4

1/4

3/4

3/4

 

and transition matrix: 

31
4 4

31
4 4

31
4 4

31
4 4

31
4 4

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

P

 
 
 
 
 
 
 
 

 

The probability of being at the 60% discount level in year 3n   given that you hold 25% in 

year n  is: 

   3 3 27
641,3 2,5

p P   

Question 

A policyholder starts at 0% discount.  Calculate the probability that this policyholder is on the 
maximum level of discount after 5 years. 

Solution 

The initial distribution is  1,0,0,0,0 .  Successive post-multiplication by the transition matrix P  

shown above gives: 

 

  1 3 1 3 9
1,0,0,0,0 , ,0,0,0 , , ,0,0

4 4 4 16 16

7 21 9 27 7 15 63 27 27
, , ,0, , , , ,

64 64 64 64 64 128 256 256 64

297
*,*,*,*,

512
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So the required probability is 
297
512

. 

Alternatively, we could calculate the (1,5)th entry in the matrix 5P .  In order to do this, we first 

calculate the two matrices 2P  and 3P .  We have: 

2

2

1 3 0 0 0 4 3 9 0 0

1 0 3 0 0 1 6 0 0 9
1 1

0 1 0 0 3 1 0 3 3 9
16 16

1 0 0 0 3 1 3 0 3 9

0 0 0 1 3 1 0 0 3 12

P

   
   
   
    
   
   
   
   

 

Also: 

3

1 3 0 0 0 4 3 9 0 0 7 21 9 0 27

1 0 3 0 0 1 6 0 0 9 7 3 18 9 27
1 1

0 1 0 0 3 1 0 3 3 9 4 6 0 9 45
64 64

1 0 0 0 3 1 3 0 3 9 7 3 9 9 36

0 0 0 1 3 1 0 0 3 12 4 3 0 12 45

P

    
    
    
     
    
    
    
    

 

The (1,5)th entry is of 5P  is: 

     
5

3 2

1 51

1 594 297
7 0 21 9 9 9 0 9 27 12

64 16 1,024 512k kk

P P


           
  

 

Time-inhomogeneous model 

This basic model is amenable to numerous improvements.  For instance the accident 
probability can be made to depend on the discount status to reflect the influence of the 
latter on driver care.  Also the accident probability can be time-dependent (leading to a 
time-inhomogeneous chain) to reflect changes in traffic conditions (as described in 
Section 5.1). 

5.3 Simple random walk on S = { }... 2, 1, 0,1, 2, ...- -  

This is defined as 1 2 ...n nX Y Y Y     where the random variables jY  (the steps of the 

walk) are mutually independent with the common probability distribution: 

 1 , 1 1j jP Y p P Y p             

The Markov property holds because the process has independent increments. 

The transition graph and the transition matrix are infinite. 
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The transition diagram is: 

-2 0 1-1 2

p pp p p p

1 – p1 – p 1 – p 1 – p1 – p1 – p
 

The transition matrix is: 

1 0

1 0

1 0

1 0

p p
p p

P
p p

p p

 
 
 
 
 

 
 
 

 
  
 
 
 

        
        
     
     
        
     
     
        
        

 

In order to get from i  to j  in n  steps, the random walk must make  1
2

u n j i    steps in 

an upward direction and n u  in a downward direction.  Since the distribution of the 
number of upward jumps in n  steps is binomial with parameters n  and p , the n -step 

transition probabilities can be calculated as: 

 ( ) 1 if 0 2 and  is even

0 otherwise

n uu
n

ij

n
p p n j i n n j i

p u
 

         



 

Question 

Prove that the n -step transition probabilities for a simple random walk on the integers are given 
by the formula above.   

Solution 

Consider going from i  to j  in n  steps.  Let the number of upward steps be u  and the number of 

downward steps be d .  Since we make n  steps in total, we must have: 

u d n   

Also, since the net upward movement must equal the excess of upward steps over downward 
steps, we have: 

 u d j i    
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Solving these simultaneous equations, we see that: 

 ½u n j i       and       ½ ½d n u n n j i n j i          

Since u  must be a non-negative integer, it must be the case that n j i   is a non-negative even 

number.   

We also know that j i n  .  So: 

0 2n j i n      

The order in which the upward and downward steps occur doesn’t matter.  There are 

 ½

nn

n j iu

  
        

 ways of choosing where the u  upward steps occur in the sequence of n  

steps.  Each upward step occurs with probability p .   

Putting all this together we have: 

   1 if 0 2  and  is even

0 otherwise

du
n

ij

n
p p n j i n n j i

p u

 
         




 

 
Note that, in addition to being time-homogeneous, a simple random walk is also 
space-homogeneous: 

 ( ) ( )n n
i j i r j rp p  

This means that only the time taken and the overall distance travelled (including minus sign if 
necessary) affect the transition probability.  Exactly when and where they occur doesn’t matter.  
So, for example, the probability of going from state 4 at time 4 to state 1  at time 11, is the same 
as the probability of going from state 8 at time 3 to state 3 at time 10.  In both cases we move 5 
steps to the left in a time of 7 units. 

In the special case when   1 ½p p  (and the initial state is 0), this process is a simple 

symmetric random walk.   

5.4 Simple random walk on { }0,1, 2, ... , b  

This is similar to the previous model, except that boundary conditions have to be specified 
at 0 and b ; these will depend on the interpretation given to the chain.   

We are also relaxing the assumption that the process starts at 0. 
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Commonly used boundary conditions include: 

 Reflecting boundary: 1 1 0 1n nP X X       

 Absorbing boundary: 1 0 0 1n nP X X       

Mixed boundary: 
1

1

0 0

1 0 1

n n

n n

P X X

P X X









      

       

 

One way of viewing a random walk is to picture a particle randomly moving from place to place.   

 If the particle is absorbed by a state then the probability of it moving to another state is 0 
and hence the terminology ‘absorbing state.’  

 Similarly, if the particle is fully reflected or bounces back out with probability 1, then the 
state is called a reflecting state.   

 The third type of boundary condition is a mixture of the previous two.  There is some 
chance the particle will be reflected and some that it will stay put.  If there is a non-zero 
chance of being reflected, then this will eventually happen. 

A random walk with absorbing boundary conditions at both 0 and b  can be used (for 
example) to describe the wealth of a gambler who will continue to gamble until either his 

fortune reaches a target b  or his fortune hits 0 and he is ruined; in either case, reaching the 
boundary means staying there forever. 

In the general case, with mixed boundary conditions, the transition graph is: 

0 2 j – 1

p p

1 – p1 – p

1 j

1 – p 1 – p 1 – p1 – p

p pp

j + 1

1 – 

b – 2 b – 1 b

p

1 – p 1 – 

p



 
and the transition matrix is: 

 

0 1 2 2 1

1

1 0

1 0

1 0

1 0

1 0

1 0

1

b b b

p p
p p

p p
P

p p
p p

p p
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Reflecting and absorbing boundary conditions are obtained as special cases, taking ,   

equal to 0 or 1. 

The simple NCD model of Section 5.1 is another practical example of a bounded random 
walk. 

Question 

State the boundary conditions for the NCD model of Section 5.1. 

Solution 

In Model 5.1 the boundary conditions are: 

 

 

 

 

1

1

1

1

1
0| 0

4

3
1| 0

4

3
2| 2

4

1
1| 2

4

n n

n n

n n

n n

P X X

P X X

P X X

P X X









  

  

  

  

 

 

5.5 A model of accident proneness 

For a given driver, any period j  is either accident free ( 0jY  ) or gives rise to exactly one 

accident ( 1jY  ).   

The possibility of more than one accident in any time period is ignored for simplicity. 

The probability of an accident in the next period is estimated using the driver’s past record 
as follows (all variables jy  are either 0 or 1): 

 
 

 
1 2

1 1 1 2 2
...

1 , , ... , n
n n n

f y y y
P Y Y y Y y Y y

g n
           

where f and g  are two given increasing functions satisfying  0 ( ) ( )f m g m .  Of course: 

 
 

 
1 2

1 1 1 2 2
...

0 , , ... , 1 n
n n n

f y y y
P Y Y y Y y Y y

g n
            

Question 

(i) Explain why the functions f  and g  have to be increasing functions. 

(ii) Explain why the functions f  and g  must satisfy the given inequalities. 
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(iii) Interpret this model in the case where ( )f m m  and ( )g n n . 

Solution 

(i) Why the functions are increasing 

1 2( )
( )

nf y y y
g n

  
 is the probability of a driver having an accident in the next time period.  We 

would expect this to be higher for a driver who has had more accidents in the last n time periods.  
In other words, for fixed n ,  we expect the probability to be higher for larger 1 2 ny y y   .  So 

f  is an increasing function.   

On the other hand, if two drivers have the same number of accidents, but for one driver these 
accidents occurred within a shorter time period, then we would expect this driver to have a 
higher probability of having another accident.  In other words, if n is smaller for a fixed value of 

1 2 ny y y    then we expect the probability to be higher.  In turn this says that g must be 

smaller.  Thus g must also be an increasing function. 

(ii) Inequalities 

We assume that both f  and g  are positive.  If one of these were negative, the other would have 

to be negative too, since their ratio is positive.  In addition, they would then both have to be 
decreasing.  We can ignore this possibility. 

In order that 1 2( )
( )

nf y y y
g n

  
 is a probability we must have:  

1 2( )
0 1

( )
nf y y y

g n
  

 


   

The above inequality is equivalent to:  

1 20 ( ) ( )nf y y y g n        

In particular, for the ‘maximum’ case when all the y ’s are equal to 1, we have 

1 2 ny y y n    , and we obtain 0 ( ) ( )f n g n   as required. 

(iii) Special case 

In this case: 

1 2
1 2

( ) 1
( )

( )
n

n
f y y y

y y y
g n n

  
   

   

So we’re estimating the probability of a claim next year using the average number of years that 
had a claim in the past. 
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The dependence on the past record means that 1 2, , ... , , ...nY Y Y  does not have the Markov 

property (it depends on all previous values of jY ).   

Consider, however, the cumulative number of accidents suffered by the driver: 

1

n
n j

j
X Y


   

This is a Markov chain with state space  0, 1, 2, ... .S     

It possesses the Markov property because: 

       1 1 1 2 21 , , ... ,n n n nP X x X x X x X x  

  1 1 1 2 2 1 11 , , ... ,n n n n nP X x Y x Y x x Y x x             

Since 
1

n
j n

j
Y X


 , the condition 1 1 2 2 1 1, , ... , n n nY x Y x x Y x x       is a function only of 

nX  and hence: 

 





       

       

1 1 1 2 2

1

1 , , ... ,

( )
1

( )

n n n n

n
n n n n

P X x X x X x X x

f xP X x X x
g n

 

This is independent of the values of 1 2 1, , , nX X X  .  So the process  nX  has the Markov 

property. 

Note that the chain is only time-homogeneous if ( )g n  is constant.   

However this is neither very realistic nor useful.   

As an example, consider the following two drivers.  The first is a 45-year old who has had two 
accidents in the last 20 years of motoring (both in the last year), and the other is an 18-year old 
who has had two accidents in the last year.  For any time-homogeneous model as described 
above, with time period of one month say, the probabilities of the two drivers having an accident 
next month would be the same.  A more meaningful model should take into account the length of 
time over which previous accidents have occurred.  In the above example, this is the length of 
time a person has been driving.  So we should use a time-inhomogeneous model here. 

Question 

For time periods of one year, let ( ) 0.5n nf x x   and ( ) 1g n n   so that: 

 1
0.5

( 1| )
1

n
n n n

x
P Y X x

n
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Determine: 

(i) the probability that a driver has an accident in the second year, given that they did not 
have an accident in the first year  

(ii) the probability that a driver has an accident in the 11th year, given that they had an 
accident in each of the first 10 years 

(iii) the ( , )i j th entry in the one-step transition matrix ( , 1)n nP  of the Markov chain nX . 

Solution 

(i) 2 1
0.5 0

( 1| 0) 0.25
2

P Y X


     

(ii) 11 10
0.5 10 10.5

( 1| 10) 0.955
11 11

P Y X


      

(iii)   , 1
1

0.5
if  1

1
0.5

( | ) if  
1

0 otherwise

n n
n n

ij

i
j i

n
n i

P P X j X i j i
n
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6 The long-term distribution of a Markov chain 

6.1 The stationary probability distribution 

We say that ,j j S   is a stationary probability distribution for a Markov chain with 

transition matrix P  if the following conditions hold for all j  in S : 

 j i ij
i S

p 


    (2.4) 

 0j   

 1j
j S




  

Note how (2.4) can be stated in the compact form P   where   is viewed as a row 

vector. 

The interpretation of (2.4) is that, if we take   as our initial probability distribution, that is to 

say 0 iP X i     , then the distribution at time 1 is again given by  : 

  
 

            1 1 0 0 ij i j
i S i S

P X j P X j X i P X i p    

The same is true at all times 1n  , so that   is an invariant probability distribution; in fact 

the chain is then a stationary process in the sense of Chapter 1. 

So if the chain ever reaches the distribution   at some time n , ie    n iP X i  for all values 

of i , then (because the transition matrix sends   back to itself, ie  P ) the distribution of tX  

will be   for all subsequent times t n .  The statistical properties of the process do not change 
over time, so the chain is a stationary process. 

In general a Markov chain need not have a stationary probability distribution, and if it exists 
it need not be unique.  For instance no stationary probability distribution exists for 
Model 5.3, whereas in Model 5.4 uniqueness depends on the values of ,  .  When the state 

space S is finite, the situation is simple. 

Stationary distribution result (1) 

A Markov chain with a finite state space has at least one stationary probability distribution. 

The proof of this result is beyond the syllabus. 
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As an example, we will compute the stationary probability for NCD Model 5.2.  The 
equations (2.4) read: 

1 1 1
0 0 1 24 4 4        

 3 1
1 0 24 4      

 3
2 14     (2.5) 

 1
2 34    

 3 3 3
3 2 2 34 4 4        

The coefficients in these equations correspond to the columns in the matrix P . 

This linear system is not linearly independent since adding up all the equations results in an 

identity (this is a general feature of equations P   due to the property 1ij
j S

p


 ).  

Because of this we can discard any one of the equations, say the last one. 

To say that the above equations are not linearly independent means that any four of them will 
always rearrange to give the remaining one, which is therefore redundant.  This will always be 
true for equations of the form  P  if P is a matrix whose rows sum to 1.  As a result we may 

discard one of them – it doesn’t matter which – and solve the remaining system.  We usually 
discard the most complicated looking one.   

Note also that by linearity, any multiple of a solution of (2.5) is again a solution; uniqueness 

comes only as a result of the normalisation 1j
j S




 .  For this reason, it is good practice 

to solve for the components of   in terms of one of them (say 1  here), which we will refer 

to as the working variable.  The value of the working variable is determined at the last step 
by normalisation.   

Once the value of the working variable has been established, the others can be deduced as well. 

Although uniqueness comes only as a result of the normalisation 


 1j
j S

, this does not mean 

that uniqueness has to come at all.  It might be the case that even after applying the 
normalisation condition the solution is not unique.  In addition, if the state space is not finite, 
then there may not be a stationary distribution at all. 

We now summarise the method and apply it to the above example. 

Step 1: Discard one of the equations.  Here the first or the last one are obvious choices; 
delete the final one, say. 

Step 2: Select one of the j ’s as working variable.  Here 1 2 2, ,     or 3   are reasonable 

choices; choose 1 . 
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Step 3: Rewrite remaining equations in terms of the working variable. 

 









 

 



 

0 2 1

0 2 1

3
2 14

2 3

3 (a)

3 4 (b)

(c)

4 0 (d)

  

  

 

 

  

Step 4: Solve the equations in terms of the working variable. 

In general we might do this by Gaussian elimination. 

Gaussian elimination is a general method for solving a system of linear equations. 

However, here the equations are so simple that the solution can be read off if we take them 
in the right order: 

 3
2 14    

We get this directly from (c).  Substituting this into (b) then gives: 

  1 3 13
0 14 123

4
     

Now substitute for 0  in (a) to get: 

  13 9
2 1 14 41        

Finally: 

3 19   

from (d). 

Step 5: Solve for the working variable. 

We have: 

  13 3 9
1 12 4 4,1, , ,9   

and:  

 1 169
11212

13 12 9 27 108 1j
j

         

So: 

 12
1 169   

Step 6: Combine the results of the last two steps to obtain the solution. 

  13 9 10812 27
169 169 169 169 169

, , , ,   
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It is good practice to use the equation discarded earlier to verify that the calculated solution 
is correct. 

In the above example it has turned out that there is only one solution, but this won’t always be 
the case.  A sufficient condition, though not a necessary one, is given below.  This requires the 
introduction of a further classification of Markov chains into those that are irreducible and those 
that are not. 

The question of uniqueness of the stationary distribution is more delicate than existence; 
we shall consider only irreducible chains. 

Irreducibility 

A Markov chain is said to be irreducible if any state j  can be reached from any other 

state .i   In other words, a chain is irreducible if, given any pair of states i , j  there exists an 

integer n  with   0
n

ijp  .   

This is a property that can normally be judged from the transition graph alone. 

It is not necessary to include probabilities on the graph as we are only looking to see if there exists 
a path from i  to j  for any two states i  and j . 

Question 

Determine whether the process with the following transition matrix is irreducible: 

 
 
   
  
 

1 1 1
2 4 4

2 1
3 3

2 1
3 3

1 1
2 2

0

0 0

0 0

0 0

P  

Solution 

Labelling the states as 1, 2, 3, and 4, the transition graph is as follows: 

1 2

34
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From the transition graph we see that this process is not irreducible.  For example, we cannot get 
from state 4 to state 1. 

 
The Markov chains of Models 5.1, 5.2 and 5.3 are irreducible; so is 5.4 except when either 
boundary is absorbing ( 1   or 1  ).  Such absorbing states occur in many practical 

situations (eg ruin).   

Question 

Explain why a random walk with absorbing barriers is not irreducible. 

Solution 

If the absorbing boundary is at state i , then there can be no path from i  to any other state.  So a 
random walk with an absorbing boundary is not irreducible. 

 
Irreducible Markov chains have the following property. 

Stationary distribution result (2) 

An irreducible Markov chain with a finite state space has a unique stationary probability 
distribution. 

The proof of this result is beyond the syllabus. 

Now consider the Markov chain with transition matrix: 

1 1
2 2

1 2
3 3

2 1
3 3

1 1
2 2

0 0 0

0 0 0

0 0 1 0 0

0 0 0

0 0 0

P

 
 
 
 
 
 
 
 

 

Suppose that the states are labelled 1, 2, 3, 4 and 5. 

This chain is not irreducible.  Looking at the transition matrix we see that:  

 it is not possible to leave the subset of states  1,2  

 similarly it is not possible to leave the subset of states  4,5   

 it is not possible to leave state 3. 

Each of these three subsets of states,  1,2 ,  3  and  4,5  is effectively an irreducible Markov 

process on its own.  Therefore each of these has a unique stationary distribution.   
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In order to determine the stationary distribution of the chain formed by states 1 and 2, we need 
to solve the matrix equation:  

    
1 1

2 2
0 1 0 11 2

3 3
   

 
  

 
 

This is equivalent to the following system of equations: 

 
 

 

  

  

1 1
0 1 02 3

1 2
0 1 12 3

 

Taking all terms to the left-hand side in both equations we get: 

 
1 1

0 12 3

1 1
0 12 3

0

0

 

 

  

 
 

These equations are equivalent (since they just have opposite signs).  So either one of them can 

be discarded.  Solving either one of them gives  3
1 02 .   

We also require   0 1 1 .  So we have the unique solution: 

    32
0 15 5and  

We can check the solution by substituting these values back into the discarded equation. 

Similarly, the stationary distribution of the chain formed by states 4 and 5 is: 

  3 2
4 55 5and     

Combining these, we see that  1
5

2,3,0,0,0  and  1
5

0,0,0,3,2  are both stationary distributions 

for the 5-state process. 

In addition, the stationary distribution corresponding to state 3 is: 

 0,0,1,0,0  

Since these possible stationary distributions are all independent, we can have linear combinations 
of them.   

A general stationary distribution is therefore of the form: 

 1
5 5

2 ,3 , ,3 ,2
a b c

a a b c c   

where a , b  and c  are arbitrary non-negative constants.  For example, setting 1a  , 2b   and 

3c   gives the stationary distribution 1
22

(2,3,2,9,6) . 
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It is common for Markov chains with infinite state spaces to have no stationary probability 
distribution, even if the chain is irreducible; this is the case for the simple random walk of 
Model 5.3. 

6.2 The long-term behaviour of Markov chains 

The importance of the stationary distribution comes from its connection with the long-term 
behaviour of a Markov chain.  Under suitable conditions (to be made precise below), a Markov 
chain will ‘settle down’ to its stationary distribution after a sufficiently long period of time.   

It is natural to expect the distribution of a Markov chain to tend to the invariant distribution 
  for large times.  This is why the stationary distribution is so important: if the above 

convergence holds, ( )n
ijp  will be close to j  for an overwhelming fraction of the time in the 

long run. 

Certain phenomena complicate the above picture somewhat. 

The period of a state 

A state i  is said to be periodic with period 1d   if a return to i  is possible only in a number 

of steps that is a multiple of d  (ie ( ) 0n
iip  unless n md  for some integer m ).   

A state is said to be aperiodic if it is not periodic.   

It is only for aperiodic states that 


( )lim n
iin

p  can exist. 

One can check using the transition graphs that, in Models 5.1 and 5.2, all states are 
aperiodic, whereas in Model 5.3, all states have period 2.  Finally in Model 5.4 all states are 
aperiodic unless both   and   are either 0 or 1. 

It is not necessarily the case that return to an aperiodic state is possible after an arbitrary number 
of steps, only that return is not constrained to be in a multiple of some number 1d .  So, in 
effect, the highest common factor of the return times for the state needs to be 1 in order for the 
state to be aperiodic. 

Drawing a transition diagram might help us to decide whether or not a state is periodic.  If a state 
has an arrow back to itself, that state is aperiodic because a return to that state is possible in any 
number of steps.  However, even if there is no arrow from the state back to itself, the state may 
still be aperiodic. 
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Consider a time-homogeneous Markov chain on the state space   0,1S  with transition 

probabilities 00 0.8p , 01 0.2p , 10 1p  and 11 0p .  The transition diagram is: 

0 1

0.2

1

0.8

 
Since state 0 has an arrow back to itself, it is aperiodic.   

A return to state 1 is not possible in 1 step, but is possible in 2, 3, 4, … steps.  The highest common 
factor of 2, 3, 4, … is 1.  So state 1 is aperiodic.    

In fact, once we have decided that state 0 is aperiodic, we can say straight away that state 1 is 
also aperiodic by applying the following important result for irreducible chains. 

Periodicity result 

If a Markov chain is irreducible all its states have the same period (or all are aperiodic).   

This greatly simplifies the problem of finding periodicities for irreducible chains as only one state 
need be considered.  The chain in the two-state example above is irreducible (as every state can 
be reached from every other state).   

Aperiodic Markov chains 

A Markov chain is said to be aperiodic if all its states are aperiodic. 

Now consider a time-homogeneous Markov chain on the state space   0,1S  with transition 

probabilities 01 1p  and 10 1p .  The transition graph is: 

0 1

1

1

 
The chain has a finite number of states.  Each state can be reached from the other state so the 
chain is irreducible.  So it must have a unique stationary distribution.  It isn’t difficult to see that 
this must be (½, ½) , ie an equal chance of being in either state.  (We’ll prove this in the next 

question.) 
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From the diagram we see that a return to state 0 is possible only in an even number of steps.  So 
the period of state 0 is 2.  The same is true of state 1.  So the chain is not aperiodic and the 
process may not conform to the stationary distribution in the long term. 

Although the process has a stationary distribution, if the process doesn’t start off in that 
distribution, then it will never reach it.  The idea that a process can ‘start off in a distribution’ 
might be confusing as any particular run of the process must start in a particular state.  However, 
we can have a lack of information about which state that is.  For example, we might only know 
that at time 0 there is a 10% chance that it’s in state 0, and a 90% chance that it’s in state 1.  At 
time 1, these probabilities will be reversed, with a 90% chance of being in state 0, and only 10% 
chance of being in state 1.  The process doesn’t settle down to an equilibrium position.   

An alternative way of thinking about this is to suppose we have a large number of independent 
copies of the Markov process running.  To be concrete, let’s assume that each independent 
process describes the state of a person, as in the case of policyholders following an NCD Markov 
chain.  We can then picture the idea of the starting distribution in terms of numbers of people.  
For example, the 10%/90% split referred to above would correspond to 10% of the people starting 
in state 0, and 90% starting in state 1.  Because of the transition probabilities, each person will 
change state.  This will continue at each time step, so that the process never settles down to 
equilibrium. 

Question 

Show by solving the necessary matrix equation that the stationary distribution for the process in 
the example above is (½, ½) .   

Solution 

The transition matrix is given by 
0 1

1 0
P

 
  
 

.  So for a stationary distribution we need to solve: 

   0 1 0 1
0 1

1 0
   

 
 

 
 

This is equivalent to 0 1  .  Together with the normalisation condition this gives 0 1 ½   .  

This is unique, as we would expect for an irreducible Markov chain on a finite state space. 

 
Next consider a time-homogeneous Markov chain on the state space   0,1S  with transition 

probabilities    00 01 10 11 ½p p p p .  So no matter what state the process is in, the probability 

of remaining in that state and the probability of moving to the other state are both 0.5. 

Again the process is finite and irreducible, so a unique stationary distribution exists.  Moreover, 
this stationary distribution is again (½, ½) . 

However, in this case a sample path starting in state 0, say, can return to state 0 after any number 
of steps, hence the state is aperiodic.  Exactly the same is true of state 1.   
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Furthermore, (2) 1 1 1
00 4 4 2p    , since to go from 0 to 0 in 2 time steps, we either stay still for 

two time steps, or go from 0 to 1 and back to 0 again.   

In fact, since 2P P , we must have nP P  by induction.   Therefore ( ) 1
00 2
np   for all 1,2,3n   .  

It follows that ( ) 1
00 2lim n

n
p


 .   

In contrast to the process in the previous example, this process does settle down to the 
equilibrium distribution.  In fact this occurs after one time step.  But, in general, this would take 
longer. 

We can now state a result on convergence to the stationary probability distribution. 

Stationary distribution result (3) 

Let ( )n
ijp  be the n -step transition probability of an irreducible aperiodic Markov chain on a 

finite state space.  Then for every i  and j : 


( )lim n

jijn
p   

where   is the stationary probability distribution. 

Note how the above limit is independent of the starting state i .  The proof is beyond the 
syllabus. 

This result is saying that no matter what state the process is currently in, the probability of ending 
up in state j  after a very long time, is the same as the probability of being in state j  as given by 

the stationary distribution  .  This is the same as saying that, after a very long time, the 
distribution is constant and equal to the stationary distribution. 

Summary 

 A Markov chain with a finite state space has at least one stationary distribution. 

 An irreducible Markov chain with a finite state space has a unique stationary distribution. 

 An irreducible, aperiodic Markov chain with a finite state space will settle down to its 
unique stationary distribution in the long run. 
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7 Modelling using Markov chains 

Using the principle of economy of effort, it is common to start the modelling process by 
attempting to fit a simple stochastic model, such as a Markov chain, to a set of 
observations.  If tests show that this is inadequate, a more sophisticated model can be 
attempted at the next stage of the modelling process. 

This section assumes that the model being fitted is time-homogeneous.  The situation is 
generally more complicated when fitting a time-inhomogeneous model. 

7.1 Estimating transition probabilities 

The first thing to fix when setting up a Markov model is the state space.  As shown by the 
example in Section 5.2, the state space which first springs to mind may not be the most 
suitable and may need some modification before a Markov model can be fitted. 

Recall that the example referred to was the NCD system where it was required to split one of the 
discount levels into two, depending on the previous state. 

Once the state space is determined, however, the Markov model must be fitted to the data 
by estimating the transition probabilities ijp . 

Denote by 1 2, , Nx x x  the available observations and define: 

 in  as the number of times t (1  t  N  1) such that tx i ; 

 ijn  as the number of times t (1  t  N  1) such that tx i  and  1tx j . 

Thus ijn  is the observed number of transitions from state i  to j , in  the observed number 

of transitions from state i .   

So i ij
j S

n n


  . 

The reason that the definition of in  only allows t  to go up to 1N , rather than N , is so that it 

equals the number of transitions out of state i , and not just the number of times the process is in 
state i . 

Then the best estimate of ijp  is ˆ ij
ij

i

n
p

n
. 

If a confidence interval is required for a transition probability, the fact that the conditional 

distribution of ijN  given iN  is  ,i ijBinomial N p  means that a confidence interval may be 

obtained by standard techniques. 

An approximate 95% confidence interval for ijp  is given by: 

 
ˆ ˆ(1 )

ˆ 1.96 ij ij
ij

i

p p
p

n


   

Confidence intervals are covered in detail in Subject CS1. 
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7.2 Assessing the fit 

The next step is to ensure that the fit of the model to the data is adequate, or in other words 
to check that the Markov property seems to hold. 

For a general Markov chain model a full verification of the Markov property would involve a 
great deal of work and a voluminous supply of data.  In practice it is generally considered 
sufficient to look at triplets of successive observations. 

Triplets test 

Denote by ijkn  the number of times t (1  t  N  2) such that tx i , 1tx j   and 2tx k  .  

If the Markov property holds we expect ijkn  to be an observation from a binomial 

distribution with parameters ijn  and jkp .  A simple but effective test, therefore, is the 

chi-square goodness-of-fit test based on the test statistic: 

 
 22

ˆ

ˆ
ijk ij jk

ij jki j k

n n p
n p




   

This is of the familiar form 
2

, ,

( )

i j k

O E
E
  where O  represents the observed frequency and E  

represents the expected frequency.  If ( , )ijk ij jkN Binomial n p , then ( )ijk ij jkE N n p .  When 

calculating the expected frequencies, ijn  is calculated as ijk
k

n  to ensure that the observed and 

expected frequencies tally. 

Question 

A 3-state process has been observed over a period of time and the sequence of states occupied is 
as follows: 

 1,3,2,2,1,3,3,2,3,1,2,3,2,1,1,2,2,1,3,3 

(i) Calculate the values of ijkn , ijn  and in .   

(ii) Estimate the one-step transition probabilities. 

(iii) State the null and alternative hypotheses for the triplets test. 

(iv) Calculate the test statistic for the triplets test (without combining triplets with small 
expected frequencies). 
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Solution 

(i) Values 

The values of ijkn  are shown in the matrices below: 

 1

0 1 0

0 1 1

0 1 2
jkn

 
   
 
 

  2

1 0 2

2 0 0

1 1 0
jkn

 
   
 
 

  3

0 1 0

1 1 1

0 1 0
jkn

 
   
 
 

 

The first row of the matrix  1 jkn  contains the entries 111n , 112n  and 113n ; the second row 

consists of 121n , 122n  and 123n , etc. 

The value of ijn  is the ij th entry of the following matrix: 

 
1 2 3

3 2 2

1 3 2
ijn

 
   
 
 

 

and the in  values are the row sums of the matrix  ijn : 

 
6

7

6
in

 
   
 
 

 

(ii) One-step transition probabilities 

Using the formula ˆ ij
ij

i

n
p

n
 , we obtain the following estimates: 

     
           

         

31 2 1 1 1
6 6 6 6 3 2

3 32 2 2 2
7 7 7 7 7 7

31 2 1 1 1
6 6 6 6 2 3

0.167 0.333 0.5

0.429 0.286 0.286

0.167 0.5 0.333

 

(iii) Hypotheses 

The null hypothesis is: 

 0 :H  the process has the Markov property  

The alternative hypothesis is: 

 1 :H  the process does not have the Markov property 

Under the null hypothesis, ( , )ijk ij jkN Binomial n p . 
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(iv) Chi-squared test 

The formula for the test statistic is: 

 
 


2

, ,

ˆ

ˆ
ijk ij jk

ij jki j k

n n p

n p
  

where ijn  is calculated using the formula ij ijk
k

n n .  This gives rise to the same values for ijn  as 

shown in the matrix in (i), except for  33n , as the string of observations ends with 3,3.  Using this 

formula gives 33 1n  .  The final 3,3 in the list of observations is not counted here because this is 

unable to give rise to an observation of the form 3,3,k. 

We have: 

ijk  

Observed 
frequency

ijkn  
ijn  ˆ jkp  

Expected 
frequency

ˆij jkn p  

 2ˆ

ˆ
ijk ij jk

ij jk

n n p

n p


 

111 0 1 0.167 0.167 0.167 

112 1 1 0.333 0.333 1.333 

113 0 1 0.500 0.500 0.500 

121 0 2 0.429 0.857 0.857 

122 1 2 0.286 0.571 0.321 

123 1 2 0.286 0.571 0.321 

131 0 3 0.167 0.500 0.500 

132 1 3 0.500 1.500 0.167 

133 2 3 0.333 1.000 1.000 

211 1 3 0.167 0.500 0.500 

212 0 3 0.333 1.000 1.000 

213 2 3 0.500 1.500 0.167 

221 2 2 0.429 0.857 1.524 

222 0 2 0.286 0.571 0.571 

223 0 2 0.286 0.571 0.571 

231 1 2 0.167 0.333 1.333 

232 1 2 0.500 1.000 0.000 

233 0 2 0.333 0.667 0.667 

311 0 1 0.167 0.167 0.167 
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312 1 1 0.333 0.333 1.333 

313 0 1 0.500 0.500 0.500 

321 1 3 0.429 1.286 0.063 

322 1 3 0.286 0.857 0.024 

323 1 3 0.286 0.857 0.024 

331 0 1 0.167 0.167 0.167 

332 1 1 0.500 0.500 0.500 

333 0 1 0.333 0.333 0.333 

 
The observed value of the test statistic is the sum of the numbers in the final column, ie: 

 2

, ,

ˆ
14.61

ˆ
ijk ij jk

ij jki j k

n n p

n p


  

Recall that, when carrying out a chi-squared test, the expected frequencies should ideally all be 5 
or more.  If this is not the case, the validity of the test is questionable. 

 
In order to complete the chi-squared test, we would need to know the number of degrees of 
freedom to use.  The formula for the number of degrees of freedom is beyond the scope of 
Subject CS2.  If this comes up in the exam, the number of degrees of freedom should be stated or 
a formula will be given. 

An additional method in frequent use for assessing goodness of fit is to run some 
simulations of the fitted chain and to compare graphs of the resulting trajectories with a 
graph of the process actually observed.  This method often highlights deficiencies that are 
missed by the chi-square test.   

For example, given a sequence 1 2, , , Ny y y  of closing values of an exchange rate, one 

model which suggests itself is to let tx  be the nearest integer to log tK y  where K  is a 

scaling constant of suitable magnitude, and to model 1 2, , , Nx x x  as a random walk, with 

transition probabilities: 

      , 1 , 1 ,, , 1i i i i i ip p p     

The parameters   and   can be estimated quite satisfactorily in practice, but a visual 

comparison of a simulated random walk with the observed trajectory of x  tends to show 
that the real exchange rate remains relatively constant for long periods with occasional 
bursts of increased volatility, whereas the Markov chain model is incapable of simulating 
such behaviour. 
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7.3 Simulation 

Simulating a time-homogeneous Markov chain is fairly straightforward, as the Markov 
property means that the conditional distribution of 1tX  given the history of X  up until 

time t  is only dependent on tX .   

If the state space of X  is finite, there are only a limited number of distributions, all discrete, 
from which the program needs to be able to sample; these can be listed individually, along 
with instructions telling the program which distribution to use for each step. 

Consider a two-state Markov chain with transition matrix: 

  
 
 

    0    1

0 0.6 0.4
   

1 0.3 0.7

 

If the process is in state 0 at time 0, then we could simulate a series of observations from this 
process as follows. 

Row 1 of the transition matrix is the conditional distribution of 1X  given that 0 0X  . 

We can simulate a value for 1X  as follows: 

 generate a random number u  from (0,1)U  

 set 1
0 if 0.6

1 if 0.6

u
X

u


  

  

If the simulated value is 0 , we repeat the simulation above to obtain a simulated value of 2X .  If 

the simulated value is 1 , we can simulate a value for 2X  (using the probabilities in the second 

row of the matrix) as follows: 

 generate a random number u  from (0,1)U  

 set 2
0 if 0.3

1 if 0.3

u
X

u


  

  

This process is repeated to simulate additional values of the Markov chain. 

Models that assume an infinite state space usually have a simple transition structure, often 
based on the distribution of the increments.   The random walk, which has independent 
increments, is one such example; another might be a process which can only make 
transitions of the form  1x x  or  1x x , with respective probabilities x  and 1 x . 

The second example in the paragraph above is not a random walk because the increments ( 1  or 
1 ) are not identically distributed.  The associated probabilities depend on the current state. 

In addition to commercial simulation packages, which are able to simulate Markov chains 
without difficulty, even standard spreadsheet software can easily cope with the practical 
aspects of estimating transition probabilities and performing a simulation.   
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In R, the package markovchain can be used to create/simulate a Markov chain.   

As an example consider a Markov chain with three states: Employed (Emp), Unemployed 
(claiming benefit) (Unemp) and Inactive in the labour force (Inactive), measured at the end of 
each month.  Suppose the transition matrix, with the states in the order given above, is:  

 

0.8 0.1 0.1

0.5 0.4 0.1

0.4 0.0 0.6

 
 
 
 
 

  

To create a Markov chain in R use: 

  Employment = new("markovchain", states = c("Emp", "Unemp", 
"Inactive"),  
transitionMatrix = matrix(data = c(0.8, 0.1,0.1,  
0.5,0.4, 0.1,  
0.4,0.0,0.6),byrow = byRow, nrow = 3),  
name = "Employmt")  

Note that R will give an error message unless the markovchain package has been preloaded.  This 
is covered in more detail in the R part of Subject CS2. 

Suppose the process begins in state Emp.  To see the probability distribution after 3 and 6 
months, use:  

InitialState = c(1,0,0)  
  After3Months = InitialState * (Employment * Employment * 

Employment)  
After6Months = InitialState * (Employment^6)  

After 6 months the probabilities are: 

 Employed 0.687, Unemployed 0.116, Inactive 0.197 

  

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-02: Markov chains Page 47 

The Actuarial Education Company © IFE: 2019 Examinations 

  

Chapter 2 Summary 

Markov chains 

A Markov process with a discrete time set and discrete state space is called a Markov chain. 

Chapman-Kolmogorov equations 

 ( , ) ( , ) ( , )m n m l l n
i j ik kj

k S

p p p


   

for all states ,i j  in S  and all integer times m l n  . 

Time-homogeneous Markov chains 

A simplification occurs if the one-step transition probabilities are time independent: 

( , 1)n n
ijijp p   

Then the Chapman-Kolmogorov equations are: 

 ( ) ( ) ( )n m l m n l
i j ik k j

k S

p p p  


   

The transition matrix 

The transition matrix P  is a square N N  matrix, where N  is the number of states in S.  The 
entry in the i th row and j th column is ijp . 

In the time-homogeneous case, the l -step transition probability ( )l
ijp  (ie the probability of 

moving from state i  to state j  in exactly l  steps) can be obtained by calculating the ( , )i j th 

entry of the matrix lP . 

Random walks 

Random walks are important examples of Markov chains.  The increments of a random walk 
are IID.  In other words, the values move up or down by completely random amounts at each 
step. 

A simple random walk has step-sizes of 1 , ie:   

1( 1| )n nP X x X x p    ,  1( 1| ) 1 ( )n nP X x X x p q       

In a simple symmetric random walk, ½p q  . 
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Stationary distributions 

These probabilities must satisfy the vector equation P   with 0i   and 1i  .   

A solution to these equations is called a stationary distribution. 

Irreducible chains 

A Markov chain is said to be irreducible if every state can be reached from every other state. 

Periodicity 

A state i  is said to be periodic with period 1d   if a return to state i  is possible only in a 
number of steps that is a multiple of d . 

A state is said to be aperiodic if it is not periodic. 

A Markov chain is said to be aperiodic if all its states are aperiodic. 

If a Markov chain is irreducible, all its states have the same period or are all aperiodic. 

Long-term behaviour of Markov chains 

A Markov chain with a finite state space has at least one stationary distribution. 

An irreducible Markov chain with a finite state space has a unique stationary distribution. 

An irreducible, aperiodic Markov chain with a finite state space will settle down to its unique 
stationary distribution in the long run. 

Estimating transition probabilities 

The transition probability ijp  is estimated by: 

 
number of transitions from state  to state ˆ

number of transitions out of state 
ij

ij
i

n i j
p

n i
   

Testing the Markov assumption 

We can test the Markov assumption using a triplets test.  The formula for the test statistic is: 

 
 2

, ,

ˆ

ˆ
ijk ij jk

ij jki j k

n n p

n p
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Chapter 2 Practice Questions 

2.1 A simple no claims discount system for motor insurance has four levels of discount – 0%, 20%, 
40% and 60%.  A new policyholder starts on 0% discount.  At the end of each policy year, 
policyholders will change levels according to the following rules: 

 At the end of a claim-free year, a policyholder moves up one level, or remains on the 
maximum discount. 

 At the end of a year in which exactly one claim was made, a policyholder drops back one 
level, or remains at 0%. 

 At the end of a year in which more than one claim was made, a policyholder drops back to 
zero discount. 

For a particular driver in any year, the probability of a claim-free year is 0.9, the probability of 
exactly one claim is 0.075, and the probability of more than one claim is 0.025. 

Mike took out a policy for the first time on 1 January 2015, and by 1 January 2018 he had made 
only one claim, on 3 May 2017.  Calculate the probability that he is on 20% discount in 2020.  

2.2 A Markov chain is determined by the transition matrix:  

 

0 1 0 0

0 0 1 0

0 0 0 1

0.5 0 0.5 0

P

 
 
 
 
 
 

 

Determine the period of each of the states in this chain.  

2.3 A Markov chain   0n nX 
  has a discrete state space S.  The initial probability distribution is given 

by  0 iP X i q  .  The one-step transition probabilities are denoted by 

   
1

, 1
1 1 |

m m

m m
m m m m i iP X i X i p




    . 

(i) State the Markov property for such a process.    

(ii) Write down expressions for the following in terms of p ’s and q ’s. 

 (a)  0 0 1 1, , , n nP X i X i X i    

 (b)  4P X i  
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2.4 A new actuarial student is planning to sit one exam each session.  He expects that his 
performance in any exam will only be dependent on whether he passed or failed the last exam he 
sat.  If he passes a given exam, the probability of passing the next will be  , regardless of the 
nature of the exam.  If he fails an exam, the probability of passing the next will be  .   

(i) Obtain an expression for the probability that:  

 (a) the first exam he fails is the seventh, given that he passes the first  

 (b) he passes the fifth exam, given that he fails the first three.  

(ii) Explain the results above in terms of a Markov chain, specifying the state space and 
transition matrix.  (For the purposes of this model, assume that we are only interested in 
predicting passing or failing, not in the number of exams passed so far.)  

2.5 The stochastic process { }tX  is defined by the relationship 1t t tX Z Z   , where { }tZ  is a 

sequence of independent random variables with probability function: 

 
1 with probability

1,000 with probability
t

p
Z

q

 


 

where 1p q   and q p . 

(i) Obtain expressions in terms of p  and q  for each of the following probabilities: 

 (a) 5( 1,001)P X   

 (b) 5 4( 1,001| 1,001)P X X   

 (c) 5 4 3( 1,001| 1,001, 1,001)P X X X   .  

(ii) State, with reasons, whether { }tX  has the Markov property.  

2.6 Determine all the stationary distributions for a Markov chain with transition matrix:  

 

1 1
2 2

1 4
5 5

1 2
3 3

4 1
5 5
31 1

2 10 5

0 0 0

0 0 0

0 0 0

0 0 0

0 0

P
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2.7 At the end of each year an independent organisation ranks the performance of the unit trusts 
invested in a particular sector, and classifies them into four quartiles (with quartile 1 relating to 
the best performance).  Past experience has shown that, at the end of each year, a fund will either 
remain in the same quartile or will move to a neighbouring quartile. 

In fact, there is a probability 1 2  that a fund will remain in the same quartile and, where 
upward or downward movements are both possible, these are equally likely.  However, it has 
been found that a fund that has remained in the top or bottom quartile for two consecutive years 
has a probability of 1   (   ) of remaining in the same quartile the following year.   

(i) Construct a Markov chain with six states to model this situation, defining the states in 
your model and drawing a transition diagram. [3] 

(ii) Write down the transition matrix for your model. [2] 

(iii) Explain whether this Markov chain is irreducible and/or periodic. [2] 

(iv) Show that, if a stationary distribution exists with a quarter of the funds in each quartile, 

then 
(1 2 )
1

 






. [4] 

(v) Last year 20% of funds in the second quartile moved up to the top quartile.  Assuming the 
fund rankings have reached a stationary state, estimate the probability that a fund that 
has been in the top quartile for the last two years will remain in the top quartile for a third 
consecutive year. [2] 

    [Total 13] 

2.8 A simple NCD system has four levels of discount – 0%, 20%, 40% and 60%.  A new policyholder 
starts on 0% discount.  At the end of each policy year, policyholders will change levels according 
to the following rules: 

 At the end of a claim-free year, a policyholder moves up one level, or remains on the 
maximum discount. 

 At the end of a year in which exactly one claim was made, a policyholder drops back one 
level, or remains at 0%. 

 At the end of a year in which more than one claim was made, a policyholder drops back to 
zero discount. 

For a particular policyholder in any year, the probability of a claim-free year is 7
10 , the 

probability of exactly one claim is 1
5  and the probability of more than one claim is 1

10 . 

(i) Write down the transition matrix for this time-homogeneous Markov chain.   [2] 

(ii) Calculate the 2-step transition probabilities from state i  to state j ,  2
ijp .   [3] 

(iii) If the policyholder starts with no discount, calculate the probability that this policyholder 
is at the maximum discount level 5 years later. [5] 

Exam style 

Exam style 
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(iv) If a large number of people having the same claim probabilities take out policies at the 
same time, calculate the proportion would you expect to be in each discount category in 
the long run.  [5] 

    [Total 15] 

2.9 Consider the following two Markov chains: 

 Chain I is defined on the state space {1,2,3,4}  and has transition matrix: 

  

  1  2  3 4

0 ½ 0 ½

½ 0 ½ 0

0 ½ 0 ½

½ 0 ½ 0

 
 
 
 
 
 

 

 Chain II is defined on the state space {1,2,3,4,5}  and has transition matrix: 

  

  1  2  3  4 5

0 ½ 0 0 ½

½ 0 ½ 0 0

0 ½ 0 ½ 0

0 0 ½ 0 ½

½ 0 0 ½ 0

 
 
 
 
 
 
 
 

 

Let tX  denote the state occupied at time t .  For each chain: 

(i) Draw a transition diagram, including on your diagram the probability of each possible 
transition.  [2] 

(ii) Calculate: 

 (a)  2 01| 1P X X   

 (b)  4 01| 1P X X   [4] 

(iii) Explain whether the chain is irreducible and/or aperiodic. [3] 

(iv) Explain whether or not the process will converge to a stationary distribution given that it 
is in State 1 at time 0.  If it does converge, determine the stationary distribution. [3] 

    [Total 12] 

Exam style 
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2.10 An author is about to start writing a book that will contain 20 chapters.  The author plans to write 
a new chapter each week.  However, when he reviews his work at the end of each week, there is a 
probability of 0.25 (which is independent of the current state of the book) that he will not be 
happy with one of the chapters he has written.  In this case, he will spend the following week 
rewriting that particular chapter instead of embarking on a new one.  He may decide to rewrite 
any one chapter, including a new one he has just finished or one that he has previously rewritten. 

Let kX  denote the number of chapters that the author is happy with at the end of week k , and 

define 0 0X  . 

(i) Explain why kX  can be modelled as a Markov chain. [2] 

(ii) Calculate the probability that the author will complete the book in exactly 25 weeks. [2] 

(iii) Calculate the expected number of weeks it will take the author to complete the book. [3] 
    [Total 7] 

2.11 The credit-worthiness of debt issued by companies is assessed at the end of each year by a credit 
rating agency.  The ratings are A (the most credit-worthy), B and D (debt defaulted).  Historic 
evidence supports the view that the credit rating of a debt can be modelled as a Markov chain 
with one-year transition matrix: 

 

0.92 0.05 0.03

0.05 0.85 0.1

0 0 1

P

 
   
 
 

 

(i) Determine the probability that a company currently rated A will never be rated B in the 
future.   [2] 

(ii) (a) Calculate the second-order transition probabilities of the Markov chain.   

 (b) Hence calculate the expected number of defaults within the next two years from a 
group of 100 companies, all initially rated A. [2] 

The manager of a portfolio investing in company debt follows a ‘downgrade trigger’ strategy.  
Under this strategy, any debt in a company whose rating has fallen to B at the end of a year is sold 
and replaced with debt in an A-rated company. 

(iii) Calculate the expected number of defaults for this investment manager over the next two 
years, given that the portfolio initially consists of 100 A-rated bonds. [2] 

(iv) Comment on the suggestion that the downgrade trigger strategy will improve the return 
on the portfolio. [2] 

    [Total 8] 

  

Exam style 

Exam style 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 2 Solutions 

2.1 Mike starts with 0% discount in 2015.  He makes no claims in 2015 or 2016, and so has a 40% 
discount in 2017.  He makes exactly one claim that year so he falls back to 20% discount for 2018.  
So we are looking for the probability of being at the 20% discount level in 2020, given that in 2018 
the discount was also 20%.    

The transition matrix is: 

  

0.1 0.9 0 0

0.1 0 0.9 0

0.025 0.075 0 0.9

0.025 0 0.075 0.9

P

 
 
 
 
 
 

  

We want the (20%,20%) entry (or (2,2)th entry) in 2P .    

Multiplying the 2nd row of P  by the 2nd column gives: 

 0.1 0.9 0.9 0.075 0.1575      

2.2 The transition graph for this Markov chain is shown below: 

1 2

34

   1

1
1

0.5

0.5

 

We can see from this that the chain is irreducible, so all the states have the same period.  

We only need to find the period of one of the states.  The chain can return to state 1 having 
started in state 1 after 4, 6, 8, 10, … moves.  The highest common factor of these numbers is 2, so 
the period of all the states in the chain is 2.  

2.3 (i) Markov property 

The Markov property means a lack of dependence on the past of the process: 

 0 0 1 1 1 1, ,..., ,n m m m n mP X j X i X i X i X i P X j X i                   

for all integer times n m  and states 0 1 1, ,..., , ,mi i i i j  in S . 
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(ii) Probabilities 

(a)        
0 0 1 1 2 1

0,1 1,2 1,
0 0 1 1, , ,

n n

n n
n n i i i i i i iP X i X i X i q p p p



       

 This is the probability of the process taking a unique given path. 

(b)          
0 0 1 1 2 2 3 3

0 1 2 3

0,1 1,2 2,3 3,4
4 i i i i i i i i i

i S i S i S i S
P X i q p p p p

   
        

Here we need to sum over all the possible starting points and then over all paths from 
these starting points to end up in state i  at time 4. 

2.4 (i) Probabilities 

(a)  5 1     

(b)    1 1            

(ii) Explanation 

Because the student’s performance depends only upon whether he passed or failed the last exam, 

we can think of the problem as a Markov chain on the state space  ,F P  representing ‘failed the 

last exam’ and ‘passed the last exam’ respectively.  The transition matrix is: 

  
1

1

 
 

 
  

 

In (i)(a) we are considering the probability of the unique path:  

 P P P P P P F        

given that we start in P .  

In (i)(b) we are considering the probabilities of the paths: 

  F F P    and F P P   

where the F at the start of these sequences represents the event that he fails the third exam. 

Alternatively, we could view this as the transition probability  2
FPp , which is the FP entry (ie (1,2)th 

entry) in the matrix : 

 
     

      

2 2

2

1 1 1 1

1 1 1 1 1
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2.5 (i) Probabilities 

(a) 
5 5 4

5 4 5 4

( 1,001) ( 1,001)

( 1,000, 1) ( 1, 1, 000)

2

P X P Z Z

P Z Z P Z Z

qp pq pq

   

     

  

  

(b) Using the result in (i)(a) to evaluate the denominator: 

  

5 4
5 4

4

5 4 4 3

5 4 3

( 1,001, 1,001)
( 1,001| 1,001)

( 1,001)

( 1,001, 1,001)
                               

2

( 1,000, 1, 1,000)
                               

2

                           

P X X
P X X

P X

P Z Z Z Z
pq

P Z Z Z
pq

 
  



   


  


5 4 3

2 2

1
2

( 1, 1,000, 1)
               

2

                               
2

( )
                                           

2

                                                             

P Z Z Z
pq

q p p q
pq

pq q p
pq

  








      because 1p q    

(c) Using the expression for the numerator in (i)(b) to evaluate the denominator: 

  

 

 

 

 

 

5 4 3

5 4 3

4 3

5 4 4 3 3 2

5 3 4 2

5 3 4 2

2 2

( 1,001| 1,001, 1,001)

( 1,001, 1,001, 1,001)
( 1,001, 1,001)

( 1,001, 1,001, 1,001)

( 1,000, 1)

( 1, 1,000)

2

2

2

P X X X

P X X X
P X X

P Z Z Z Z Z Z
pq p q

P Z Z Z Z
pq p q

P Z Z Z Z
pq p q

p q
pq p q

pq
p q

p

  

  


 

     




   




   










                     because 1q p q    
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(ii) Markov? 

If { }tX  had the Markov property, the probabilities in (i)(b) and (i)(c) would be the same.  Since 

they are not, it doesn’t.  (Note that 2 ½pq   when q p .)  

2.6 We are solving: 

    

1 1
2 2

1 4
5 5

1 2
1 2 3 4 5 1 2 3 4 53 3

4 1
5 5
31 1

2 10 5

0 0 0

0 0 0

0 0 0

0 0 0

0 0

         

 
 
 
 
  
 
 
 
 
 

 

This gives five equations: 

 

1
5 12

31 4
2 4 5 25 5 10

4 1 1
2 4 5 35 5 5

1 1
1 3 42 3

1 2
1 3 52 3

 

   

   

  

  



  

  

 

    

Rearranging we obtain: 

 

1
1 52

34 4
2 4 55 5 10

4 1 1
2 3 4 55 5 5

1 1
1 3 42 3

1 2
1 3 52 3

0

0

0

0

0

 

  

   

  

  

  

   

   

  

  

 

We will ignore the third equation since one equation is always redundant.  So we are trying to 
solve: 

 

1
1 52

34 4
2 4 55 5 10

1 1
1 3 42 3

1 2
1 3 52 3

0

0

0

0
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We will choose 1  as the working variable. 

From the first equation we have 5 12  .   

Substituting this in the fourth equation gives 9
3 14

  .   

Using the third we can then obtain 9 51 1
4 1 1 12 3 4 4

       .    

Finally from the second equation we see that:  

  5 5 34
2 1 1 14 5 4 10

2 2           

Thus our solution in terms of 1  is  9 5
14 4

1,2, , ,2  .  

Now apply the condition of summing to 1 to get:  

  9 5
4 4

1 2
1 171 2 2


   

    

and therefore the stationary distribution is  9 52 4 4
17 17 34 34 17

, , , , . 

This chain has a finite state space and is irreducible, so it has a unique stationary distribution. 

2.7 (i) Markov chain 

We need to subdivide the top and bottom quartiles in order to satisfy the Markov property.  This 
results in the following 6 states: 

State 11: Funds in the 1st quartile this year and last year 

State 1:  Funds in the 1st quartile this year but not last year 

State 2:  Funds in the 2nd quartile this year 

State 3:  Funds in the 3rd quartile this year 

State 4:  Funds in the 4th quartile this year but not last year 

State 44: Funds in the 4th quartile this year and last year [1] 
 
The labels for the states need not match the ones given here. 
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 The transition diagram then looks like this: 

 

11 1

2

444

3

1 – 2

2



1 – 

1 – 2



1 – 2


2

1 – 21 – 





    [2] 

(ii) Transition matrix 

The transition matrix is: 

 

11 1 2 3 4 44

11 1

1 1 2 2

2 1 2

3 1 2

4 2 1 2

44 1

P

 
 

  
  

 
 

 
  
  
 

 
 
 

  

 [2] 

(iii) Irreducible and periodic? 

This chain is irreducible since it is possible to move from each state to any other, eg by following 
the route 11 2 3 4 44 3 2 1 11           . [1] 

A periodic chain is one in which a state can only be revisited at multiples of some fixed number 
1d  .  State 11 is aperiodic as it can be revisited after any number of steps.  Also, since this chain 

is irreducible, all the states have the same periodicity.  So the chain is aperiodic.   [1] 

(iv) Proof 

If a stationary distribution exists with a quarter of the funds in each quartile, then the stationary 
probabilities i  must satisfy: 

 1
11 1 2 3 4 44 4

            [1] 

The stationary probabilities also satisfy the matrix equation P  . 
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The first column of this matrix equation tells us that: 

      11 1 11(1 ) (1 2 )          11 1(1 2 ) 0         11 1
(1 2 ) 




   [1] 

But we want 1
11 1 4

   .  So:  

 1
1 1 4

(1 2 )  



    ie  1
1 4

1 2
1

 


 
  

 
 [1] 

The second column of this matrix equation tells us that: 

 2 1    ie  1
14

    

Combining these two equations gives: 

 1 1
4 4

1 2
1

 


 
   

 
  

1 2
1 1

 


 
   

 
  

(1 2 )
1

 



 


 [1] 

(v) Estimated probability 

The probability of a fund in the second quartile moving up to the top quartile is  .  So we 
estimate ˆ 0.2  .  Hence the probability of the fund remaining in the top quartile for a third 
consecutive year is estimated to be: 

 
ˆ ˆ(1 2 ) 0.2 0.6ˆ1 1 1 0.85

ˆ1 0.8
 


 

     


 [2] 

2.8 (i) Transition matrix 

The one-step transition matrix is: 

 1
10

3 7 0 0 0.3 0.7 0 0

3 0 7 0 0.3 0 0.7 0

1 2 0 7 0.1 0.2 0 0.7

1 0 2 7 0.1 0 0.2 0.7

P

   
   
    
   
   
   

 [2] 

(ii) Two-step transition probabilities 

We use the fact that    2 2
ij ij

p P . 

 2 1 1
100 100

3 7 0 0 3 7 0 0 30 21 49 0

3 0 7 0 3 0 7 0 16 35 0 49

1 2 0 7 1 2 0 7 16 7 28 49

1 0 2 7 1 0 2 7 12 11 14 63

P

    
    
     
    
    
    

 [3] 
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(iii) Probability of being at maximum discount in 5 years 

We shall represent the states 0%, 20%, 40% and 60% by 0,1,2 and 3 respectively.  In order to 

calculate  5
0,3p  we can use      

3
5 2 3

0,3 0, ,30 k kk
P P P


  .  So we can first calculate the fourth 

column of 3P : 

 3 1 1
1,000 1,000

30 21 49 0 3 7 0 0 343

16 35 0 49 3 0 7 0 343

16 7 28 49 1 2 0 7 539

12 11 14 63 1 0 2 7 539

P

       
             
       
     

       

 [2] 

Now we have: 

 

       
3

5 2 3 1
100,0000,3 0, ,30

43,904
100,000

30 343 21 343 49 539

0.43904

k kk

P P P


      

 



 [3] 

(iv) Long-term proportions on each discount level 

This is equivalent to finding the stationary distribution, ie solving the matrix equation: 

    0 1 2 3 0 1 2 3

3 7 0 0

3 0 7 0
10

1 2 0 7

1 0 2 7

       

 
 
  
 
 
 

 

This matrix equation is equivalent to the simultaneous equations: 

 

0 1 2 3 0

0 2 1

1 3 2

2 3 3

3 3 10

7 2 10

7 2 10

7 7 10

    

  

  

  

   

 

 

   [1] 

We can ignore one of the equations, say the first.  Rearranging we get: 

 

0 1 2

1 2 3

2 3

7 10 2 0

7 10 2 0

7 3 0

  

  

 

  

  

   [1] 
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Use 3  (say) as the working variable.  From the third equation we have 3
2 37

  .  Substituting in 

the second:  

  10 3 162
1 3 37 7 7 49

         [1] 

Finally from the first equation  10 16 3 1182
0 3 37 49 7 7 343

       . [1] 

So we have the stationary distribution   3
343

118,112,147, 343
 .  Since the probabilities must sum 

to 1, the stationary distribution is:  

  1
720

118,112,147,343 (0.1639,0.1556,0.2042,0.4764)  [1] 

2.9 Chain I 

(i) Transition diagram 

1 2

34

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

 
    [1] 

(ii) Probabilities 

The initial distribution is (1,0,0,0) .  Repeated postmultiplication of this vector by the transition 

matrix for Chain I gives: 

        1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

(1,0,0,0) 0, ,0, ,0, ,0 0, ,0, ,0, ,0      

So: 

(a)   1
2 0 2

1| 1P X X    [1] 
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(b)   1
4 0 2

1| 1P X X    [1] 

Alternatively, because we are only asked about particular probabilities, we could evaluate all the 
possible paths corresponding to each event and add their probabilities.   

 2 01| 1P X X   

Time 0 1 2 Probability 

Path 1 2 1 1 1 1
2 2 4
   

Path 1 4 1 1 1 1
2 2 4
   

 

 4 01| 1P X X   

Time 0 1 2 3 4 Probability 

Path 1 2 1 2 1 1 1 1 1 1
2 2 2 2 16
     

Path 1 2 3 2 1 1 1 1 1 1
2 2 2 2 16
     

Path 1 4 1 4 1 1 1 1 1 1
2 2 2 2 16
     

Path 1 4 3 4 1 1 1 1 1 1
2 2 2 2 16
     

Path 1 2 1 4 1 1 1 1 1 1
2 2 2 2 16
     

Path 1 4 1 2 1 1 1 1 1 1
2 2 2 2 16
     

Path 1 2 3 4 1 1 1 1 1 1
2 2 2 2 16
     

Path 1 4 3 2 1 1 1 1 1 1
2 2 2 2 16
     

 
(iii) Irreducible and/or aperiodic? 

Chain I is irreducible since every state can be reached from every other state. [½] 

Because the chain is irreducible every state will have the same period.  It is possible to return to 
state 1 in 2, 4, 6, 8 … moves.  State 1 has a period of 2 and so every state has a period of 2.  The 
chain is not aperiodic.  [1] 

(iv) Will the process converge to a stationary distribution? 

The process has a finite number of states and is irreducible, so it has a unique stationary 
distribution, but this process will not converge to its stationary distribution.  In the solution to 

part (ii), we saw that the distribution will alternate between  1 1
2 2

,0, ,0  and  1 1
2 2

0, ,0, . [1] 
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Chain II 

(i) Transition diagram 

1

34

1
2

5

21
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

    [1] 

(ii) Probabilities 

The initial distribution is (1,0,0,0,0) .  Repeated postmultiplication of this vector by the transition 

matrix for Chain II gives: 

        3 3 31 1 1 1 1 1 1
2 2 2 4 4 8 8 8 8 8

(1,0,0,0,0) 0, ,0,0, ,0, , ,0 0, , , , ,...,...,...,...     

So: 

(a)   1
2 0 2

1| 1P X X    [1] 

(b)   3
4 0 8

1| 1P X X    [1] 

Alternatively, because we are only asked about particular probabilities, we could evaluate all the 
possible paths corresponding to each event and add their probabilities.   

 2 01| 1P X X   

Time 0 1 2 Probability 

Path 1 2 1 1 1 1
2 2 4
   

Path 1 5 1 1 1 1
2 2 4
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 4 01| 1P X X   

Time 0 1 2 3 4 Probability 

Path 1 2 1 2 1 1 1 1 1 1
2 2 2 2 16
     

Path 1 2 3 2 1 1 1 1 1 1
2 2 2 2 16
     

Path 1 5 1 5 1 1 1 1 1 1
2 2 2 2 16
     

Path 1 2 1 5 1 1 1 1 1 1
2 2 2 2 16
     

Path 1 5 1 2 1 1 1 1 1 1
2 2 2 2 16
     

Path 1 5 4 5 1 1 1 1 1 1
2 2 2 2 16
     

 
(iii) Irreducible and/or aperiodic? 

Chain II is irreducible since every state can be reached from every other state. [½] 

Because the chain is irreducible every state will have the same period.  It is possible to return to 
state 1 in 2, 4, 5, 6, 7, 8 … moves.  State 1 has a period of 1 (it is aperiodic) and so every state is 
aperiodic.  The chain is aperiodic. [1] 

(iv) Will the process converge to a stationary distribution? 

Yes.  The chain has a finite number of states, is irreducible and is aperiodic.  So there will be a 
unique stationary distribution that the process will conform to in the long term. [1] 

By symmetry, this stationary distribution is  1 1 1 1 1
5 5 5 5 5

, , , , . [1] 

2.10 (i) Markov chain 

The process has the Markov property since the probability of moving on to the next chapter does 
not depend on the number of chapters currently written (so it is not dependent on the past 
history of the process).   [1] 

In fact, we have: 

 1

1

1 with probability 0.75

with probability 0.25
k

k
k

X
X

X





 


 

for 1 20kX    and  120| 20 1k kP X X    . 

tX  has a discrete state space, namely {0,1,2,...,20} , and a discrete time set since the value of the 

process is recorded at the end of each week.  So the process is a Markov chain. [1] 
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(ii) Probability 

To calculate the probability that the book is finished in exactly 25 weeks, we need the probability 
that the last chapter is completed in the 25th week and, in the first 24 weeks there were 5 
chapters rewritten.  So the probability is: 

 5 1924
0.25 0.75 0.75 0.13163

5

 
   

 
 [2] 

(iii) Expected number of weeks until completion 

Let km  be the expected time until the book is finished, given that there are currently k  chapters 

completed.  Then, for 0,1,...,19k  : 

 11 0.75 0.25k k km m m    [1] 

That is, in one week’s time, there is a 75% chance of having 1k   completed chapters and a 25% 
chance of still having k  completed chapters.   

Rearranging this equation, we get: 

 10.75 1 0.75k km m    

or:  

 
1

1
0.75k km m  

 [½] 

Since 20 0m  , we have: 

 

19

18

17

1
0.75

1 1 2
0.75 0.75 0.75

1 2 3
0.75 0.75 0.75

m

m

m



  

  

 

and so on.  In general, we have: 

 
20
0.75k

k
m


   [1] 

So the expected time until the book is completed is: 

 0
20

26.67
0.75

m    weeks [½] 
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Alternatively, let N  denote the number of weeks it takes to complete the book.  The possible 
values of N  are 20, 21, 22, … and: 

 

 

 

 

20

20 20

2 20 2 20

20 0.75

20 20
21 0.25 0.75 0.25 0.75

1 19

21 21
22 0.25 0.75 0.25 0.75

2 19

P N

P N

P N

 

   
       

   

   
       

   

 

and so on.  So N  has a Type 1 negative binomial distribution with 20k   and 0.75p  .  Hence: 

   20
26.67

0.75
k

E N
p

    weeks 

2.11 This question is Subject CT4, September 2006, Question A4. 

(i) Probability of never being rated B in the future 

We have the following transition diagram: 

 

A B

D

0.05

0.05

0.85
0.92

0.100.03

1

 
A company that is never rated B in the future will: 

(a) remain in State A for some period of time, and 

(b) then move to State D and remain there. 
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So we can sum over all future times at which the single transition from State A to State D can take 
place.  This gives us the following expression: 

 2 30.03 0.92 0.03 (0.92) 0.03 (0.92) 0.03        [1] 

This is an infinite geometric progression, whose sum is: 

 
0.03

0.375
1 0.92




 [1] 

So the probability that a company is never rated B in the future is 0.375. 

(ii)(a) Second-order transition probabilities 

The second-order transition probabilities are given by: 

 2
0.92 0.05 0.03 0.92 0.05 0.03 0.8489 0.0885 0.0626

0.05 0.85 0.1 0.05 0.85 0.1 0.0885 0.7250 0.1865

0 0 1 0 0 1 0 0 1

P
    
         
    
    

 [1] 

(ii)(b) Expected number of defaults 

The probability that a company rated A at time zero is in State D at time 2 is 0.0626.  So the 
expected number of companies in this state out of 100 is 6.26. [1] 

(iii) Expected number of defaults 

For this manager we use the original matrix P  .  After one year, the expected number of 
companies in each state will be: 

    
0.92 0.05 0.03

100 0 0 0.05 0.85 0.1 92 5 3

0 0 1

 
   
 
 

 [½] 

If the five state B’s are moved to State A and the process repeated, we have: 

    
0.92 0.05 0.03

97 0 3 0.05 0.85 0.1 89.24 4.85 5.91

0 0 1

 
   
 
 

 [1] 

So the expected number of defaults by the end of the second year under this arrangement is 5.91. 
    [½] 

(iv) Comment 

The downgrade trigger strategy will reduce the expected number of defaults, as we have seen.  
However, the return on the portfolio will also be a function of the yields on the debt.  Companies 
rated B are likely to have bonds with a higher yield (because of the higher risk), so excluding these 
may in fact reduce the yield on the portfolio. [1] 
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Also, the actual number of defaults may not match the expected number.  The return depends on 
the actual progress of the portfolio, rather than the expected outcome. [½] 

There will also be a cost incurred when buying and selling bonds. [½] w
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The two-state Markov model 

and the Poisson model 
 

 

Syllabus objectives 

4.1 Explain the concept of survival models. 

4.1.8 Describe the two-state model of a single decrement and compare its 
assumptions with those of the random lifetime model.  (This model will be 
discussed in detail in Chapter 6.) 

4.3 Derive maximum likelihood estimators for transition intensities. 

4.3.1 Describe an observational plan in respect of a finite number of individuals 
observed during a finite period of time, and define the resulting statistics, 
including the waiting times. 

4.3.2 Derive the likelihood function for constant transition intensities in a 
Markov model of transfers between states given the statistics in 4.3.1. 

4.3.3 Derive maximum likelihood estimators for the transition intensities in 4.3.2 
and state their asymptotic joint distribution. 

4.3.4 State the Poisson approximation to the estimator in 4.3.3 in the case of a 
single decrement. 
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0 Introduction 

In this chapter we consider a formulation of the problem in which we analyse the random process 
by which a life passes from one state (alive) to another (dead).  The results are consistent with 
those that we obtain when we model a person’s future lifetime as a continuous random variable.  
We will discuss this alternative model in Chapter 6. 

The model discussed in this chapter is an example of a Markov jump process.  These processes are 
discussed further in Chapters 4 and 5, where we consider models with multiple states. 

This chapter is based on the paper ‘An Actuarial Survey of Statistical Models for Decrement 
and Transition Data’ by A S Macdonald, BAJ 2 (1996), by kind permission of the editor of 
BAJ. 
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1 The two-state Markov model 

The two-state model is illustrated in the figure below.  There is an alive state and a dead 
state, with transitions in one direction only. 

  x
a = alive d = dead

 
We define a transition probability t xq  where: 

    person in the dead state at age in the alive state at age t xq P x t x  

and an occupancy or survival probability t xp  where: 

    person in the alive state at age in the alive state at age t xp P x t x  

The probability that a life alive at a given age will be dead at any subsequent age is 
governed by the age-dependent transition intensity ( 0)x t t    in a way made precise by 

Assumption 2 below. 

Transition intensities are also sometimes called forces of transition or transition rates. 

1.1 Assumptions underlying the model 

There are three assumptions underlying the simple two-state model. 

Assumption 1 

The probabilities that a life at any given age will be found in either state at any subsequent 
age depend only on the ages involved and on the state currently occupied.  This is the 
Markov assumption. 

So, past events do not affect the probability of a future event.   

In particular, the past history of an individual – for example, current state of health, spells of 
sickness, occupation – is excluded from the model.  If we knew these factors, we could:   

(a) treat each combination of factors as a separate model; in other words, stratify the 
problem; or 

(b) specify a model which took them into account; in other words, treat the problem as 
one of regression. 

We will consider approach (b) in Chapter 8, where we look at proportional hazards models. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 4  CS2-03: The two-state Markov model and the Poisson model 

© IFE: 2019 Examinations The Actuarial Education Company 

Assumption 2 

For a short time interval of length dt: 

 ( ) ( 0)dt x t x tq dt o dt t     

In other words, the probability of dying in a very short time interval of length dt  is equal to the 
transition intensity multiplied by the time interval, plus a small correction term.  This is equivalent 
to assuming that   dt x t x tq dt . 

Remember that a function ( )g t  is said to be ‘o(t)’ if 



0

( )
lim 0
t

g t
t

, in other words if ( )g t  tends to 

zero ‘faster’ than t  itself.  Where we are not concerned about the precise form of ( )g t , we can 

use the term ( )o t  in an equation to denote any function that is ( )o t . 

Assumption 2 can also be stated as follows: 

 





0
lim dt x t

x t
dt

q
dt

  

For the purpose of inference, we restrict our attention to ages between x  and 1x  , and 
introduce a further assumption.  

Assumption 3 

x t   is a constant   for 0 1t  . 

Our investigation will consist of many observations of small segments of lifetimes, ie single years 
of age.  Assumption 3 simplifies the model by treating the transition intensity as a constant for all 
individuals aged x  last birthday.  This does not mean that we believe that the transition intensity 
will increase by a discrete step when an individual reaches age 1x , although this is a 
consequence of the assumption. 

1.2 Comparison with other models 

It is important to emphasise that this two-state model is not the same as the model based 
on the future lifetime random variable xT , which is discussed in Chapter 6; we start with 

different assumptions.  The model in Chapter 6 is formulated in terms of a random variable 
T  representing future lifetime.  The model in this chapter is in terms of a transition intensity 
between states.  It is easy to impose some mild conditions under which the models are 
equivalent, but when we consider more than one decrement these two formulations lead in 
different directions. 
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We will consider models with more than one decrement in Chapters 4 and 5, including a simple 
multiple-state model with three states: healthy, sick and dead.  In that particular model, a life in 
the healthy state can move to the sick state or the dead state.  Similarly, a life in the sick state can 
move to the healthy state or the dead state.  For now, though, we will concentrate on the simple 
two-state model to derive some important results, many of which can be generalised to multiple-
state models. 
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2 Survival probabilities 

Since we have specified the model in terms of a transition intensity, we must see how to 
compute transition probabilities.   

Consider the survival probability t dt xp , and condition on the state occupied at age x t . 

Here we are thinking about the probability of surviving from age x  to x t  and onwards from 
age x t  to  x t dt . 

By the Markov assumption (Assumption 1), nothing else affects the probabilities of death or 
survival after age x t . 

  

[Alive at | Alive at ]

[Alive at | Dead at ]

( ) ( 0)

1 ( )

t dt x t x

t x

t x dt x t t x

t x x t

p p P x t dt x t

q P x t dt x t

p p q

p dt o dt







    

    

   

      

The last equality follows from Assumption 2. 

Therefore: 

 

0

0

lim

( )
lim

t dt x t x
t x dt

t x x t dt

t x x t

p pp
t dt

o dtp
dt

p









 


 






  

   (3.1)  

So:   

 
0

exp
t

t x x sp ds 

 
  
 
 
  

Question 

Show that the solution of the differential equation 


 


t x t x x tp p
t

 is:  


   
  

0
exp

t
t x x sp ds  

A reminder of two techniques that can be used to solve first-order differential equations is given in 
the appendix in Section 8 of this chapter. 
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Solution 

Separating the variables gives: 

 


  

t x
x t

t x

p
t

p
 

or equivalently: 

 


 


ln t x x tp
t

 

Changing the variable from t  to s  (since we want to use t  as one of the limits of the integral), 
this becomes: 

 


 


ln s x x sp
s

  

Integrating both sides of this equation with respect to s  between the limits  0s  and s t  gives: 

   


  
  

00 0
ln ln

t tt
s x s x x sp ds p ds

s
 

So: 

    0 0
ln ln

t
t x x x sp p ds  

Now 0 1xp , since this is the probability that a life aged x  survives for at least 0 years, and 

0ln 0xp .   

Taking exponentials then gives: 

 
   
  

0
exp

t
t x x sp ds  

as required. 

 
This is an extremely important result.  It is restated below and it is also given on page 32 of the 
Tables. 

Relationship between survival probabilities and force of mortality 

For any 0x   and 0t  : 

 
0

exp
t

t x x sp ds 
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Assumption 3 has not been used so far.  Under the assumption that the force of mortality is 
constant between exact age x  and exact age x t , this result simplifies to give: 

 t
t xp e    

where   represents the constant force. 

We will obtain the same result in Chapter 6 when we formulate a survival model in terms of T , 
the lifetime distribution. 

The important point is that it has been derived here strictly from the assumptions of the 
two-state model, and that the method is easily extended to models with more states.  In the 
Markov framework, (3.1) is an example of the Kolmogorov forward (differential) equations.  
These are discussed in detail in Chapters 4 and 5. 
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3 Statistics 

3.1 Definitions 

Next we define our observations.   

We suppose that we observe a total of N  lives during some finite period of observation, 
between the ages of x  and 1x  .   

We could suppose that lives were observed, or not, as a result of some random mechanism 
(not depending on any parameter of interest), but here we suppose that data are analysed 
retrospectively, so we regard N  as a non-random quantity.  We need not assume that we 
observe the N  lives simultaneously, nor need we assume that we observe each life for the 
complete year of age.  We do assume that all N  lives are identical and statistically 
independent. 

In reality no two lives are truly identical.  Here we are using the word ‘identical’ to refer to the 
fact that all the lives follow the same stochastic model of living and dying.  So the lives will all have 
the same value of  , but they won’t all die at the same time. 

For 1, ,i N   define: 

 ix a  to be the age at which observation of the i th life starts 

 ix b  to be the age at which observation of the i th life must cease if the life 

survives to that age.   

ix b  will be either 1x  , or the age of the i th life when the investigation ends, whichever 

is smaller. 

For simplicity we consider Type I censoring. 

This means that the value of ib  is known, when the period of observation starts at  ix a .  So ib  is 

a fixed number, and not a random variable.  If we plan to observe a life from 52.25 until 52.75, 
then  0.75ib , but of course not all lives will survive to the end of the planned period of 

observation.  To complete our model we will need another random variable that measures 
whether it was death before 52.75 or survival to 52.75, that ended the period of observation.   

The approach can be extended to more realistic forms of censoring.   

In other words, we could modify the derivation to allow for lives leaving the investigation at 
random times through decrements other than death.   

In this case ib  would be a random variable.  If we plan to observe a life from 52.25 until death or 

retirement, whichever event occurs first, then ib  is a random variable (and to complete our 

model we will need another random variable that measures whether it was death or retirement 
that ended the period of observation).   

Types of censoring are considered in more detail in Chapter 7. 
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Define a random variable iD  as follows: 

 
1 if the th life is observed to die

0 if the th life is not observed to die
i

i
D

i

 


 

iD  is an example of an indicator random variable; it indicates the occurrence of death.   

In the above definition, we are talking about whether or not the i th life dies during the planned 
observation period from age  ix a  to age  ix b .  iD  is the extra random variable that completes 

our model. 

The expected value of iD  is: 

                 0 0 1 1 1
i i ii i i i b a x aE D P D P D P D q  

ie  iE D  is just the probability of a death being observed. 

Define a random variable iT  as follows: 

 ix T   the age at which observation of the i th life ends 

Notice that iD  and iT  are not independent, since: 

0i i iD T b    

ie if no death has been observed, the life must have survived to ix b . 

1i i i iD a T b     

ie an observed death must have occurred between  ix a  and  ix b . 

It will often be useful to work with the time spent under observation, so define: 

 i i iV T a   

iV  is called the waiting time.  It has a mixed distribution, with a probability mass at the point 

i ib a . 

A mixed distribution has a discrete and a continuous part. 

For example, suppose that observation of life i  begins at exact age 82 years and 3 months and 
observation will continue until the earlier of the life’s 83rd birthday or death.  In this case, 

 0.25ia ,  1ib  and iV  is a random variable taking values between 0 and 0.75.  iV  has a mixed 

distribution with a probability mass at 0.75. 

3.2 Joint density function 

The pair ( , )i iD V  comprise a statistic, meaning that the outcome of our observation is a 

sample ( , )i id v  drawn from the distribution of ( , )i iD V .   
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Let ( , )i i if d v  be the joint distribution of ( , )i iD V .   

It is easily written down by considering the two cases 0iD   and 1iD  . 

If  0iD , no death has been observed and the life is known to have survived for the period of 

length i ib a  from exact age  ix a  to exact age  ix b . 

If  1iD , the life is known to have survived for the period   (0 )i i i iv v b a  from exact age 

 ix a  to exact age  i ix a v  before dying at exact age  i ix a v . 

Therefore, ( , )i i if d v  has a distribution that is specified by the following expression, which is a 

combination of a probability mass (corresponding to  0id ) and a probability density 

(corresponding to  1id ): 

 
0

0

0

( 0)
( , )

. ( 1)

exp ( 0)

exp ( 1)

exp

i i i

i i i i

i i

i

i

i i i

i
i

i i i

b a x a i
i i i

v x a x a v i

b a

x a t i

v

x a t x a v i

v
d

x a t x a v

p d
f d v

p d

dt d

dt d

dt





 

 

 

  



 

   

   

  

  
   
  
   

 
   
   

 
  
 
 







   

Now assume that x t   is a constant   for 0 1t   (this is the first time we have needed 

Assumption 3) and so ( , )i i if d v  takes on the simple form: 

 ( , ) i iv d
i i if d v e    

We can then write down an expression for the joint probability function, provided that we can 
assume that the lifetimes of all the lives involved are statistically independent. 

The joint probability function of all the ( , )i iD V , by independence, is proportional to: 

 1 1( ... ) ...

1

i i N N
N

v d v v d d v d

i
e e e          



    

where 
1

N
i

i
d d


   and 

1

N
i

i
v v


  . 

In other words, define random variables D  and V  to be the total number of deaths and the 
total waiting time, respectively, and the joint probability function of all the ( , )i iD V  can be 

simply expressed in terms of D  and V . 
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For a known transition intensity, we can calculate the likelihood of any combination of deaths and 
waiting time.  However, in practice the value of the transition intensity is unknown.  We use 
statistical inference to calculate the value of the transition intensity that is most plausible given 
the observed data, ie the maximum likelihood estimate of  .  This is the subject of the next 

section. 

Question 

Suppose that observation of life i  begins at exact age 82 years and 3 months and observation will 
continue until the earlier of the life’s 83rd birthday or death.   Assuming that  0.1 , determine: 

(i) the probability function of iD  

(ii)  iE D  

(iii) the probability density/mass function of iV  

(iv)  iE V . 

Solution 

We will need to use the result from Section 2 that: 

 


 
    
 
 
  0.1

0

exp
t

t t
t x x sp ds e e   

(i) Probability function 

The random variable iD  can only take the value 0 or 1.  Its probability function is: 

      0.1 0.75
0.75 82.250 0.9277iP D p e  

     1 1 0.9277 0.0723iP D  

(ii) Expected value of iD   

The expected value of iD  is: 

      0 0.9277 1 0.0723 0.0723iE D  
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(iii) Probability density/mass function 

The probability density/mass function of iV  is: 





 


  
 

82.25 82.25

0.75 82.25

0.1

if 0.75
( )

if 0.75

0.1 if 0.75

0.9277 if 0.75

i i

i

v v i
i

i

v
i

i

p v
f v

p v

e v

v

 

(iv) Expected value of iV  

The expected value of iV  is: 

     
0.75

0.1

0

0.1 0.9277 0.75t
iE V t e dt  

Integrating by parts: 

  

 



     

     

      

   

 
0.75 0.750.750.1 0.1 0.1

0
0 0

0.750.075 0.1

0

0.075

0.1

0.75 10

0.6958 10 1

0.6958 0.7226 0.0268

t t t

t

t e dt t e e dt

e e

e

 

So: 

     0.0268 0.9277 0.75 0.7226iE V  

As expected, the answer to (iv) is just less than 0.75. 
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4 The maximum likelihood estimator 

Maximum likelihood estimation is covered in Subject CS1.   A brief reminder of the process is 
given below. 

Maximum likelihood estimation 

The steps involved in maximum likelihood estimation are as follows: 

 write down the likelihood function L  – this is the probability/PDF of obtaining the values 
we have observed 

 take logs and simplify the resulting expression 

 differentiate the log-likelihood with respect to each parameter to be estimated – this will 
involve partial differentiation if there is more than one parameter to be estimated 

 set the derivatives equal to 0 and solve the equations simultaneously 

 check that the resulting values are maxima.  This will usually involve differentiating a 
second time.  Strictly speaking, when there are two or more parameters to estimate, 
checking for maxima involves examination of the Hessian matrix, which is beyond the scope 
of Subject CS2. 

4.1 Maximising the likelihood function 

We have already seen that the joint probability function of all the ( , )i iD V  is: 

      


     1 1( ... ) ...

1

N Ni i
N

v v d dv d v d

i

e e e   

where 


 
1

N

i
i

d d  and 


 
1

N

i
i

v v . 

This probability function immediately furnishes the likelihood for  :  

  ; , v dL d v e    

which yields the maximum likelihood estimate (MLE) for  . 

Maximum likelihood estimate of    under the two-state Markov model 

 ˆ /d v   

Recall that we are now assuming that the force of mortality is constant over the year of age 
( , 1)x x . 
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Question 

Show that ̂ d
v

. 

Solution 

Taking the log of the likelihood given above, we obtain:  

   log logL v d  

Differentiating with respect to  :  


  

 
log

d
L v  

This is equal to 0 when  d
v

 .  So there is a stationary point when  d
v

. 

Differentiating again: 

 


 
 

2

2 2
log

d
L  

This second derivative is negative when  d
v

.  (In fact, it’s always negative.)  So we have a 

maximum.   

Hence:  

̂ d
v

 

 
It is reassuring that the mathematical approach produces a result that is intuitive, ie that the 
maximum likelihood estimate of the hazard rate is the number of observed deaths divided by the 
total time for which lives were exposed to the hazard. 

The measurement of the total time for which lives are exposed to the hazard is one of the 
fundamental techniques covered by this course.  It enables accurate assessment of risks, from the 
probability of a policyholder dying to the probability of a claim under a motor insurance policy.  
The technical term is ‘exposed to risk’.  We will study it in more detail in Section 6 of this chapter 
and also in Chapter 10. 

4.2 Properties of the maximum likelihood estimator 

The estimate ̂ , being a function of the sample values d and v, can itself be regarded as a 

sample value drawn from the distribution of the corresponding estimator. 
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Maximum likelihood estimator of    under the two-state Markov model 

 /D V   

As usual we are using capital letters to denote random variables, and lower case letters to 
denote sample values. 

So, the estimator   is a random variable and the estimate ̂  is the observed value of that 

random variable. 

It is important in applications to be able to estimate the moments of the estimator  , for 

example to compare the experience with that of a standard table.  At least, we need to 

estimate  E   and  var  .   

In order to derive the properties of the estimator   we will use two results that link the random 

variables D  and V . 

The following exact results are obtained: 

   0i iE D V   (3.2) 

    var i i iD V E D   (3.3) 

Note that the first of these can also be written as    .i iE D E V .   

In the case that the { }ia  and { }ib  are known constants, this follows from 

integrating/summing the probability function of ( , )i iD V  over all possible events to obtain: 

 ( )

0

1
i i

i i i

b a
v b a

ie dv e 


     (*) 

and then differentiating with respect to  , once to obtain the mean and twice to obtain the 

variance. 

We will show how to use this to prove Result (3.2) above in a moment, but first we need to derive 
formula for [ ]iE D  and [ ]iE V .  (The derivation of Result (3.3) is covered in the questions at the end 

of this chapter.) 

We have already seen that: 

          [ ] 0 ( 0) 1 ( 1) ( 1)
i i ii i i i b a x aE D P D P D P D q   

ie it is the probability that life i  dies between exact age  ix a  and exact age  ix b .  This can also 

be expressed in integral form as: 

 


   
0

i i

i i i i

b a

v x a x a v ip dv  
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The integrand can be considered to be the ‘probability’ that the life dies at exact age  i ix a v .  

The probability of dying between exact age  ix a  and exact age  ix b  is obtained by integrating 

this expression over the relevant range of values of iv , ie from  0iv  to  i i iv b a . 

Now, under the assumption that the force of mortality is constant over the year of age ( , 1)x x : 


   i

i i

v
v x ap e  

and hence: 


  

0

[ ]
i i

i

b a
v

i iE D e dv  

We have also already seen that iV  is a mixed random variable.  It can take any value between 0 

and i ib a , and has a point mass at i ib a .  Its probability/mass function is: 

 
  

 

  
 

 if 
( )

if 

i i i i

i i i

v x a x a v i i i

i
b a x a i i i

p v b a
f v

p v b a
 

Under the assumption that the force of mortality is constant over the year of age ( , 1)x x , this is: 

 



 

   
  







( )

if 
( )

if 

i

i i

v
i i i

i
b a

i i i

e v b a
f v

e v b a
 

So: 


       ( )

0

[ ] ( )
i i

i i i

b a
v b a

i i i i iE V v e dv b a e  

We are now able to prove result (3.2). 

Proof of (3.2) 

We start from result (*), which is restated below: 

 ( )

0

1
i i

i i i

b a
v b a

ie dv e 


     (*) 

Differentiating (*) with respect to   gives: 

  ( )

0

( ) 0
i i

i i i i

b a
v v b a

i i i ie v e dv b a e  
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(Because the limits of the integral don’t depend on  , this just involves differentiating the 

expressions inside the integral with respect to  .) 

The equation immediately above can be rewritten as follows: 

 
 

          ( )

0 0

( ) [ ]
i i i i

i i i i

b a b a
v v b a

i i i i i ie dv v e dv b a e E V   

Multiplying through by   then gives: 

 


   
0

[ ]
i i

i

b a
v

i ie dv E V  

The expression on the left-hand side is equal to [ ]iE D .  So  [ ] [ ] 0i iE D E V  as required. 

4.3 Asymptotic distribution of m  

To find the asymptotic distribution of  , consider: 

    
1

1 1 N
i i

i
D V D V

N N
 


    

We know that    0i iE D V  and that     var i i iD V E D . 

So, by the Central Limit Theorem: 

   2
1 [ ]

~ 0,
E DD V Normal

N N
  

  
 

 

Now, since  D
V

, it follows that: 

 
        

 
     D V D VD N

V V V N
 

Then note that (not rigorously): 

 
    
  

lim ( ) lim
N D V
V N N

N N

   

By the law of large numbers,  / iV N E V .   

Technically, this refers to ‘convergence in probability’.  So asymptotically: 

  
 

    
 

   1
( ) 0

i

D V
E E

E V N
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Also: 

 

 

 
 

 

      
   


  


    





 

22

2
1 2

1
var( ) var

[ ]

i

i

N

D V
N E V

E D

N E V

E D

E V V V

 

because        1 2 NE V E V E V .   

Now since 


 
1

N

i
i

V V , we have: 

 
 

  
2

( )
var( )

( )

E D

E V
 

So: 

 
 
 

 
 
     

  
2

( ) 0,
E D

N
E V

 

But we know that  ( ) 0E D V .  So: 

  ( ) ( )E D E V  

and: 

  ( )
( )

E D
E V

 

Hence: 

 
 

       
2

( )
var( ) var( )

( )( )

E D
E VE V

  

We now have the following asymptotic result. 

Asymptotic distribution of    

Asymptotically: 

 ~ ,
[ ]

Normal
E V
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We can use this result to calculate probabilities and confidence intervals. 

Question 

A scientist identifies 1,282 newborn wildebeest and observes them during their first year of life on 
the savannah.  The scientist wishes to calculate the constant transition intensity over this period 
covering all types of death, including natural causes and ending up as a tasty snack for passing 
carnivores.   

If the true transition intensity is 0.18, calculate the probability that the scientist observes a 
mortality rate in excess of 0.2. 

Solution 

The expected number of deaths is: 

      0.18
0 0( ) 1,282 1,282(1 ) 1,282(1 )E D q p e   

Then, using the result  ( ) ( )E D E V , we have: 

 


  


0.18( ) 1,282(1 )
( ) 1,173.24

0.18
E D e

E V  

Alternatively, we could calculate the expected waiting time for the i th animal as follows: 

   

  



 

     

 





1
0.18 0.18

0

110.18 0.18 0.18

0
0

0.18

0.18 t
i

t t

E V t e dt e

t e e dt e

e       

1
0.18 0.18

0

1
0.18

te e

  



0.181
1

0.18

0.915165

e

 

So the total expected waiting time is: 

  [ ] 1,282 [ ] 1,173.24E V E Vi  

as before. 

Asymptotically:  

       
  

    20.18
, 0.18, 0.18, 0.01239

[ ] 1,173.24
N N N

E V
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Hence the required probability is:  

         
 

 0.2 0.18
( 0.2) 1 1 (1.6147) 1 0.9468 0.0532

0.01239
P  

This probability is approximate since the sample size is not that large. 
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5 Alternative method of obtaining the asymptotic distribution 

In this section we describe another way of obtaining the asymptotic distribution of  , the 

maximum likelihood estimator of  .   

We have already seen that ̂ d
v

,  D
V

  and  
 

2

2 2
logd L d

d
. 

Now instead of deriving results for the expectation and variance of  i iD V  as in Section 4.2, we 

can use the asymptotic properties of maximum likelihood estimators. 

These estimators are asymptotically normal and unbiased.  So    E .  It just remains for us to 

find an expression for  var .  This is given by the Cramér-Rao lower bound: 

    
  

   
        

 



2

2

22

1 1
var

( )log E DDd L EE
d

 

We are using D  rather than d  in the line above since we are thinking about the variance of the 
estimator of  . 

So, asymptotically: 

 
 
  
 

   
2

,
( )

N
E D

  

This is consistent with the result in Section 4.3 since  ( ) ( )E D E V .   

In practice, we will not know the exact variance, so we need to estimate it.  This can be done by: 

 replacing   by ̂ , its estimated value, and 

 replacing ( )E D  by d , the observed number of deaths.   

This gives: 

    
2ˆ

var
d

 

Also, since ̂ d
v

, we have: 

   
  2ˆ ˆ ˆd
d d v v

 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-03: The two-state Markov model and the Poisson model Page 23 

The Actuarial Education Company © IFE: 2019 Examinations 

So: 

    
ˆ

var
v

 

In actuarial terminology, the observed waiting time at age x, which we have denoted v, is 

often called the central exposed to risk and is denoted c
xE . 

We use this notation in the next section on the Poisson model and consider this concept in more 
detail later in this course.  In the meantime you should be prepared to use either term. 
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6 The Poisson model 

6.1 The Poisson distribution 

The Poisson distribution is a discrete probability distribution in which the random variable can 
only take non-negative integer values. 

A random variable X  is said to have a Poisson distribution with mean  ( 0)  if the probability 

function of X  is: 


  


( ) for 0,1,2,...

!

xe
P X x x

x
 

Remember that ( )E X  and var( )X . 

The Poisson distribution is used to model the number of times ‘rare’ events occur during a given 
period of time, eg the number of particles emitted by a radioactive source in a minute.  Such 
analogies suggest the Poisson distribution could be used as a model for the number of deaths 
among a group of lives, given the time spent exposed to risk. 

6.2 The Poisson model of mortality 

If we assume that we observe N  individuals as before, for a total of c
xE  person-years, and 

that the force of mortality is a constant  , then a Poisson model is given by the assumption 

that D  has a Poisson distribution with parameter c
xE .  That is: 

  ( )
( )

!

c
xE c d

xe EP D d
d

 
   

As before we are assuming that the lives are independent and identical in terms of their mortality.  

Under the observational plan described above, the Poisson model is not an exact model, 
since it allows a non-zero probability of more than N  deaths, but it is often a very good 
approximation. 

The probability of more than N  deaths is usually negligible. 

Question 

A large computer company always maintains a workforce of exactly 5,000 young workers, 
immediately replacing any worker who leaves. 

Use the Poisson model to calculate the probability that there will be fewer than 3 deaths during 
any 6-month period, assuming that all workers experience a constant force of mortality of 0.0008 
per annum. 
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Solution 

We have a constant population of 5,000 individuals with a constant force of mortality of 
0.0008 pa.  If we assume that deaths are independent, the Poisson model applies and the number 
of deaths during any 6-month period has a Poisson distribution with mean: 

  
6

0.0008 5,000 2
12

   

So:  

 2(No deaths) 0.1353P e  

 2(Exactly 1 death) 2 0.2707P e  

 
2

22
(Exactly 2 deaths) 0.2707

2!
P e  

and hence the probability of fewer than 3 deaths is:  

  0.1353 0.2707 0.2707 0.6767  

 

6.3 Estimating the underlying force of mortality 

We would like to use our knowledge about the number of deaths observed and the total exposed 
to risk (waiting time) to estimate the unknown true force of mortality. 

The Poisson likelihood leads to the following estimator of (constant)  . 

Maximum likelihood estimator of    under the Poisson model 

 c
x

D
E

   

 

Question 

Derive the above formula for the maximum likelihood estimator of  . 

Solution 

The likelihood of observing d  deaths if the true value of the hazard rate is   is: 

 



 ( )

( )
!

c
xEc d

xE e
L

d
 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 26  CS2-03: The two-state Markov model and the Poisson model 

© IFE: 2019 Examinations The Actuarial Education Company 

This can be maximised by maximising its log: 

     log ( ) (log log ) log !c c
x xL d E E d  

Differentiating with respect to  : 


 




 
log ( ) c

x
d

L E   

This is zero when: 


c
x

d

E
 

This is a maximum since 


  



 

2

2 2
log ( ) 0

d
L . 

So ̂
c
x

d

E
 is the maximum likelihood estimate of  .  It is the realised value of the maximum 

likelihood estimator 
c
x

D

E
. 

 
The estimator   has the following properties: 

(i) [ ]E     

So   is an unbiased estimator of  .  

(ii) var[ ] c
xE
   

In practice, we will substitute ̂  for   to estimate these from the data.   

Question 

Prove these results for [ ]E  and var[ ] . 
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Solution 

If  ( )c
xD Poisson E , where c

xE  is a fixed quantity, then   [ ] var[ ] c
xE D D E  and hence: 

 
 

    
  

  [ ]
[ ]

c
x

c c c
x x x

ED E D
E E

E E E
  

 
 

    
  

  
2 2

var[ ]
var[ ] var

( ) ( )

c
x

c c c c
x x x x

ED D

E E E E
  

 
Since maximum likelihood estimators are asymptotically normally distributed, we have the 
following result: 

Asymptotic distribution of m  

When c
xE  is large, the distribution of the estimator   is: 

 
 
  
 

   Normal ,
c
xE

 

These properties show that this is a sensible estimator to use.  Its mean value equals the true 
value of   and it varies as little as possible from the true value.  The normal approximation 

allows us to calculate approximate probabilities and confidence intervals for  . 

Question 

In a mortality investigation covering a 5-year period, where the force of mortality can be assumed 
to be constant, there were 46 deaths and the population remained approximately constant at 
7,500.   

Calculate an approximate 95% confidence interval for the force of mortality. 

Solution 

The maximum likelihood estimate of the force of mortality is: 

   


 46ˆ 0.001227
7,500 5c

x

d
 

E
  

An approximate 95% confidence interval for   is given by: 

      ˆ ˆ1.96 var( ) 1.96
c
xE
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Using the given sample values and replacing   by ̂  in order to estimate the variance gives the 

following confidence interval: 

    


0.001227
0.001227 1.96 0.001227 0.000354 (0.00087,0.00158)

7,500 5
 

 

6.4 Links to the two-state Markov model 

Under the two-state model, [ ]E    and var[ ]
[ ]E V
  , but the true values of   and [ ]E V  

are unknown and must be estimated from the data as ̂  and c
xE  respectively.  So although 

the estimators are different, we obtain the same numerical estimates of the parameter and 
of the first two moments of the estimator, in either case. 

6.5 Estimating death probabilities 

Once we have calculated ̂ , the estimated (constant) force of mortality that applies over the 

age range x  to 1x  , we can use this to estimate xq  (the probability of dying over that year 

of age) as follows: 

 ˆˆ 1xq e     
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7 Comment on application 

Having estimated piecewise constant intensities over single years of age, we can use these 
(if required) to estimate the function x  as a smooth function of age (the process of 

smoothing is called graduation).  For this purpose we usually assume that ̂  estimates 

½x  . 

The process of graduation is covered in Chapters 10 and 11. 

Both the two-state Markov model and the Poisson model assume that the force of mortality is 
constant over the year of age x  to 1x , ie it is constant over the interval during which a life is 
aged x  last birthday.  In fact, the force of mortality is likely to vary over this year of age; what we 
are really estimating is the average force of mortality between the ages of x  and 1x .  We 
assume that this represents the force of mortality at the midway point of the year of age x  to 
1x , which is age  ½x . 

In other situations, we may be considering lives aged x  next birthday or aged x  nearest birthday.  
We will consider this situation in more detail in Part 3 of the course. 

We can calculate any required probabilities from: 

 

 
  
 
 

0

exp
t

t x x sp ds  

using numerical methods if necessary. 
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8 Appendix – solving first-order differential equations 

In this appendix, we give a reminder of two methods that can be used to solve first-order 
differential equations.  These are the separation method and the integrating factor method. 

The separation method 

The separation method can be used to solve equations of the form: 

  ( ) ( )
dy

g x h y
dx

 

where ( )g x  is a function of x  and ( )h y  is a function of y .  The variables are separated by 

rewriting the equation as: 

  ( )
( )

dy
g x dx

h y
 

Each side is then integrated to obtain the solution.  If we are given an initial condition or a 
boundary condition, this can be used to determine the value of the constant of integration. 

Question 

Solve the differential equation  ( 1)
dy

x y
dx

 for  0y , subject to the initial condition (0) 2y . 

Solution 

Separating the variables we obtain: 

  ( 1)
dy

x dx
y

 

Then integrating both sides gives: 

   2ln ½y x x C  

where C  denotes a constant of integration.  Taking exponentials, this becomes:   

    
2 2½ ½x x C x xy e Ae   

where  CA e .  Finally, using the initial condition:  

      
20 ½(0) 2 2 2 ( ) 2 x xy Ae A y x e  
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The integrating factor method 

The integrating factor method can be used to solve equations of the form: 

  ( ) ( )
dy

P x y Q x
dx

 (*) 

where ( )P x  and ( )Q x  are both functions of x .  In the context of this course, y  will usually denote 

some probability. 

The first step is to calculate the integrating factor (IF): 

  ( )P x dxIF e  

Then multiply each term in (*) by the integrating factor: 

    ( ) ( ) ( )( ) ( )P x dx P x dx P x dxdy
e P x e y Q x e

dx
 (**) 

Now integrate both sides of (**) with respect to x .  The left-hand side will be: 

   ( )P x dxy e y IF  

(We can check this by applying the product rule for differentiation to the product y IF .)  Finally, 

we divide through by IF to obtain an expression for y . 

Question 

Solve the differential equation   2 ( 1)
dy

x x x y
dx

 for  0x , subject to the condition (1) 0y . 

Solution 

We first write the differential equation in the form  ( ) ( )
dy

P x y Q x
dx

: 

 
   

 
1

2
dy x

y
dx x

 

The integrating factor is given by: 

                   ln1 1exp exp 1 exp ln x x xx
x x

dx dx x x e e x e  

We don’t have to bother about the constant of integration at this stage.  The constants will cancel 
out when we multiply every term by the integrating factor.   
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Multiplying both sides of the differential equation by the integrating factor gives: 

    11 2x x x
x

dy
xe xe y x e

dx
 

Integrating the left-hand side with respect to x  gives: 

   xy IF y x e  

Integrating the right-hand side with respect to x  (using integration by parts), we obtain: 

      2 2 2 2 2x x x x xxe dx xe e dx xe e C  

Equating these gives: 

 

  

   

2 2

2
2

x x x

x

yxe xe e C

C
y

x xe

 

Finally, from the condition (1) 0y , we have: 

     0 2 2 0
C

C
e

 

So the required solution is: 

  
2

( ) 2y x
x
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Chapter 3 Summary 

Two-state Markov model 

We can model mortality as a Markov process with two states (alive and dead) and a 
transition rate (or transition intensity) x .   

Assumptions 

1. The probabilities that a life at any given age will be found in either state at any 
subsequent age depend only on the ages involved and on the state currently 
occupied.  This is the Markov assumption. 

2. For a short time interval of length h  : 

     ( )h x t x tq h o h  

3. x t  is a constant   for  0 1t . 

Survival probabilities 

From this model we can derive the following formula for the survival probability: 

 
 
  
 
 
 
0

exp
t

t x x sp ds  

Waiting times 

The waiting time for a life is the time spent under observation.  The observed waiting time is 
often called the central exposed to risk. 

We can use the observed total waiting time and the observed number of deaths to estimate 
the underlying transition intensity.  The estimation can be done using the method of 
maximum likelihood.  To proceed, we have to consider the ‘probability’ of getting the results 
we have observed from our mortality investigation.   

Joint distribution of an observed sample 

   ( , ) i iv d
i i if d v e  

Joint distribution of all observed samples (likelihood function) 

   ( ) v dL e  

where 


 
1

N

i
i

d d  and 


 
1

N

i
i

v v . 
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Maximum likelihood estimator (two-state model)

The maximum likelihood estimate of   is  ̂ d
v

 and the maximum likelihood estimator is 

 D
V

.  Asymptotically, 
 
 
 

    ,
[ ]

N
E V

 or, equivalently, 
 
  
 

   
2

,
[ ]

N
E D

. 

We assume that the estimated transition intensity ̂  estimates  ½x . 

Poisson model 

Under the Poisson model, we assume that the force of mortality is constant between integer 

ages and the number of deaths has a Poisson distribution with mean  c
xE : 

   ( )c
xD Poisson E     and    


 

 ( )
[ ]

!

c
xE c d

xe E
P D d

d
  

Maximum likelihood estimator (Poisson model) 

The maximum likelihood estimate of   is ̂
c
x

d

E
 and the maximum likelihood estimator is


c
x

D

E
.  Asymptotically, 

 
  
 

    ,
c
x

N
E

 . 

This model is an approximation to the two-state model and provides the same numerical 
estimate of  . 
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Chapter 3 Practice Questions 

3.1 Show that, under the assumptions of the two-state Markov model for mortality: 

  var[ ] [ ]i i iD V E D   

3.2 A survival model for an elderly population has two states A and D, representing alive and dead.  

The force of mortality at age t years   t , ie the transition rate from A to D, is given by: 

      0.0001 1.10 tt  

Calculate the probability that a 60-year-old will survive to age 80.  

3.3 A certain species of small mammal is subject to a constant force of mortality of 0.2 pa over the 
first year of life.  Calculate the expected number of deaths in the first year of life from a 
population of 1,000 new births.  

3.4 In a mortality investigation, females aged 65 last birthday were observed.  The following data 
values were recorded: 

 Total waiting time = 916 years 

 Observed number of deaths = 10 

Calculate an approximate 95% confidence interval for the force of mortality of females aged 65 
last birthday, assuming that the force is constant over this year of age.  

3.5 An investigation took place into the mortality of residents of a care home.  The investigation 
began on 1 January 2017 and ended on 1 January 2018.  The table below gives the data collected 
in this investigation for 8 lives. 

Date of birth 
Date of entry into 

observation 
Date of exit from 

observation 

Whether or not exit 
was due to death (1) 
or other reason (0) 

1 April 1946 1 January 2017 1 January 2018 0 

1 October 1946 1 January 2017 1 January 2018 0 

1 November 1946 1 March 2017 1 September 2017 1 

1 January 1947 1 March 2017 1 June 2017 1 

1 January 1947 1 June 2017 1 September 2017 0 

1 March 1947 1 September 2017 1 January 2018 0 

1 June 1947 1 January 2017 1 January 2018 0 

1 October 1947 1 June 2017 1 January 2018 0 

 
The force of mortality,  , between exact ages 70 and 71 is assumed to be constant. 

Exam style 
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(i) (a) Estimate the constant force of mortality,  , using a two-state model and the data 

for the 8 lives in the table. 

 (b) Hence or otherwise estimate 70q . [7] 

(ii) Show that the maximum likelihood estimate of the constant force,  , using a Poisson 

model of mortality is the same as the estimate using the two-state model.   [5] 

(iii) Outline the differences between the two-state model and the Poisson model when used 
to estimate transition rates. [2] 

    [Total 14] 
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Chapter 3 Solutions 

3.1 We can start with the usual formula for variances: 

       2 2var[ ] [( ) ] { [ ]}i i i i i iD V E D V E D V  

Since  [ ] 0i iE D V , this is just: 

     2var[ ] [( ) ]i i i iD V E D V   

We can evaluate this using the definition of the expectation, by considering that death will either 
occur at some time iv  in the interval (0, )i ib a , in which case    1i i iD V v , or the life will 

survive to the end of this interval, in which case     0 ( )i i i iD V b a .  So we get: 

 
             ( )2 2

0
var[ ] (1 ) [ ( )]i i i i i

b a v b a
i i i i i iD V v e dv b a e   

If we expand the integrand, we get: 

 

 

    

 

   



 



  

 

    

0

( )2 2 2 2
0 0

var[ ]

2 ( )

i i i

i i i ii i i i

b a v
i i i

b a b av v b a
i i i i i i

D V e dv

v e dv v e dv b a e

     
The first of these integrals is just [ ]iE D , as shown in this chapter.  So we have: 

      

 

       



  ( )2 2 2
0 0

var[ ] [ ]

2 ( )i i i ii i i i

i i i

b a b av v b a
i i i i i i

D V E D

v e dv v e dv b a e   

So we just need to show that the three terms in the curly brackets sum to zero. 

From equation (*) in Section 4.2, we know that: 

 
       ( )

0
1i i i i i

b a v b a
ie dv e  

If we differentiate this with respect to  , we get: 

 
           ( )

0
( ) ( ) 0i i i i i i

b a v v b a
i i i ie v e dv b a e   

Differentiating this again with respect to  , we get: 

 
            ( )2 2

0
( 2 ) ( ) 0i i i i i i

b a v v b a
i i i i iv e v e dv b a e   
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Since the LHS of this equation is the same expression as in the curly brackets, we have established 
the result: 

  var[ ] [ ]i i iD V E D  

3.2 The survival probability is given by: 

 
                    


8080

20 60
60 60

1.1
exp 0.0001(1.1) exp 0.0001 0.16046

ln1.1

t
tp dt  

  

  

3.3 The probability that a new-born mammal survives for one year is: 

  0.2
0 0.81873p e    

So the probability of death within the first year is: 

     0 01 1 0.81873 0.18127q p    

and the expected number of deaths from an initial population of 1,000 new births is: 

   01,000 1,000 0.18127 181.27q    

3.4 An approximate 95% confidence interval for   is: 

   ˆ 1.96 var( )   

We have: 

   10ˆ
916

d
v

    

and, using the result in Section 5, var( )  is estimated by: 

  


2 2
ˆ 10

916

d
v v

  

So an approximate 95% confidence interval for   is: 

    
2

10 10
1.96 0.01092 0.00677 (0.00415,0.01768)

916 916
   

3.5 (i)(a) Estimate of    

We need to find the central exposed to risk for age 70 for each of the lives.  This is the period that 
we observed each life during the study (ie between 1 January 2017 and 1 January 2018) when the 
lives were in the age range (70,71) . 
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The table below summarises the calculations.  We start by writing down the dates of each life’s 
70th and 71st birthdays.  If the date of entry is after the life’s 70th birthday or the date of exit is 
before the life’s 71st birthday, we adjust the start/end date accordingly.  The exposed to risk is 
then calculated by subtracting the start date from the end date. 

Life Start date End date 
Exposed to 

risk 

1 
1 April 2016  (age 70) 

1 January 2017  (entry) 
1 April 2017  (age 71) 3 months 

2 
1 October 2016  (age 70) 

1 January 2017  (entry) 
1 October 2017  (age 71) 9 months 

3 
1 November 2016  (age 70) 

1 March 2017  (entry) 

1 November 2017  (age 71) 

1 September 2017  (exit) 
6 months 

4 
1 January 2017  (age 70) 

1 March 2017  (entry) 

1 January 2018  (age 71) 

1 June 2017  (exit) 
3 months 

5 
1 January 2017  (age 70) 

1 June 2017 (entry) 

1 January 2018  (age 71) 

1 September 2017  (exit) 
3 months 

6 
1 March 2017  (age 70) 

1 September 2017  (entry) 

1 March 2018 (age 71) 

1 January 2018  (exit) 
4 months 

7 
1 June 2017  (age 70) 

 

1 June 2018  (age 71) 

1 January 2018  (exit) 
7 months 

8 
1 October 2017  (age 70) 

 

1 October 2018  (age 71) 

1 January 2018  (exit) 
3 months 

 
In this type of question, be very careful counting the number of months.  It is very easy to 
miscalculate these by one month. 

So:         70 3 9 6 3 3 4 7 3 38 monthscE  [3] 

From the final column of the table given in the question (the reason for exit), we see that Life 3 
and Life 4 both died in the age range (70,71)  during the period of investigation.  So  2d  and: 

  
38

12

2ˆ 0.63158  [2] 
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(i)(b) Estimate of 70q  

Since we are told that   is the constant force of mortality over the year of age (70,71) , we can 

estimate 70q  as: 

      ̂ 0.63158
70ˆ 1 1 0.46825q e e  [2] 

(ii) Maximum likelihood estimate of   using the Poisson model 

Under the Poisson model the observed number of deaths will follow a Poisson distribution with a 

parameter 38
12

. 

Since we observed 2 deaths, the likelihood function is: 

 

              
 

 
 

2

2

38 38
exp

3812 12 exp
2! 12

L C  [1] 

where C  is a constant.   

The log-likelihood function is: 

    38
log log 2log

12
L C  [1] 

Differentiating gives: 

  
 

log 2 38
12

d L
d

 [1] 

This is equal to 0 when  
38

12

2
0.63158 .   [1] 

We also have: 

   
 

2

2 2
log 2

0
d L

d
 [½] 

So this solution maximises the log-likelihood and hence the maximum likelihood estimate of   is 

0.63158.   [½] 

This is the same as the estimate we obtained in part (i)(a) based on the two-state model. 
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(iii) Differences between the two-state and the Poisson model 

The Poisson model can be considered to be an approximation to the two-state model. [½] 

The Poisson model is not exact since it allows a non-zero probability of more than N  deaths, 
where N  is the total number of lives involved in the investigation.  However, since this probability 
is usually negligible, the Poisson model often provides a good approximation. [½] 

The estimation of the transition rates in the two-state model involves the measurement of two 
random variables – the observed number of decrements and the exposed to risk that gave rise to 
these decrements.  [½] 

The Poisson model assumes that the exposed to risk remains constant and estimation of the 
transition rates in the model only involves the measurement of the observed number of 
decrements.   [½] 
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Time-homogeneous Markov 
jump processes 

 

 

Syllabus objectives 

3.3 Define and apply a Markov process.   

3.3.1 State the essential features of a Markov process model. 

3.3.2 Define a Poisson process, derive the distribution of the number of events 
in a given time interval, derive the distribution of inter-event times, and 
apply these results. 

3.3.3 Derive the Kolmogorov equations for a Markov process with time 
independent and time/age dependent transition intensities. 

3.3.4 Solve the Kolmogorov equations in simple cases. 

3.3.5 Describe simple survival models, sickness models and marriage models in 
terms of Markov processes and describe other simple applications. 

4.3 Derive maximum likelihood estimators for transition intensities. 

4.3.1 Describe an observational plan in respect of a finite number of individuals 
observed during a finite period of time, and define the resulting statistics, 
including the waiting times. 

4.3.2 Derive the likelihood function for constant transition intensities in a 
Markov model of transfers between states given the statistics in 4.3.1. 

4.3.3 Derive maximum likelihood estimators for the transition intensities in 
4.3.2 and state their asymptotic joint distribution.
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0 Introduction 

In Chapter 3 we considered a simple two-state Markov model.  In this chapter we will show how 
the model and the results can be extended to any number of states.  

One important aspect of the simple two-state model is that transition is possible in one direction 
only, from alive to dead.  In practice, we may wish to study a model in which transition between 
states is possible in both directions.  This opens up the possibility of a life entering a particular 
state more than once. 

An example of this is a model in which the states relate to marital status.  Such a model might 
comprise five states – single, married, divorced, widowed and dead. 

Question 

Draw this model, showing clearly the possible transitions between the five states. 

Solution 

Single

Widowed

Married

Dead

Divorced

 

 
Some of the problems that we will consider in this chapter are: 

 how to calculate the probability of a life remaining in a particular state for a period of 
length t  given there is more than one possible way of exiting that state 

 how to use real-life observations to estimate the transition rates 

 how to calculate the probability of a particular decrement occurring based on our 
estimates of the transition rates. 

The results that we derive here form the basic building blocks of several actuarial techniques.  
Some financial applications of this theory are discussed in Subject CM1, where we use transition 
probabilities to calculate expected present values. 
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Much of the theory is analogous to that for Markov chains.  The Chapman-Kolmogorov equations 
can be written in the same format for example.  However, in discrete time we have the central 
notion of the one-step transition probabilities.  In the continuous case there is no longer the same 
fundamental significance to the unit time interval, as we can consider time intervals of arbitrarily 
small length h .  As is often the case with continuous variables, the natural thing to do is to 
consider limits as 0h  .  This leads to a reformulation of the Chapman-Kolmogorov equations as 
differential equations.  Much of our time will be spent constructing and interpreting such 
differential equations, along with their integral equation analogues. 

These differential and integral equations can be solved to give results for the transition 
probabilities in terms of the transition rates.  All the versions of the equations will have the same 
solution for a particular model.  For some models, one of the equations may be more 
straightforward to solve than the others.  Exam questions sometimes guide us towards a 
particular equation, rather than us having to choose one for ourselves. 

In this chapter we consider only time-homogeneous Markov jump process.  These are processes 
in which the transition rates do not vary over time, so the transition probabilities 

 |t sP X j X i   depend only on the length of the time interval, t s . 
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1 Notation 

Different authors tend to use different notation for the same quantities, and the Markov 
model is an example of this.  Actuaries often use notations derived from the standardised 
International Actuarial Notation, in which the ‘transition rate’ is the force of mortality x , 

and the corresponding probabilities are the life table probabilities t xp  and t xq .   Moreover, 

the index x  is generally understood to indicate age (eg age now, or age at policy inception) 
and the index t indicates duration since age x.  Probabilists and statisticians tend to use 
different notations. 

We met the notation t xp  and t xq  in Chapter 3.  Recall that t xp  denotes the probability that a life 

aged x  survives for at least another t  years, and 1t x t xq p   is the probability that a life aged 

x  dies within the next t  years. 

The non-homogeneous (ie time-inhomogeneous) Markov model offers particularly rich, and 
potentially confusing, opportunities to invent different notations for the same quantities. To 
try to limit any such confusion, we make the following remarks. 

1. We have written ( , )ijp s t  to mean the probability of the process being in state j  at 

time t , conditional on being in state i  at time s t .  

The traditional actuarial notation would reserve the symbol t  for duration since time 

s , in which case the above probability would be expressed ( , )ijp s s t .  Just as 

likely, the life table symbol t sp  would be adapted, so that ( , )ijp s s t  would be 

written as ij
t sp . Other variants, such as ( )t ijp s , may be encountered. 

For time-homogeneous processes, it is just the length of the time interval that is 
important, not when it starts.  So (0, ) ( , )ij ijp t p s s t   for all s , and we will use the 

notation ( )ijp t  to denote this probability. 

2. We have written ( )ij s  to mean the transition rate from state i  to state j  at time s .  

Following the actuarial tradition, the time (or age) may be indicated by a subscript, 

so that the same rate may be written ij
s . 

For time-homogeneous processes, the transition rates are constant and we will denote 
these by ij .  You may also see the notation ij  instead of ij  used to denote the 

transition rate from state i  to state j .  In particular, the formulae given on page 38 of the 

Tables use the ij  notation. 

While a standard international actuarial notation was adopted for the life table and its 
derived quantities, the same is not true for the richer models needed to represent insurance 
contracts that depend on more than just being alive or dead. The actuarial reader must 
always be prepared to assimilate the notation that each particular author decides to use. 
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So the notation used in exam questions (and other questions) may not be the same as the 
notation used in this chapter.  You should try to be flexible and accept whatever notation is given 
to you in a question.  You should also try to stick to the notation given in a question when writing 
your answer to that question. 
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2 The Poisson process 

The Poisson process forms the simplest example of a Markov jump process in continuous 
time.  In studying the Poisson process we shall encounter features which are of general 
applicability in this chapter. 

2.1 Definition 

The standard time-homogeneous Poisson process is a counting process in continuous 

time,  , 0tN t , where tN  records the number of occurrences of some type of event within 

the time interval from 0 to t .  The events of interest occur singly and may occur at any time. 

In fact, we have already given a definition of a Poisson process with parameter   in Chapter 1.  
Recall that it is a continuous-time process, starting at 0, with stationary independent increments, 
and, over a time period of length t , these increments follow a Poisson distribution with 
parameter t .  An alternative definition is given below, and we will show that they are 

equivalent. 

The probability that an event occurs during the short time interval from time t  to time t h  

is approximately equal to h  for small h ; the parameter   is called the rate of the Poisson 
process. 

The Poisson process is very commonly used to model the occurrence of unpredictable 
incidents, such as car accidents or arrival of claims at an office. 

The above definition should be made more precise if it is to be used for calculations.  

Formally, an integer-valued process  , 0tN t , with filtration  , 0tF t , is a Poisson 

process if: 

       1| ( )t h t tP N N F h o h  

        0| 1 ( )t h t tP N N F h o h  (4.1) 

      0,1| ( )t h t tP N N F o h   

where the statement that ( ) ( )f h o h  as  0h  means 



0

( )
lim 0.
h

f h
h

  

As may be seen from the definition, the increment  t h tN N  of the Poisson process is 

independent of past values of the process and has a distribution which does not depend 
on t .  It therefore follows that the Poisson process is a process with stationary, 
independent increments and, in addition, satisfies the Markov property. 

It is far from obvious that the process defined above coincides with the Poisson process 
characterised in Chapter 1 as having independent, stationary, Poisson-distributed 
increments.  That is one of the properties that we shall prove. 
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Distribution of increments 

tN  is a Poisson random variable with mean t . More generally,  t s sN N  is a Poisson 

random variable with mean t , independent of anything that has occurred before time s . 

Proof 

Define     j tp t P N j , the probability that there have been exactly j  events by time t .  

The proof will be complete if we can verify that, for each  0j , 

    


!

jt

j
e t

p t
j

 
 (4.2) 

We will do this by setting up a differential equation and a boundary condition that  jp t  must 

satisfy.  It will then be possible to check that the given expression does satisfy this condition. 

For any  0j , and for small positive h :  

    



 



  

        

   1

( ) ( )

and 1 and 1 ( )

( )(1 ) ( ) ( )

j t h

t t h t t t h t

j j

p t h P N j

P N j N N P N j N N o h

p t h p t h o h 

 

Rearranging this equation, and letting  0h , we obtain, again for  0j : 

    1
( )

( ) ( )j
j j

dp t
p t p t

dt
   (4.3) 

with initial condition (0) 0jp .   

The same analysis yields, in the case  0j : 

  0
0

( )
( )

dp t p t
dt

  (4.4) 

with 0(0) 1p .  It is now straightforward to verify that the suggested solution (4.2) satisfies 

both the differential equations (4.3) and (4.4) as well as the initial conditions. 

Question 

Verify that the function    
!

jt

j
e t

p t
j

 
  satisfies the equations given above. 
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Solution 

If 0j   then:  

0( ) tp t e    

and:   0 0( ) ( )tp t e p t        

as required. 

Otherwise:  

( )
( )

!

t j

j
e t

p t
j

 
   

and: 1
1

( )
( ) ( ) ( ) ( )

! !

t j t
j

j j j
e t e

p t j t p t p t
j j

     
 


        

Also:  

0( 0)
(0) 0

!

j

j
e

p
j

 
   if 0j   and 0(0) 1p     

Hence the boundary condition is also satisfied. 

 
In view of the fact that the increments of N  are stationary and are independent of the past, 
this result may be generalised to a statement that  t s sN N  is a Poisson random variable 

with mean t , independent of anything that has occurred before time s . 

A Poisson process could be used to model motor insurance claims.  The events in this case could 
be occurrences of claims events (eg accidents, fires, thefts etc) or claims reported to the insurer.  
The parameter   represents the average rate of occurrence of claims (eg 50 per day).  The 
assumption that, in a sufficiently short time interval, there can be at most one claim is satisfied 
because we are working in continuous time.  If there is a motorway pile-up, we can say that 
claims occurred at times 3:00, 3:01, 3:02 etc. 

2.2 Sums of independent Poisson processes 

Suppose that claims are made to two insurance companies, A  and B .  The numbers of claims 
made to each are independent and follow Poisson processes with parameters A  (claims per day) 

and B  respectively.  Then the combined number of claims  tA B  is a Poisson process with 

parameter A B  .  This can be verified by checking the three defining properties of a Poisson 

process that are given in Chapter 1. 

Firstly, as both processes start at 0, trivially so does their sum.  It remains to show that the 
increments are independent and stationary, and that the parameter for the combined process is 

A B  . 
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Since the processes are independent of one another, it follows that their increments are 
independent of one another.  These increments are Poisson with parameters ( )A t s   and 

( )B t s  .  Their sum is therefore Poisson, with parameter ( )( )A B t s    (as shown in the 

following question).  They are therefore also stationary and independent.  So we do have a 
Poisson process with parameter A B  . 

Question 

Let ( )X Poisson   and ( )Y Poisson   be independent random variables.  Prove that 

( )X Y Poisson    . 

Solution 

Consider the moment generating function of X Y .  We have: 

 ( 1) ( 1)

( )( 1)

( ) ( ) ( ) by independence

t t

t

X Y X Y

e e

e

M t M t M t

e e

e

 

 



 

 







  

Since this is the same as the MGF of ( )Poisson   , we can apply the uniqueness property of 

MGFs to give the required result. 

Alternatively, if we use the convolution approach, we have: 

0

0

0

( )

0

( )

( ) ( , )

( ) ( ) by independence

=
! ( )!

!
! !( )!

( ) by the binomial expansion
!

k

i

k

i

i k ik

i

k
i k i

i

k

P X Y k P X i Y k i

P X i P Y k i

e e
i k i

e k
k i k i

e
k

 

 

 

 

 

 





  



 




 

     

   






 









 

This is the probability function for the ( )Poisson    distribution.   
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We have shown that if we have two independent Poisson processes with parameters   and  , 

then the sum of the processes is Poisson with parameter   .  This conforms to intuition.  For 

example, suppose that the arrivals of two different types of insurance claim follow a Poisson 
process, one at the rate of 5 per day the other at the rate of 6 per day.  We would expect that the 
total arrivals follows a Poisson process with a rate of 11 per day.  This is true as long as the 
processes are independent. 

2.3 Thinning of Poisson processes 

It is also useful to know that a Poisson process behaves in an intuitive way when considering the 
problem of thinning or sampling.  Again, consider insurance claims arriving such that they follow a 
Poisson process with rate 10 per day.  Then if one in every 10 claims is of a certain type, eg those 
over £10,000, the arrival of these will be Poisson with rate 1 per day.  This assumes that such 
claims occur randomly within the arrivals of all claims.  So every claim that arrives is over £10,000 
with probability 0.1, independently of anything else.  Here we have ‘thinned’ the Poisson process. 

Question 

An insurance company has two types of policy, A and B.  Claims arriving under A follow a Poisson 
process with a rate of 5 per day.  Claims arrive independently under B and follow a Poisson 

process with a rate of 3 per day.  A randomly selected claim from A has a probability of 1
5

 of 

being over £10,000 while a randomly selected claim from B has probability 2
3

 of being over 

£10,000. 

Calculate the number of claims over £10,000 that are expected per day. 

Solution 

We need to calculate the Poisson parameter for claims over £10,000.  This is the sum of the 
parameters for claims over £10,000 from each of A and B.   

By the ‘thinning rule’, claims under A that are over £10,000 arrive as a Poisson process with rate 
1
5

5 1   per day.   

Similarly, for B, the rate is 2
3

3 2   per day. 

So the expected number of claims over £10,000 is 3 per day. 
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2.4 Inter-event times 

Since the Poisson process tN  changes only by unit upward jumps, its sample paths are 

fully characterised by the times at which the jumps take place.  Denote by 0 1 2, , , ....T T T  the 

successive inter-event times (or holding times), a sequence of random variables. 

Xt

t

1

2

3

4

5

6

T0 T1 T2 T4T3 T5 T6

 

Note that we choose (by convention) the sample paths of tX  to be right-continuous so that 


0

1TX ,  
0 1

2T TX , … .   

So: 

 0tN   for values of t  in the interval 0[0, )T   

 1tN   for values of t  in the interval 0 0 1[ , )T T T   

 2tN   for values of t  in the interval 0 1 0 1 2[ , )T T T T T      

and so on.  Because we have chosen the sample paths to be right-continuous, tN  is constant over 

intervals of the form [ , )a b .  If we had chosen the sample paths to be left-continuous, tN  would 

have been constant over intervals of the form ( , ]a b . 

Distribution of holding time random variables 

0 1 2, , , ....T T T  is a sequence of independent exponential random variables, each with 

parameter  . 

Proof 

 0P T t  is the probability that no events occur between time 0 and time t , which is also 

equal to       00 t
tP N p t e  . 
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Now the distribution function of 0T  is        0 1 tF t P T t e  , t > 0, implying that 0T  is 

exponentially distributed. 

Consider now the conditional distribution of 1T  given the value of 0T . 

 

 









          

     

    





1 0 0

0

0

1

0

0

t s

t s s

t s s

t

P T t T s P N T s

P N N T s

P N N

p t

e 

 

where the third equality reflects the independence of the increment  t s sN N  from the past 

of the process (up to and including time s ).   

The above calculation proves two results at once: 1T  is independent of 0T  and has the 

same exponential distribution.  The calculation can be repeated for 2 3, ,T T . 

In summary, all of the inter-event times are independent and are exponentially distributed with 
parameter  .  We will see shortly that for a time-homogeneous Markov jump process, the 
holding time in any given state is exponentially distributed. 

Question 

Claims from a certain group of policies follow a Poisson process with a rate of 5 per day and claims 
can be logged 24 hours a day.  Calculate: 

(i) the probability that there will be fewer than 2 claims reported on a given day 

(ii) the probability that at least one claim will be reported during the next hour 

(iii) the expected time before a claim comes in, given that there haven’t been any claims for 
over a week. 

Solution 

(i)  Fewer than 2 claims in a day 

Let X  denote the number of claims reported in a day.  Then (5)X Poisson  and: 

5 0 5 1
55 5

( 1) 6 0.0404
0! 1!

e e
P X e

 
      

(ii) At least one claim in the next hour 

Let Y  denote the number of claims reported in an hour.  Then  5
24Y Poisson  and:  

5
24( 1) 1 ( 0) 1 0.1881P X P X e        
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Alternatively, we could define T  to be the waiting time in hours until the next reported claim.  

Then 5
24( )T Exp  and:  

5
24( 1) (1) 1 0.1881TP T F e      

(iii) Expected time until the next claim 

The waiting time has the memoryless property, so the time before another claim comes in is 
independent of the time since the last one.  The expected time is therefore the expected value of 
the exponential distribution, which in this case is 0.2 days. 

In real life, the assumptions of a uniform rate and independence may not be valid.  If there 
haven’t been any claims reported for a week this may be because of a ‘blockage’ in the system 
(eg an IT malfunction) and there may well be a ‘catch-up’ effect the next day. 

 
The exponential distribution of the holding times gives us a third definition of the Poisson process.  
We summarise these definitions below. 

Summary of definitions of a Poisson process 

Let   0t tN   be an increasing, integer-valued process starting at 0 (and continuous from the right).  

Let 0  .  Then   0t tN   is a Poisson process if any of the following three equivalent conditions 

hold: 

(1)   0t tN   has stationary, independent increments and for each t , tN  has a Poisson 

distribution with parameter t . 

(2)   0t tN   is a Markov jump process with independent increments and transition 

probabilities over a short time period h  given by: 

  1| ( )t h t tP N N F h o h        

  0| 1 ( )t h t tP N N F h o h       

   0,1| ( )t h t tP N N F o h     

(3) The holding times, 0 1, ,T T   of   0t tN   are independent exponential random variables 

with parameter   and 
0 1 1nT T TN n

    . 

There is also a fourth definition, which is given below.  This is a restatement of (2) using the 
terminology of general Markov jump processes, which we will meet shortly.  For completeness we 
will include it here, although you will have to wait for the definition of a general transition 
rate ij . 
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(4)   0t tN   is a Markov jump process with independent increments and transition rates 

given by: 

  

if

if 1

0 otherwise
ij

j i

j i
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3 Features of time-homogeneous Markov jump processes 

We start with the definition of a Markov jump process. 

Markov jump process 

A continuous-time Markov process tX ,  0t  with a discrete (ie finite or countable) state 

space S  is called a Markov jump process.   

3.1 The Chapman-Kolmogorov equations 

In this chapter consideration will be given to the time-homogeneous case, where 
probabilities  ( )t sP X j X i  depend only on the length of the time interval, t s .   

The transition probabilities of the Markov jump process:  

      0ij tp t P X j X i  

obey the Chapman-Kolmogorov equations: 

 


  ( ) ( ) ( ) for all , 0ij ik kj
k S

p t s p s p t s t  (4.5) 

The derivation of the Chapman-Kolmogorov equations in continuous time is identical to the 
derivation in discrete time.  See Chapter 2. 

3.2 The transition matrix 

Denoting by ( )P t  the matrix with entries ( )ijp t , known as the transition matrix, Equation 

(4.5) reads: 

   ( ) ( ) ( ) for all , 0P t s P s P t s t  

If we know the transition matrix ( )P t  and the initial probability distribution  0( )iq P X i , 

we can find general probabilities involving the process tX  by using the Markov property.   

For instance, when    1 20 nt t t : 

 
          

1 2 1 1 2 10 1 2 1 2 1 1, , ,..., ( ) ( ) ( )
n n nt t t n i ij j j j j n nP X i X j X j X j q p t p t t p t t  

Adding over all states i  gives: 

 
 



         
1 2 1 1 2 11 2 1 2 1 1, ,..., ( ) ( ) ( )

n n nt t t n i ij j j j j n n
i S

P X j X j X j q p t p t t p t t  

The above results are similar to the results given in Section 2 of Chapter 2.   
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3.3 Transition rates 

For Markov chains we have the fundamental notion of the one-step transition probabilities.  This 
is because Markov chains operate in discrete time.  Together with the starting distribution, 

 0 iP X i q  , these fully determine the distribution of the chain.  When we come to deal with 

Markov jump processes, however, we may consider transitions over arbitrarily small times, so 
that time steps of one unit are no longer of the same fundamental importance.   

For a continuous-time process, we consider transition probabilities over a very short time interval 
of time h .  Dividing by h  expresses this as a probability of transition in unit time.  Taking limits as 
h  tends to 0 leads to the concept of a transition rate.  We have seen this before in the two-state 
Markov model of Chapter 3.  Recall that transition rates are also sometimes referred to as 
transition intensities or forces of transition.   

These transition rates are the fundamental concept in continuous time; they are analogous to the 
one-step transition probabilities in the discrete case.  Unlike probabilities, these transition rates 
can take values greater than 1 (as frequently happens with annual recovery rates).  For example, 
if, on average, you spend half an hour in a particular state before leaving, then the transition rate 
out will be 2 per hour. 

In order to differentiate the transition probabilities and avoid technical problems with the 
mathematics, we will make the following assumption. 

We will assume that the functions ( )ijp t  are continuously differentiable.  This is a large 

assumption to make; indeed, the full theory of Markov jump processes permits transition 
probabilities that do not satisfy this requirement.  Such processes are called irregular.  They 
are of little use in practical modelling, however, and the loss involved in restricting our 
attention to regular Markov processes is not significant for the purposes of this course. 

Noting that: 

 


   

0 if
(0)

1 ifij ij
i j

p
i j

  (4.6) 

the assumption of differentiability implies the existence of the following quantities: 

 



  0

0

( )
( ) lim ij ij

ij ij t h

p hd p t
dt h


  

ij  is the force of transition from state i  to state j .  Transition rates in time-homogeneous 

processes do not vary over time.  The function ij  in the expression above is known as the 

Kronecker delta.   

Question 

Explain Equation (4.6). 
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Solution 

(0)ijp  is the probability of simultaneously being in state i  and state j  at time 0.  This is 1 if i j  

but 0 otherwise. 

 
Equivalently, the following relations hold as  0h  (  0h ): 

 
 

  

( ) if
( )

1 ( ) if

ij
ij

ii

h o h i j
p h

h o h i j



 (4.7) 

The interpretation of the first line of (4.7) is simply that the probability of a transition from i  
to j  during any short time interval [ , ]s s h  is proportional to h ; hence the name transition 
rate or transition intensity given to ij .   

So the first line of (4.7) says that if i  and j  are different states, then the probability of going from 

state i  to state j  in a short time interval of length h  is: 

  the force of transition from state  to state ( )h i j o h   

This is similar to Assumption 2 for the two-state Markov model in Chapter 3, which states that: 

 ( )h x t x tq h o h      for small h   

We also assume that the probability of more than one transition in a short time interval of length 
h  is ( )o h .    

Note finally that as a result of (4.7)  0ij  for i j , but  0ii .  In fact differentiating the 

identity  


 1ij
j S

p t  with respect to t  at  0t  yields:  

 


 ii ij
j i

   

Alternatively, we could argue as follows: 

 
0 0 0

1 ( ) 1
( )( ) 1

lim lim lim
ij

j i ijii
ii ij

h h hj i j i

p h
p hp h

h h h
 

   

 


     


   

Generator matrix 

The generator matrix A  of a Markov jump process is the matrix of transition rates.  In other 
words, the ,i j th entry of A  is ij . 

Hence each row of the matrix A  has zero sum. 
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The relationship ii ij
j i

 


   is often used as a working definition of ii .  The transition rate ii

is then defined as minus the sum of the transition rates out of state i . 

As an example, consider the following two-state Markov jump process with transition rates as 
shown below: 

State 1 State 2

0.5

1.2

  

Taking the states in the order 1, 2, the generator matrix is: 

 
0.5 0.5

1.2 1.2

 
  

 

3.4 The time-homogeneous health-sickness-death model 

Consider the following health-sickness-death (HSD) model with constant transition rates. 

H: Healthy S: Sick

D: Dead 

 

 

 

The transition rate from sick to dead is denoted by the Greek letter   (pronounced nu). 

A life may be in the healthy state or the sick state on a number of separate occasions before 
making the one-way transition to the dead state.  Alternatively, a life may pass from the healthy 
state to the dead state without ever having been in the sick state. 

Question 

Give expressions for SH , HH  and DD  using the notation of the HSD model shown above. 
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Solution 

Using this notation, the rates are: 

 , , 0SH HH DD           

 
The generator matrix for the HSD model is:  

0 0 0

A v v

   
 

  
    
 
 

 

Here the order of the states has been taken to be H, S, then D (as usual). 

The rows of this matrix sum to 0, which is consistent with our earlier equation.  A common 
mistake is to think that the rate from dead to dead is 1.  It isn’t.  The transition probability is 1, but 
the transition rate is the derivative, and hence the constant 1 differentiates to 0.   

Another way to think of the last row of this matrix is as follows.  We can’t go from the dead state 
to the healthy state, so the force of transition from dead to healthy is 0.  Similarly, the force of 
transition from the dead state to the sick state is 0.  Each row of the generator matrix must sum 
to 0, so the DD entry must also be 0. 
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4 Kolmogorov’s forward differential equations 

Transition rates are of fundamental importance in that they characterise fully the 
distribution of Markov jump processes.  In order to see this, substitute t h  and s t  in 
(4.5): 

  
 

     ( ) ( ) ( ) ( ) ( )ij ik kj ij ik kj
k S k S

p t h p t p h p t h p t o h  

The second equality follows from the relationship: 

 
( ) if  

( )
1 ( ) if  

kj
kj

kk

h o h j k
p h

h o h j k



 

    
 

This leads to the differential equation: 

 ( ) ( )
Œ

= Âij ik kj
k S

d p t p t
dt

m    for all ,i j     (4.8) 

Either lower case ( )ijp t  or upper case ( )ijP t  may be used to denote these transition probabilities. 

Question 

Derive this differential equation. 

Solution 

From the first Core Reading equation in this section, we have: 

  ( ) ( ) ( ) ( ) ( )ij ik kj ij ik kj
k S k S

p t h p t p h p t h p t o h
 

       

Rearranging this we have: 

 
  ( ) ( )

( )ij ij
ik kj

k S

p t h p t o h
p t

h h




 
   

Taking the limit as 0h   gives the desired result: 

    ij ik kj
k S

d
p t p t

dt



    

since 
0

( )
lim 0

h

o h
h

 . 

 
These differential equations are known as Kolmogorov’s forward equations.  
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Kolmogorov’s forward differential equations (time-homogeneous case) 

These can be written in compact (ie matrix) form as: 

 ( ) ( )
d P t P t A
dt

  

where A  is the matrix with entries kj .   

Recall that A  is often called the generator matrix of the Markov jump process. 

Equipped with this general equation, we can write down specific equations for a given Markov 
jump process and solve them in simple cases. 

Example 

For the HSD model given in Section 3.4, the forward differential equation for ( )HHp t  can be 

obtained by using the general forward equation as a template.  This gives: 

 ( ) ( ) ( ) ( )HH HH HH HS SH HD DH
d

p t p t p t p t
dt

      

Now substituting in for the transition rates, we have: 

 ( ) ( )( ) ( )HH HH HS
d

p t p t p t
dt

       

It is important to be able to write down any forward equation, such as the last one, fairly quickly.  
This means not relying on the general template every time, but instead recognising that these 
equations follow a pattern.  When writing down the equation for H to H above, we are including a 
term for each possible path.  To get from H at the outset to H at the end, we must be in either at 
H or S in the ‘middle’.  The two types of paths to include are therefore H H H   or 
H S H  .  So we can consider the RHS as follows: 

 start with the probability of going from H to H over an interval of length t  (ie ( )HHp t ) and 

multiply this by the force of transition that keeps us in H at time t  (ie ( )   ) 

 then add on the probability of going from H to S over an interval of length t  (ie ( )HSp t ) and 

multiply this by the force of transition that takes us from S to H at time t  (ie  ). 

Question 

Write down Kolmogorov’s forward differential equation for the transition probability ( )HSp t . 
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Solution 

Kolmogorov’s forward differential equation is: 

( ) ( ) ( ) ( )

( ) ( )( )

HS HH HS HS SS HD DS

HH HS

d
p t p t p t p t

dt

p t p t

  

  

  

  

 

 
As we see from the solution above, the equation for ( )HSp t  involves ( )HHp t  as well.  This will also 

be unknown initially so this equation cannot be solved in its own right.  The forward equations for 
all transitions i j  will often need to be constructed and solved as a set of simultaneous 

differential equations.  Generally, writing down such sets of equations is straightforward, but 
solving them is much more difficult.   

We need to be able to solve such equations in simple cases.  We are usually able to use one of 
two methods: separation of variables or the integrating factor method.  We gave a brief review of 
these in an appendix to Chapter 3.   

Example 

A Markov jump process has two states, labelled state 0 and state 1, with forces of transition 

01 0.01   and 10 0.10  . 

The transition diagram for this process is as follows: 

State 0 State 1
0.01

0.10
  

Kolmogorov’s forward differential equation for 01( )p t  is: 

 
01 00 01 01 11

00 01

( ) ( ) ( )

0.01 ( ) 0.10 ( )

d
p t p t p t

dt

p t p t

  

 

 

since 11  is minus the (total) force of transition out of state 1.   

Now, since there are only two states, we have: 

 00 01( ) 1 ( )p t p t   

So the differential equation can be written as: 

  01 01 01 01( ) 0.01 1 ( ) 0.10 ( ) 0.01 0.11 ( )
d

p t p t p t p t
dt
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This equation can be solved using the integrating factor method, by first rewriting it in the form: 

 01 01( ) 0.11 ( ) 0.01
d

p t p t
dt

   

The integrating factor in this case is 0.11te .  Multiplying every term in the previous equation by 
the integrating factor gives: 

 0.11 0.11 0.11
01 01( ) 0.11 ( ) 0.01t t td

e p t e p t e
dt

   

Then integrating both sides with respect to t , we get: 

 

0.11 0.11
01

0.11

( ) 0.01

1
11

t t

t

e p t e dt

e C



 


 

where C  is a constant of integration.  We can calculate the value of C  using the initial condition 

01(0) 0p  .  This gives: 

 
1

0
11

C   

So 
1

11
C   .  Hence: 

  0.11 0.11
01

1
( ) 1

11
t te p t e   

and dividing through by 0.11te  gives: 

  0.11
01

1
( ) 1

11
tp t e   

If the state space S  is finite, (4.8) gives for each fixed i  a finite linear system of differential 

equations (in fact the index i  enters only through the initial condition (4.6)).  Accordingly, 
for given transition rates ij , Equation (4.8) has a unique solution compatible with (4.6).  For 

this reason Markov models are normally formulated simply by specifying their transition 
rates ij . 
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5 Kolmogorov’s backward differential equations 

Substituting s h  in (4.5) and proceeding as before, we obtain a different set of equations, 
known as Kolmogorov’s backward equations. 

Kolmogorov’s backward differential equations (time-homogeneous case) 

These can be written in matrix form as: 

 ( ) ( )
d P t AP t
dt

  

 

Question 

Derive this differential equation. 

Solution 

Substituting s h  into (4.5) gives: 

( ) ( ) ( )ij ik kj
k S

p t h p h p t


    

Now, since:  

( ) ( )ik ikp h h o h   for k i   

and: ( ) 1 ( ) 1 ( ) 1 ( )ii ik ik ii
k i k i

p h p h h o h h o h 
 

          

we have: 

 ( ) ( ) 1 ( ) ( )

( ) ( ) ( )

ij ik kj ii ij
k i

ij ik kj
k S

p t h h p t h p t o h

p t h p t o h

 







    

  




 

If we then take the  ijp t  term to the left-hand side, divide by h and then take the limit 0h   

we obtain the differential equation: 

 ( ) ( )ij ik kj
k S

d
p t p t

dt



   for all ,i j      

or, equivalently: 

 ( ) ( )
d

P t AP t
dt
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Example 

For the time-homogeneous HSD model in Section 3.4, Kolmogorov’s backward differential 
equation for ( )HHp t  can be obtained using the general backward equation as a template.  This 

gives: 

 ( ) ( ) ( ) ( )HH HH HH HS SH HD DH
d

p t p t p t p t
dt

      

Now substituting in the transition rates, we have: 

  ( ) ( ) ( )HH HH SH
d

p t p t p t
dt

       

Once again, it is important to be able to write these equations down without resorting to the 
general equation.  We can think about the RHS of the equation above in the following way: 

 start with the force of transition that keeps us in state H  at the start (ie     ) and 

multiply this by the probability of going from H to H over an interval of length t  (ie ( )HHp t )  

 then add on the force of transition that takes us from H to S at the start (ie  ) multiplied 
by the probability of going from S to H over an interval of length t  (ie ( )SHp t ).  

Question 

Write down the backward equation for the transition probability  HSp t . 

Solution 

The backward differential equation is: 

 
       

     

HS HH HS HS SS HD DS

HS SS

d
p t p t p t p t

dt

p t p t

  

  

  

   

 

 
Under ‘normal’ circumstances, the forward and the backward systems are equivalent; this is 
so in particular when the transition rates are bounded: 

  
,

sup ij
i j

    

Here ‘sup’ stands for ‘supremum’.  Technically, this is the least upper bound of a set.  With finite 
sets, this is the largest value in the set, and you could write ‘max’ instead of ‘sup’.  For example, 
the supremum of the set {0,1,2}  is 2, the same as the maximum value.  The supremum of the set 
(0,2)  is also 2, since 2 is the smallest number that is greater than or equal to all the numbers in 

the set (0,2) .   
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However, when this condition fails, the backward system is of more fundamental 
importance.   

The forward equations are more useful in numerical work for actuarial applications because 
we usually have an initial condition such as knowing that a policyholder is healthy when a 
policy is sold, thus we want equations that we can solve forwards in time from that starting 
point. 
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6 The Poisson process revisited 

We have already mentioned (at the end of Section 2) that the Poisson process can be formulated 
as a Markov jump process.  We now revisit this idea. 

Consider the Markov jump process with state space S = {0, 1, 2, ...} and transition rates: 


 



if =

if = 1

0 otherwise
ij

j i
j i


   

The diagram representation is: 

0 1 2 3  i i



+ 1

 

Recall that, in a Poisson process, events occur one at a time, and it is impossible to move to a 
lower-numbered state.  So, when it leaves state i , the process must enter state 1i  . 

The generator matrix A  in Kolmogorov’s equations is: 

 
  
  
 
 
 
 




0

0

A

 
 

   

This leads to the forward equations: 



  
    

0 0

1

( ) ( )

( ) ( ) ( ), 0
i i

ij ij ij

p t p t
p t p t p t j


 

 

essentially identical to (4.3) and (4.4). 

It is interesting also to consider the backward equations: 

    1,( ) ( ) ( )ij ij i jp t p t p t   

which of course have the same solution as the forward equations despite looking dissimilar. 
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7 Holding times and occupancy probabilities 

We shall see that time-homogeneous processes are an extension of the Poisson process.  Rather 
than increasing in unit steps there can be transitions from each state to any other one.  However, 
the way in which this occurs and the timing of the transitions has a lot in common with the 
Poisson process. 

The exponential character of the holding times of the Poisson process is no accident.  The 
memoryless property: 

       |P T t u T t P T u   

which characterises exponentially distributed random variables, is a necessary requirement 
for the holding times of time-homogeneous Markov processes. 

Consider the first holding time   0 0inf : tT t X X .   

The infimum, inf, is the greatest lower bound of a set.  The first holding time is therefore the 
length of time before the process first changes state. 

Distribution of the first holding time 

The first holding time of a time-homogeneous Markov jump process with transition rates ij  

is exponentially distributed with parameter:  


   i ii ij

j i
    

In other words: 

    0 0| i tP T t X i e   

The proof of this result is beyond the syllabus. 

Here we are defining i  to be the total force of transition out of state i . 

We will also use the notation ( )iip t  to denote the probability of remaining in a state i  throughout 

a period of length t, so ( ) it
iip t e   also.  Unlike the Poisson process, the first holding time 

depends on the initial state i .  However, when given i , the holding time is still exponentially 
distributed with parameter i .   

Question 

State the expected value of the first holding time for a time-homogeneous Markov jump process 
that starts in state i . 
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Solution 

The first holding time in i  has an exponential distribution with parameter i .  The average time is 

therefore 
1

i
. 

 
In the Poisson process the timing of the jumps is everything. 

This is because the value of the process goes up by 1 at a time. 

However, in the more general setting of a Markov jump process, we must also characterise 
the state to which the process jumps; this is remarkably simple: the jump takes place from 

0X i  to 
0TX j  with probability proportional to the transition rate ij  and, moreover, the 

destination of the jump 
0TX   is independent of the holding time 0T .  In order to see this 

consider for j i : 

 








              

           

      



0 0 0 0

0 0 0 0

, | , |

| , |

| , 0

( )

i

i

t h t h

t h

t
t h s

t
ij

P X j t T t h X i P X j T t X i

P X j X i T t P T t X i

P X j X i s t e

p h e





 

Now, divide by h  and let  0h : the joint probability distribution/density of 
0TX  and 0T  is, 

conditionally on 0X i , equal to: 

 i tije
  

So it is the product of the density of the holding time  i tie
  and of ij

i


  .   

This proves two results at once: the probability that the jump out of i  is to state j  is: 

      0 0| ij
T

i
P X j X i j i




 

and moreover 
0TX  is independent of 0T . 

These results are important and they are worth restating. 
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Probability that the process goes into state j when it leaves state i 

Given that a time-homogeneous Markov jump process is currently in state i , the probability that 
it moves into state j  when it leaves state i  is given by: 

 
the force of transition from state  to state 

the total force of transition out of state 
ij

i

i j
i




  

Also, given a jump has occurred, the time at which it took place does not affect the probability of 
the jump being to a particular state. 

As a result of the Markov property, the pattern is identical for successive jumps: after some 
state j  is entered, the process stays there for an exponentially distributed time with 

parameter j .  It then jumps to state k  with probability jk

j




. 

This is a key result for time-homogeneous Markov jump processes, so we will restate it. 

Distribution of holding time random variables and occupancy probabilities 

For a time-homogeneous Markov jump process, let iW  denote the holding time (or waiting time) 

in state i .  Then: 

  i iW Exp   

where i  is the total force of transition out of state i .   

So the probability of staying in state i  for at least t  time units (ie the occupancy probability for 
state i ) is: 

   ( ) it
i iiP W t p t e     

Note that the mean holding time of state j  is 
1

j
; this is an important thing to remember 

when assigning numerical values to the transition rates. 

So if, for example, the transition rate is 12 per hour, the mean holding time is 1 12  hour, ie 5 

minutes. 
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8 Expected time to reach state k starting from state i 

Let im  denote the expected time for the process to reach state k  given that it is currently in 

state i .  Then im  can be calculated using the recursive formula: 

 
,

1 ij
i j

i ij i k
m m


 

    

This formula is given on page 38 of the Tables.  Note that the Tables use the notation ij  instead 

of ij  to denote the force of transition from state i  to state j . 

The first term on the RHS is the expected holding time in state i .  When the process leaves 

state i , the probability that it goes into state j  is ij

i




, as we have just seen in Section 7.  We then 

multiply this probability by the expected time to reach state k  starting from state j , namely jm , 

and sum over all possible values of j .   

Question 

Consider the following Health, Sickness, Death model with the addition of an extra ‘Terminally ill’ 
state, T.  The rates given are per year. 

H
healthy

S
sick

T
terminally

ill

D
dead

0.40

0.150.02

1.00

0.05

0.05

 

(i) Calculate the expected holding time in state S. 

(ii) Calculate the probability that a sick life goes into state D when it leaves the sick state. 

(iii) Calculate the expected future lifetime of a healthy life. 

Solution 

(i) Expected holding time in state S 

The total rate out is 1.2 so the expected holding time is 
1 5

1.2 6
  years.   
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(ii) Probability that a sick life goes into state D when it leaves the sick state 

This is the proportion of the total rate out of S that goes to D, ie: 

 
0.05 1
1.2 24

  

(iii) Expected future lifetime of a healthy life 

Let im  denote the expected future lifetime of a life in state i .  We have: 

0.02 0.05 0.07H     

So: 

 
1 0.02 0.05 100 2

0.07 0.07 0.07 7 7H S D Sm m m m      

since 0Dm  .  Also: 

 1.00 0.15 0.05 1.20S      

So: 

1 1.00 0.15
1.20 1.20 1.20S H Tm m m    

But: 

 
1

2.5
0.40Tm    

So: 

 
1 1.00 0.15 5 55

2.5
1.20 1.20 1.20 6 48S H Hm m m       

and: 

 
100 2 100 2 5 55

7 7 7 7 6 48H S Hm m m      
 

 

This rearranges to give: 

 
5 100 2 55 2,455

1
21 7 7 48 168Hm      

 
 

ie:  19.18Hm   

So the expected future lifetime of a healthy life is 19.18 years. 
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9 The jump chain 

If a Markov jump process is examined only at the times of its transitions, the resulting 

process, denoted  ˆ{ : 0,1, }nX n , where 0X̂  is the initial state, and for  1n : 

   0 1 1
ˆ

nn T T TX X  

is called the jump chain associated with X .   

The jump chain is also sometimes called the embedded chain.  It is the sequence of states that the 
process is observed to take.  The time spent in each state is ignored. 

The foregoing analysis shows that ˆ
nX  is independent of   0 1 1nT T T , ie the time of the 

n th transition, and is also independent of anything that happened prior to the ( 1)n th 

transition: in fact, the distribution of ˆ
nX  depends only on 1

ˆ
nX .  In other words, the jump 

chain possesses the Markov property and is a Markov chain in its own right. 

The only way in which the jump chain differs from a standard Markov chain is when the 

jump process  , 0tX t  encounters an absorbing state.  From that time on it makes no 

further transitions, implying that time stops for the jump chain.  In order to deal with the 
jump chain entirely within the framework of Markov chains it is permissible to treat the 
absorbing state in the same way as for a Markov chain, so that transitions continue to occur 
but the chain remains in the same state after the transition. 

Questions dealing solely with the sequence of states visited by the Markov jump process, 
such as ‘What is the probability that it visits state 0i  before it reaches the absorbing state?’ 

or ‘Is state j  visited infinitely often?’, can be answered equally well with reference to the 

jump chain, since the two processes take identical paths through the state space.  The 
theory of Markov chains can therefore be employed to arrive at solutions to such questions.  
Questions dealing with the time taken to visit a state, however, are likely to have very 
different answers in the two cases and are only accessible using the theory of Markov jump 
processes. 

Question 

Consider the following Health, Sickness, Death model with the addition of an extra ‘Terminally ill’ 
state, T.  The rates given are per year. 

H
healthy

S
sick

T
terminally

ill

D
dead

0.40

0.150.02

1.00

0.05

0.05
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Calculate the probability that a life in the sick state dies without ever recovering to the healthy 
state. 

Solution 

Here we can use the jump chain since the times are irrelevant.  The life must either go straight to 
the dead state at the next jump, or to state T.  If the life goes to state T, then it definitely dies 
without recovering (as it cannot then re-enter state H or state S).  The probability is therefore: 

 
0.05 0.15 0.20 1

1.00 0.05 0.15 1.20 6


 
 

   

Alternatively, we could calculate the required probability as: 

 1 (life enters state H when it leaves state S)P   

ie: 

  
1.00 1

1
1.20 6
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10 Solutions of Kolmogorov equation in elementary cases 

In certain elementary cases, the solutions of the Kolmogorov equation can simply be written 
down, and the two-state model is often an intuitive guide.  For example, consider the two-
decrement model, in which the transition intensities are constant. 

0 = active

1 = dead 2 = retired

 02 01

 

Note that the term active is usually applied to individuals in employment, in order to differentiate 
them from individuals who are healthy but who have retired.  

We have: 

 01 02( )01
01

01 02
( , ) 1 tp x x t e  

 
     

 

 01 02( )02
02

01 02
( , ) 1 tp x x t e  

 
     

 

Here the Core Reading is using the notation ( , )ijp x x t  to denote the probability that a life is in 

state j  at age x t , given that it was in state i  at age x .  We could equally well have used the 

notation ( )ijp t  (since the transition probabilities depend only on the length of the time 

interval, ).t  

Question 

Write down the Kolmogorov forward differential equations for 01( , )p x x t  and 02( , )p x x t .  

Hence derive the two equations above. 

Solution 

The Kolmogorov forward equations for this two-decrement model are: 

 01 00 01( , ) ( , )p x x t p x x t
t


  


   

and:    

02 00 02( , ) ( , )p x x t p x x t
t
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Since it is impossible to leave the active state and subsequently return to it: 

 00 00( , ) ( , )p x x t p x x t    

So: 

 01 02( )
00( , ) tp x x t e      

So the Kolmogorov equations can be written as: 

 01 02( )
01 01( , ) tp x x t e

t
   

 


 

and: 

 01 02( )
02 02( , ) tp x x t e

t
   

 


 

Integrating the first of these equations with respect to t  gives: 

 01 02( )01
01

01 02
( , ) tp x x t e C 

 
    


 

where C  is a constant of integration.   

Since 01( , ) 0p x x  , it follows that: 

 01

01 02
C


 




 

So: 

  01 02( )01
01

01 02
( , ) 1 tp x x t e  

 
   


 

Similarly, integrating the second equation and using the initial condition 02( , ) 0p x x  , we obtain: 

  01 02( )02
02

01 02
( , ) 1 tp x x t e  

 
   


 

 
These probability formulae are easily interpreted – the term in brackets is the probability of 
having left the active state, and the fraction gives the conditional probability of each 
decrement having occurred, given that one of them has occurred. 

01 02( )
00( , ) tp x x t e      is the probability that an active life aged x  stays in the active state 

(state 0) up to age x t . 
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However, in practice we do not always work with such simple models, or with constant 
transition intensities, and it is not possible to rely on solving the equations explicitly.  
Fortunately this does not matter; the Kolmogorov equations are quite simple to solve using 
ordinary numerical techniques.   

In the computer-based part of Subject CS2, we will see how R can be used to calculate transition 
probabilities.  
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11 The maximum likelihood estimator in the general model 

As we saw earlier in this chapter, the two-state model can be extended to any number of 
states, with arbitrary transitions between them, including increments and repeated 
transitions.  Consider again the illness-death model, which has three states: healthy (H), 
sick (S) and dead (D): 

H: Healthy S: Sick

D: Dead 

 

 

 

The observations in respect of a single life are now: 

(a) the times between successive transitions; and 

(b) the numbers of transitions of each type. 

If the transition intensities are constant, each spell of length t in the healthy or sick states 

contributes a factor of the form  ( )te    or  ( )te    respectively to the likelihood, so it 
suffices to record the total waiting time spent in each state.   

We saw in Section 7 that the probability of staying in state i  for at least another t  time units is 

i te  , where i  denotes the total force of transition out of state i . 

Question 

Given that the chance of becoming sick or dying increases with age, comment on the 
appropriateness of the assumption that transition intensities are constant. 

Solution 

Although the chance of becoming sick or dying does usually increase with age, we are usually 
observing a large number of lives simultaneously over a narrow age interval, ie between ages x  
and 1x  .  Provided we confine our study to such intervals, it may be appropriate to assume that 
transition intensities over these intervals are constant. 

It is harder to justify the assumption that the transition rate for recovery is constant.  In practice, 
this will vary significantly with the duration of sickness. 

 

( )t

( )t

( )t ( )t
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The Core Reading now defines some notation.  This is not standard notation, and it is quite 
cumbersome.  You should be able to deal with whatever notation is used in a given situation.  We 
will introduce some more general notation at the end of Section 11.1. 

Define: 

 Waiting time of the th life in the healthy stateiV i  

 Waiting time of the th life in the sick stateiW i  

 Number of transitions healthy  sick by the th lifeiS i   

 Number of transitions sick  healthy by the th lifeiR i   

 Number of transitions healthy  dead by the th lifeiD i   

 Number of transitions sick  dead by the th lifeiU i   

We also need to define totals 
1

N
i

i
V V


  (and so on). 

11.1 Maximum likelihood estimators 

Using lower case symbols for the observed samples as usual, it is easily shown that the 
likelihood for the four parameters, , , ,    , given the data is proportional to: 

       ( , , , ) v w d u s rL e e            

This result is obtained using a similar method to that for the two-state model, as set out in 

Chapter 3.  The likelihood function  , , ,L      for the i th life reflects: 

 the probability of the life remaining in the healthy state for total time iv  and in the sick 

state for time iw , giving the factors 
( )vie
  

 and 
( )wie
  

 respectively 

 the probability of the life making the relevant number of transitions between states, 

giving the factors , ,  and 
d u s ri i i i    . 

The likelihood factorises into functions of each parameter of the form  v de   : 

ie 

       

( ) ( )( , , , ) v w d u s r

v d v s w u w r

L e e

e e e e

    

   

      

  

   

   



   

 

So the log-likelihood is: 

 log ( ) ( ) log log log logL v w d u s r                 
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Differentiating this with respect to each of the four parameters gives: 

 
log L d

v
 


  


  

log L u
w

 


  


 

 
logL s

v
 


  


  

log L r
w

 


  


 

Setting each of these derivatives equal to 0 and solving the resulting equations, we see that: 

 
d
v

    
u
w

    
s
v

    
r
w

   

When there is more than one parameter to be estimated, the second order condition to check for 
maxima is that the Hessian matrix is negative definite, or equivalently, the eigenvalues of the 
Hessian matrix are all negative.  The Hessian matrix is the matrix of second derivatives.  So in this 
case we consider the matrix: 

 

2 2 2 2

2 2

2 2 2 2

2 2

2 2 2 2

22

2 2 2 2
2

2

ln ln ln ln
0 0 0

ln ln ln ln
0 0 0

ln ln ln ln 0 0 0

0 0 0ln ln ln ln

L L L L d

L L L L u

sL L L L

r
L L L L

      

      

     

      

             
 
             

            
               




 
 
 
 
 
 
 
 
 



 

Since this is a negative definite matrix, the maximum likelihood estimates of , , ,     are: 

 ˆ d
v

    ˆ u
w

    ˆ s
v

    ˆ r
w

   

However, checking the Hessian matrix is beyond the scope of the Subject CS2 syllabus. 

 The maximum likelihood estimators are: 

      , , ,
D U S R
V W V W

     

What we have just seen is a special case of a general result.   
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Estimating transition rates in a time-homogeneous Markov jump process 

The maximum likelihood estimate of the transition rate ij  is: 

 ˆ ij
ij

i

n

t
   

where ijn  is the number of transitions from state i  to state j , and it  is the total waiting time (or 

total holding time) in state i . 

Example 

During a large study into rates of sickness: 

 2,710 healthy lives fell sick and 2,490 sick lives recovered 

 70 healthy lives and 120 sick lives died. 

For the whole group, the periods of health and sickness totalled 41,200 and 6,700 years, 
respectively. 

So we have: 

 

41,200 6,700

2,710 2,490

70 120

H S

HS SH

HD SD

t t

n n

n n

 

 

 

 

and the maximum likelihood estimates of the transition rates are: 

 

2,710 2,490ˆˆ 0.0658 0.3716
41,200 6,700

70 120ˆˆ 0.0017 0.0179
41,200 6,700

HS SH

H S

SDHD

H S

n n
t t

nn
t t

 

 

     

     

 

11.2 Properties of the estimators 

The asymptotic properties of these estimators follow from results similar to equations (3.2) 

and (3.3) in Section 4.2 of Chapter 3, and the fact that the random variables  i iD V , 

       , ,i i i i i iU W S V R W    are uncorrelated, that is: 

    ( )( ) 0  i i i iE D V U W etc   
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Recall that: 

 Waiting time of the th life in the healthy stateiV i  

 Waiting time of the th life in the sick stateiW i  

 Number of transitions healthy  sick by the th lifeiS i   

 Number of transitions sick  healthy by the th lifeiR i   

 Number of transitions healthy  dead by the th lifeiD i   

 Number of transitions sick  dead by the th lifeiU i   

The estimators are not independent: iD  and iU  are both 0 or 1, but  1i iD U , while 

(assuming that the i th life starts in the able state)  or 1i i iS R R .   

Question 

Explain in words why: 

(i) iD  and iU  are both 0 or 1, but 1i iD U   

(ii) assuming that the i th life starts in the healthy state, or 1i i iS R R  . 

Solution 

(i) A life must be in one of two states at the point of death.  The life may be in the healthy 
state ( 1iD  ) or it may be in the sick state ( 1iU  ).  It cannot be in both states, so 

1i iD U  .  (In fact, i iD U  always equals zero.) 

(ii) Suppose that a life starts in the healthy state.  If it is in the healthy state at the point of 
death, then it must have made the same number of transitions from healthy to sick as 
from sick to healthy (ie i iS R ).  If it is in the sick state at the point of death, then it must 

have made one more transition from healthy to sick than it did from sick to healthy, in 
which case 1i iS R  . 

 
The estimators are, however, asymptotically independent: the same argument as in the 
two-state model shows that: 

 the vector    , , ,    has an asymptotic multivariate normal distribution; 

 each component has a marginal asymptotic distribution of the same form as before: 

  
 
 
 

 ~ ,  
[ ]

Normal etc
E V
   

 asymptotically, the components are uncorrelated and so independent (being 
normal). 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-04: Time-homogeneous Markov jump processes Page 43 

The Actuarial Education Company © IFE: 2019 Examinations 

Recall that defining several random variables simultaneously on a sample space gives rise to a 
multivariate distribution.   

Question 

State the marginal asymptotic distributions of  ,   and  .  

Solution 

,  
[ ]

N
E W
  

 
 

   ,  
[ ]

N
E V
  

 
 

   ,  
[ ]

N
E W
  

 
 

   

 
Recall that maximum likelihood estimators have the following properties: 

 they are asymptotically normally distributed 

 they are asymptotically unbiased (ie if   is an estimator of  , then ( )E   ) 

 asymptotically, the variance of a maximum likelihood estimator is equal to the Cramér-Rao 
lower bound (CRLB).  The formula for the CRLB is given on page 23 of the Tables.   

So the maximum likelihood estimators ij  of the transition rates ij  all have the above 

properties.  These results can be used to construct confidence intervals for the transition 
intensities or as the basis for hypothesis tests.   

11.3 Calculating the total waiting time 

The calculation of the estimates ̂ , etc, requires the total waiting time to be computed.  This 

can be done exactly in some circumstances, but, if the exposure data are in census form, 
the simple census formulae in Chapter 9 provide estimates.  Multiple state models are, 
therefore, especially well suited to the data available in many actuarial investigations. 

In order to calculate total waiting time exactly, we would need to know the exact timing of each 
transition.  This may not be possible in practice if full information is not available.  Alternatively, it 
may be possible to perform the calculations but the process may be too time-consuming for it to 
be worthwhile. 

A simpler approach to data collection is the census approach, in which a series of observations 
(‘snapshots’) of a population is recorded, usually at regular intervals.  Data in census form do not 
allow us to calculate waiting times exactly, but some simplifying assumptions allow us to calculate 
estimates quite accurately.   

For example, we may observe 100 nonagenarians on 1 January 2018 and find that only 84 of these 
individuals are still alive at 1 January 2019.  We could estimate the total waiting time by assuming 
that deaths occurred half way through the year on average.  The accuracy of our estimated 
transition intensities would depend on the suitability of our assumption. 
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Actuarial investigations typically use the census approach to data collection, eg population studies 
from national censuses or the analysis of the experience of a pension scheme or a life insurance 
company as part of the regular valuation process. We will look at this area in more detail in 
Chapter 9. 

A range of packages have been written in R to implement multiple state models. Several of 
these are described, with illustrative code, in Beyersmann, J., Schumacher, M. and Allignol, 
A. Competing Risks and Multistate Models with R (London, Springer, 2012).  
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Chapter 4 Summary 

Poisson processes 

Let   0t tN   be an increasing, integer-valued process starting at 0 (and continuous from the 

right).  Let 0  .  Then   0t tN   is a Poisson process with rate   if any of the following four 

equivalent conditions hold: 

(1)   0t tN   has stationary, independent increments and for each t , tN  has a Poisson 

distribution with parameter t . 

(2)   0t tN   is a Markov jump process with independent increments and transition 

probabilities over a short time period of length h  given by: 

  1| ( )t h t tP N N F h o h        

  0| 1 ( )t h t tP N N F h o h       

   0,1| ( )t h t tP N N F o h     

(3) The holding times, 0 1, ,T T   of   0t tN   are independent exponential random 

variables with parameter   and 
0 1 1nT T TN n

    . 

(4)   0t tN   is a Markov jump process with independent increments and transition rates 

given by: 

  

if

if 1

0 otherwise
ij

j i

j i


 

 
  



 

Sums of Poisson processes 

If we have two independent Poisson processes with parameters   and  , then the sum of 

the two processes is another Poisson process with parameter   . 

Thinning of a Poisson process 

When the events in a Poisson process are of different types, each type occurring at random 
with a certain probability, the events of a particular type form a thinned process.  The 
thinned process is also a Poisson process, with rate equal to the original rate multiplied by 
the probability for the type of event. 
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Inter-event times in a Poisson process

Suppose that 0 1 2, , ,...T T T  are the successive inter-event times or holding times in a Poisson 

process with parameter  .  Then 0 1 2, , ,...T T T  are independent ( )Exp   random variables. 

Markov jump processes 

A Markov jump process is a stochastic process with a continuous time set and discrete state 
space that satisfies the Markov property. 

Time-homogeneous Markov jump processes 

A Markov jump process is said to be time-homogeneous if the transition probabilities 

 |t sP X j X i   depend only on the length of the time interval, t s .  Then: 

  0( ) |ij tp t P X j X i    

Chapman-Kolmogorov equations 

 ( ) ( ) ( )ij ik kj
k

p s t p s p t    for all , 0s t   

Transition rates 

The transition rates (or transition intensities or forces of transition) for a time-homogeneous 
Markov jump process are given by: 

 
00

( ) (0)
( ) lim ij ij

ij ij
ht

p h pd
p t

dt h





   

This is equivalent to: 

 
( )

( )
1 ( )

ij
ij

ii

h o h if i j
p h

h o h if i j



 

    
 

for small values of h . 

Generator matrix 

The generator matrix is the matrix of transition rates.  It is usually denoted by A .  Each row 

of the generator matrix sums to zero since ii ij
j i

 


  . 
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Backward and forward differential equations (time-homogeneous case)

Forward: ( ) ( )ij ik kj
k S

d
p t p t

dt



    

  ( ) ( )
d

P t P t A
dt

   (matrix form) 

Backward: ( ) ( )ij ik kj
k S

d
p t p t

dt



   

  ( ) ( )
d

P t AP t
dt

  (matrix form)   

Holding time random variables 

For a time-homogeneous Markov jump process, let iT  denote the holding time in state i .  

Then ( )i iT Exp  , where i  is the total force of transition out of state i .  The expected 

holding time in state i  is 
1

i
. 

Occupancy probabilities  

The probability of remaining in state i  for at least t  time units is:  

   ( ) i t
i iiP T t p t e     

Probability that the process goes into state j when it leaves state i 

Given that a time-homogeneous Markov jump process is currently in state i , the probability 

that it moves into state j  when it leaves state i  is ij

i




. 

Expected time to reach a given state 

To calculate the expected time to reach a given state, state k , starting from state i , we can 
apply the following formula recursively: 

,

1 ij
i j

i ij i k
m m


 

    

This formula is given on page 38 of the Tables. 
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Jump chains 

The jump chain (or embedded chain) of a Markov jump process is the sequence of states that 
the process enters.  The time spent in each state is ignored.  The jump chain is a Markov 
chain in its own right. 

Estimating transition rates 

The maximum likelihood estimate of the transition rate ij , i j , is: 

 ˆ ij
ij

i

n

t
   

where ijn  is the number of transitions from state i  to state j , and it  is the total waiting 

time (or total holding time) in state i . 

The maximum likelihood estimate of the transition rate ii  is ˆ ˆii ij
j i

 


  . 

The maximum likelihood estimator of ij  has the following properties: 

 it is asymptotically normally distributed 

 it is asymptotically unbiased  

 asymptotically, its variance is given by the Cramér-Rao lower bound (CRLB).  The 
formula for the CRLB is given on page 23 of the Tables.   
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Chapter 4 Practice Questions 

4.1 For a Poisson process with rate  : 

(i) state the distribution of the inter-arrival time random variable, T     

(ii) give an expression for the probability that exactly one event will occur during a finite time 
interval of length t .  

4.2 Claims on a portfolio of policies occur according to a Poisson process with a mean rate of 5 claims 
per day.  Claim amounts are 10, 20 or 30.  20% of claims are of amount 10, 70% are of amount 20 
and 10% are of amount 30. 

(i) Calculate the expected waiting time until the first claim of amount 30.  

(ii) Calculate the probability that there are at least 10 claims during the first 2 days, given that 
there were exactly 6 claims during the first day.  

(iii) Calculate the probability that there are at least 2 claims of amount 20 during the first day 
and at least 3 claims of amount 20 during the first 2 days.  

(iv) Calculate the conditional variance of the number of claims during the first day, given that 
there are 2 claims of amount 10 during the first day.  

4.3  tX  is a Markov jump process with state space  0,1,2,S    and 0 0X  .  The transition rates 

are given by:  

 

if 1

if

0 otherwise
ij

j i

j i


 

 
  



 

(i) Write down the transition probabilities ( )ijp t .  

(ii) Define the term holding time.    

(iii) Find the distribution of the first holding time 0T .    

(iv) State the value of 
0TX .   

(v) Given that the increments are stationary and independent, state the distributions of 

0 1 2, , ,T T T  .  Justify your answer.  

4.4 A particular machine is in constant use.  Regardless of how long it has been since the last repair, it 
tends to break down once a day (ie once every 24 hours of operation) and on average it takes the 
repairman 6 hours to fix. 

You are modelling the machine’s status as a time-homogeneous Markov jump process 
{ ( ) : 0}X t t   with two states: ‘being repaired’ denoted by 0, and ‘working’ denoted by 1. 

Let , ( )i jP t  denote the probability that the process is in state j  at time t  given that it was in state 

i  at time 0 and suppose that t  is measured in days. 
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(i) State the two main assumptions that you make in applying the model and discuss briefly 
how you could test that each of them holds.  

(ii) Draw the transition graph for the process, showing the numerical values of the transition 
rates.  

(iii) State Kolmogorov’s backward and forward differential equations for the probability 

 0,0P t .  

(iv) Solve the forward differential equation in (iii) to show that: 

    5
0,0

1 4
5 5

tP t e    

4.5 Claims on an insurer’s travel insurance policies arriving in the claims department (state A) wait for 
an average of two days before being logged and classified by a claims administrator as requiring: 

 investigation by a loss adjuster (state L), 

 more details from the insured (state I), 

 no further information is required and the claim should be settled immediately  (state S). 

Only one new claim in ten is classified as requiring investigation by a loss adjuster, and five in ten 
require further information from the insured. 

If needed, investigation by a loss adjuster takes an average of 10 days, after which 30% of cases 
require further information from the insured and 70% are sent for immediate settlement. 

Collecting further information from the insured takes an average of 5 days to complete, and 
immediate settlement takes an average of 2 days before the settlement process is complete 
(state C).   

It is suggested that a time-homogeneous Markov process with states A, L, I, S and C could be used 
to model the progress of claims through the settlement system with the ultimate aim of reducing 
the average time to settle a claim. 

(i) Calculate the generator matrix,  ; , , , , ,ij i j A L I S C  , of such a model. [2] 

(ii) Calculate the proportion of claims that eventually require more details from the 
insured.  [2] 

(iii) Derive a forward differential equation for the probability that a claim is yet to be logged 
and classified by a claims administrator at time t .  Solve this equation to obtain an 
expression for the probability. [4] 

    [Total 8] 
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4.6 An n -state, time-homogeneous Markov jump process with transition probability matrix ( )P t  over 

a period of length t , is said to have a stationary distribution, 1( , , )n    ,  if: 

 (1) ( )P t   

 (2) 0 1i   for each 1, 2, ,i n   

 (3) 
1

1
n

i
i




  

(i) Explain why condition (1) is equivalent to the condition 0A   where A  is the generator 

matrix and 0  is an n -dimensional vector whose entries are all 0. [1] 

In a particular company the salary scale has only two different levels.  On average, an employee 
spends 2 years at level 1  before moving on to the higher level, or leaving the company.  An 
employee at the maximum level spends an average of 5 years before leaving.  Nobody is 
demoted, promotion can occur at any time, and mortality can be ignored. 

Upon leaving level 1, the probability that an employee moves to level 2 is 50%. 

(ii) Explain how you could model this as a Markov process, commenting on any assumptions 
that you make.  [2] 

(iii) Derive the generator matrix of the Markov jump process. [2] 

(iv) The company currently has 1,000 employees.  The proportions at levels 1 and 2 are 60% 
and 40% respectively.  Use a forward differential equation to determine the distribution 
of these employees in five years’ time.  You should assuming that nobody joins the 
company in the future. [6] 

    [Total 11] 
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4.7 (i) The following multiple state model has been suggested as a representation of deaths and 
retirements between the ages of 59 and 60.  There are no other decrements and the 

forces of decrement   and   are constant.  Let ij
t xp  denote the probability that a life is 

in state j  at age x t  given that it was in state i  at age x . 

 

      

     

    

     

(a) State the assumptions underlying the above model.    

(b) Show that ( )aa t
t xp e     for 59 60x x t    .    

(c) Suppose that you make the following observations in respect of n  identical and 
statistically independent lives: 

  v  = time spent in the active state 

 d  = number of deaths 

 r  = number of retirements 

 Assuming that lives are only observed to the earlier of death or retirement, show 
that the likelihood for   and   given these observations is: 

   ( )( , ) v d rL e         

(d) Give formulae (without proof) for: 

  – the maximum likelihood estimator of the parameter   

  – the asymptotic expected value of the estimator 

  – an estimated standard error of the estimator. [16] 

(ii) Suppose that you learn that retirements can only take place on a birthday, so that r  is the 
number of retirements at exact age 60.  In addition to v , d  and r  you also observe: 

m   number of lives attaining exact age 60, where m n .  Suppose that any life attaining 
exact age 60 will retire with probability k , where 0 1k  . 

(a)  State the likelihood for   and k , given v , d , r  and m .    

 (b) Give a formula (without proof) for the maximum likelihood estimate of the 
parameter k. [4] 

    [Total 20] 

  a = active 

     d = dead 

   r = retired 
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4.8 Vehicles in a certain country are required to be assessed every year for road-worthiness. At one 
vehicle assessment centre, drivers wait for an average of 15 minutes before the road-worthiness 
assessment of their vehicle commences.  The assessment takes on average 20 minutes to 
complete.  Following the assessment, 80% of vehicles are passed as road-worthy allowing the 
driver to drive home.  A further 15% of vehicles are categorised as a ‘minor fail’; these vehicles 
require on average 30 minutes of repair work before the driver is allowed to drive home.  The 
remaining 5% of vehicles are categorised as a ‘significant fail’; these vehicles require on average 
three hours of repair work before the driver can go home. 

A continuous-time Markov model is to be used to model the operation of the vehicle assessment 
centre, with states W  (waiting for assessment), A  (assessment taking place), M  (minor repair 
taking place), S  (significant repair taking place) and H  (travelling home). 

(i) Identify the distribution of the time spent in each state. [1] 

(ii) Write down the generator matrix for this process. [2] 

(iii) (a) Use Kolmogorov’s forward equations to write down differential equations 

satisfied by  WMp t  and by  WAp t . 

 (b) Verify that = /20 /15( ) 4 4t t
WAp t e e   for 0t  , where t  is measured in minutes. 

 (c) Derive an expression for  WMp t  for 0t  . [7] 

(iv) Let iT  be the expected length of time (in minutes) until the vehicle can be driven 

home given that the assessment process is currently in state i .   

 (a) Explain why 15W AT T  .  

 (b) Derive corresponding equations for ,  and A M ST T T .  

 (c) Calculate WT . [4] 

    [Total 14] 

 

  

Exam style 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 54 CS2-04: Time-homogeneous Markov jump processes 

© IFE: 2019 Examinations  The Actuarial Education Company 

 

 

 

 

 

 

 

  

The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 4 Solutions 

4.1 (i) Distribution of the inter-arrival time 

The distribution of the inter-arrival time random variable is ( )Exp  .  

(ii) Probability of exactly one event 

The distribution of the number of occurrences in a time period of length t  is ( )Poisson t .  So the 

probability of exactly one event is tte   .  

4.2 (i) Expected waiting time until the first claim of amount 30 

Claims of amount 30 occur according to a Poisson process with a mean of 0.1 5 0.5   per day.  
So the waiting time until the first claim of amount 30 has an (0.5)Exp  distribution and the 

expected waiting time is 1
0.5

2  days.  

(ii) Probability that there are at least 10 claims during the first 2 days, given that there 
were exactly 6 claims during the first day 

Let ( )N t  denote the number of claims during the interval  0,t .  Then: 

 

   
 

(2) 10 (1) 6 (2) (1) 4 (1) (0) 6

(2) (1) 4

P N N P N N N N

P N N

      

     

since  0 0N  and the numbers of claims in non-overlapping time intervals are independent. 

Now (2) (1) (5)N N Poisson  , so: 

 

   

 
1 2 3

5

(2) 10 (1) 6 (5) 4

1 (5) 3

5 5 5
1 1

1! 2! 3!

0.73497

P N N P Poisson

P Poisson

e

   

  

 
      

 

   

(iii) Probability that there are at least 2 claims of amount 20 during the first day and at least 
3 claims of amount 20 during the first 2 days 

Let 20( )N t  denote the number of claims of amount 20 in the interval [0, ]t .  We want: 

  20 20(1) 2, (2) 3P N N   
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If we have 3 or more claims during the first day, then the second condition is automatically 
satisfied.  If we have exactly 2 claims on the first day, then we need at least 1 claim on the second 
day.  So the required probability is: 

    20 20 20 20(1) 3 (1) 2, (2) (1) 1P N P N N N       

Now 20(1)N  and 20 20(2) (1)N N  are both Poisson with mean 0.7 5 3.5  .  Also, 20(1)N  and 

20 20(2) (1)N N  are independent.  So: 

    
1 2

3.5
20 20

3.5 3.5
(1) 3 1 (1) 2 1 1 0.679153

1! 2!
P N P N e

 
          

 
 

and: 

 

     

   

20 20 20 20 20 20

20 20 20

3.5 2
3.5

(1) 2, (2) (1) 1 (1) 2 (2) (1) 1

(1) 2 1 (2) (1) 0

3.5
1

2!

0.179374

P N N N P N P N N

P N P N N

e
e




      

      

   

   

The required probability is: 

    20 20 20 20(1) 3 (1) 2, (2) (1) 1 0.679153 0.179374 0.85853P N P N N N          

(iv) Conditional variance 

Let ( )jN t , 10,20,30j  , denote the number of claims of amount j  in the interval [0, ]t .  Then: 

 10 20 30(1) (1) (1) (1)N N N N    

and: 

 

 

 

   

10 10 20 30 10

20 30

20 30

20 30

var (1) (1) 2 var (1) (1) (1) (1) 2

var 2 (1) (1)

var (1) (1)

var (1) var (1)

N N N N N N

N N

N N

N N

         

  

 

    

by independence. 

Now, since 20(1) (3.5)N Poisson  and 30(1) (0.5)N Poisson : 

 10var (1) (1) 2 3.5 0.5 4N N        

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-04: Time-homogeneous Markov jump processes Page 57 

The Actuarial Education Company © IFE: 2019 Examinations 

4.3 The process defined is a Poisson process with parameter  .   

(i) Transition probabilities 

Since the distribution of the increments is ( )Poisson t , these are: 

 
( )

( ) for  
( )!

t j i

ij
e t

p t j i
j i

  
 


   

(ii) Holding time 

The holding times are inter-event times.  In other words, the time spent in a particular state 
between transitions.  For the process given, the i th holding time 1iT   is the time spent in state 

1i   before the transition to state i .  

(iii) Distribution of the first holding time 

We have: 

    0 0 0 00| 0 0| 0 ( ) t
tP T t X P X X P t e           

and it follows that 0T  has an ( )Exp   distribution.  

(iv) Value of 
0TX  

0
1TX   since we choose the sample paths to be right-continuous.  So at time 0T  it has just 

jumped to 1.    

(v) Distribution of i th holding time 

Consider iT : 

  

1 1

0 0
0 0

0 00

| 0, 0| 0,

0 ( )

i i

i j t s s j
j j

t
t

P T t X T s P X X X T s

P X X P t e 

 


 



   
          
      

    

 

  

The second equality is due to the increments being independent and stationary.  Hence iT  also 

has an exponential distribution with parameter  . 

4.4 (i) Assumptions 

We are assuming that the process is Markov and that the transition rates are constant.  

The Markov property of the underlying jump chain can be tested using a chi-squared test based 
on triplets of successive observations.    

A chi-squared test can also be used to test whether the waiting times are exponentially 
distributed with constant parameter.  
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(ii) Transition graph 

The expected holding time in the broken down state (State 0) is 0.25 days and the expected 

holding time in the working state (State 1) is 1 day.  Since the holding time in State i  is  iExp  , 

we have: 

  0 0
0

1
0.25 4E T 


     

and: 

  1 1
1

1
1 1E T 


      

The transition graph is as follows: 

 

1
Working

0
Being

repaired

4

1
  

(iii) Kolmogorov’s differential equations 

The backward differential equation is: 

      0,0 0,0 1,04 4
d

P t P t P t
dt

     

and the forward differential equation is: 

            0,0 0,0 0,1 0,0 0,14 1 4
d

P t P t P t P t P t
dt

          

(iv)  Proof 

Since    0,1 0,01P t P t  , we have the differential equation: 

    0,0 0,01 5
d

P t P t
dt

   

together with the boundary condition  0,0 0 1P  .  
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We can solve this equation and boundary condition using an integrating factor of 5te : 

 

   

  
 

 

5 5 5
0,0 0,0

5 5
0,0

5 5
0,0

5
0,0

5

1
5

1
5

t t t

t t

t t

t

d
P t e P t e e

dt

d
P t e e

dt

P t e e K

P t Ke

 

 

  

  

 

Applying the boundary condition  0,0
4

0 1
5

P K   .  So we have the required result. 

4.5 (i) Generator matrix  

The information given in the question about the occupancy times in each state and the transition 
probabilities in the Markov jump chain can be summarised as: 

 

A I

S C

L

2 days

10 days

2 days

5 days
70%

30%

100%

10%

50%

40%

100%

 

Note that this is not a proper transition diagram, as a transition diagram must show the forces of 
transition. 

The total force out of each state is equal to the reciprocal of the expected holding time.  The 
percentages indicate how the total force is divided between destination states. 
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The generator matrix is: 

 

                                            

0.5 0.5 0.1 0.5 0.5 0.5 0.4 0

0 0.1 0.1 0.3 0.1 0.7 0

0 0 0.2 0.2 1 0

0 0 0 0.5 0.5 1

0 0 0 0 0

0.5 0.05 0.25 0.2 0

0 0.1 0.03 0.07 0

                            0

A L I S C

    
    
  
 

  
  




 0 0.2 0.2 0

0 0 0 0.5 0.5

0 0 0 0 0

 
 
 
 
 

 
    [2] 

(ii) Proportion of claims that require further details from the insured 

We can list all the paths that correspond to the event of visiting state I  if the process starts in 
state A . 

These are  and A L I S C A I S C       . [1] 

The probabilities of these paths are 0.10 0.30 1 1 0.03 and 0.50 1 1 0.50       .  The total 
probability is 0.53.   [1] 

Alternatively we can use a more general approach.  This has the advantage of working in more 
complicated situations where the path counting approach becomes very cumbersome. 

Let never visit state  currently in state ip P I i    , then using the Markov jump chain transition 

matrix: 

 

0 0.10 0.50 0.40 0

0 0 0.30 0.70 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

 
 
 
 
 
 
  

 

we can write: 

 

0.1 0.5 0.4 0.07 0.40 0.47

0.3 0.7 0.7

0

1

1

A L I S

L I S

I

S

C

p p p p

p p p

p

p

p
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The required probability is 1 1 0.47 0.53Ap    . 

(iii) Probability that a claim is yet to be logged and classified by a claims administrator at 
time t 

The Chapman-Kolmogorov equation is: 

 ( ) ( ) ( )AA AA AAP t h P t P h   

This assumes that the process satisfies the Markov property.  [½] 

Then the law of total probability allows us to write: 

 ( ) ( ) ( ) ( ) ( ) 1AA AL AI AS ACP h P h P h P h P h      [½] 

The definition of the transition rates gives: 

 

( ) 0.05 ( )

( ) 0.25 ( )

( ) 0.20 ( )

AL

AI

AS

P h h o h

P h h o h

P h h o h

 

 

   [½] 

Also, ( ) ( )ACP h o h  because it involves more than one transition. [½] 

Substituting we obtain: 

 ( ) 1 0.05 0.25 0.20 ( )AAP h h h h o h      

 

 ( ) ( ) 1 0.05 0.25 0.20 ( )

( ) ( ) ( )
0.50 ( )

( ) 0.50 ( )

AA AA

AA AA
AA

AA AA

P t h P t h h h o h

P t h P t o h
P t

h h

d
P t P t

dt

      

 
   

    [1] 

Separating the variables: 

 
( )

ln ( ) 0.50
( )

AA
AA

AA

d
P t ddt P t

P t dt
     

Then integrating with respect to t : 

 ln ( ) 0.50AAP t t C     

where C  is a constant of integration.  Using the initial condition (0) 1AAP  , we see that 0C   and 

hence: 

   0.50t
AAP t e  [1] 
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4.6 (i) Equivalent first condition for stationary 

Since (0)A P  and the vector   is constant, differentiating the equation ( )P t   with respect 

to t  gives and setting 0t   gives: 

 0A     [1] 

(ii) Modelling as a Markov process 

This is a 3-state Markov jump process.  The states are (1) level 1; (2) level 2; (3) left the company. 
    [½] 

We have made the Markov assumption, ie that the probability of jumping to any particular state 
depends only on knowing the current state that is occupied. [1] 

We have assumed that transition rates between states are constant over time.  [½] 

(iii) Generator matrix 

The average waiting time in each state, i  is exponentially distributed with mean 1
i

.  The mean 

times in states 1 and 2 are 2 and 5 years respectively.  The values of the exponential parameters 
are: 

 1 2
1 1
2 5

    [½] 

The transition matrix of the jump chain, ijp  is: 

 

1 2    

0          0.5      0.5

0          0       1

0           0       0

level level left

 
 
 
  

 [½] 

The off-diagonal elements of the generator matrix of transition rates, ij  are given by: 

 ij i ijp   

The diagonal elements are chosen to make each row of the matrix sum to 0 .  

The generator matrix (matrix of transition rates) is: 

 

 1 2

0.50 0.25 0.25

0 0.20 0.20

0 0 0

level level left

 
  
  

 [1] 
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(iv) Distribution of employees in five years 

The model is: 

  

We are given the initial state as  600 400 0 .  We can use the five-year transition probabilities 

to estimate the numbers in each state in five years’ time. 

The number in state 1 will be: 

  11600 5P  

The number in state 2 will be: 

    12 22600 5 400 5P P  

and the number of employees who have left the company can be obtained by deducting the 
numbers in states 1 and 2 from 1,000. 

The occupancy probabilities for states 1 and 2 are given by: 

     0.5
11 11

tP t P t e   [½] 

     0.2
22 22

tP t P t e   [½] 

Using the generator matrix, we can write the forward differential equation for  12P t : 

 12 11 12( ) 0.25 ( ) 0.2 ( )
d

P t P t P t
dt

    

  0.5
12 12( ) 0.2 ( ) 0.25 td

P t P t e
dt

    [1] 

This can be solved using the integrating factor method.  The integrating factor is 0.2te .  
Multiplying through by the integrating factor gives: 

 0.2 0.2 0.5 0.2 0.3
12 12( ) 0.2 ( ) 0.25 0.25t t t t td

e P t e P t e e e
dt

     [½] 

1 2

left

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 64 CS2-04: Time-homogeneous Markov jump processes 

© IFE: 2019 Examinations  The Actuarial Education Company 

Integrating both sides: 

 0.2 0.3
12

5
( )

6
t te P t e C    [½] 

The boundary condition is 12(0) 0P  .  So: 

 5 5
0

6 6
C C      [½] 

Simplifying then gives: 

  0.2 0.5
12

5
( )

6
t tP t e e    [½] 

So the number of employees on level 1 in 5 years’ time is: 

 2.5
11600 (5) 600 49P e   [½] 

and the number of employees on level 2 in 5 years’ time is: 

  1 2.5 1
12 22

5
600 (5) 400 (5) 600 400 290

6
P P e e e         [1] 

The number of lives who have left the company is: 

 1,000 49 290 661    [½] 

4.7 In this question you have to be very careful not to mix up v  (v for victor) and   (the Greek letter 
‘nu’). 

(i)(a) Assumptions 

We are assuming that the transition probabilities depend only upon the individual’s current state.  
They do not depend upon the previous transitions for the individual, so we are assuming that the 
Markov property holds.  [½] 

We are also assuming that the probability of two or more transitions in a short time interval of 
length h  is ( )o h …  [½] 

… and for small values of h  and 59 60x x t    : 

 ( )ad
h xp h o h     

and:   ( )ar
h xp h o h      [1] 
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(i)(b) Proof  

A life who remains active for t h  years must first remain active for t  years, then remain active 
for a further h  years (where h  represents a short time interval).  Expressed in terms of 
probabilities, this is: 

 aa aa aa
t h x t x h x tp p p    [1] 

This follows from the Markov property, ie that the probabilities in different time periods are 
independent of each other. [1] 

During a short time period ( , )t t h , an active life must remain active, die or retire.  So:   

 1aa ad ar
h x t h x t h x tp p p      [1] 

Using the formulae given in (i)(a), this becomes: 

 ( ) 1aa
h x tp h h o h        

So: 

 [1 ( ) ( )]aa aa
t h x t xp p h o h        [½] 

Rearranging and letting 0h   gives: 

 ( )aa aa
t x t xp p

t
 

  


   

since 
0

( )
lim 0

h

o h
h

 .  [1] 

Rearranging this, we see that:   

 log ( )

aa
t x aa

t xaa
t x

p
t p

tp
 


    


 [½] 

Integrating with respect to t  with limits of 0 and s : 

 
0

log ( )
saa

t xp s        [½] 

Since 0 1aa
xp  , it follows that:  

 ( )aa s
s xp e      [½] 

for 59 60x x s    . 
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(i)(c) Likelihood 

Here are two possible approaches to this part. 

During the year, individual i  will either survive to the end, die or retire.  Using the result in (i)(b) 
and writing it  for this individual’s waiting time in the active state, the likelihood corresponding to 

each of these is: 

Survival: ( ) ite     

Death:  ( ) ite       

Retirement: ( ) ite       

Since the experiences of the individuals are assumed to be independent, the overall likelihood for 
all the lives will be: 

 ( ) ( ) ( )( , ) i i it t t

survivors deaths retirements

L e e e                   [3] 

This can be simplified to give: 

 

( )

( ) ( )

( , ) i

i

t

all lives deaths retirements

t d r v d r

L e

e e

 

   

   

   

 

    

  

     

  

 [2] 

Alternatively, we can write down the probability density/mass function for life i  as a single 
function: 

 

( 0, 0)

( , , ) ( 1)

( 1)

i

i

i

v x i i

i i i i v x i

iv x

p d r

f d r v p d

rp





   
 

 

Here id  and ir  represent the number of deaths and retirements experienced by this individual 

during the year (which will be 0 or 1). 

We can then express these three ‘combinations’ in a single formula as: 

 ( , , ) exp[ ( ) ]i i i i
i

d r d r
i i i i v x if d r v p v              

So the joint likelihood for the whole group will be: 

 
1

exp[ ( ) ] exp[ ( ) ]i i
N

d r d r
i

i

L v v       
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(i)(d) Formulae 

The MLE of   is 
R
V

  .   [1] 

Asymptotically, this has moments: 

 Mean: ( )E    [1] 

 Estimated standard error: ( )ese
v
   [1] 

Recall that the standard error of an estimator is the square root of its variance. 

(ii)(a)  Likelihood 

The likelihood function is now found by combining the likelihood of observing d  deaths during the 
year with the likelihood of observing r  retirements out of the m  lives who survived to age 60.  
This second part is a binomial probability, and we get: 

 (1 )v d r m rm
e k k

r
   

  
 

 [3] 

(ii)(b) Maximum likelihood estimate of k 

Since we have m  lives at age 60 and r  are observed to retire, the maximum likelihood estimate 

of k  is the binomial proportion, ˆ r
k

m
 . [1] 

4.8 (i) Distribution of the time spent in each state 

In a continuous-time Markov jump process, the times spent in each state are exponentially 
distributed.   [1] 

(ii) Generator matrix 

If we measure times in minutes, the generator matrix (with zeros omitted) is: 

 

1 1
15 15

31 1 1
20 400 400 25

1 1
30 30

1 1
180 180

W A M S H

W

A

M

S

H

 
 
 
 
 
 
  
  

 [2] 

If you work in hours, all these entries need to be multiplied by 60. 
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(iii)(a) Kolmogorov forward differential equations 

The general formula for the Kolmogorov forward differential equation in the time-homogeneous 
case is: 

 ( ) ( )ij ik kj
k

d
p t p t

dt
  

Applying this, with i W  and j M , we get: 

 3 1
400 30

( ) ( ) ( ) ( ) ( )WM WA AM WM MM WA WM
d

p t p t p t p t p t
dt

      [1] 

Similarly: 

 1 1
15 20

( ) ( ) ( )WA WW WA
d

p t p t p t
dt

   [1] 

(iii)(b) Verify formula  

In order to check that the formula given in the question satisfies the differential equation just 

stated, we first need a formula for ( )WWp t .  Since it is not possible to return to state W once it 

has been left, ( )WWp t  is the same as ( )WWp t , which we can work out as: 

 15( ) ( ) t
WW WWp t p t e   [½] 

Substituting the formula given in the question for ( )WAp t  into the Kolmogorov equation, we see 

that: 

  20 15 20 151 4
5 15

( ) 4 4t t t t
WA

d d
LHS p t e e e e

dt dt
          [½] 

and: 

 

 

1 1
15 20

15 20 151 1
15 20

20 151 4
5 15

( ) ( )

4 4

WW WA

t t t

t t

RHS p t p t

e e e

e e

  

 

 

  

    [½] 

So the differential equation is satisfied. 

We also need to check the boundary condition.  Substituting 0t   into the formula given, we get: 

 0 0(0) 4 4 0WAp e e    

This is the correct value since the process cannot move from state W  to state A  in zero time. [½] 
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(iii)(c) Derive an expression for ( )WMp t  

We can now use the formula for ( )WAp t  from part (iii)(b) in conjunction with the first differential 

equation from part (iii)(a) to find a formula for ( )WMp t .  We have: 

 

 

 

3 1
400 30

20 153 1
400 30

20 153 1
100 30

( ) ( ) ( )

4 4 ( )

( )

WM WA WM

t t
WM

t t
WM

d
p t p t p t

dt

e e p t

e e p t

 

 

 

  

    [½] 

We can solve this using an integrating factor.  We first need to rearrange it in the form: 

  20 1531
30 100

( ) ( ) t t
WM WM

d
p t p t e e

dt
     

The integrating factor is: 

   301
30

exp tdt e  [½] 

Multiplying through by the integrating factor, we get: 

  30 30 60 3031
30 100

( ) ( )t t t t
WM WM

d
e p t e p t e e

dt
     

So:  

  30 60 303
100

( )t t t
WM

d
e p t e e

dt
       [½] 

Now we can integrate to get: 

  30 60 30 60 303 9 9
100 5 10

( ) 60 30t t t t t
WMe p t e e c e e c            [½] 

When 0t  , this becomes: 

 9 9 9
5 10 10

0 c c         9
10

c   [½] 

So we have: 

 30 60 309 9 9
5 10 10

( )t t t
WMe p t e e      

Dividing through by the integrating factor gives us the final answer: 

 20 15 309 9 9
5 10 10

( ) t t t
WMp t e e e       [½] 
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(iv)(a) Explain why 15 W AT T  

If a vehicle is currently in state W, it will wait 15 minutes on average in that state before moving 
to state A (definitely), after which it will wait on average a further time AT  before it can be driven 

home.  So the average time WT  before it can be driven home is 15 AT . [1] 

(iv)(b) Equations for AT , MT  and ST  

Using similar logic, a vehicle in state A will wait 20 minutes on average in that state before moving 
either to state H (with probability 0.8) or to state M (with probability 0.15) or to state S (with 
probability 0.05).  So the corresponding equation is: 

 20 0.8 0 0.15 0.05A M ST T T      [1] 

Since we know that 30MT   and 180ST  , this gives 33.5AT   minutes. [1] 

(iv)(c) Calculate WT  

Using the equation from part (iv)(a), we find that: 

 15 15 33.5 48.5W AT T      minutes [1] 
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End of Part 1 

What next?   

1. Briefly review the key areas of Part 1 and/or re-read the summaries at the end of 
Chapters 1 to 4. 

2. Ensure you have attempted some of the Practice Questions at the end of each chapter in 
Part 1.  If you don’t have time to do them all, you could save the remainder for use as part 
of your revision. 

3. Attempt Assignment X1. 
  

 

 

 

 

Time to consider …  
 … ‘learning and revision’ products 

Marking – Recall that you can buy Series Marking or more flexible Marking Vouchers to 
have your assignments marked by ActEd.  Results of surveys suggest that attempting the 
assignments and having them marked improves your chances of passing the exam.  One 
student said: 

‘The insight into my interpretation of the questions compared with that 
of the model solutions was helpful.  Also, the pointers as to how to 
shorten the amount of work required to reach an answer were 
appreciated.’ 

Face-to-face and Live Online Tutorials – If you haven’t yet booked a tutorial, then maybe 
now is the time to do so.  Feedback on ActEd tutorials is extremely positive: 

‘I find the face-to-face tutorials very worthwhile.  The tutors are 
really knowledgeable and the sessions are very beneficial.’ 

‘The online tutorial was just wonderful and a very good tutor.  The 
delivery was very good and the sound was very clear.  For my first 
online tutorial I was very impressed.’ 

You can find lots more information, including our Tuition Bulletin, on our website at 
www.ActEd.co.uk. 

Buy online at www.ActEd.co.uk/estore 
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All study material produced by ActEd is copyright and is sold 
for the exclusive use of the purchaser.  The copyright is 

owned by Institute and Faculty Education Limited, a 
subsidiary of the Institute and Faculty of Actuaries. 

 

Unless prior authority is granted by ActEd, you may not hire 
out, lend, give out, sell, store or transmit electronically or 

photocopy any part of the study material. 

 

You must take care of your study material to ensure that it 
is not used or copied by anybody else. 

 

Legal action will be taken if these terms are infringed.  In 
addition, we may seek to take disciplinary action through 

the profession or through your employer. 

 

These conditions remain in force after you have finished 
using the course. 
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Time-inhomogeneous 

Markov jump processes 
 

 

  

Syllabus objectives 

3.3 Define and apply a Markov process.   

3.3.1 State the essential features of a Markov process model. 

3.3.3 Derive the Kolmogorov equations for a Markov process with time 
independent and time/age dependent transition intensities. 

3.3.4 Solve the Kolmogorov equations in simple cases. 

3.3.5 Describe simple survival models, sickness models and marriage models in 
terms of Markov processes and describe other simple applications. 

3.3.6 State the Kolmogorov equations for a model where the transition 
intensities depend not only on age/time, but also on the duration of stay in 
one or more states. 

3.3.7 Describe sickness and marriage models in terms of duration dependent 
Markov processes and describe other simple applications. 

3.3.8 Demonstrate how Markov jump processes can be used as a tool for 
modelling and how they can be simulated.
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0 Introduction 

In this chapter we discuss time-inhomogeneous Markov jump processes.  The transition 
probabilities ( | )t sP X j X i   for a time-inhomogeneous process depend not only on the length 

of the time interval [ , ]s t , but also on the times s  and t  when it starts and ends.  This is because 

the transition rates for a time-inhomogeneous process vary over time. 

We start by discussing the important features of time-inhomogeneous processes.  Then, just as 
we did for time-homogeneous processes in Chapter 4, we study the forward and backward 
Kolmogorov differential equations and occupancy probabilities.  We go on to introduce the 
integrated forms of the Kolmogorov equations, and we look at some applications.  Finally, we 
cover some modelling techniques for Markov jump processes and describe how the parameters of  
a Markov jump process can be estimated. 
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1 Features of time-inhomogeneous Markov jump processes 

1.1 Chapman-Kolmogorov equations 

The more general continuous-time Markov jump process  , 0tX t  has transition 

probabilities: 

        , |ij t sp s t P X j X i s t  

which obey a version of the Chapman-Kolmogorov equations, written in matrix form as: 

     , , ,P s t P s u P u t    for all  s u t  

or equivalently: 

( , ) ( , ) ( , )ij ik kj
k S

p s t p s u p u t


   for all s u t    

Again, both upper and lower case P  may be used to denote a transition probability. 

1.2 Transition rates 

Proceeding as in the time-homogeneous case, we obtain: 

 
  

  

( ) ( ) if
,

1 ( ) ( ) if

ij
ij

ii

h s o h i j
p s s h

h s o h i j



 

Equivalently, we have: 

0 0

( , ) ( , ) ( , )
( ) lim lim ( , )ij ij ij ij

ij ij
h h t s

p s s h p s s p s s h
s p s t

h h t

 
  

     
    

 
 

We see that the only difference between this case and the time-homogeneous case studied 
earlier is that the transition rates ( )ij s  are allowed to change over time. 
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2 Kolmogorov’s forward differential equations  

Kolmogorov’s forward equations may be derived. 

To derive these equations, we consider the interval ( , )s t h  where h  is a small amount.  From 

the Chapman-Kolmogorov equations, we have: 

 ( , ) ( , ) ( , )ij ik kj
k S

p s t h p s t p t t h


    

For small h , we know that:  

 ( , ) ( ) ( )kj kjp t t h h t o h     provided j k  

and:   

( , ) 1 ( ) ( )jj jjp t t h h t o h     

So: 

 

   , ( , ) ( ) ( , ) 1 ( ) ( )

( , ) ( , ) ( ) ( )

ij ik kj ij jj
k j

ij ik kj
k S

p s t h p s t h t p s t h t o h

p s t p s t h t o h

 







    

  




 

Rearranging gives: 

 
 , ( , ) ( )

( , ) ( )ij ij
ik kj

k S

p s t h p s t o h
p s t t

h h




 
   

and letting 0h  , we obtain: 

 ( , ) ( , ) ( )ij ik kj
k S

p s t p s t t
t







   

since 
0

( )
lim 0

h

o h
h

 .  

This result is given on page 38 of the Tables.  However, in the Tables, the notation ( )kj t  rather 

than ( )kj t  is used to denote the force of transition from state k  to state j  at time t . 
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Kolmogorov’s forward differential equations (time-inhomogeneous case) 

Written in matrix form these are: 

( , ) ( , ) ( )P s t P s t A t
t



      

where A(t) is the matrix with entries ( )ij t . 

2.1 Time-inhomogeneous HSD model 

We met the HSD model in Chapter 4.  There we assumed that the transition rates were constant.  
However, in this chapter we will assume that they vary over time.  The transition diagram is 
shown below. 

H: Healthy S: Sick

D: Dead 

 

 

 

Question 

Write down Kolmogorov’s forward differential equation for ( , )HDp s t . 

Solution 

The forward differential equation is: 

( , ) ( , ) ( ) ( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )

HD HH HD HS SD HD DD

HH HS

p s t p s t t p s t t p s t t
t

p s t t p s t t

  

 


  



 

 

since 0DD  . 

 

( )t

( )t

( )t

( )t
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2.2 Non-standard forward equations  

We may also want to construct differential equations for probabilities other than those of the 
form ( , )ijp s t .  In particular, we are interested in the probability of remaining in state i  

throughout the time period ( , )s t .  This is denoted by ( , )iip s t .  It is different from ( , )iip s t  since 

( , )iip s t  allows the possibility of leaving state i  during the period.  In these cases the standard 

forward equation is not applicable and we have to go back to first principles.  

For example, suppose we are asked to derive the forward differential equation for ( , )SSp s t  in the 

HSD model. 

We start by considering the probability ( , )SSp s t h , where h  is a small amount, and we condition 

on the state at time t  to obtain the equation: 

( , ) ( , ) ( , )SS SS SSp s t h p s t p t t h    

During the short interval of length h, the process either remains in S, moves from S to H or moves 
from S to D.  We assume here that the probability of more than one move is very small 
(represented by the ( )o h  term) so that: 

( , ) ( , ) ( , ) ( ) 1SH SDSSp t t h p t t h p t t h o h        

Since we know that ( , ) ( ) ( )SHp t t h h t o h    and ( , ) ( ) ( )SDp t t h h t o h   , we have: 

  ( , ) 1 ( ) ( ) ( )SSp t t h h t t o h         

So: 

 ( , ) ( , ) 1 ( ) ( ) ( )SS SSp s t h p s t h t t o h         

This can be rearranged to give: 

  
( , ) ( , ) ( )

( , ) ( ) ( )SS SS
SS

p s t h p s t o h
p s t t t

h h
 

 
     

Taking the limit as 0h   we obtain the differential equation: 

 ( , ) ( , ) ( ) ( )SS SSp s t p s t t t
t
  


    

since 
0

( )
lim 0

h

o h
h

 .  

Equations of this formed can be solved using separation of variables. 
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Dividing both sides of the equation by ( , )SSp s t  gives: 

 
( , )

( ) ( )
( , )

SS

SS

p s t
t

t t
p s t


      

This can also be written as: 

 ln ( , ) ( ) ( )SSp s t t t
t
  


    

or equivalently, changing the variable from t  to u : 

  ln ( , ) ( ) ( )SSp s u u u
u
  


    

Integrating both sides with respect to u  between the limits of s  and t  then gives: 

  ln ( , ) ( ) ( )
u t t

SS su s
p s u u u du 




        

Since ( , ) 1SSp s s   and ln1 0 , this simplifies to: 

  ln ( , ) ( ) ( )
t

SS s
p s t u u du     

Taking exponentials, we obtain the result: 

 ( , ) exp ( ) ( )
t

SS s
p s t u u du        

It can similarly be shown that: 

  ( , ) ( , ) ( ) ( )HH HHp s t p s t t t
t
  


    

and: 

  ( , ) exp ( ) ( )
t

HH s
p s t u u du        
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3 Occupancy probabilities 

We have just seen that  ( , ) exp ( ) ( )
t

HH s
p s t u u du     

  .  This result can be generalised to 

give an expression for the probability of staying in any state i  from time s  to time t  (known as 
the occupancy probability for state i ).  For any time-inhomogeneous Markov jump process, the 
probability that a process in state i  at time s  remains in state i  until at least time t  is given by: 

 

 

 
0

exp total force of transition out of state  at time 

exp total force of transition out of state  at time 

t

s

t s

i u du

i s u du


  
 

    
 




 

This important result is restated in the box below. 

Occupancy probabilities for time-inhomogeneous Markov jump processes 

For a time-inhomogeneous Markov jump process: 

 
0

( , ) exp ( ) exp ( )
t t s

i iii s
p s t u du s u du 

          
       

where ( )i u  denotes the total force of transition out of state i  at time u . 

If the transition rates are constant (ie the process is time-homogeneous), the occupancy 
probabilities simplify to: 

 ( )( , ) i t s
iip s t e    

and the holding time in state i  has an ( )iExp   distribution.  We saw this result in Chapter 4. 
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4 Kolmogorov’s backward differential equations 

As in the time-homogeneous case, we need to be able to derive and to write down Kolmogorov’s 
backward differential equations in the time-inhomogeneous case.   

Kolmogorov’s backward differential equations (time-inhomogeneous case) 

The matrix form of Kolmogorov’s backward equations is:  

 ( , ) ( ) ( , )P s t A s P s t
s



 

It is still the case that: 


 ( ) ( )ii ij

j i
s s   

Hence each row of the matrix ( )A s  has zero sum. 

Written in component form the equations are: 

 ( , ) ( ) ( , )ij ik kj
k S

p s t s p s t
s
 
 

   

This result is given on page 38 of the Tables. 

There are a couple of particular points to note here: 

 we are now differentiating with respect to s  rather than t  

 there is a minus sign on the RHS. 

We can derive the backward differential equations as follows.  Start by considering the interval 
( , )s h t  where h  is a small amount.  Then, using the Chapman-Kolmogorov equations, we have: 

 ( , ) ( , ) ( , )ij ik kj
k S

p s h t p s h s p s t


    

Since h  is small, we know that: 

 ( , ) ( ) ( )ik ikp s h s h s h o h      provided k i  

and: ( , ) 1 ( ) ( )ii iip s h s h s h o h      

So: 

 

 ( , ) ( ) ( , ) 1 ( ) ( , ) ( )

( , ) ( ) ( , ) ( )

ij ik kj ii ij
k i

ij ik kj
k S

p s h t h s h p s t h s h p s t o h

p s t h s h p s t o h
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Rearranging gives: 

 
( , ) ( , ) ( )

( ) ( , )ij ij
ik kj

k S

p s h t p s t o h
s h p s t

h h




 
    

or equivalently: 

 
( , ) ( , ) ( )

( ) ( , )ij ij
ik kj

k S

p s t p s h t o h
s h p s t

h h




 
     

Letting 0h   we obtain: 

 ( , ) ( ) ( , )ij ik kj
k S

p s t s p s t
s





 

   

since 
0

( )
lim 0

h

o h
h

 .  

We now consider at some examples of backward differential equations based on the 
time-inhomogeneous HSD model.   

Using the general formula given above, the Kolmogorov backward differential equation for 
( , )HHp s t  is given by: 

 
 

 

( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )

( ) ( ) ( , ) ( ) ( , )

HH HH HH HS SH HD DH

HH SH

p s t s p s t s p s t s p s t
s

s s p s t s p s t

  

  


   



      

 

since ( , ) 0DHp s t  .  So: 

  ( , ) ( ) ( ) ( , ) ( ) ( , )HH HH SHp s t s s p s t s p s t
s

  
  


 

Similarly, the Kolmogorov backward differential equation for ( , )HSp s t  is given by: 

 
 

 

( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )

( ) ( ) ( , ) ( ) ( , )

HS HH HS HS SS HD DS

HS SS

p s t s p s t s p s t s p s t
s

s s p s t s p s t

  

  


   



      

 

since ( , ) 0DSp s t  .  So: 

  ( , ) ( ) ( ) ( , ) ( ) ( , )HS HS SSp s t s s p s t s p s t
s

  
  


 

The general theory of time-inhomogeneous Markov jump processes is rather too 
complicated to fall within the scope of the current syllabus, but the methods used can be 
illustrated by means of a number of practical examples. 
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5 Example – a two-state model 

Consider the following survival model: transition from the alive state A to the dead state D 
takes place at rate ( )AD t , which has been abbreviated to ( )t  here, since it is the only 

transition in the model. 

A D

 

In other words ( )t  is the force of mortality. 

The theory of mortality functions, including the force of mortality, is discussed in more detail in 
Chapter 6.  The two-state model is discussed in Chapter 3, where we develop the results without 
using the generator matrix. 

Since    
  
 

( ) ( )

0 0

t t
A t

 
 the forward equations give: 

 ( , ) ( , ) ( )AA AAp s t p s t t
t
 


 

The solution corresponding to the initial condition ( , ) 1AAp s s  is: 

 
  
 
 
( , ) exp ( )
t

AA
s

p s t x dx                

This result should be familiar from Section 3 since ( , ) ( , )AA AAp s t p s t . 

Question 

Write down the backward differential equation for ( , )AAp s t  and show that the solution of this 

equation is also ( )( , )
t
s x dx

AAp s t e  . 

Solution 

The backward differential equation for ( , )AAp s t  is: 

  ( , ) ( ) ( , ) ( ) ( , )AA AA AAp s t s p s t s p s t
s

 
   


 

Separating the variables gives: 

 
( , )

( )
( , )

AA

AA

p s t
s s
p s t




   

( )t   
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Now changing the variable from s  to x , we have: 

 ln ( , ) ( )AAp x t x
x





 

Integrating with respect to x  between the limits of x s  and x t  gives: 

  ln ( , ) ( )
tx t

AA x s s
p x t x dx

    

But ( , ) 1AAp t t   and ln1 0 .  So we have: 

 ln ( , ) ( )
t

AA s
p s t x dx    

Moving the minus sign on to the RHS and taking exponentials gives the required result: 

 ( , ) exp ( )
t

AA s
p s t x dx   

   

 
Equivalently the probability for an individual aged s  to survive for a further period of length 
at least w  is: 

 
            

    0( , ) exp ( ) exp ( )
s w w

w s AA s
p p s s w x dx s y dy   (5.1) 

Recall that w sp  denotes the probability that a person now aged s  is still alive in w  years’ time. 

Question 

(i) A life aged 60 is subject to a constant force of mortality of 0.01 pa.  Calculate the 
probability that the life survives to age 70. 

(ii) Calculate the probability that a 25-year old with a constant force of mortality of 0.01 pa 
survives to age 35. 

(iii) Comment on the answers. 

Solution 

(i) 
70 10 0.01

10 60 60
exp 0.01 0.905p dt e      

   

(ii) The probability 10 25p  is the same as 10 60p  if we assume that both lives are subject to the 

same force of mortality. 

(iii) This is unrealistic.  The force of mortality should vary with age. 
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This illustrates the need for time-dependent rates in mortality and many other actuarial 
models: a constant force of mortality   would give rise to an age-independent survival 

probability w sp , an absurd result. 
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6 Residual holding times 

As it stands, (5.1) is peculiar to the specific survival model under consideration; however, if 
properly reinterpreted it is but an instance of a general formula. 

We have seen this already in Section 3, where we discussed occupancy probabilities.  The general 
result is: 

 
0

( , ) exp ( ) exp ( )
t t s

i iii s
p s t u du s u du 

          
      

For a general Markov jump process, { , 0}tX t , define the residual holding time sR  as the 

(random) amount of time between s  and the next jump: 

         , ,s s uR w X i X i s u s w  

The residual holding time at time s  is the amount of time after time s  for which the process stays 
in the current state.  The Core Reading equation above says that for the residual holding time at 
time s  to be greater than w , given that the process is in state i  at time s , the process must stay 
in state i  for all times u  between s  and s w . 

Formula (5.1) gives the probability that sR w  given that the state at time s  is A.  In 

general one can prove: 

 
          | exp ( )

s w
s s is

P R w X i t dt  (5.2) 

This result is similar to that shown in Section 7 of Chapter 4.  

The probability  |s sP R w X i   is the same as ( , )iip s s w , ie it is the probability that the 

process stays in state i  for at least another w  time units. 

Moreover, the characterisation of the state 


ss s RX X  to which the jump takes place is 

similar to the time-homogeneous case: 

        

( )
| ,

( )
ij

s s s
i

s w
P X j X i R w

s w



 (5.3) 

We can restate this result as follows. 

Probability that the process goes into state j when it leaves state i 

Given that the process is in state i  at time s  and it stays there until time s w , the probability 
that it moves into state j  when it leaves state i  at time s w  is: 

 
( ) the force of transition from state  to state  at time 
( ) the total force out of state  at time 

ij

i

s w i j s w
s w i s w
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Question 

Show that, for 0w  , the PDF of the random variable |s sR X i  is given by: 

| ( ) ( ) exp ( )
s s

s w
R X i i is

f w s w u du 



    
   

Solution 

The PDF of any continuous random variable can be obtained from the CDF by differentiation.  In 
this case the CDF is: 

   | 1 | 1 exp ( )
s w

s s s s is
P R w X i P R w X i u du

          
   

Differentiation of the exponential is straightforward, leaving the remaining problem of 
differentiating the integral with respect to w.  Using the formula at the bottom of page 3 of the 
Tables, we see that:  

( ) ( )
s w

i i
s

u du s w
w
  



   

An alternative approach is the following.  Suppose we know that if we integrate the function ( )i u  

we get the function ( )i u .  Then: 

 


      ( ) ( ) ( ) ( )
s w

s w
i i i is

s

u du u s w s  

If we differentiate this with respect to w ,  we get ( )i s w   since ( )i u  is the derivative of ( )i u . 

The ( )i s  term doesn’t contain any w ’s, so its derivative is 0. 

Using the formula derived by either of the methods given above, it follows that:  

1 exp ( ) ( ) exp ( )

( )exp ( )

s w s w s w
i i is s s

s w
i is

u du u du u du
w w

s w u du

   
 

 

  



                           

    
 

  


 

 
We now have information on both the time that transitions take place and the states to which the 
transitions are made.  By combining these we can calculate general transition probabilities, as 
described below.  To do this, we condition on both: 

 the residual holding time (a continuous variable, so we use integration over probability 
densities), and  

 the current state (a discrete random variable, so we use summation over probabilities). 
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7 Integrated form of the Kolmogorov backward equations 

The above is more than a neat picture for the behaviour of Markov jump processes: it is also 

a powerful computational tool.  Indeed, conditioning on sR  and 
sX  we have using the law 

of total probability: 

 

 
 



    

         
0

, |

( ) | , ,
s w

is

ij t s

t s
u du

il t s s s
l i

p s t P X j X i

e s w P X j X i R w X l dw 
 

and therefore: 

        






   
0

, ,
s w

is
t s

u du
ij il lj

l i
p s t e s w p s w t dw   (5.4) 

provided j i . 

This is the integrated form of the backward equation, as can be checked by differentiation 
with respect to s .   

The formula may look intimidating but it conforms to intuition: since j i , the process 

must jump out of i  at some stage.  By (5.2), the first jump after time s  takes place at s w  
with probability density: 

 
   

 exp ( )
s w

i is
s w u du   

We saw this result in the previous question. 

Backward integral equations always focus on the time of the first transition.  Here we are thinking 
about the first transition occurring at time s w . 

By (5.3) the process jumps to l  at time s w  with probability 



( )

( )
il

i

s w
s w




.  It then remains to 

effect a transition from l  to j over the remaining time period [ , ]s w t : 

time

state
i

s s + w t

jl
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We can also reason as follows.  The expression: 

exp ( ) ( ) ( , )
s w

i il ljs
u du s w p s w t 

    
   

can be considered as the product of three factors:  

 the probability of remaining in state i  from time s  to time s w   

 then making a transition to state l  at time s w   

 and finally going from state l  at time s w  to state j  at time t .   

To take into account all the possible times at which the first transition can happen, we integrate 
with respect to w  from 0w   to t s .  To take into account all possible intermediate states, we 
sum over all possible values of l i . 

The exponential term in the expression above can also be written as ( , )iip s s w , so the backward 

integral equation can also be written as: 

 
0

( , ) ( , ) ( ) ( , )
t s

ij il ljii
l i

p s t p s s w s w p s w t dw



     

for j i . 

Equation (5.4) gives a relationship between transition probabilities.  To calculate them explicitly, 
however, we still need to solve the equations. 

When i j  there is an additional term   
 exp ( )

t
is

u du  because the process can remain in 

state i  throughout [ , ]s t . 

Once again, we can write exp ( )
t

is
u du  

   as ( , )iip s t .  So the integrated form of the backward 

equation for ( , )iip s t  is: 

 
0

( , ) ( , ) ( ) ( , ) ( , )
t s

ii il liii ii
l i

p s t p s s w s w p s w t dw p s t



       

The first term on the right-hand side is the probability of leaving state i  and returning to it.  The 
second term is the probability of staying in state i  from time s  to time t . 
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8 Integrated form of the Kolmogorov forward equations 

If instead of considering the first jump after s  one focuses on the last jump before t , one 
can obtain an intuitive derivation of the integrated form of the forward equations. 

In the backward equation we thought about the time of the first transition as being s w .  For 
the forward equation we think about the time of the last transition as being t w . 

The forward equation when i j  is: 

   

 




   

( )

0

, ( , ) ( )

t

j
t w

t s u du

ij ik kj
k j

p s t p s t w t w e dw


  (5.5) 

time

state
j

s t – w t

ki

 

Alternatively, this can be written as: 

 
0

( , ) ( , ) ( ) ( , )
t s

ij ik kj jj
k j

p s t p s t w t w p t w t dw



      

for j i . 

The factors in the integral are: 

 the probability of going from state i  at time s  to state k  at time t w   

 then making a transition from state k  to state j  at time t w   

 and staying in state j  from time t w  to  time t .   

Integrating over all possible values of w , namely 0 to t s , and adding over all intermediate 
states k j , we obtain the forward integral equation. 

The forward integral equation for ( , )iip s t  is: 

 
0

( , ) ( , ) ( ) ( , ) ( , )
t s

ii ik ki ii ii
k j

p s t p s t w t w p t w t dw p s t



       

Here we’ve added on an extra term at the end to cover the possibility that the process stays in 
state i  throughout the interval [ , ]s t . 

Because of this intuitive interpretation, it shouldn’t be too difficult to write out backward and 
forward equations in integrated form.   
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Derivation of the integrated form of the forward equations 

For a full justification of this equation one needs to appeal to the properties of the current 
holding time tC , namely the time between the last jump and t : 

{Ct  w, Xt = j} = { uX  = j, t – w  u  t} 

or the length of time that the process has been in the current state.  We consider the idea of 
current holding time in more detail in the next section. 
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( )t

( )t
( )t

( )t

( )r t
( )d t

9 Applications 

9.1 Marriage  

Describe the marital status of an individual as one of the following: bachelor (never married) 
(B), married (M), widowed (W), divorced (D), dead (  ).  We can define a Markov jump 
process on the state space {B, M, W, D,  } as illustrated below: 

B

M

W



D

 
In the above, the death rate ( )t  has been taken to be independent of the marital status for 

simplicity.   

The probability of being married at time t  and of having been so for at least w  given that 
you are a bachelor at time s  is (assuming  w t s ): 

       

     



  

           

   



( ) ( ) ( )

, | , ,

,
t
t v

t s

t t s BB BW
w

u u d u du
BD

P X M C w X B p s t v t v p s t v r t v

p s t v t v e dv 





 

 

time

state
M

s t – v t

kB

t – w

 

where k  is any of the states leading to M, namely B, W and D. 

The integral on the RHS of this equation can also be written as: 

              , , , ,
t s

BB BW BD MMw
p s t v t v p s t v r t v p s t v t v p t v t dv 


            

( )t

( )t

( )t
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9.2 Sickness and death 

Here we return to the HSD model with time-dependent forces of transition.   

Describe the state of a person as ‘healthy’, ‘sick’ or ‘dead’.  For given time-dependent 
(ie age-dependent) transition rates, we can construct a Markov jump process with state 
space {H, S, D}: 

H: Healthy S: Sick

D: Dead 

 

 

 

The matrix ( )A t  in Kolmogorov’s equations is: 

  
    
 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0 0

t t t t
A t t t t t

   
     

In particular:  

    ( ) ( ) ( ), ( ) ( ) ( ) and 0H S Dt t t t t t        

Remember that i  denotes the total force of transition out of state i . 

The easiest probabilities to calculate are those of remaining continuously healthy or 
continuously sick over [ , ]s t .  Using (5.2) these are: 

             | exp ( ) ( )
t

s s s
P R t s X H u u du   (5.6)            

and: 

             | exp ( ) ( )
t

s s s
P R t s X S u u du   

These probabilities can also be denoted as ( , )HHp s t  and ( , )SSp s t , respectively.  They are not the 

same as ( , )HHp s t  and ( , )SSp s t , which include the possibility of changing state one or more times 

during the interval (but returning so as to be in the original state at time t). 

( )t

( )t

( )t  ( )t
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Question 

Describe and evaluate  |s sP R t s X D   . 

Solution 

This is the probability of a life staying dead until at least time t , given that the life is dead at 
time s .  It is 1. 

 
The above equations can be used to give actual numerical values for the respective probabilities, 
assuming that we can evaluate the integrals.  However, solving Kolmogorov’s equations 
(ie evaluating transition probabilities) will not be possible in the general case of non-constant 
transition rates.  Numerical methods do however exist that can give approximate solutions, but 
these are not included in the Subject CS2 syllabus. 

We can also write down the integrated form of Kolmogorov’s equations as below.  Although this 
gives an expression for each transition probability, it does so only in terms of other unknown 
transition probabilities.  In order to obtain actual transition probabilities we would still need to 
evaluate these integrals. 

Transition probabilities can be related to each other as in (5.4) and (5.5).  For instance: 

      


  

  
( ( ) ( ))

0

, ,

s w

s
t s u u du

HS SSp s t p s w t s w e dw
 

  

time

state
H

s s + w t

SS

 
This is the integrated form of the backward equation for ( , )HSP s t , which can also be written as: 

 
0

( , ) ( , ) ( ) ( , )
t s

HS SSHHp s t p s s w s w p s w t dw


     

Remember that in the backward equation we can think about the time of the first transition as 
being s w , and for the forward equation we can think about the time of the last transition as 
being t w . 

Question 

Give the forward version of the above equation. 
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Solution 

The forward version is: 

0
( , ) ( , ) ( ) ( , )

t s
HS HH SSp s t p s t w t w p t w t dw


     

The factors in this integral are: 

 the probability of going from healthy at time s  to healthy at time t w  

 then making a transition from healthy to sick at time t w  

 and finally staying in the sick state from time t w  to time t . 

Integrating over all possible values of w  gives the integrated form of the forward equation. 

 
To obtain the integrated form of the backward equation for ( , )HDp s t , we need to consider the 

two mutually exclusive events that the first transition from H is either to S or to D.  The equation 
is: 

0 0
( , ) ( , ) ( ) ( , ) ( , ) ( )

t s t s
HD SDHH HHp s t p s s w s w p s w t dw p s s w s w dw 

 
         

Here we have used the fact that ( , ) 1DDp s w t  . 

Question 

Write down the integrated form of the backward equation for ( , )SHp s t . 

Solution 

The equation is: 


   0( , ) ( , ) ( ) ( , )

t s
SH HHSSp s t p s s w s w p s w t dw  

 
Extra conditions on residual or current holding times can be handled without difficulty.  
Consider for instance the probability of being sick at time t  and of having been so for at 
least w , given that you are healthy at time s .  This is: 

 
( ( ) ( ))

, | ( , ) ( )

t

t v
t s u u du

t t s HH
w

P X S C w X H p s t v t v e dv
 

 

  
          

time

state
S

s t – v t

HH

t – w
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This equation can also be written as: 

  , | ( , ) ( ) ( , )
t s

t t s HH SSw
P X S C w X H p s t v t v p t v t dv


        

9.3 Sickness and death with duration dependence 

In Section 9.2, the Markov property implies that: 

           | , |t s s t sP X H X S C w P X H X S  

In other words, the duration of your current illness has no bearing on your future health 
prospects.  In order to remove this undesirable feature, we modify the model by allowing the 
rates of transition out of S to depend on the current holding time tC : 

H: Healthy S: Sick

D: Dead 

 

 

 

Question 

Explain why this model hasn’t made the transitions from the healthy state dependent on the 
holding time. 

Solution 

With most illnesses, sick people tend to follow a fairly predictable pattern of either recovering in 
roughly so many weeks, or getting worse and dying after such-and-such a time.  So the 
probabilities of recovery and death will have a fairly definite pattern as a function of duration (for 
a specified illness, at least).  With healthy people on the other hand, although they will in general 
become more likely to fall sick or die as they get older, there is no particular reason to expect a 
40-year-old’s chance of falling sick to depend on how long it is since (s)he was last sick, although it 
might do if some people are ‘sickly’ by nature.   

 

( )t

( , )tt C

( , )tt C( )t  
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This appears to take us outside the scope of this unit, as the value of tC  must now be 

incorporated into the state, so that the state space is not countable (ie discrete as opposed 
to continuous) any more.  However, the framework from above can still be used provided 
that there is careful conditioning on the relevant current holding time. 

In fact, since the transition rates   and   do not depend on tC  the probability of 

remaining continuously healthy during  ,s t  is given by (5.6) as before.   

This is because the overall rate out of H at time u  is ( ) ( )u u   so that: 

   
0

( , ) exp ( ) ( ) exp ( ) ( )
t t s

HH s
p s t u u du s u s u du   

                   

This is unaffected by the fact that recovery rates and mortality rates for a sick life depend on how 
long the life has been sick. 

On the other hand, to calculate the probability of remaining continuously sick during  ,s t  

given a current illness period   ,s w s , one needs to update the values of   and   as the 

illness progresses: 

time

state
S

s – w s t

H

u

w – s + u  

 , | , exp ( , ) ( , )
t

t s s s s
P X S R t s X S C w u w s u u w s u du                    

If there were no duration dependence, this expression would simplify to: 

    
0

( , ) exp ( ) ( ) exp ( ) ( )
t t s

SS s
p s t u u du s u s u du   

                   

However, when there is duration dependence, it must be taken into account whenever   and   

occur.  In the integral in the Core Reading, u denotes a time between s and t.  For a given u, the 
duration is the length of time the person has been sick.  Since at time s the duration is w, the 

duration at time u  must be  w u s  .  This explains the appearance of w s u   in the 

probability above.  The Core Reading equation above can also be written as: 

  
0

( , ) exp ( , ) ( , )
w

t s
S Sp s t s u w u s u w u du 

           

The subscript of w  in the probability ( , )
wS Sp s t  indicates that the life has already been sick for w  

years at time s .  So, if the life stays in the sick state up to time s u , it will then have duration of 
sickness w u .  Some people find this form of the expression easier to work with.  If we make the 
substitution r s u  , we can see that the two versions are equivalent. 
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As a final example, the probability of being healthy at time t  given that you are sick at 
time s  with current illness duration w  can be written as: 

     

     


  

( ( , ) ( , ))

( , ) | ,

( , ) ( , )

w

v

s

S H t s s

t u w s u u w s u du

HH
s

p s t P X H X S C w

e v w s v p v t dv
 


 

time

state
S

s – w s t

H

u

w – s + u

v

H H

 

Again, this is the same as the formula without duration dependence, but with the transition rates 
  and   modified as necessary.  We can also write this expression as: 

( , ) ( , ) ( , ) ( , )
w w

t
S H HHS Ss

p s t p s v v w s v p v t dv    

or, to be consistent with the formulation we have been using so far for backward integral 
equations: 

 
0

( , ) ( , ) ( , ) ( , )
w w

t s
S H HHS Sp s t p s s v s v w v p s v t dv


      

This is saying that the life remains sick throughout the time period s  to s v , then makes a 
transition to healthy at time s v  and duration of sickness w v , and finally goes from healthy at 
time s v  to healthy at time t , though the life may be sick in between these times. 

Question 

Write down an integral expression for the probability of a life being sick at time t , having been so 
for at least w  years, given that the life was healthy at time s . 

Solution 

The diagram for this situation is as follows: 

time

state
S

s t – v t

H

t – w

H
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In integral form: 

 
0

, | ( , ) ( ) ( , )
t s

t t s HH S Sw
P X S C w X H p s t v t v p t v t dv


        

where:  

   

 

0

0

, exp ( , ) ( , )

exp ( , ) ( , )

t
S S t v

v

p t v t u u v t u u v t du

r t v r r t v r dr

 

 


          

         




 

The integral in v  is from w  because we are told that the current holding time at time t  is at least 

w .  For the integral in u , at time u  the current holding time is  u t v u v t     .  We can 

show that the integral in u  and the integral in r  are equivalent by making the substitution 
r u v t   . 

Question 

Consider again the marriage model in Section 9.1, only now assume that the transition rate ( )d t  

depends on the current holding time.  (So the chance of divorce depends on how long a person 
has been married.)  Write down expressions for the probability that: 

(i) a bachelor remains a bachelor throughout a period  ,s t  

(ii) a person who gets married at time s w  and remains married throughout  

  ,s w s , continues to be married throughout  ,s t  

(iii) a person is married at time t  and has been so for at least time w , given  
 that they were divorced at time s t w  . 

Solution 

(i) Probability of staying in the bachelor state 

This is unaffected by the dependence on the current holding time.  So: 

 

 
0

( , ) exp ( ) ( )

exp ( ) ( )

t
BB s

t s

p s t u u du

s u s u du

 

 


     

       




 

(ii) Probability of staying in the married state 

 

 
0

( , ) exp ( , ) ( ) ( )

exp ( , ) ( ) ( )

w

t
M M s

t s

p s t d u u s w u u du

d s u w u s u s u du

 

 


       
 

         
 





 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 28 CS2-05: Time-inhomogeneous Markov jump processes 

© IFE: 2019 Examinations The Actuarial Education Company 

(iii) Transition probability 

The diagram for this situation is as follows: 

time

state
M

s t – v t

D

t – w

k

 
There are two possibilities for the state k , namely D and W, and both of these gives a 
contribution. 

 

 
0

, |

( , ) ( ) ( , ) ( ) ( , )

t t s

t s
DD DW M Mw

P X M C w X D

p s t v t v p s t v r t v p t v t dv


  

      
 

The integral in v  is from w  because we are told that the current holding time at time t  is at 
least w .  The subscript of 0 on the M  shows that the life is newly married at time t v . 
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10 Modelling and simulation 

This section is similar to the modelling and simulation section of Chapter 2, which dealt with 
Markov chains.   

Modelling is discussed first.  We deal with Poisson models initially, including time-inhomogeneous 
Poisson processes (as introduced below), before proceeding to more general homogeneous 
processes, and finally dealing with inhomogeneous processes. 

A short discussion of simulation is then given. 

10.1 Time-homogeneous Poisson process models 

A time-homogeneous Poisson process has a single parameter  .  The estimation of this 
parameter given a collection of data is straightforward. 

Example 

An insurance office observes that m  claims arrive in a total of T  time units.  If the company 
decides that a Poisson process model is appropriate, the most suitable estimate for   

would appear to be ˆ /m T .  This intuitive estimate is confirmed by more formal 
procedures such as maximum likelihood estimation. 

Having estimated the parameter, all that remains is to test goodness of fit.   

It is a basic assumption here that a Poisson process is appropriate.  If this is not a reasonable 
assumption then the fit may not be very good.  So, if a goodness-of-fit test gives a result that 
would lead us to reject the null hypothesis, then an alternative model may be appropriate. 

The test is carried out as follows. 

Divide the total time T  into k  equal intervals.  If the Poisson process model fits, the number 
of claims arriving in the k  intervals should form a sequence of independent Poisson 
variates, each with mean /T k .  There are two things to test here:   

 whether the distribution is Poisson and  

 whether the observations are independent. 

A standard 2  goodness-of-fit test can be employed to determine whether the Poisson 

distribution fits.   

Assuming that the fit is adequate, independence is probably best tested against the 
alternative that there is some form of serial dependence.   

Monthly claims arriving may not be uncorrelated with the previous months, for example. 

Tests for serial correlation are covered in Chapter 10.   
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10.2 Time-inhomogeneous Poisson process models 

In some classes of business, such as insurance against storm damage, the intensity of 
arrival of claims may vary predictably with time, in the sense that the insurer can tell in 
advance that some time intervals will have more claim arrivals than other intervals of equal 
length.  A suitable model here is the time-inhomogeneous Poisson process, for which the 
arrival rate of claims is a function ( )t .  In the given example   will be periodic, with a 

period of one year. 

It is impractical to attempt to estimate the value of ( )t  separately for each value of t .  A 

common procedure is to divide the whole time period up into pieces of a suitable size and 
to estimate the arrival rate separately for each piece.   

Since t  is continuous, we cannot hope to have enough data to make the former estimation 
procedure statistically significant.  The same applies if the pieces are too small. 

Thus data for a whole year may be divided into months, giving 12 estimated claim arrival 
rates.  Tests of goodness of fit should be carried out for each month separately, but tests 
for serial correlation should use the whole data set at once. 

For example, if we have several years of monthly data, then we could think of all the January 
months together as a time-homogeneous Poisson process with a certain fixed parameter  .  This 
could be tested for goodness of fit separately. 

On the other hand, when testing for serial correlation, we need to test, for example, whether one 
month is correlated with the previous month, on average.  We therefore use the whole data set at 
once. 

10.3 Time-homogeneous Markov models 

The structural analysis of Section 7 of Chapter 4 is of paramount importance when it comes 
to modelling continuous-time Markov jump processes.  Recall that each visit to any given 
state i  is of exponential duration with mean 1 i  and is independent of the durations of 

previous visits to that state and of the destination after the next jump.  Further, the 
probability that the next transition is to state j  is ij i  . 

This suggests that it is feasible to separate the two estimation procedures.   

 First the i  may be estimated: look at the data for the durations of visits to state i  

and let ˆ1 i  be equal to the sample mean of this collection. 

 Next proceed as in Chapter 2: let in  be the number of completed visits to state i , 

ijn  the number of direct transitions from state i  to state j , and set ˆ /ij ij ip n n .  

Since ijp  is equal to ij i  , a sensible estimator for ij  is  ˆ ˆˆij i ijp  . 

We have already seen in Section 11 of Chapter 4 that the transition rate ij  is estimated by: 

 
number of transitions from state  to state ˆ

total holding time in state ij
i j

i
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This formula is equivalent to the one in the second bullet point above. 

Also, i  can be estimated by ˆ ˆi ij
j i

 


  . 

Tests for goodness of fit are more problematical, if only because there is a vast collection of 
possible alternative hypotheses.  It is reasonable to test whether the visits to a given state 

really are exponentially distributed: a 2  goodness-of-fit test will do this.  It is also 

reasonable to test whether the jump chain really does exhibit the Markov property: see 
Chapter 2 for a discussion.  But there are other implications of the Markov structure that 
should be tested and the procedure is not always clear.   

For example, to derive a formal test as to whether the destination of a jump is independent 
of the duration of the previous holding time we would need to do something like this: 

 look at all visits to state i  and classify them as long-duration, medium-duration or 
short-duration 

 for each duration category, estimate the transition probabilities of the jump chain 

separately, giving estimates ( ) ( )ˆ ˆ,L M
ij ijp p  and ( )ˆ S

ijp  

 determine whether the differences between the sets of estimated transition 
probabilities are significant. 

However, it is by no means clear what test statistic could be employed or what its 
distribution might be.  In practice the investigation of this question would be accomplished 
graphically: for each visit to state i , plot a point on a graph whose x -coordinate represents 
the duration of the visit, y -coordinate the destination of the next jump.  If a pattern 

appears, reject the assumption of independence. 

Other tests, such as testing whether the first visit to a given state is significantly longer 
than subsequent visits, are also best treated graphically. 

10.4 Time-inhomogeneous Markov models 

The structural decomposition of the time-homogeneous Markov model does not apply to the 
time-inhomogeneous case.  The estimation of time-dependent transition rates, such as the 
force of mortality or age-dependent rate of recovery from sickness, is best treated within the 
context of the particular model being studied.  This is covered in later units in this course. 

10.5 Simulation 

In order to simulate a process, random values of the random variables that are involved must be 
produced.  

There are two approaches to the task of simulating a time-homogeneous Markov jump 
process.  The first is an approximate method and the second exact. 
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Approximate method 

Divide time into very short intervals of width h , say, where ijh  is much smaller than 1 for 

each i  and j .  The transition matrix ( )P h  of the Markov chain has entries approximately 

given by: 

   *
ij ij ijp h h   

Using the techniques of Chapter 2 we may simulate a discrete-time Markov chain  , 0nY n  

with these transition probabilities, then write  t t hX Y . 

For example, if 
1

100
h  , we would simulate  , 0nY n   and define [100 ]t tX Y , ie: 

 

0

1

2

for 0 0.01

for 0.01 0.02

for 0.02 0.03t

Y t

Y t
X

Y t

 
     
 

 

This simplistic method is not very satisfactory, as its long-term distribution may differ 
significantly from that of the process being modelled.   

Since the probabilities being used are not exact, the errors introduced accumulate as time passes.  
In the long run they may be significant. 

An improved version of this method is available, which uses the exact transition 

probabilities  ijp h  instead of  *
ijp h , but this naturally requires that the exact probabilities 

be calculated in advance.  General techniques for such calculations, where not covered by 
this chapter, are beyond the scope of the syllabus. 

Exact method 

This takes advantage of the structural decomposition of the jump process.  First simulate 
the jump chain of the process as a Markov chain with transition probabilities ij ij ip   .  

Once the path  ˆ{ : 0,1, }nX n  has been generated, the holding times   : 0,1,nT n  are a 

sequence of independent exponential random variables, nT  having rate parameter given 

by ˆ
nX . 

We will describe how to use the exact method to simulate a sample path for a Health-Sickness-
Death model with generator matrix: 

 

            

0.5 0.4 0.1

0.6 0.8 0.2

0 0 0

H S D
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We assume that a policyholder begins in the healthy state. 

The transition matrix of the Markov jump chain is: 

 
0.4 0.1
0.5 0.5

0.6 0.2
0.8 0.8

                                   

0 0.80 0.20

0.75 0 0.25

0 0 1

H S D

  
 
  
 
 
 

 

Each probability is the ratio of the force between the two states and the total of the forces on 
paths leaving the initial state.  Once the process enters state D  it remains there for ever. 

The holding time in the healthy state is (0.5)Exp  and the holding time in the sick state is (0.8)Exp . 

The first step is to simulate the states occupied by the Markov jump chain. 

Row 1 of the transition matrix is the conditional distribution of 1X  given that 0X H .  We use 

Monte Carlo simulation to generate a simulated value for 1X . 

If the simulated value is D , then the simulation of the sample path is complete because the 
process never leaves state D .  If the simulated value is S , then we use row 2  of the transition 
matrix, which is the conditional distribution of 2X  given that 1X S , to simulate a value for 2X . 

This process is repeated to simulate additional values of the Markov jump chain. 

The second step is to simulate the holding times corresponding to the states in the simulated 
Markov jump chain. 

The holding times for each occupancy of state H  will be simulated from an (0.5)Exp  distribution.  

We use Monte Carlo simulation to generate these values.  The same method can be used to 
generate (0.8)Exp  random variables for each holding time in state S . 

By adding up the holding times to match the states simulated from the Markov jump chain, we 
will obtain the simulated times at which the Markov process jumps between states. 

Time-inhomogeneous processes 

Given the transition rates of a time-inhomogeneous Markov chain and given the state tX  at 

time t , it is in principle possible to determine the density function of the time until the next 
transition and the destination of the next jump: see Section 9 for examples.  This means that 
standard simulation techniques can be deployed to generate an exact simulation of the 
process. 

In practice, however, such a procedure is cumbersome in the extreme, unless the number of 
states is very small, and a more usual approach is to use the approximate method outlined 

above.  The exact transition probabilities  ,ijp t t h  will seldom be to hand, meaning that 

the less satisfactory approximate values      * ,ij ij ijp t t h h t   must be used instead.   
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The method is acceptable for short-term simulations but is unreliable in the long term. 

As above, the errors introduced will accumulate so that the long-term simulation is not 
acceptable. 
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Chapter 5 Summary 

Chapman-Kolmogorov equations 

 ( , ) ( , ) ( , )ij ik kj
k

p s t p s u p u t  

Here u  is any intermediate time between s  and t  (possibly equal to s  or t ) that is 
convenient for the calculation.   

Transition rates 

  
0

( , ) ( , )
( ) , lim ij ij

ij ij
ht s

p s s h p s s
s p s t

t h




     
 

This is equivalent to: 

 
 

 
( ) if 

( , )
1 ( ) if 

ij
ij

ii

h s o h i j
p s s h

h s o h i j




       
 

for small h . 

Generator matrix 

The generator matrix is the matrix of transition rates ( )ij t .  It is usually denoted by ( )A t .  

Each row of the generator matrix ( )A t  sums to zero since ( ) ( )ii ij
j i

t t 


  . 

Backward and forward differential equations (time-inhomogeneous 
case) 

Forward: ( , ) ( , ) ( )ij ik kj
k

p s t p s t t
t




   

     , , ( )P s t P s t A t
t





 (matrix form) 

Backward: ( , ) ( ) ( , )ij ik kj
k

p s t s p s t
s


 

   

     , ( ) ,P s t A s P s t
s


 


 (matrix form) 
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Occupancy probabilities 

The probability of remaining in state i  throughout the interval ( , )s t  is:  

 
0

( , ) exp ( ) exp ( )
t s t

i iii s
p s t s u du u du 

          
      

where ( )i u  is the total force of transition out of state i  at time u . 

Probability that the process goes into state j when it leaves state i 

Given that the process is in state i  at time s  and it stays there until time s w , the 
probability that it moves into state j  when it leaves state i  at time s w  is: 

 
( ) the force of transition from state  to state  at time 
( ) the total force out of state  at time 

ij

i

s w i j s w
s w i s w




 


 
 

Backward and forward integral equations 

Backward: 
0

( , ) ( , ) ( ) ( , )
t s

ij ik kjii
l i

p s t p s s w s w p s w t dw



     i j  

The backward equation is obtained by considering the timing and nature of the first jump 
after time s .  The duration spent in this initial state before jumping to another state (state k  
say) is denoted by w .  The integral reflects the three stages involved: 

1. remaining in state i  from time s  to time s w  

2. jumping from state i  to state k  at time s w   

3. moving from state k  at time s w  to state j  at time t  (possibly visiting other 

states along the way). 

We then consider the possible values of w  to obtain limits of 0 and t s  for the integral, 
and we sum over all possible intermediate states k . 

When i j , the equation is: 

 
0

( , ) ( , ) ( ) ( , ) ( , )
t s

ii ik kiii ii
l i

p s t p s s w s w p s w t dw p s t



      

The extra term here is to account for the possibility of staying in state i  from time s  to 
time t . 
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Forward: 
0

( , ) ( , ) ( ) ( , )
t s

ij ik kj jj
k j

p s t p s t w t w p t w t dw



        i j  

The forward equation is obtained by considering the timing and nature of the last jump 
before time t .  The duration then spent in this final state (state j ) before time t  is denoted 

by w .  The integral reflects the three stages involved: 

(1) moving from state i  at time s  to state k  at time t w  (possibly visiting other states 
along the way) 

(2) jumping from state k  to state j  at time t w   

(3) remaining in state j  from time t w  to time t .  

We then consider the possible values of w  to obtain limits of 0 and t s  for the integral, 
and sum over all possible intermediate states k . 

When i j , the equation is: 

 
0

( , ) ( , ) ( ) ( , ) ( , )
t s

ii ik ki ii ii
k j

p s t p s t w t w p t w t dw p s t



       

The extra term here is to account for the possibility of staying in state i  from time s  to 
time t . 

Integral equations can be adjusted to deal with transition rates that are duration-dependent, 
ie transition rates that depend on the holding time in the current state. 
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The practice questions start on the next page so that you can 
keep all the chapter summaries together for revision purposes. 
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Chapter 5 Practice Questions 

5.1 Derive the differential equation  ( , ) ( , ) ( ) ( )HH HHp s t p s t t t
t
  


   . 

5.2 A Markov jump process is used to model sickness and death.  Four states are included, namely 

1 2, ,H S S  and D , which represent healthy, sick, terminally sick and dead, respectively.  We are 

told that the people who are terminally sick never recover and die at a rate of  1.03 1.01 t  where 

t  is their age in years.   

Calculate the probability that a terminally sick 50-year-old dies within a year.    

5.3 In a Markov jump process model of sickness and death there are three states: healthy (H), sick (S) 
and dead (D).  The transition graph is shown below.  Let tX  denote the state of the process at 

time t. 

H: Healthy S: Sick

D: Dead 

 

 

 

(i) Write down the generator matrix at time t .  

(ii) Define the residual holding time, sR .  

(iii) Given that a life is sick at time s, give an expression for the probability it remains sick for a 
further period of at least w.  

(iv) State the probability density function of sR  given that sX S .  

(v) Given that a transition from H takes place at time t , give an expression for the probability 
that it is to S.  

(vi) Give the integral form of the Kolmogorov backward equation for ( , )SDp s t , the probability 

that an individual who is sick at time s is dead at time t.    

(vii) Explain your formula in (vi) by general reasoning. 

( )t

( )t

( )t ( )t
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5.4 A 3-state time-homogeneous Markov jump process is determined by the following matrix of 
transition rates: 

 

3 2 1

0 2 2

0 0 0

A

 
   
 
 

 

The distribution at time 0 is  1 1 1
3 3 3

, , .  Determine the distribution at time 1.  

5.5 An investigator wishes to construct a multiple decrement model of the mortality of a population, 
subdivided by the following causes of death. 

Cause 1: Cancer 

Cause 2: Heart disease 

Cause 3: All other causes 

You are given the following definitions: 

 i
x  is the force of mortality due to cause i  ( 1, 2, 3i  ) at exact age x  

i
u xq  is the probability that a life at exact age x dies due to cause i  ( 1, 2, 3i  ) before reaching 

exact age x u  ( 0u  ) 

u xp  is the probability that a life aged exactly x  is still alive at exact age x u  ( 0u  ) 

You may assume that 0
i

iu x
x

q
as u

u
  . 

(i) Derive an expression for t xp  ( 0t  ), in terms of the forces of mortality, using only the 

above functions in your derivation. 

(ii) Write down an integral expression for i
xq  in terms of t xp  and the appropriate force(s) of 

mortality.  (Note that 1
i i
x xq q .)  

(iii)  Assuming that the force of mortality from each cause i  is a constant i  between integer 

ages x  and 1x  , show that: 

  
3

1

i
i
x x

i

i

q q





 


  where  1x xq p    

 (Note that 1x xp p .) 
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5.6 Consider the following time-inhomogeneous Markov jump process with transition rates as shown 
below: 

 

0.1t

0.1t

0.05t

0.2t

0.2t

0.5t

1

2

3

4

  

(i) Write down the generator matrix at time t .    

(ii) Write down the Kolmogorov backward differential equations for 33( , )P s t  and 13( , )P s t .  

(iii) Using the technique of separation of variables, or otherwise, show that the solution of the 
differential equation for 33( , )P s t  is: 

  
 2 20.25

33( , )
t s

P s t e
 

   

(iv) Show that the probability that the process visits neither state 2 nor state 4 by time t , 
given that it starts in state 1 at time 0, is: 

  
2 20.075 0.258 1

7 7
t te e    

(v) State the limiting value as t   of the probability in (iv).  Explain why this must be the 
case for this particular model.  
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5.7 A time-inhomogeneous Markov jump process has state space {A, B} and the transition rate for 
switching between states equals 2t , regardless of the state currently occupied, where t  is time. 

The process starts in state A at 0t  . 

(i) Calculate the probability that the process remains in state A until at least time s .  [2] 

(ii) Show that the probability that the process is in state B at time T , and that it is in the first 

visit to state B, is given by 
22 TT e . [3] 

(iii)  (a)  Sketch the probability function given in (ii). 

 (b) Give an explanation of the shape of the probability function. 

 (c) Calculate the time at which it is most likely that the process is in its first visit to 
state B. 

                [6] 
    [Total 11] 

5.8 An illness-death model has three states: 

 1 = healthy 
 2 = sick 
 3 = dead 

Let ij
t xp   denote the probability that a life in state i  at age x  is in state j  at age x t  and let

ij
x t   denote the force of transition from state i  to state j  at age x t . 

(i) Draw and label a diagram showing the three states and the transition intensities between 
them.   [2] 

(ii) Show, from first principles, that in this illness-death model: 

  12 11 12 12 21 12 23=t x t x x t t x x t t x x tp p p p
t

    


 


 [6] 

    [Total 8] 

Exam style 

Exam style 
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5.9 The following diagram represents a four-state Markov model. 

 

State 1
Healthy

State 2
Temporarily sick or 

disabled

State 3
Permanently sick 

or disabled

State 4
Dead

 

The force of transition from state i  to state j  ( )i j  at age x is denoted by ij
x , and the 

probability that a life, who is in state i  when aged x, will be in state j  at age x t  is ij
t xp .  

(i)  Derive from first principles a differential equation for 23
t xp , stating all assumptions 

made.   [5] 

(ii) Given that, for 40,41x  : 

 12 13 14
1 1 10.03, 0.002, 0.001,x x xp p p    

 21 23 24
1 1 10.4, 0.1, 0.01x x xp p p    and  34

1 0.3xp   

 calculate 13
2 40.p   [2] 

(iii) An insurance company issues a combined sickness, disability and assurance contract that 
provides the following benefits: 

 an income payable while the policyholder is temporarily sick or disabled; and 

 a lump sum payable either on becoming permanently sick or disabled, or on death. 

The contract terminates as soon as the lump sum has been paid. 

 Explain how the model could be simplified for the purpose of modelling the claims 
process involved.  State how your answer to (i) would be altered as a result of this change.  
(You are not required to derive this result from first principles). [2] 

    [Total 9] 

Exam style 
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Chapter 5 Solutions 

5.1 We consider ( , )HHp s t h  where h  is a small amount and condition on the state at time t .  In this 

case, no transition out of H is possible, so: 

  ( , ) ( , ) ( , )HH HH HHp s t h p s t p t t h  

However, during the short interval from time t  to time t h , the process either remains in H, 
changes from H to S or changes from H to D.  We assume here that the probability of more than 
one change is very small, ie it is an ( )o h  function.  So: 

      ( , ) ( , ) ( , ) ( ) 1HS HDHHp t t h p t t h p t t h o h  

Since we know that   ( , ) ( ) ( )HSp t t h h t o h  and   ( , ) ( ) ( )HDp t t h h t o h  this gives:  

       ( , ) 1 ( ) ( )HHp t t h h t t o h     

Therefore: 

       ( , ) ( , ) 1 ( ) ( ) ( )HH HHp s t h p s t h t t o h   

This can be rearranged to give: 

  
 

   
( , ) ( , ) ( )

( , ) ( ) ( )HH HH
HH

p s t h p s t o h
p s t t t

h h
   

Letting 0h   gives: 

   ( , ) ( , ) ( ) ( )HH HHp s t p s t t t
t
  


 

since 
0

( )
lim 0

h

o h
h

 . 

5.2 The probability of surviving the year is:  

  
2 2

51

50
(50,51) exp 1.03 1.01 t

S Sp dt   
      

Noting that   ln1.011.01 t te , this is an exponential integral: 

    
51

51

50
50

1.01
1.03 1.01 1.03 1.70242

ln1.01

t
t dt

 
  
  

   

So the probability of dying within the year is:  

 1.702421 0.818e    
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5.3 (i) Generator matrix 

The generator matrix at time t  is: 

 

  
    
 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0 0

t t t t

A t t t t t

   
      

(ii) Residual holding time 

The residual holding time at time s  is the random variable representing the remaining time until 
the next jump.    

(iii) Occupancy probability  

The required expression is: 

     
( ) ( )

( | )
s w
s

u u du
s sP R w X S e

 
  

(iv) Probability density function 

The PDF is: 

         
( ) ( )

( ) ( ) ( ) , 0
s w
s

s

u u du
Rf w s w s w e w

     

This can be obtained by differentiating the CDF: 

      
( ) ( )

( | ) 1
s w
s

u u du
s sP R w X S e

 
  

(v) Conditional probability of transition to state S 

This is the ratio of the force of transition from H to S to the total force of transition out of H: 

 
( ) ( )

( ) ( ) ( ) ( )
HS

HS HD

t t
t t t t
 

   


 
  

(vi) Integral form of the Kolmogorov backward equation 

Considering the two possible destination states after the first transition, we obtain: 

 

 

 






 


 

  

  





( ) ( )

0

( ) ( )

0

( , ) ( ) ( , )

( ) ( , )

s w
s

s w
s

t s
u u du

SD DD

t s
u u du

HD

p s t e s w p s w t dw

e s w p s w t dw
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Since  ( , ) 1DDp s w t , this simplifies slightly to: 

 

 






 


 

 

  





( ) ( )

0

( ) ( )

0

( , ) ( )

( ) ( , )

s w
s

s w
s

t s
u u du

SD

t s
u u du

HD

p s t e s w dw

e s w p s w t dw

 

 



  

(vii) General reasoning explanation 

 

 

 

 

The backward equation is constructed by conditioning on the first transition time.  Let s w  be 
the time of the first transition from state S.  Let this transition be to state k, which can be either H 
or D.       

There steps to consider are as follows: 

 The process is in state S  from time s  to time s w .  This has probability: 

   ( ) ( )
( , )

s w
s

u u du
SSp s s w e

      

 At time s w , the process makes a transition from state S  to state k .  So we multiply by 

the force of transition S ( )k s w  . 

 Finally, we need the probability ( , )kDp s w t  for going from state k  to state D. 

 Multiplying these together and integrating over the possible times for w , we obtain the 
given expression.  We can simplify using the fact that ( , ) 1DDp s t  .  

s  t 

S D 
k 

time 

state 
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5.4 A diagram may help you to see what is going on here.  Let’s call the states 1, 2 and 3.  The 
transition diagram is as follows: 

 

State 1 State 2

State 3

  
We need to find the matrix of transition probabilities,  P t , and then calculate: 

    1 1 1
3 3 3, , 1P  

State 3 in the diagram above resembles the dead state, since once we enter state 3 we cannot 
leave it.   

We have:  

    31 32 0P t P t   and  33 1P t      

Also  21 0P t  .    

Since the only path from 2 to 2 is to stay there throughout: 

     2 2
22 22

t tP t P t e e       

and   2
23 1 tP t e  .  

Similarly     3
11 11

tP t P t e  .  

To calculate  12P t  we can use the integral form of the Kolmogorov equation.  (This is slightly 

quicker to deal with than the differential form.)  If we use the backward form we have: 

 

 

  


  

    

 
   

  

  3 2( )
12 12 2211

0 0

2 2

0

( ) ( ) ( ) 2

2 2 1
1

t t
w t w

tw
t t t

P t P w P t w dw e e dw

e
e e e
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It follows that: 

    3 2 3 2
13 1 2 1 1 2t t t t tP t e e e e e             

Finally: 

 

     
 

 

3 2 1 3 2

2 21 1 1 1 1 1
3 3 3 3 3 3

2 1 1 2

, , 1 , , 0 1

0 0 1

0.0166,0.1021,0.8813

e e e e e

P e e

    

 

    
 

  
 
 
 

   

5.5 (i) Derivation 

Consider the probability u h xp  where h  is a small amount.  From the Markov assumption, we 

know that: 

 u h x u x h x up p p    

The probability that an individual survives a period is one minus the probability that it dies.  So: 

 
3

1
1 i

h x u h x u
i

p q 


   

We know that: 

 ( )i i
h x u x uq h o h    

Substituting this into the first expression gives: 

 
3

1
1 ( )i

h x u x u
i

p h o h 


    

Hence:  

 
3

1

1 ( )i
u h x u x x u

i

p p h o h 


 
    

 
  

Rearranging, we see that: 

 
3

1

( )iu h x u x
u x x u

i

p p o h
p

h h
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Letting h  tend to zero gives:  

 
3

1

i
u x u x x u

i
p p

u
 






    

since 
( )

0
o h

h
  as 0h  .  

Dividing both sides by u xp , we have:  

 
3

1
log i

u x x u
i

p
u

 



 

    

Integrating with respect to u  between  0u  and u t , we see that:  

 
3

0 0
1

log log
t i

t x x x u
i

p p du 


      

Since 0log log1 0xp   , we have:   

 
3

0 1

exp
t

i
t x x u

i

p du 


 
   

 
   

(ii) Formula 

i
xq  is the probability that an individual aged x  leaves through cause i  during the coming year.  

Expressed as an integral, this is: 

 
1

0
i i
x t x x tq p dt    

since an individual who leaves through cause i  during the year must survive all decrements up to 
some time t  in the range 0 1t  , and then must leave through cause i  at time t .  Integrating 
over all possible values of t  gives the required probability.  

(iii) Proof 

Combining the formulae derived in parts (i) and (ii), we have:  

 
31 1

0 0
0 1

exp
t

i i i i
x t x x t x u x t

i

q p dt du dt    


 
    

 
    

Since the force of mortality is constant over the year, this is: 

 
3 31 1

0 0
0 1 1

exp exp
t

i i i i i
x

i i

q du dt t dt   
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Integrating gives: 

 

1
3 3

3 3
1 10

1 1

exp 1 exp
i i

i i i
x

i ii i

i i

q t
  
  

 

      
                       

 
 

  

This simplifies to: 

  3 3

1 1

1
i i

i
x x x

i i

i i

q p q
 

 
 

   

 
  

5.6 (i) Generator matrix at time t 

At time t  we have: 

 

0.15 0.1 0.05 0

0.1 0.5 0.2 0.2
( )

0 0 0.5 0.5

0 0 0 0

t t t

t t t t
A t

t t

 
  
 
 
 

  

As always, the rows of the generator matrix sum to 0. 

(ii) Backward differential equations 

The matrix form of the backward differential equations is: 

 ( , ) ( ) ( , )P s t A s P s t
s


 


 

Since this model is time-inhomogeneous and we’re asked for the backward differential equation, 
we are differentiating with respect to s . 

For this model: 

  33 33 33( , ) 0.5 ( , ) 0.5 ( , )P s t sP s t sP s t
s


   


 

and: 

 

 13 13 23 33

13 23 33

( , ) 0.15 ( , ) 0.1 ( , ) 0.05 ( , )

0.15 ( , ) 0.1 ( , ) 0.05 ( , )

P s t sP s t sP s t sP s t
s

sP s t sP s t sP s t
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(iii) Solving the differential equation  

Separating the variables gives: 

 
33

33

( , )
0.5

( , )

P s t
s s
P s t


    

and changing the variable from s  to u : 

 33ln ( , ) 0.5P u t u
u





  

Integrating both sides with respect to u  between the limits of u s  and u t , we get: 

   2
33ln ( , ) 0.5 0.25

ttt
s s s

P u t udu u       

ie: 

  2 2
33 33ln ( , ) ln ( , ) 0.25P t t P s t t s     

However, since 33( , ) 1P t t   and ln1 0 , we have: 

  2 2
33ln ( , ) 0.25P s t t s    

The expression above can be rearranged to give: 

 
 2 20.25

33( , )
t s

P s t e
 

   

(iv) Probability of having visited neither state 2 nor state 4 by time t 

There are two possible ways for the process, which started in state 1 at time 0, to have visited 
neither state 2 nor state 4 by time t .  These are: 

1. the process has stayed in state 1 throughout the time interval [0, ]t , or 

2. for some s , 0 s t  , the process has stayed in state 1 throughout the time interval [0, )s , 

jumped into state 3 at time s , and stayed in state 3 throughout the time interval ( , ]s t .  

So the probability that we require is the sum of the probabilities of events 1 and 2 above.   

Event 1 

The probability that the process stays in state 1 throughout the time interval [0, ]t  is: 

 
22 0.075

11 0 0
(0, ) exp 0.15 exp 0.075

tt tP t sds s e              

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 52 CS2-05: Time-inhomogeneous Markov jump processes 

© IFE: 2019 Examinations The Actuarial Education Company 

Event 2 

The probability that for some s , 0 s t  , the process stays in state 1 throughout the time 
interval [0, )s , jumps into state 3 at time s , and stays in state 3 throughout the time interval ( , ]s t  

is: 

 1311 330
(0, ) ( ) ( , )

t
P s s P s t ds   

From above: 

 
20.075

11(0, ) sP s e   

Also, since a return to state 3 is impossible, we know from (iii): 

  2 20.25
3333( , ) ( , )

t s
P s t P s t e

 
    

So the probability of event 2 is: 

 
 2 22 2 20.250.075 0.25 0.175

0 0
0.05 0.05

t st ts t se s e ds e s e ds
     

Making the substitution 20.175u s  (so that 0.35du sds ), the integral on the RHS above 

becomes: 

 

2
2 2

0.175
0.175 0.175
0

0

1
1

0.35 0.35 0.35

tu ut te e
du e

        
   

   

So the probability of event 2 is: 

 
2 2 2 20.25 0.175 0.075 0.251 1

0.05 1
0.35 7

t t t te e e e           
   

  

Hence the probability that the process has visited neither state 2 nor state 4 by time t  is: 

 
2 2 2 2 20.075 0.075 0.25 0.075 0.251 8 1

7 7 7
t t t t te e e e e         

 
  

(v) Limiting value 

As t  , the probability in (iv) tends to 0.  

This must be the case for this particular model because eventually the process will end up in 
state 4, which is an absorbing state.  In other words the probability of visiting state 4 by time t  
tends to 1 as t  .  So the probability of not having visited state 4 tends to 0.  
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5.7 This is Subject CT4, September 2005, Question A7. 

(i) Probability that the process remains in state A until at least time s 

The probability that the process remains in state A until at least time s , given that it started in 
state A at time 0, is: 

 
22

0 0 0
(0, ) exp ( ) exp 2 exp

ss s s
ABAAp s t dt t dt t e                        

   [2] 

(ii) Proof 

The probability that the process is in state B at time T  and that it is in the first visit to state B can 
be expressed in integral form as follows: 

 
0

(0, ) ( ) ( , )
T

ABAA BBp s s p s T ds  [1] 

This expression is constructed using the following reasoning: 

 Pick a point in time between 0 and T, call it s , and assume that the process stays in state 
A up to time s .  This gives us the factor (0, )AAp s . 

 Now suppose that there is a transition from state A to state B at time s .  This gives us the 
factor ( )AB s . 

 Then we need the process to stay in state B from time s  to time T .  This gives us the 
factor ( , )BBp s T . 

 Finally, we integrate over all possible times s  when the first transition could happen, 
ie from 0s   up to T . 

Now, from part (i) we know that: 

 
2

(0, ) s
AAp s e   

Also: 

 ( ) 2AB s s   

and: 

2 22 ( )( , ) exp ( ) exp 2 exp
TT T T s

BABB s s s
p s T t dt t dt t e                         

    [1] 

So the probability that the process is in state B at time T , and it is in the first visit to state B, is: 

 
2 2 2 2 2 2( ) 2 2

0 0 0
2 2

TT Ts T s T T Te s e ds e sds e s T e            [1] 

as required. 
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(iii)(a) Sketch of the probability function 

The function 
22( ) Tf T T e  will tend to 0 as T   because the exponential term will dominate 

the polynomial term.  Also (0) 0f  .  Differentiating f  we get: 

 2 2 23 2( ) 2 2 2 1T T Tf T Te T e Te T         

This derivative is equal to 0 when 1T  .  (We are only considering positive values of T  here.)  
These calculations should help you to sketch the graph.  

The function 
22( ) Tf T T e  is shown below: 

 
T0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

f(T)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

  
    [3] 

(iii)(b) Explanation of the shape of the probability function 

The graph increases at first, due to the increasing force of transition out of state A.  It then 
reaches a peak and starts to decrease because the increasing force of transition out of state B 
means that the process is less likely to still be in its first visit to state B. [2] 

(iii)(c) Time at which it is most likely that the process is in its first visit to state B 

From our calculations in part (iii)(a), and the graph above, we see that the time at which it is most 
likely that the process is in its first visit to state B is time 1. [1] 
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5.8 (i) Diagram of three-state model 

1: Healthy 2: Sick

3: Dead 

 

 

 [2] 

(ii) Derivation of partial differential equation 

Consider the interval from age x  to age x t h  , where h  is a small amount.  By the Markov 
property, we have: 

 12 11 12 12 22
t h x t x h x t t x h x tp p p p p     [1] 

However, using the assumption about the transition rates, we can write: 

 12 12 ( )h x t x tp h o h    [1] 

and:  

22 21 23 21 231 1 ( )h x t h x t h x t x t x tp p p h h o h             [1] 

So: 

  12 11 12 12 21 231 ( )t h x t x x t t x x t x tp p h p h h o h           [1] 

We can rearrange this equation to get: 

  
12 12

11 12 12 21 23 ( )t h x t x
t x x t t x x t x t

p p o h
p p

h h
  

  


     [1] 

Finally, letting 0h   gives: 

  12 11 12 12 21 23
t x t x x t t x x t x tp p p

t
    


  


  

since 
( )

0
o h

h
  as 0h  . [1] 

12
x  

21
x  

13
x  

23
x
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5.9 (i)  Differential equation 

Using the Markov assumption, which says that the probabilities of being found in any state at any 
future age depend only on the ages involved and the current state occupied …  [½] 

… we can write:   

 23 21 13 22 23 23 33 24 43
t h x t x h x t t x h x t t x h x t t x h x tp p p p p p p p p         [1] 

According to the law of total probability: 33 341h x t h x tp p    [½] 

Assuming that, for i j  and small h  , ( )ij ij
h x t x tp h o h    [½] 

… where 
0

( )
lim 0

h

o h
h 

  [½] 

… and noting that 43 0t xp   [½] 

… we have   23 21 13 22 23 23 341 ( )t h x t x x t t x x t t x x tp p h p h p h o h          . [½] 

So: 

 
23 23

21 13 22 23 23 34 ( )t h x t x
t x x t t x x t t x x t

p p o h
p p p

h h
  

  


     [½] 

and:   

 
23 23

23 21 13 22 23 23 34

0
lim t h x t x

t x t x x t t x x t t x x t
h

p p
p p p p

t h
   



  

 


     [½] 

(ii) Calculate probability 

         13 11 13 12 23 13 33
2 40 1 40 1 41 1 40 1 41 1 40 1 41p p p p p p p    [1] 

 (1 0.03 0.002 0.001) 0.002 0.03 0.1 0.002 (1 0.3) 0.006334            [1] 

(iii) Simplified model? 

The transition from permanently sick and disabled to dead is not necessary for the modelling of 
the claims process, because this transition has no effect on the incidence of any claim payments.  
(A lump sum claim is payable only on transitions from state 1 to 3, 1 to 4, 2 to 3 or 2 to 4; no 
payment is made on transition from state 3 to 4.) [1] 

The revised differential equation is:  

 23 21 13 22 23
t x t x x t t x x tp p p

t
  
      [1] 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-06: Survival models Page 1 

The Actuarial Education Company © IFE: 2019 Examinations 

 
Survival models 

 

Syllabus objectives 

4.1 Explain the concept of survival models. 

4.1.1 Describe the model of lifetime or failure time from age x  as a random 
variable. 

4.1.2 State the consistency condition between the random variable representing 
lifetimes from different ages. 

4.1.3 Define the distribution and density functions of the random future lifetime, 
the survival function, the force of mortality or hazard rate, and derive 
relationships between them. 

4.1.4 Define the actuarial symbols t xp  and t xq  and derive integral formulae for 

them. 

4.1.5 State the Gompertz and Makeham laws of mortality. 

4.1.6 Define the curtate future lifetime from age x  and state its probability 
function. 

4.1.7 Define the symbols xe  and xe  and derive an approximate relation 

between them.  Define the expected value and variance of the complete 
and curtate future lifetimes and derive expressions for them.   
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0 Introduction 

In this chapter we will discuss a model of random lifetimes where we treat the future lifetime of 
an individual as a continuous random variable.  From this simple starting point we will derive 
many useful results that are the building blocks of actuarial work relating to human mortality.   

Although we will mostly study the lifetime model in the context of human mortality, the theory 
can equally be applied to other problems, such as: 

 analysing the lengths of time that surviving individuals hold insurance policies – here 
mortality is replaced by ‘withdrawal’. 

 analysing the lengths of time that surviving individuals remain healthy – here mortality is 
replaced by ‘sickness’. 
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1 A simple model of survival  

1.1 Future lifetime 

The starting point for a simple mathematical model of survival is the observation that the 
future lifetime of a person (called a ‘life’ in actuarial work) is not known in advance.  Further, 
we observe that lifetimes range from 0 to in excess of 100 years.  A natural assumption 
therefore is that the future lifetime of a given life is a random variable. 

Assumption 

The future lifetime of a new-born person is a random variable, denoted T, which is 
continuously distributed on an interval [0, ]  where 0    . 

The maximum age   is called the limiting age. 

Typical values of   for practical work are in the range 100–120.  The possibility of survival 
beyond age   is excluded by the model for convenience and simplicity. 

When Jeanne Calment died in France on 4 August 1997, she was 122 years and 164 days old.  
According to the Guinness Book of Records, this is the highest authenticated age ever recorded. 

Centenarians surviving beyond their 113th year are extremely rare.   

Distribution function and survival function of a new-born life 

( ) [ ]F t P T t  is the distribution function of T . 

( ) [ ] 1 ( )S t P T t F t      is the survival function of T . 

( )S t  is known as the survival function of T  because it represents the probability of a new-born 

person surviving to age t . 

In insurance contexts, we will not be dealing with new-born babies, so we need to extend the 
notation to deal with older individuals.   

We often need to deal with ages greater than zero.  To meet this need, we define xT  to be 

the future lifetime after age x , of a life who survives to age x , for 0 x   .  Note that 

0T T . 

Distribution function and survival function of a life aged x 

For 0 x   : 

( ) [ ]x xF t P T t   is the distribution function of xT  

( ) [ ] 1 ( )x x xS t P T t F t     is the survival function of xT  

For example, the probability that a 40-year old dies before reaching age 100 is given by 40(60)F . 
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Question 

Explain what 29(36)S  represents. 

Solution 

29(36)S  represents the probability of an individual currently aged 29 reaching age 65, ie living for 

at least another 36 years.   

 
For consistency with T , the distribution function of the random variable (0 )xT x    must 

satisfy the following relationships: 

 ( ) ( )
( ) [ ] [ ]

( )x x
F x t F xF t P T t P T x t T x

S x
 

         

This expression comes from the definition of conditional probabilities.  ( | )P A B  represents the 

probability of event A given that event B has occurred and: 

 
(  and )

( | )
( )

P A B
P A B

P B
  

So: 

( ) ( ) ( )
( | )

( ) ( )

P x T x t F x t F x
P T x t T x

P T x S x

    
    


 

1.2 Probabilities of death and survival 

We now introduce the notation used by actuaries for probabilities of death and survival.   

Actuarial notation for survival and death probabilities 

 ( )t x xq F t  

 1 ( )t x t x xp q S t    

So, 60 40q  represents the probability that a 40-year old dies before reaching age 100, and 5 37p  

represents the probability that a 37-year old lives for at least another 5 years. 

Question 

Explain which of 5 34p  and 7 33p  is larger. 
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Solution 

The probability of surviving from age 33 to 40 must be less than the probability of surviving from 
34 to 39 since the first survival period includes the second, as well as the additional risk of dying 
between ages 33 and 34 and between ages 39 and 40.  Hence 5 34 7 33p p . 

 
It is convenient in much actuarial work to use a time unit of one year.  When this is the case, 
so that t = 1, we omit the ‘t’ from these probabilities.  That is, we define: 

 1x xq q  and 1x xp p  

xq  and t xq  are called rates of mortality. 

So: 

t xq  is the probability that a life now aged x dies within t years 

xq  is the probability that a life now aged x dies within 1 year 

t xp  is the probability that a life now aged x is still alive after t years 

xp  is the probability that a life now aged x is still alive after 1 year 

These are actually probabilities.  Do not confuse them with transition rates. 

1.3 The force of mortality x  

A quantity that plays a central role in a survival model is the force of mortality (which is 
more widely known as the hazard rate in statistics).   

We denote the force of mortality at age (0 )x x    by x , and define it as: 

 


    
0

1
lim [ | ]x

h
P T x h T x

h
   

We will always suppose that the limit exists. 

The interpretation of x  is very important.   

The force of mortality x  is an instantaneous measure of mortality at age x.  It is the continuous 

equivalent of the discrete quantity xq . 

The probability [ ]P T x h T x     is (from the definitions above) ( )x h xF h q .   

For small h , we can ignore the limit and write: 

 .h x xq h    

In other words, the probability of death in a short time h  after age x  is roughly 
proportional to h , the constant of proportionality being x . 
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The intuitive way of thinking of the force of mortality is in terms of the expected number of deaths 
in a very large population.  The expected number of deaths during a short time interval of length h  
years in a very large population consisting of n  individuals aged exactly x  is xn h  . 

We could estimate the value of 50  by taking a very large group of people, all aged exactly 50, and 

counting how many died during the next hour.  We could then work out the proportion of the group 
that had died, and express this as an annual rate by multiplying by 24 365.   This figure would give 
the value of 50  (very nearly). 

The figure would not be exact for a number of reasons, eg: 

1. The actual number of deaths we observe will differ from the expected number because of 
statistical fluctuations and the fact that people die in ‘whole units’. 

2. We have ignored leap years.  Assuming 365.25 days in a year would give a more ‘accurate’ 
answer. 

3. We have used a period of 1 hour.  The force of mortality is an instantaneous measure, so 
we need to take the limit of 1 hour, 1 minute, 1 second …  

As well as these theoretical reasons, there are practical reasons why we could not do this.  For 
example, there are only around 2,000 babies born each day in the whole of the UK.  So, if we take 
‘a life aged exactly 50’ to mean a life whose 50th birthday is on the day in question, we will have 
somewhat fewer than 2,000 people in our group (because some people will have died before age 
50).  Since this is a relatively small number of people, it is very unlikely that any of them at all 
would die during the next hour.   

We could actually have defined the force of mortality in two ways: either by thinking in terms of a 
new-born baby (as we did at the start of this section) or by thinking in terms of a person who has 
already reached the age in question. 

Equivalent definitions of force of mortality 

For 0x   and 0t  , we could define the force of mortality x t   in two ways: 

(1) 
0

1
lim [ ]x t

h
P T x t h T x t

h





          

(2) 
0

1
lim [ ]x t x x

h
P T t h T t

h





       

It is an easy exercise to show from the definitions that these are equal.  We will often use 

x t   for a fixed age x and 0 t x   . 

1.4 Survival probabilities 

The definition of ( )xS t  leads to an important relationship: 

 [ ] ( )
( ) [ ] [ ]

[ ] ( )x x
P T x t S x tS t P T t P T x t T x

P T x S x
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This can be expressed in actuarial notation as: 

 0

0

x t
t x

x

pp
p

  

Therefore, for any age x  and for 0, 0s t  : 

 
0 0 0

0 0 0

x s t x s x s t
s t x s x t x s

x x x s

p p pp p p
p p p

    
 


       

Similarly,  

 s t x t x s x tp p p     

In words, the probability of surviving for time ( )s t  after age x  is given by multiplying: 

1.   the probability of surviving for time s , and  

2.   the probability of then surviving for a further time t  

or by multiplying:  

1.   the probability of surviving for time t , and  

2.   the probability of then surviving for a further time s . 

This is illustrated below: 

s px

s + t px



x x + s x + t x + s + t

age

t px + s

 s px + tt px

 

The order in which we consider the two periods is irrelevant. 

This is the consistency condition referred to in syllabus objective 4.1.2. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 8  CS2-06: Survival models 

© IFE: 2019 Examinations The Actuarial Education Company 

1.5 The probability density function of xT  

The distribution function of xT  is ( )xF t , by definition.  We also want to know its probability 

density function (PDF).   

Denote this by ( )xf t , and recall that: 

 ( ) ( )x x
df t F t
dt

    

Then: 

 

0

0

0

0

( ) [ ]

1
lim ( [ ] [ ] )

[ ] [ ]
lim

[ ] [ ] ( [ ] [ ] )
lim

( )

[ ] [ ]
lim

( )

x x

x x
h

h

h

h

df t P T t
dt

P T t h P T t
h

P T x t h T x P T x t T x
h

P T x t h P T x P T x t P T x
S x h

P T x t h P T x t
S x h

















 

     

         


         




     




 

Now multiply and divide by ( )S x t  and we have: 

 

0

0

( ) 1 [ ] [ ]
( ) lim

( ) ( )

1
( ) lim [ ]

( )

x
h

x
h

x x t

S x t P T x t h P T x tf t
S x h S x t

S t P T x t h T x t
h

S t 











      
 



       

 

  

or, in actuarial notation, for a fixed age x  between 0  and  : 

 ( ) (0 )x t x x tf t p t x      

This is one of the most important results concerning survival models. 

Let’s summarise the model we have introduced.   
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Summary of model 

xT  is the (random) future lifetime after age x . 

It is, by assumption, a continuous random variable taking values in [0, ]x  . 

Its distribution function is ( )x t xF t q . 

Its probability density function is ( )x t x x tf t p   . 

The force of mortality is interpreted by the approximate relationship:  

 . (for small )h x xq h h  

The survival functions ( )xS t  or t xp  satisfy the relationship: 

 for any 0, 0s t x s x t x s t x s x tp p p p p s t         

1.6 Life table functions 

A life table is a table showing the expected number that will survive to each age in a hypothetical 
group of lives.  For the English Life Tables No15 (Males) given on pages 68 and 69 of the Tables, 
the table starts at age 0 with 100,000 lives.  xl  denotes the expected number of lives at age x  

and xd  denotes the expected number of deaths between the ages of x  and 1x  .  xl  and xd  

can be used to calculate survival and death probabilities as follows: 

 1x x xd l l    

 1x
x

x

l
p

l
  1 11 1 x x x x

x x
x x x

l l l d
q p

l l l
 

         

 x t
t x

x

l
p

l
  1 1 x t x x t

t x t x
x x

l l l
q p

l l
 

       

Values are tabulated only for integer ages.  If we require a value at a non-integer age, we must 
make an assumption about how mortality varies between integer ages.  For example, we could 
assume that deaths occur uniformly between integer ages or that the force of mortality is 
constant between integer ages. 

Question 

Below is an extract from English Life Table No15 (Males): 

 Age, x lx 

 58 88,792  

 59 87,805  

Estimate 58.25l  assuming a uniform distribution of deaths between exact ages 58 and 59. 
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Solution 

There are: 

 88,792 87,805 987   

deaths expected between the ages of 58 and 59.  Assuming that these are uniformly distributed 
throughout the year of age, the number of deaths expected between the ages of 58 and 58.25 is: 

 
987

246.75
4

  

So the expected number of lives at age 58.25 is: 

 88,792 246.75 88,545.25   

Although the same number of people are dying each quarter, under the uniform distribution of 
deaths assumption, the surviving population at the start of each quarter is decreasing.  So this 
assumption implies that the force of mortality is increasing over the year of age (58,59) . 

 
The following formula is also useful.   

Uniform distribution of deaths assumption 

If deaths are uniformly distributed between the ages of x  and 1x  , it follows that: 

 t x xq t q  

for 0 1t  . 

This result can be proved as follows.  Assuming that deaths are uniformly distributed between 
exact ages x  and 1x  , we have (by linear interpolation): 

   11x t x xl t l t l     

for 0 1t  .   

So: 

 
   1 11

1 1 1x xx t x x
t x x x

x x x

t l t ll t l t l
q t p t q

l l l
   

         

1.7 Initial and central rates of mortality 

xq  is called an initial rate of mortality, because it is the probability that a life alive at exact 

age x  (the initial time) dies before exact age 1x  . 
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Since x
x

x

d
q

l
  , it is the number of deaths over the year of age x  to 1x   divided by the number 

alive at the start of that year. 

An alternative often used (especially in demography) is the central rate of mortality, 
denoted xm . 

Central rate of mortality 

 
1

0

x
x

t x

qm
p dt




  

Another formula for xm  is given on page 121 of the Tables: 

 
1

0

x
x

x t

d
m

l dt




  

This formula shows that the central rate of mortality at age x  can be thought of as the number of 
deaths over the year of age x  to 1x   divided by the average number of lives alive over the year 
of age x  and 1x  . 

When we think about averaging, we usually have in mind an expression of the form: 

 
1

1 n

in 
   

ie we sum n  terms and divide by n .  This is averaging in a discrete sense.  

Similarly, the average of a continuous function, ( )g t  say, over the interval 0t   to t n is: 

 
0

1
( )

n

g t dt
n    

Setting 1n  , we see that the average of value of ( )g t  over the interval 0t   to 1t   is: 

 
1

0

( )g t dt   

So the average value of x tl   over the year of age x  to 1x   is: 

 
1

0
x tl dt  
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Dividing the numerator and denominator of 
1

0

x

x t

d

l dt
 by xl  gives: 

 
1 1

0 0

/

/

x x x
x

x t x t x

d l q
m

l l dt p dt

 

 
  

as before. 

The quantity xm  is the probability of dying between exact ages x  and 1x   per person-

year lived between exact ages x  and 1x  ; the denominator 
1

0 t xp dt  is interpreted as the 

expected amount of time spent alive between ages x  and 1x   by a life alive at age x , and 
the numerator is the probability of that life dying between exact ages x  and 1x  . 

There is another interpretation of xm .  The probability xq  can be represented by the integral 

1

0x t x x tq p dt   , which means that: 

 

1

0
1

0

t x x t

x

t x

p dt
m

p dt

 




 

So  xm  is a weighted average of the force of mortality over the next year of age.  The weighting 

factors are the survival probabilities.  xm  is a measure of the rate of mortality over the year from 

exact age x  to exact age 1x  , whereas the force of mortality x  is a measure of the 

instantaneous rate of mortality at exact age x . 

xm  is useful when the aim is to project numbers of deaths, given the number of lives alive 

in age groups; this is one of the basic components of a population projection.  In practice 
the age groups used in population projection are often broader than one year, so the 
definition of xm  has to be suitably adjusted. 

In this course, we consider how to estimate the mortality of a particular population using data 
from an investigation.  Historically, actuaries tended to use the data to estimate xm  rather than 

x  or xq . 

Historically, xm  was estimated by statistics of the form: 

 
Number of deaths

Total time spent alive and at risk
 

called ‘occurrence-exposure rates’.   
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More recently, these statistics have been used to estimate the force of mortality rather than 

xm , because in that context they have a solid basis in terms of a probabilistic model.  

However, if x t   is a constant,  , between ages x  and 1x  , then: 

 

1

0
1 1

0 0

t x
x

x
t x t x

p dtqm
p dt p dt


  



 
 

So there is still a close connection. 

It is important to understand the relationship between these three measures of mortality. 

Question 

Consider the statement ‘ xm  can never be less than xq .’  Explain whether this is true or false. 

Solution 

The denominator 
1

0
1t xp dt  , so x xm q .  So the statement is true. 
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2 Expected future lifetime 

2.1 Complete expectation of life 

The expected future lifetime after age x , which is referred to by demographers as the 

expectation of life at age x , is defined as [ ]xE T .  It is denoted xe .   

The symbol xe  is read as ‘e-circle-x’ and is tabulated in some of the actuarial tables we will be 

using. 

The next bit of derivation of the formula for xe  uses the following result, which we will see again 

in Section 3.3: 

       
   
   

( ) ( ) (1 )t x x t x x t x t x t xp f t F t q p p
t t t t

 

It also uses the definition of the expected value of a continuous random variable: 

  ( ) ( )
y

E Y y f y dy   

where ( )f y  is the PDF of the random variable Y . 

By definition:  

 

0

0

0
0

0

.

( )

(integrating by parts)

x

x t x x t

x

t x

x
x

t x t x

x

t x

e t p dt

t p dt
t

t p p dt

p dt





























 

    











 

since the term in square brackets is zero for both 0t   and t x  . 

The formula for xe  is often written more simply as follows. 

Complete expectation of life 

 
0

( )x x t xe E T p dt


      

This formula holds since 0t xp   for t x  . 
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According to the ELT15 (Males) life table, the complete expectations of life for a new-born baby 
boy, a 21-year-old male and a 70-year-old male are 73.413 years, 53.497 years and 11.187 years, 
respectively.  

The figures illustrate the fact that 0 2121e e   .  For equality, the probability of dying before age 

21 would have to be zero.  Although this probability is quite low, it is greater than zero.  So 

0 2121e e   . 

2.2 Curtate expectation of life 

To define the curtate expectation of life, we first need to define xK , the curtate future 
lifetime of a life age x .   

Curtate future lifetime random variable 

The curtate future lifetime of a life age x  is: 

 [ ]x xK T  

where the square brackets denote the integer part.  In words, xK  is equal to xT  rounded 

down to the integer below. 

So, the curtate future lifetime xK  of a life aged exactly x  is the whole number of years lived after 

age x . 

Clearly xK  is a discrete random variable, taking values on the integers 0, 1, 2, ... [ ]x  . 

The probability distribution of xK  is easy to write down using the definitions of Section 1 of 

this chapter. 

 

[ ] [ 1 ]

[ 1 ] (*)

x x

x

k x x k

P K k P k T k

P k T k

p q 

    

   



 

We also use the symbol xk q  to represent  xP K k .  It is read as ‘ k  deferred xq ’, and we can 

think about this as deferring the event of death until the year that begins in k  years from now. 

Note that switching the inequalities at step (*) requires an assumption about xT .  It is 

enough to suppose that ( )xF t  is continuous in t .  We will not discuss this further here. 

We now define the curtate expectation of life, denoted xe , by: 

  [ ]x xe E K  
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Then: 

 

 

0

1 1

2 2 2 2

3 3 3 3 3 3

[ ] [ ]

1

[ ]

1

. .

.

. .

. . .

. (summing columns)

x

x k x x k
k

x x

x x x x

x x x x x x

x x

j x x j
k j k

x

k x
k

e k p q

p q

p q p q

p q p q p q

p q

p



 










 

  

 


 









 

  









 





 

The last step follows since: 

 
[ ] [ ]

( ) ( )
x x

j x x j x x
j k j k

p q P K j P K k
  


 

       

This is the probability of dying at any time after age x k , which is the same as k xp . 

The formula for xe  is often written more simply as follows. 

Curtate expectation of life 

 
1

( )x x k x
k

e E K p



     

This formula holds since 0k xp   for [ ]k x  . 

Question 

Show algebraically that 1(1 )x x xe p e   . 

Solution 

We have:  

 
2 3

1 2 1

1

1

(1 )

x x x x

x x x

x x

e p p p

p p p

p e
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Intuitively, this is saying that the life expectancy for a life now aged x  is one year more than the 
life expectancy when the life reaches age 1x  , provided that the life does survive to age 1x  . 

 
According to the AM92 ultimate mortality table, the curtate expectation of life for a 21-year-old 
male is 57.481 years and the curtate expectation of life for a 70-year-old male is 13.023 years. 

2.3 The relationship between the complete and curtate expectations of life 

We have two simple formulae: 

 

0

x

x t xe p dt


   

 
[ ]

1

x

x k x
k

e p



   

The complete and curtate expectations of life are related by the approximate equation: 

  ½x xe e    

To see this, define x x xJ T K   to be the random lifetime after the highest integer age to 

which a life age x survives.   

Approximately, [ ] ½xE J  , but [ ] [ ] [ ]x x xE T E K E J   so  ½x xe e   as stated. 

When stating that [ ] ½xE J  , we are assuming that deaths occur half way between birthdays, on 

average. 

Question 

Using ELT15 (Males) mortality, approximate the curtate expectation of life for: 

(a) a new-born baby 

(b) a 21-year-old actuarial student 

(c) a 70-year-old pensioner. 

Solution 

(a) 0 0 0.5 72.913e e   years 

(b) 21 21 0.5 52.997e e   years  

(c) 70 70 0.5 10.687e e    years 
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2.4 Future lifetimes – variance 

It is easy to write down the variances of the complete and curtate future lifetimes: 

 2 2

0

var[ ]
x

x t x x t xT t p dt e






   

 
 

2 2

0

var[ ]
x

x k x x k x
k

K k p q e





   

but these do not simplify neatly as the expected values do. 

It is not particularly useful to know the variance of future lifetimes.  However, it is useful to be 
able to find the variance of financial functions (eg the profits from a life insurance policy or the 
cost of providing a benefit from a pension scheme) based on future lifetimes.  This information 
would enable us to quantify the likely variation in profits etc.   

2.5 Uses of the expectation of life 

The expectation of life is often used as a measure of the standard of living and health care 
in a given country. 

Here are some examples of average life expectancy at birth in different countries (2015): 

45-50 Chad 

50-55 Afghanistan, Namibia, Nigeria 

55-60 Angola, Sierra Leone, Zimbabwe 

60-65 Cambodia, Kenya, South Africa 

65-70 Myanmar, India, Pakistan 

70-75 Bangladesh, Brazil, North Korea, Russia 

75-80 Barbados, China, Denmark, Hungary, USA 

80-85 Germany, Israel, South Korea, UK 

85-90 Monaco 

 
The data come from the CIA World Factbook. 
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3 Some important formulae 

3.1 Introduction 

In this section we give two important formulae, one for t xq  and one for t xp .   

These formulae will provide a useful link between t xq , t xp  and x . 

3.2 A formula for t xq  

The first follows from the result that ( )x t x x tf t p   .  We have: 

 
0 0

( ) ( )
t t

t x x x s x x sq F t f s ds p ds      

This formula is easy to interpret.  For each time s , between 0  and t , the integrand is the 
product of:  

(i) s xp , the probability of surviving to age x s , and  

(ii) x s ds , which is approximately equal to ds x sq  , the probability of dying just after 

age x s .   

Since it is impossible to die at more than one time, we simply add up, or in the limit 
integrate, all these mutually exclusive probabilities. 

This result is not usually used to calculate t xq  from t xp  and x  since if we knew t xp  we could 

calculate t xq  directly.  However, the result does allow us to derive a very important relationship 

between t xp  and x . 

3.3 A formula for t xp   

The formula for t xp follows from the solution of the following equation: 

 ( )s x s x x s x x sp q f s p
s s
 


          

This is the Kolmogorov forward differential equation for s xp  , which we met in Chapter 3. 

(You will see why we have used s  as the variable in a moment.)   

To solve this, note that: 

 log
s x

s x
s x

p
sp

s p


 


  

so that the above equation can be rewritten as: 

 log s x x sp
s
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Here we are using the separation of variables technique, which we also met in Chapter 3. 

We are using s  rather than t  as the variable so that we can integrate this relationship between 
the limits of 0 and t  without causing confusion. 

Hence: 

 
0 0

log
t t

s x x sp ds ds c
s



        

where c is some constant of integration.   

Actually, we don’t need to include the constant of integration here because we’ve put limits on 
both integrals.  So c  will turn out to be zero. 

The left-hand side is: 

 
0

log log
t

s x t xp p     (since 0 1xp  ) 

so taking exponentials of both sides gives: 

 
0

exp
t

t x x sp ds c 

     
  
  

Now since 0 1xp  , we must have 0c   (since 0 1e  ), so finally: 

 
0

exp
t

t x x sp ds 

    
  
  

3.4 Summary 

To summarise, we have derived the following very important results. 

Integral expressions 

 
0

t

t x s x x sq p ds    (6.1) 

 
0

exp
t

t x x sp ds 

    
  
  (6.2) 
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4 Simple parametric survival models 

Several survival models are in common use in which the random variable denoting future 
lifetime has a distribution expressed in terms of a small number of parameters.  Perhaps the 
simplest is the exponential model, in which the hazard is constant: 

x    

It follows from (6.2) above that in the exponential model: 

            
  
 0
0

( ) exp exp exp( )
t

t
t x xp S t ds s t     

and hence that: 

1 1 exp( )t x t xq p t      

For example, if x  takes the constant value 0.001 between ages 25 and 35, then the probability 

that a life aged exactly 25 will survive to age 35 is: 

 
10

0.01
10 25

0

exp 0.001 0.99005p dt e
 
    
 
 
  

We can use R to simulate values from an exponential distribution, plot its PDF, and calculate 
probabilities and percentiles.   

Suppose we have an exponential distribution with parameter  0.5 .  The R code for 
simulating 100 values is given by: 

 rexp(100,rate=0.5) 

The PDF is obtained by dexp(x, rate=0.5) and is useful for graphing.  For example: 

plot(seq(0:5000),dexp(seq(0:5000), rate=0.5),type="l") 

To calculate probabilities for a continuous distribution we use the CDF which is obtained by 
pexp.  For example, to calculate  ( 2) 0.6321206P X  we use the R code: 

 pexp(2,rate=0.5) 

Similarly, the quantiles can be calculated with qexp. 

A simple extension to the exponential model is the Weibull model, in which the survival 
function ( )xS t  is given by the two-parameter formula: 

( ) expxS t t     (6.3) 

Recall that  ( ) 1 ( )x xS t F t , where   ( )x xF t P T t .  The CDF of the Weibull distribution is given 

on page 15 of the Tables. 
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Since:  

 log[ ( )]x t xS t
t

   
∂
∂

  

we see that: 

 1 1[ ] [ ]x t t t t
t

      
       

∂
∂

  

Different values of the parameter   can give rise to a hazard that is monotonically 

increasing or monotonically decreasing as t  increases, or in the specific case where 1  , 

a hazard that is constant, since if 1  :  

1 0.1.t t      

This can be seen also from the expression for ( )xS t  (6.3), from which it is clear that, when 

1  , the Weibull model is the same as the exponential model. 

We can adjust the R code given above for an exponential distribution to calculate corresponding 
quantities for a Weibull distribution. 

The R code for simulating a random sample of 100 values from the Weibull distribution with 
 2c  and  0.25  is: 

 rweibull(100, 0.25, 2^(-1/0.25)) 

R uses a different parameterisation for the scale parameter, c. 

Similarly, the PDF, CDF and quantiles can be obtained using the R functions dweibull, 
pweibull and qweibull. 

Alternatively, we could redefine them from first principles as follows: 

 rweibull <- function(n,c,g){ 
 rp <- (log(1-runif(n))/c)^(1/g) 
 rp} 

 dweibull <- function(x,c,g){ 
 c*g*x^(g-1)*exp(-c*x^g)} 

 pweibull <- function(q,c,g){ 
 1-exp(-c*x^g)} 

 qweibull <- function(p,c,g){ 
 q <- (log(1-p)/c)^(1/g) 
 q} 
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5 The Gompertz and Makeham laws of mortality 

The Gompertz and Makeham laws of mortality are two further examples of parametric 
survival models.  They can be expressed as follows: 

 Gompertz’ Law:  x
x Bc  (6.4) 

 Makeham’s Law:   x
x A Bc  

These formulae are given on page 32 of the Tables. 

Gompertz’ Law is an exponential function, and it is often a reasonable assumption for 
middle ages and older ages.   

Makeham’s Law incorporates a constant term, which is sometimes interpreted as an 
allowance for accidental deaths, not depending on age. 

The rationale behind the laws is based on an observation made by Benjamin Gompertz in the 
early 1800s.  When x  is plotted on a logarithmic scale against age, the graph often appears to 

follow a straight line for a large part of the age range.  We can see this from the graph of x  in 

the diagram below (for ages above 35 or so). 
 

 

x  on 10log  scale (ELT15 (Males) Mortality Table) 

5.1 Calculating the parameter values 

If a life table is known to follow Gompertz’ Law, the parameters B  and c  can be determined 

given the values of x  at any two ages.  In the case of a life table following Makeham’s Law, 

the parameters ,  and A B c  can be determined given the values of x  at any three ages. 

Question 

For a force of mortality x  that is known to follow Gompertz’ Law, calculate the parameters B  

and c  if 50 0.017609  and 55 0.028359 . 

Age, x 

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120

x ( 10log scale) 
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Solution 

We have: 

1/555
555

50
50

0.028359
1.1

0.017609
Bc

c c
Bc




      
 

 

and: 

 50
50 50

0.017609
0.00015

1.1
B

c


     

 

5.2 Survival probabilities 

Survival probabilities t xp  can be found using: 

 
0

exp
t

t x x sp ds 

 
  
 
 
  

Gompertz’ Law 

In the case of Gompertz’ Law: 

 ( 1)x tc c
t xp g   

where: 

 exp
log

Bg
c

 
  

 
 

Here we are using ‘log’ to mean natural log, ie loge  or ln . 

This result can be derived as follows.  Under Gompertz’ Law, we have: 

 


   
      
   
   
 
0 0

exp exp
t t

x s
t x x sp ds Bc ds  

We can write x sc  as lnx s cc e  , so: 

 ln ln

00
0 0

( 1)
ln ln ln

t t x x xt ts c s cx s x s tBc Bc Bc
Bc ds Bc e ds e c c

c c c
             

If we introduce the auxiliary parameter g  defined by ln / lng B c  , then: 

 
0

(ln ) ( 1)
t

x s x tBc ds g c c    
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 Hence: 

 ln ( 1) ( 1)exp (ln ) ( 1) ( )
x t x tgx t c c c c

t xp g c c e g         

Question 

A mortality table, which obeys Gompertz’ Law for older ages, has: 

 70 0.025330   and  90 0.126255   

Calculate the probability that a life aged 60 will survive for 20 years. 

Solution 

If the table follows Gompertz’ Law then x
x Bc   and: 

90
2090

70
70

1
20

0.126255
0.025330

0.126255
1.083629

0.025330

Bc
c

Bc

c




  

    
 

 

So: 

   90 50.126255 1.083629 9.16196 10B       

 
59.16196 10

exp exp 0.998860
ln ln1.083629
B

g
c

          
    

 

and: 

 
60 20 493.4052( 1)

20 60 0.998860 0.56958c cp g     

 

Makeham’s Law 

In the case of Makeham’s Law: 

 ( 1)x tt c c
t xp s g   

where:   

 exp
log

Bg
c

 
  

 
 and exp( )s A   

We will use these laws in Chapter 11, Methods of graduation. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 26  CS2-06: Survival models 

© IFE: 2019 Examinations The Actuarial Education Company 

Gompertz-Makeham family 

More generally, we can model the force of mortality using one of the Gompertz-Makeham family 
of curves.  This family consists of functions of the form: 

 
 

2 1
1 2 3

2 1
1 2 3

GM( , )

exp

r
r

s
r r r r s

r s t t t

t t t

   

   




   

    

    




 

where 1 2 3, , , ..., r s      are constants which do not depend on t. 

This form of the Gompertz–Makeham family of curves is the one that is used most widely.  
However it does not match the form given on page 32 of the Tables.  The form given in the Tables 
is: 

    1 2GM( , ) ( ) exp ( )x r s poly t poly t  

where t  is a linear function of x  and 1( )poly t  and 2( )poly t  are polynomials of degree r  and s  

respectively. 

The R base system does not have a command to simulate the Gompertz distribution.  

In the package flexsurv, the command rgompertz will simulate a Gompertz distribution. 

The commands dgompertz, pgompertz and qgompertz will generate the density, 
distribution function and quantiles respectively.  

The command hgompertz generates the hazard, and Hgompertz the cumulative hazard.  

Note that in these commands the parameters of the Gompertz distribution are to be 
specified as ‘shape’ and ‘rate’. If the shape is   and the rate is  , then Gompertz’s Law 

(6.4) may be written:  

  x
x e    

In terms of the notation used in (6.4) above, we have:  

shape  logc   

rate  B    

For example, if the force of mortality at age 30 years is 0.001 and mortality at ages over 30 is 
governed by the Gompertz law with a shape parameter equal to 0.01, the force of mortality 
or hazard at age 60 can be calculated using:  

hgompertz(30, shape = 0.01, rate = 0.001)  

to be 0.00135.  
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Chapter 6 Summary 

Modelling mortality 

We can model mortality by assuming that future lifetime is a continuous random variable 
taking values between 0 and some limiting age  .  From this starting point, we can calculate 
probabilities of survival ( )t xp  and death ( )t xq  for an individual initially aged x  over a 

period of t  years. 

Death and survival probabilities 

 ( ) [ ]t x x xq F t P T t    

 1 ( ) 1 ( ) [ ]t x t x x x xp q S t F t P T t        

 t s x t x s x t s x t x sp p p p p       

Force of mortality 

The force of mortality x  is the instantaneous rate of mortality at age x .  It is defined by the 

equation: 

 
0

1
lim [ ]x

h
P T x h T x

h



       

We also have the following results about x : 

 
0

1
limx h x

h
q

h


 
   so .h x xq h   (for small h ) 

 
0

t

t x s x x sq p ds      

0

exp
t

t x x sp ds 
    
  
  

Life table functions 

xl  is the expected number of survivors at age x  

xd  is the expected number of deaths between the ages of x  and 1x   
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Central rate of mortality 

The central rate of mortality is given by: 

1

0
1 1 1

0 0 0

t x x tx x
x

x t t x t x

p dtd q
m

l dt p dt p dt

 



  


  
 

Complete future lifetime random variable  

The PDF of the complete future lifetime random variable xT  is given by: 

 ( ) ( ) (0 )x x t x x t
d

f t F t p t x
dt

       

The expected value of xT , sometimes called the complete expectation of life, is: 

 
0

[ ]x x t xe E T p dt


     

Curtate future lifetime random variable 

xK  is defined to be the integer part of xT . 

The probability function of xK  is given by: 

   |x k x x k k xP K k p q q    

The expected value of xK , sometimes called the curtate expectation of life, is: 

 
1

[ ]x x k x
k

e E K p



    

If deaths occur on average halfway between birthdays, then: 

  ½x xe e    

Exponential model 

In the exponential model, the hazard rate (or force of mortality) is constant.  So: 

 t
t xp e   
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Weibull model 

In the Weibull model: 

  expt xp t   

 1
x t t  
   

Different values of   can give rise to a hazard that is monotonically increasing or 

decreasing.  In the case when 1  , the Weibull model is the same as the exponential 

model. 

Gompertz’ law 

 x
x B c     

 ( 1)x tc c
t xp g    where  exp

log
B

g
c

 
  

 
  

Makeham’s law 

 x
x A B c    

 ( 1)x tt c c
t xp s g    where  exp

log
B

g
c

 
  

 
 and exp( )s A   

Both Gompertz’ and Makeham’s laws include an exponential term, which makes them 
particularly useful for middle and older ages. 

Gompertz-Makeham family 

The Gompertz-Makeham family consists of curves of the form: 

 
 

2 1
1 2 3

2 1
1 2 3

GM( , )

exp

r
r

s
r r r r s

r s t t t

t t t

   

   




   

    

    




 

where 1 2 3, , , ..., r s      are constants that do not depend on t. 
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The practice questions start on the next page so that you can 
keep the chapter summaries together for revision purposes. 
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Chapter 6 Practice Questions 

6.1 If   0.01908 0.001( 70)x x  for 55x  , calculate 5 60q .  

6.2 Consider the following expressions: 

I 
[ ]

1

x

k x
k

p



  

II 
[ ]

0

x

k x
k

k p



  

III 
0

x
t x x tp dt





  

State which of these are correct expressions for calculating the curtate expectation of life for a life 
aged exactly x .  Explain your answers.    

6.3 Mortality of a group of lives is assumed to follow Gompertz’ law.  Calculate x  for a 30-year old 

and a 70-year old, given that x  is 0.003 for a 50-year old and 0.01 for a 60-year old.  

6.4 Express 30q , 30e  and 5 35p  in terms of probabilities of the random variable 30K , which 

represents the curtate future lifetime of a life aged exactly 30.  

6.5 Calculate the exact values of the complete and curtate expectation of life for a newborn animal 
subject to a constant force of mortality of 0.05 per annum.  

6.6 The ‘Very-ruthless Management Consultancy Company’ pays very high wages but also has a very 
high failure rate, both from sackings and through people leaving.  A life table for a typical new 
recruit (with durations measured in years) is given below: 

 Duration No of lives 

 0 100,000  

  1 72,000 

  2  51,000 

  3 36,000 

  4 24,000 

  5 15,000 

  6 10,000  

  7 6,000 

  8 2,500 

  9 0  

75 graduates started working at the company on 1 September this year.  Calculate the expected 
number of complete years that a graduate will complete with the company.  

6.7 Given that 50 30e   and 50 0.005t    for 0 1t  , calculate the value of 51e .  
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6.8 Describe the difference between the following assumptions about mortality between any two 
ages, x  and y  ( y x ): 

 uniform distribution of deaths 

 constant force of mortality. 

In your answer, explain the shape of the survival function between ages x  and y  under each of 

the two assumptions.  [2] 

6.9 In a certain population, the force of mortality is given by: 

    x  

 60 70x   0.01 

 70 80x   0.015 

 80x    0.025 

Calculate the probability that a life aged exactly 65 will die between exact ages 80 and 83.   [3] 

6.10 The mortality of a certain species of furry animal has been studied.  It is known that at ages over 
five years the force of mortality   is constant, but the variation in mortality with age below five 

years of age is not understood.  Let the proportion of furry animals that survive to exact age five 
years be 5 0p . 

(i) Show that, for furry animals that die at ages over five years, the average age at death in 

years is 
5 1



. [1] 

(ii) Obtain an expression, in terms of   and 5 0p , for the proportion of all furry animals that 
die between exact ages 10 and 15 years. [3] 

A new investigation of this species of furry animal revealed that 30 per cent of those born 
survived to exact age 10 years and 20 per cent of those born survived to exact age 15 years. 

(iii) Calculate   and 5 0p . [3] 
    [Total 7] 

 
     

 

  

Exam style 

Exam style 

Exam style 
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Chapter 6 Solutions 

6.1 The probability that a 60-year old will survive for 5 years is: 

 

5
5 60 600

5

0

5

0

52

0

exp

exp [ 0.01908 0.001( 10) ]

exp [0.00908 0.001 ]

exp 0.00908 0.0005

exp( 0.00908 5 0.0005 25)

0.94374

tp dt

t dt

t dt

t t

 
   
 

     
 

    
 

       

    









  

So: 

 5 60 1 0.94374 0.05626q      

6.2 I is correct.  The sum is the total of the probabilities that the life survives to the end of each future 
year, which gives the expected curtate future lifetime.  

II is not correct.  It would be right if k xp  was replaced by ( )xP K k  ie k x x kp q  .  

III is not correct.  The integral gives the probability of dying.  It is also the integral of ( )xf t  over all 

possible values of the future lifetime.  So its value is 1.  

6.3 Gompertz’ Law is x
x Bc  . 

Therefore 500.003 Bc  and 600.01 Bc .  

Dividing these equations: 

  

60
10

50

6

0.01
3.33333

0.003

1.128   and   7.29 10

Bc
c

Bc

c B 

  

   

 

This gives Gompertz’ Law as 67.29 10 1.128x
x

   . 

So 30 0.00027   and 70 0.033  .  
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6.4 In terms of probabilities involving 30K : 

 30 30( 0)q P K    

 30 30 30
0

( ) ( )
k

e E K kP K k



     

and:  

 30
5 35 30 30

30

( 10)
( 10| 5)

( 5)
P K

p P K K
P K


   


  

6.5 The complete expectation of life is: 

 0.05
0 00 0

1
20

0.05
t

te p dt e dt
       years  

The curtate expectation of life can be calculated exactly as follows: 

 
0.05

0.05
0 0 0.05

1 1
19.504

1
k

k
k k

e
e p e

e

 



 

   


  years  

6.6 The curtate expectation of life is: 

 
8

0
1

72,000 51,000 2,500
2.165 years

100,000 100,000 100,000k
k

p


        

6.7 We can calculate the value of 51e  using the formula: 

  50 50 511e p e   

Since the force of mortality is constant between the ages of 50 and 51: 

 0.005
50p e  

So: 

     0.005
51 5130 1 29.15e e e years  

6.8 This is Subject CT4, September 2009, Question 1. 

Uniform distribution of deaths (UDD) assumption  

If deaths are uniformly distributed between the ages of x  and y , then the number of lives in the 

population decreases linearly between the ages of x  and y . 

The survival function is a linearly decreasing function of t . [1] 
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Constant force of mortality assumption 

This assumption says that x t  is equal to some constant   for all t  between 0 and y x . 

In general: 

 
    
 0( ) exp

t
x t x x sS t p ds   

Under the constant force assumption, this simplifies to: 

 ( ) t
xS t e   

This is an exponentially decreasing function of t . [1] 

6.9 We need to calculate: 

 15|3 65 15 65 3 80 5 65 10 70 3 80(1 )q p q p p p       [1] 

We have: 

 5(0.01) 0.05
5 65p e e    [½] 

 10(0.015) 0.15
10 70p e e    [½] 

and: 3(0.025) 0.075
3 80p e e    [½] 

So: 

 0.05 0.15 0.075
15|3 65 (1 ) 0.0592q e e e        [½] 

6.10 This is Subject CT4, April 2013, Question 4. 

(i) Average age at death 

Since the lives have a constant future force of mortality  , their future lifetimes have an ( )Exp   

distribution and their expected future lifetime is 1  .  However, they have already lived for 5 

years.  So their average age at death will be 5 1  , which can be written in the equivalent form 

5 1



. 

(ii) Proportion that die between ages 10 and 15 years 

The proportion of animals that will die between ages 10 and 15 is 10 0 15 0p p . 

For ages 5 and above, the force of mortality takes a constant value  , and we have: 

  
0 0

exp exp
t t t

t x x sp ds ds e   
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So, splitting the age range at age 5, we have: 

 

 

10 0 15 0 5 0 5 5 5 0 10 5

5 0 5 5 10 5

5 10
5 0

p p p p p p

p p p

p e e  

    

 

 

 

(iii) Calculate   and 5 0p  

We are now told that: 

 5
10 0 5 0 0.3p p e     and  10

15 0 5 0 0.2p p e    

Dividing the first of these equations by the second: 

 5 0.3
1.5

0.2
e    1

5
ln1.5 0.08109    

From the first equation, we then have: 

 
2

5
5 0

0.3 0.3
0.3 0.3 0.45

0.2 0.2
p e       

 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-07: Estimating the lifetime distribution function Page 1 

The Actuarial Education Company © IFE: 2019 Examinations 

 
Estimating the lifetime  

distribution function 
 

 

Syllabus objectives 

4.2 Describe estimation procedures for lifetime distributions. 

4.2.1 Describe the various ways in which lifetime data might be censored. 

4.2.2 Describe the estimation of the empirical survival function in the absence of 
censoring, and what problems are introduced by censoring. 

4.2.3 Describe the Kaplan-Meier (or product limit) estimator of the survival 
function in the presence of censoring, compute it from typical data and 
estimate its variance. 

4.2.4 Describe the Nelson-Aalen estimator of the cumulative hazard rate in the 
presence of censoring, compute it from typical data and estimate its 
variance. 
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0 Introduction 

In Chapter 6 we introduced T , the continuous random variable representing future lifetime.  In 
this chapter, we will see how to use observations from an investigation to obtain an empirical 

estimate (ie one based on observation) of the distribution function,  ( )F t P T t  .  We will 

consider the statistical properties of the estimator so that we can measure its variance and 
construct confidence intervals.  We will also need to bear in mind that data may be incomplete in 
practice. 

The Core Reading refers to the decrement of interest as ‘death’.  (‘Decrement’ here means a 
method of leaving a population.)  The models can easily be extended to the analysis of any 
decrements, eg sickness or mechanical breakdown. 

Parts of this chapter are based on the paper ‘An Actuarial Survey of Statistical Models for 
Decrement and Transition Data’ by A S Macdonald, BAJ 2 (1996), by kind permission of the 
editor of BAJ; and on pp. 67–74 of A Hinde, Demographic Methods (London, Arnold, 1998) 
by permission of Dr Hinde.  
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1 Questions of inference 

We now turn to statistical inference.  Given some mild conditions on the distribution of T , 
we can obtain all information by estimating ( )F t , ( )S t , ( )f t  or t  for all 0t  . 

In other words, we can derive ( )F t , ( )S t , ( )f t  and t  from any one of these items. 

Question 

State the fundamental relationships that link ( )F t , ( )S t , ( )f t  and t . 

Solution 

The relationships are: 

( ) 1 ( ),S t F t   ( ) ( ),
d

f t F t
dt

  ( ) ( ) ,tf t S t   
( )
( )t

S t
S t




   

 

1.1 Estimating the lifetime distribution 

The simplest experiment would be to observe a large number of new-born lives.  The 
proportion alive at age 0t   would furnish an estimate of ( )S t .  The estimate would be a 

step function, and the larger the sample the closer to a smooth function we would expect it 
to be.  For use in applications it could be smoothed further.   

For example, a life insurance company would prefer to base its premium calculations on a smooth 
estimate to ensure that the premiums change gradually from one age to the next without sudden 
jumps. 

We need not assume that T  is a member of any parametric family; this is a non-parametric 
approach to estimation.  You will recognise this as the empirical distribution function of T . 

Under a non-parametric approach, we make no prior assumptions about the shape or form of the 
distribution.  Under a parametric approach, we assume that the distribution belongs to a certain 
family (eg normal or exponential) and use the data to estimate the appropriate parameters 
(eg mean and variance). 

Statistical results can be derived theoretically (from first principles) or empirically (from 
observation).  In this chapter we will use data to calculate the empirical distribution function ( )F t . 

Clearly, there are some practical problems: 

 Even if a satisfactory group of lives could be found, the experiment would take 
about 100 years to complete. 

 The observational plan requires us to observe the deaths of all the lives in the 
sample.  In practice many would be lost to the investigation, for one reason or 
another, and to exclude these from the analysis might bias the result.  The statistical 
term for this problem is censoring.  All we know in respect of some lives is that they 
died after a certain age. 
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So censoring results in the loss of data.  Depending on the nature of the censoring mechanism, it 
can also result in the introduction of bias into the mortality rates.  This would occur if informative 
censoring were present – see the next section.   

Question 

Explain why lives might be ‘lost to the investigation’ if we are carrying out: 

(a)  a national investigation into the rate of death from natural causes 

(b) a study of the mortality of life insurance policyholders. 

Solution 

(a) If we are interested only in natural causes of death, some lives will be ‘lost’ to the 
investigation through accidents, crime, terrorism, suicide etc. 

Even if we are interested in all causes of death, we may lose track of some lives through 
data collection problems, eg changes of address or emigration. 

(b) With life office policyholders the main reason for ‘losing’ people is when policyholders 
cancel their policies and withdraw from the group. 

 
An ‘observational plan’ is just the framework for a mortality investigation.  Amongst other things, 
it will specify the start and end date of the investigation and the category (or categories) of lives 
to be included in the study. 

The experiment described above, in which we observe a large number of newborn lives, would 
provide detailed information on the lifetimes of these individuals.  However, this information may 
only be useful as a retrospective measure of mortality patterns.  This is because the level and 
shape of mortality rates would probably have changed significantly over time.   

Such an experiment would therefore not provide a clear indication of future levels of mortality (or 
even very recent levels), which is the information that we are most interested in.  For example, 
100 years ago people in industrialised countries were dying of diseases that are no longer 
significant today. 

In medical statistics, where the lifetimes are often shorter, non-parametric estimation is very 
important.   

In this chapter we show how the experiment above can be amended to allow for censoring.  
Otherwise, we must use a different observational plan, and base inference on data gathered 
over a shorter time, eg 3 or 4 years.   

A consequence is that we no longer observe the same cohort throughout their joint 
lifetimes, so we might not be sampling from the same distribution.  It might be sensible to 
widen the model assumption, so that the mortality of lives born in year y is modelled by a 

random variable yT , for example.  In practice we usually divide the investigation up into 
single years of age.  We return to investigations like these in Chapter 8. 
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Observing lives between (say) integer ages x  and 1x  , and limiting the period of 
investigation, are also forms of censoring.  Censoring might still occur at unpredictable 
times – by lapsing a life policy, for example – but survivors will certainly be lost to 
observation at a known time, either on attaining age 1x   or when the investigation ends. 
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2 Censoring mechanisms 

Data are censored if we do not know the exact values of each observation but we do have 
information about the value of each observation in relation to one or more bounds.  For example, 
we may know that an individual’s lifetime exceeded 20 years because the individual was still alive 
at age 20 when the investigation closed, but we have no further information about the remaining 
lifetime.   

Censoring is the key feature of survival data (indeed survival analysis might be defined as 
the analysis of censored data) and the mechanisms that give rise to censoring play an 
important part in statistical inference.  Censoring is present when we do not observe the 
exact length of a lifetime, but observe only that its length falls within some interval.  This 
can happen in several ways. 

Right censoring 

Data are right censored if the censoring mechanism cuts short observations in progress.  
An example is the ending of a mortality investigation before all the lives being observed 
have died.  Persons still alive when the investigation ends are right censored – we know 
only that their lifetimes exceed some value. 

Right censoring also occurs when: 

 life insurance policyholders surrender their policies  

 active lives of a pension scheme retire  

 endowment assurance policies mature. 

Left censoring 

Data are left censored if the censoring mechanism prevents us from knowing when entry 
into the state that we wish to observe took place.  An example arises in medical studies in 
which patients are subject to regular examinations.  Discovery of a condition tells us only 
that the onset fell in the period since the previous examination; the time elapsed since 
onset has been left censored. 

Left censoring occurs, for example: 

 when estimating functions of exact age and we don’t know the exact date of birth  

 when estimating functions of exact policy duration and we don’t know the exact date of 
policy entry  

 when estimating functions of the duration since onset of sickness and we don’t know the 
exact date of becoming sick. 

Interval censoring 

Data are interval censored if the observational plan only allows us to say that an event of 
interest fell within some interval of time.  An example arises in actuarial investigations, 
where we might know only the calendar year of death.  Both right and left censoring can be 
seen as special cases of interval censoring. 
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Further examples of interval censoring include the following situations: 

 when we only know the calendar year of withdrawal  

 when estimating functions of exact age and we only know that deaths were aged ‘x 
nearest birthday’ at the date of death 

 when we know the calendar date of death and we know the calendar year of birth.  This is 
an example of left censoring (and therefore interval censoring).  Another way of viewing 
this situation is to say that we actually have data grouped by ‘age next birthday at the 1 
January prior to death’.  Since we only know that the lifetime falls within a certain range, 
this is an example of interval censoring. 

In actuarial investigations, right-censoring is the most common form of censoring 
encountered.   

Random censoring 

Suppose that the time iC  (say) at which observation of the i th lifetime is censored is a 

random variable.  Suppose that iT  is the (random) lifetime of the i th life.  Then the 

observation will be censored if i iC T  .  In such a situation, censoring is said to be random. 

Random censoring arises when individuals may leave the observation by a means other than 
death, and where the time of leaving is not known in advance.   

Examples of random censoring include: 

 life insurance withdrawals  

 emigration from a population 

 members of a company pension scheme may leave voluntarily when they move to 
another employer.   

Random censoring is a special case of right censoring. 

The case in which the censoring mechanism is a second decrement of interest gives rise to 
multiple decrement models. 

For example, suppose that lives can leave a pension scheme through death, age retirement or 
withdrawal.  We can estimate the rates of decrement for all three causes of decrement by using a 
multiple decrement model.  Multiple decrement models are studied in detail in Subject CM1. 

Type I censoring 

If the censoring times { }iC  are known in advance (a degenerate case of random censoring) 

then the mechanism is called ‘Type I censoring’. 
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Type I censoring is therefore another special case of right censoring.  Type I censoring occurs, for 
example: 

 when estimating functions of exact age and we stop following individuals once they have 
reached their 60th birthday  

 when lives retire from a pension scheme at normal retirement age (if normal retirement 
age is a predetermined exact age) 

 when estimating functions of policy duration and we only observe individuals up to their 
10th policy anniversary  

 when measuring functions of duration since having a particular medical operation and we 
only observe people for a maximum of 12 months from the date of their operation. 

Lives censored at the end of an investigation period might also be considered as an example of 
Type I censoring.   

Type II censoring 

If observation is continued until a predetermined number of deaths has occurred, then 
‘Type II censoring’ is said to be present.  This can simplify the analysis, because then the 
number of events of interest is non-random. 

An example of Type II censoring is: 

 when a medical trial is ended after 100 lives on a particular course of treatment have 
died.   

Many actuarial investigations are characterised by a combination of random and Type I 
censoring, for example, in life office mortality studies where policies rather than lives are 
observed, and observation ceases either when a policy lapses (random censoring) or at 
some predetermined date marking the end of the period of investigation (Type I censoring). 

Type I and Type II censoring are most frequently met with in the design of medical survival 
studies. 

Informative and non-informative censoring 

Censoring is non-informative if it gives no information about the lifetimes { }iT .   

This just means that the mortality of the lives that remain in the at-risk group is the same as the 
mortality of the lives that have been censored.   

In the case of random censoring, the independence of each pair ,i iT C  is sufficient to 

ensure that the censoring is non-informative.  Informative censoring is more difficult to 
analyse, essentially because the resulting likelihoods cannot usually be factorised. 

Recall that, when we are dealing with events that are statistically independent, the likelihood 
function representing all the events is the product of the likelihood functions for each individual 
event.  This greatly simplifies the mathematics required in the analysis. 
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Examples of informative censoring include:  

 Withdrawal of life insurance policies, because these are likely to be in better average 
health than those who do not withdraw.  So the mortality rates of the lives that remain in 
the at-risk group are likely to be higher than the mortality rates of the lives that 
surrendered their policies. 

 Ill-health retirements from pension schemes, because these are likely to be in worse than 
average health than the continuing members.  So the mortality rates of those who remain 
in the pension scheme are likely to be lower than the mortality rates of the lives that left 
through ill-health retirement.   

An example of non-informative censoring is:  

 the end of the investigation period (because it affects all lives equally, regardless of their 
propensity to die at that point). 

It is obvious that the observational plan is likely to introduce censoring of some kind, and 
consideration should be given to the effect on the analysis in specifying the observational 
plan.  Censoring might also depend on the results of the observations to date.  For example, 
if strong enough evidence accumulates during the course of a medical experiment, the 
investigation might be ended prematurely, so that the better treatment can be extended to 
all the subjects under study, or the inferior treatment withdrawn. 

Question 

An investigation is carried out into the mortality rates of married male accountants.  A group of 
10,000 married male accountants is selected at random on 1 January 2016.  Each member of the 
sample group supplies detailed personal information as at 1 January 2016 including name, 
address and date of birth.  The same information is collected as at each 1 January in the years 
2017, 2018, 2019 and 2020.  The investigation closes in 2020. 

Describe the ways in which the available data for this investigation may be censored. 

Solution 

There will be left censoring of all lives that change marital status from single (or divorced or 
widowed) to married during the investigation.  We only know that the change of status occurred 
since the previous set of information was collected. 

There will be interval censoring if the exact date of death is unknown, eg if only the calendar year 
of death is known. 

There will be random censoring of all lives that change marital status from married to divorced or 
widowed, or give up accountancy, and consequently no longer qualify as participants in the 
mortality investigation.  There will also be random censoring of all lives from whom data cannot 
be collected. 

There will be right censoring of all lives that survive until the end of the investigation in 2020. 
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3 The Kaplan-Meier (product-limit) model 

3.1 Introduction 

In this section we develop the empirical distribution function to allow for censoring.  

This is the distribution function derived from the data. 

We will consider lifetimes as a function of time t  without mention of a starting age x .  The 
following could be applied equally to new-born lives, to lives aged x  at outset, or to lives 
with some property in common at time 0t  , for example diagnosis of a medical condition.  
Medical studies are often based on time since diagnosis or time since the start of treatment, 
and if the patient’s age enters the analysis it is usually as an explanatory variable in a 
regression model. 

For example, we may be interested in measuring mortality amongst patients suffering from a 
highly virulent tropical disease.  The future lifetime of a sufferer will depend on many factors.  The 
age of the patient may be an important factor (eg the rate of deterioration may be quicker 
amongst older patients) but it may not be the sole determinant.  It may be appropriate to model 
the lifetime as starting at the time of diagnosis.  (In actuarial terminology, ‘duration’ is the 
dominant factor here.) 

We will look at regression models in Chapter 8. 

Although the notation in this section looks quite complicated, the numerical calculations are quite 
intuitive. 

3.2 Assumptions and notation 

Suppose we observe a population of n  lives in the presence of non-informative right 
censoring, and suppose we observe m  deaths.   

By assuming that the type of censoring present is non-informative, we are assuming that the 
mortality of those lives remaining in the group under observation is not systematically higher or 
lower than the mortality of the lives that have been censored.   

If informative censoring is present and we ignore it, then the resulting estimates of the 
distribution and survival functions will be biased.   

If informative censoring is present and we allow for it, then the lifetimes and censoring times will 
no longer be independent.  This means that the likelihood function, which is made up of joint 
probabilities and probability density functions, can no longer be written as the product of simple 
probabilities and the resulting algebra will be very complicated.     

So we proceed with the assumption that any censoring present is non-informative.  Bear in mind 
though that the results of any model are only as reliable as the assumptions on which the model 
is based.   

We now define the rest of the notation. 
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Let 1 2 ... kt t t    be the ordered times at which deaths were observed.  We do not assume 

that k m , so more than one death might be observed at a single failure time.  

In other words, two or more lives may die on the same day.   

Suppose that jd  deaths are observed at time (1 )jt j k   so that 1 2 ... kd d d m    . 

Observation of the remaining n m  lives is censored.   

In other words, we don’t try to track some of these remaining lives throughout the investigation. 

Suppose that jc  lives are censored between times jt  and 1 (0 )jt j k   , where we define 

0 0t   and 1kt     to allow for censored observations after the last observed failure time; 

then 0 1  ...   kc c c n m     .   

So, jc  represents the number of lives that are removed from the investigation between times jt  

and 1jt   for a reason other than the decrement we are investigating. 

The Kaplan-Meier estimator of the survivor function adopts the following conventions. 

(a) The hazard of experiencing the event is zero at all durations except those where an 
event actually happens in our sample.   

(b) The hazard of experiencing the event at any particular duration, jt , when an event 

takes place is equal to 
j

j

d
n

, where jd  is the number of individuals experiencing the 

event at duration jt  and jn  is the risk set at that duration (that is, the number of 

individuals still at risk of experiencing the event just prior to duration jt ). 

So if we observed 2 deaths out of 10 lives at risk, the hazard would be equal to 
2

10
. 

(c) Persons that are censored are removed from observation at the duration at which 
censoring takes place, save that persons who are censored at a duration where 
events also take place are assumed to be censored immediately after the events 
have taken place (so that they are still at risk at that duration). 

In other words, if any of the individuals are observed to be censored at the same time as one of 
the deaths, the convention is to treat the censoring as if it happened shortly afterwards, ie the 
deaths are assumed to have occurred first.   

We will use this notation for the rest of the chapter.  Let’s look at an example to illustrate how it 
can be applied. 

Example 

Suppose that a group of 15 laboratory rats are injected with a new drug.  They are observed over 
the next 30 days.   
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The following events occur: 

 Day Event 

 3 Rat 4 dies from effects of drug. 

 4 Rat 13 dies from effects of drug. 

 6 Rat 7 gnaws through bars of cage and escapes. 

 11 Rats 6 and 9 die from effects of drug. 

 17 Rat 1 killed by other rats. 

 21 Rat 10 dies from effects of drug. 

 24 Rat 8 freed during raid by animal liberation activists. 

 25 Rat 12 accidentally freed by journalist reporting earlier raid. 

 26 Rat 5 dies from effects of drug. 

 30 Investigation closes.   
 
This information is illustrated in the timeline below.  In this diagram we use the notation D to 
represent death from the effects of the drug and C to represent censoring. 

time0 3 4 6 11 17 21 24 25 26 30

D D C 2D C D DC C 5C

 
The death on day 17 is not directly related to the effects of the drug, so it is an example of 
random right censoring. 

Using the notation defined above we have: 

Number of lives under investigation, 15n   

Number of drug-related rat deaths observed, 6m   

Number of times at which deaths were observed: 5k   

Times at which deaths are observed: 1 2 3 4 53, 4, 11, 21, 26t t t t t      

Number of deaths observed at each failure time: 1 2 3 4 51, 1, 2, 1, 1d d d d d      

Number of lives that didn’t die because of the drug: 15 6 9n m     

Number of lives censored: 0 1 2 3 4 50, 0, 1, 1, 2, 5c c c c c c       

Number of lives alive and at risk at time it :  1 2 3 4 515, 14, 12, 9, 6n n n n n      

Note that 
0

k

j
j

c n m


  . 
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Effectively, what we are doing is partitioning duration into very small intervals such that at 
the vast majority of such intervals no events occur.  There is no reason to suppose, given 
the data that we have, that the risk of the event happening is anything other than zero at 
those intervals where no events occur.  We have no evidence in our data to suppose 
anything else.   

For those very small intervals in which events do occur, we suppose that the hazard is 
constant (ie piecewise exponential) within each interval, but that it can vary between 
intervals.   

Recall that, if x t   , the survival function is given by: 

 ( ) t
x t xS t p e    

So the Core Reading means that the survival function is exponential over each short interval 
during which the force of mortality (or hazard) is constant.   

We estimate the hazard within the interval containing event time jt  as:  

ˆ j
j

j

d
n

   

Of course, effectively this formula is being used for all the other intervals as well, but as 
0jd   in all these intervals, the hazard will be zero. 

It is possible to show that this estimate arises as a maximum likelihood estimate.  The 
likelihood of the data can be written:  

1

(1 )j j j
k d n d

j j
j

  


  

The proof of this formula is beyond the syllabus. 

This is proportional to a product of independent binomial likelihoods, so that the maximum 
is attained by setting: 

ˆ j
j

j

d
n

    1 j k   

Question 

Given that the likelihood function can be written as: 

 
1

(1 )j j j
k

d n d
j j

j

L   


    

show that the maximum likelihood estimate of j  is j

j

d

n
 for 1,2,...,j k .   

(You may assume that the estimates are maxima.) 
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Solution 

The log-likelihood is: 

    
1

ln ln ln 1
k

j j j j j
j

L d n d 


       

Differentiating with respect to 1 : 

 1 1 1

1 1 1

ln
1

d n dL
  


 

 
 

Setting this equal to 0: 

 

1 1 1
1 1 1 1 1 1 1

1 1

1 1 1

1
1

1

1
d n d

d d n d

d n

d
n

  
 






    



 

 

 

We are told to assume this is a maximum.  So we have 1
1

1

ˆ d
n

   and it similarly follows that 

ˆ j
j

j

d

n
   for 2,3,..,j k . 

 

3.3 Extending the force of mortality to discrete distributions 

It is convenient to extend to discrete distributions the definition of force of mortality (or 
hazard) given in Chapter 6 for continuous distributions.   

Discrete hazard function 

Suppose ( )F t  has probability masses at the points 1 2, , , kt t t .   

Then define: 

 (1 )j j jP T t T t j k          (7.1) 

This is called the discrete hazard function. 

(We use the symbol   to avoid confusion with the usual force of mortality.)    

Intuitively, we can think of j  as the probability that a given individual dies on day jt , given that 

they were still alive at the start of that day. 
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Question 

Butterflies of a certain species have short lives.  After hatching, each butterfly experiences a 
lifetime defined by the following probability distribution: 

 Lifetime (days) Probability 
 1 0.10 
 2 0.30 
 3 0.25 
 4 0.20 
 5 0.15 

Calculate j  for 1,2,...,5j   (to 3 decimal places) and sketch a graph of the discrete hazard 

function. 

Solution 

We have: 

[ ]

[ ]
j

j j j
j

P T t
P T t T t

P T t



       

 

So: 

1
0.1

0.100
1

    2
0.3

0.333
0.9

     3
0.25

0.417
0.6

     

4
0.2

0.571
0.35

    5
0.15

1.000
0.15

     

and a graph of the discrete hazard function is given below. 

hazard

lifetime (days)

1 2 3 4 5

1

0.2
0.4
0.6
0.8
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3.4 Calculating the Kaplan-Meier estimate of the survival function 

If we assume that T  has a discrete distribution then: 

 1 ( ) (1 )

j

j
t t

F t 


    

Since 1 ( ) ( )F t S t  , we can estimate the survival function using the formula: 

 ˆ ˆ( ) 1

j

j
t t

S t 


   

This is the Kaplan-Meier estimate.   

To compute the Kaplan-Meier estimate of the survivor function, ˆ( )S t , we simply multiply the 

survival probabilities within each of the intervals up to and including duration t . 

The survival probability at time jt  is estimated by: 

 
number of survivorsˆ1

number at risk
j j

j
j

n d

n



    

So we have the following formula. 

Kaplan-Meier estimate of the survival function 

  ˆˆ( ) 1
j j

j j
j

jt t t t

n d
S t

n


 

 
     

 
   

Because the Kaplan-Meier estimate involves multiplying up survival probabilities, it is 
sometimes called the product limit estimate.  In effect, we choose finer and finer partitions 

of the time axis, and estimate  1 ( )F t  as the product of the probabilities of surviving each 

sub-interval.  Then, with the above definition of the discrete force of mortality (7.1), we 
obtain the Kaplan-Meier estimate as the mesh of the partition tends to zero.  This is the 
origin of the name ‘product-limit’ estimate, by which the Kaplan-Meier estimate is 
sometimes known. 

Note that the Kaplan-Meier estimate of the survivor function is constant after the last 
duration at which an event is observed to occur.  It is not defined at durations longer than 
the duration of the last censored observation. 

Only those at risk at the observed lifetimes { }jt  contribute to the estimate.  It follows that it 

is unnecessary to start observation on all lives at the same time or age; the estimate is valid 
for data truncated from the left, provided the truncation is non-informative in the sense that 
entry to the study at a particular age or time is independent of the remaining lifetime.  (Note 
that left truncation is not the same as left censoring.) 
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Left censoring occurs when the exact time of entry into a particular state is unknown.  All that is 
known about the time of entry is that it occurred before a particular date.  This means that we 
don’t know exactly when to start counting duration from. 

Left truncation occurs when only the events (eg deaths) that happen after a particular time are 
observed. 

As mentioned in Section 2, examples of left censoring include the following situations: 

 when estimating functions of exact age and we don’t know the exact date of birth;  

 when estimating functions of exact policy duration and we don’t know the exact date of 
policy entry;  

 when estimating functions of the duration since onset of sickness and we don’t know the 
exact date of becoming sick. 

Examples of left censoring do not include:  

 when estimating functions of exact age and we ‘lose’ the information from before the 
start of the investigation period, or before the entry date of a policy, etc.  These are 
examples of left truncation and do not affect our ability to measure the exact duration of 
individuals from their dates of birth. 

Example 

Let’s now return to the rats example to see how the estimation actually works in practice.  There 
were 15 rats under observation at the start of the trial.  The results of the observation and the 
timeline are repeated below for convenience.   

 Day Event 

 3 Rat 4 dies from effects of drug. 

 4 Rat 13 dies from effects of drug. 

 6 Rat 7 gnaws through bars of cage and escapes. 

 11 Rats 6 and 9 die from effects of drug. 

 17 Rat 1 killed by other rats. 

 21 Rat 10 dies from effects of drug. 

 24 Rat 8 freed during raid by animal liberation activists. 

 25 Rat 12 accidentally freed by journalist reporting earlier raid. 

 26 Rat 5 dies from effects of drug. 

 30 Investigation closes.  Remaining rats hold street party. 

time0 3 4 6 11 17 21 24 25 26 30

D D C 2D C D DC C 5C
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The calculation of the Kaplan-Meier estimate is set out in the table below: 

j   jt  jd  jn  ˆ /j j jd n   ˆ1 j j
j

j

n d

n



    

1

ˆ1
j

k
k




  

1 3 1 15 1/15 14/15 14/15 

2 4 1 14 1/14 13/14 13/15 

3 11 2 12 2/12 10/12 13/18 

4 21 1 9 1/9 8/9 52/81 

5 26 1 6 1/6 5/6 130/243 

 
From the final column in the table, the Kaplan-Meier estimate of the survival function is: 

 

14
15

13
15

13
18

52
81

130
243

1 for 0 3 1 for 0 3

for 3 4 0.93333 for 3 4

for 4 11 0.86667 for 4 11ˆ( )
for 11 21 0.72222 for 11 21

for 21 26 0.64198 for 21 26

for 26 30 0.53498 for 26 30

t t

t t

t t
S t

t t

t t

t t

    
    
         
    


   










  

and the Kaplan-Meier estimate of the distribution function is: 

1
15

2
15

5
18

29
81

113
243

0 for 0 3 0 for 0 3

for 3 4 0.06667 for 3 4

for 4 11 0.13333 for 4 11ˆˆ( ) 1 ( )
for 11 21 0.27778 for 11 21

for 21 26 0.35802 for 21 26

for 26 30 0.46502 for 26

t t

t t

t t
F t S t

t t

t t

t

   
    
           
    


   30t












 

The estimate of the distribution function never reaches 1 because some rats are still alive at the 
end of the investigation.  The estimate will only ever reach 1 if we design an experiment in which 
observation continues until the last life dies. 

Also, since this experiment lasts for a period of 30 days, we are only able to estimate the survival 
function and distribution function up to time 30 days. 

3.5 A graphical approach 

Rather than using a table and formulae, we could carry out the Kaplan-Meier calculations using 

the following graphical approach.  The graph of ˆ( )S t  is a step function, starting at 1 and stepping 

down every time a death occurs.   
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The graph of ˆ( )S t  for the rats data is given below. 

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

time

estimate of
survival 
function

 

To specify ˆ( )S t , we need to work out the height of each of the steps. 

We know that ˆ( )S t  starts at 1 and remains constant until the first death, which occurs at time 3.  

So: 

 ˆ( ) 1S t   for 0 3t   

Just before time 3, there were 15 rats under observation.  One rat died at time 3.  Given that a 

death occurred at time 3, the probability of any given rat surviving past time 3 is 14
15 .   

The figure of 14
15  corresponds to 1̂1   in the notation of the Kaplan-Meier model. 

As the next death does not occur until time 4, we have: 

 14
15

ˆ( ) 0.93333S t    for 3 4t   

One more rat died at time 4.  There were 14 rats under observation just before time 4.   So the 

probability that any given rat, which was alive just before time 4, is still alive at time 4 is 13
14 .   

If we treat survival in non-overlapping time intervals as independent, then the probability of any 
given rat surviving past time 4 is: 

13 1314
15 14 15(does not die at time 3) (does not die at time 4) 0.86667P P      

As the next death does not occur until time 11, it follows that: 

 13
15

ˆ( ) 0.86667S t    for 4 11t   
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Just before time 11, there were 12 rats under observation (since one of the 13 still alive at time 4 
was censored at time 6).  Two rats died at time 11.  So the probability that any given rat, which 

was alive just before time 11, is still alive at time 11 is 10
12 .  Furthermore, the probability that any 

given rat survives past time 11 is: 

 13 10 1314
15 14 12 18 0.72222     

As the next death does not occur until time 21, it follows that: 

 13
18

ˆ( ) 0.72222S t    for 11 21t   

Continuing in this way, we obtain: 

 

14
15

13
15

13
18

52
81

130
243

1 for 0 3 1 for 0 3

for 3 4 0.93333 for 3 4

for 4 11 0.86667 for 4 11ˆ( )
for 11 21 0.72222 for 11 21

for 21 26 0.64198 for 21 26

for 26 30 0.53498 for 26 30

t t

t t

t t
S t

t t

t t

t t

    
    
         
    


   










 

and hence: 

 

1
15

2
15

5
18

29
81

113
243

0 for 0 3 0 for 0 3

for 3 4 0.06667 for 3 4

for 4 11 0.13333 for 4 11ˆˆ( ) 1 ( )
for 11 21 0.27778 for 11 21

for 21 26 0.35802 for 21 26

for 26 30 0.46502 for 26

t t

t t

t t
F t S t

t t

t t

t

   
    
           
    


   30t












 

as before. 

In the package ‘survival’, the function survfit() is used to find the Kaplan-Meier 
estimate of the survival function.  

R code:  

survfit(formula, conf.int = 0.95, conf.type = "log")  

In this code ‘formula’ is a survival object.  With right-censored data, a survival object may 
be created with the R command:  

Surv(time, delta) 

Here ‘time’ is a vector containing the times to the event of censoring, and ‘delta’ is a 0/1 
vector denoting whether the individual was censored (0) or experienced the event (1). 
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4 Comparing lifetime distributions 

Since Kaplan-Meier estimates are often used to compare the lifetime distributions of two or 
more populations – for example, in comparing medical treatments – their statistical 

properties are important.  Approximate formulae for the variance of  ( )F t  are available.   

We’re using ( )F t  to denote the estimator of the distribution function at time t and ˆ( )F t  to 

represent our estimate.  Recall that an estimator is a random variable.  So its value depends on 
the outcome of some experiment, and it has a statistical distribution.  An estimate is a number.  It 
is the value taken by an estimator, given a particular set of sample data.   

Greenwood’s formula (proof not required): 

   2ˆvar ( ) 1 ( )
( )

j

j

j j jt t

d
F t F t

n n d

       

 
is reasonable over most t , but might tend to understate the variance in the tails of the 
distribution. 

This formula is given on page 33 of the Tables. 

Similarly, ( )S t  denotes the estimator of the survival function at time t .  Since ( ) 1 ( )S t F t   , it 

follows that: 

 var ( ) var 1 ( ) var ( )S t F t F t           
     

Now let’s return once more to the rats example.  Recall that there were 15 rats under observation 
at the start of the trial.  The timeline is repeated below for convenience. 

time0 3 4 6 11 17 21 24 25 26 30

D D C 2D C D DC C 5C

 
We have already seen that the Kaplan-Meier estimate of the survival function is: 

 

14
15

13
15

13
18

52
81

130
243

1 for 0 3

for 3 4

for 4 11ˆ( )
for 11 21

for 21 26

for 26 30

t

t

t
S t

t

t

t
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Suppose we now want to estimate the variance of (20)S .  According to Greenwood’s formula: 

 

 2
20

2

ˆvar (20) (20)
( )

13 1 1 2
18 15 14 14 13 12 10

0.0140

j

j

j j jt

d
S S

n n d
    

             





  

Here we are summing over the values of jt  that are less than or equal to 20.  So we include the 

deaths at times 3, 4, and 11 in the sum.  The deaths at times 21 and 26 are not relevant when 

estimating var (20)S  
  as they occur after time 20.   

Confidence intervals 

Recall that maximum likelihood estimators are asymptotically normally distributed.  So, if the 
sample size is large, we can calculate an approximate 95% confidence interval for a survival 
probability using the formula: 

 ˆ( ) 1.96 var ( )S t S t   
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5 The Nelson-Aalen model 

The Kaplan-Meier model is not the only non-parametric approach that can be used to estimate 
the distribution function.  Like the Kaplan-Meier estimate, the Nelson-Aalen estimate is based on 
an assumption of non-informative censoring.  So knowing when individuals are censored must not 
give us any extra information about their future lifetimes. 

However, instead of using the ˆ
j  values to estimate the survival probabilities via the 

Kaplan-Meier formula: 

 ˆˆ( ) (1 )
j

j
t t

S t 


   

we use them to estimate the integrated (or cumulative) hazard function. 

5.1 The integrated hazard function 

An alternative non-parametric approach is to estimate the integrated hazard. 

This is denoted by   (capital  ) and is defined as follows: 

 
0 j

t

t s j
t t

ds 


     

where the integral deals with the continuous part of the distribution and the sum with the 
discrete part.  (Since this methodology was developed by statisticians, the term ‘integrated 
hazard’ is in universal use, and ‘integrated force of mortality’ is almost never seen.) 

The estimate of t  can then be used to estimate ( )S t  and ( )F t .  The integrated hazard is a 

function of t  and is sometimes also written as ( )t . 

To help see where t  comes from, consider the probability of surviving one year in two 

populations.  Suppose that the hazard operates continuously in the first population, so that: 

 
1(1)

0 0
exp sp ds      

Suppose also that the hazard operates discretely in the second population, at time ½ say.  Then: 

 (2)
½0 1p    

where ½x   is the expected proportion of people dying at exact age ½x  . 

If both types of hazard were to occur in the same population, then the total survival probability is: 

  1(1) (2)
0 ½0 0 0

exp 1sp p p ds           
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If we extend this analysis to t  years and assume that we have discrete hazards j  operating at 

exact times jt , then: 

  0 0
( ) exp 1

j

t
t s j

t t

S t p ds 


          

Now, using the approximation 1xe x   for small x , we have: 

 

 

0

0

( ) exp

exp

exp

j

j

j

t
s

t t

t
s j

t t

t

S t ds e

ds



 







     

 
   
 
 

 



  

As j  is the proportion of people dying at exact time jt , we can estimate j  using ˆ j
j

j

d

n
  .  

Empirically (ie in real life), hazards (such as death) that we theorise as operating continuously, can 

only occur discretely.  So the continuous part of t  disappears and we are left with ˆ

j

j
t

jt t

d

n
    

as our estimate of the integrated hazard.   

5.2 Calculating Nelson-Aalen estimates 

The Nelson-Aalen estimate of the integrated hazard is: 

 


 ˆ

j

j
t

jt t

d
n

  

Once we have estimated the integrated hazard, we can estimate the survival function. 

Nelson-Aalen estimate of the survival function 

The Nelson-Aalen estimate of the survival function is: 

 ˆˆ( ) exp tS t      

where ˆ

j

j
t

jt t

d

n
   . 
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The Nelson-Aalen estimate of the distribution function can then be calculated as: 

 ˆˆˆ( ) 1 ( ) 1 exp tF t S t         

Example 

To illustrate the calculations, let’s return once more to the rats example.  Recall that there were 
15 rats under observation at the start of the trial.  The timeline is repeated below for 
convenience. 

time0 3 4 6 11 17 21 24 25 26 30

D D C 2D C D DC C 5C

 

The Nelson-Aalen estimate of the integrated hazard is: 

 

1
15

1 1
15 14

1 1 2
15 14 12

1 1 2 1
15 14 12 9

1 1 2 1 1
15 14 12 9 6

0 for 0 3

0.0667 for 3 4

0.1381 for 4 11ˆ
0.3048 for 11 21

0.4159 for 21 26

0.5825 for 26 30

j

j
t

jt t

t

t

td

tn
t

t



 
   
            
      


      

  

and the Nelson-Aalen estimate of the survival function is: 

 

0.0667

0.1381
ˆ

0.3048

0.4159

0.5825

1 for 0 3

0.9355 for 3 4

0.8710 for 4 11
ˆ( )

0.7373 for 11 21

0.6598 for 21 26

0.5585 for 26 30

t

t

e t

e t
S t e

e t

e t

e t












 


  


  
  

  


  
   

  

Corresponding to Greenwood’s formula for the variance of the Kaplan-Meier estimator, 
there is a formula for the variance of the Nelson-Aalen estimator: 

 
 




 

3
var [ ]

j

j j j
t

jt t

d n d

n
  

This formula gives the variance of the integrated hazard estimator,  t , not the variance of ( )F t .  

It is given on page 33 of the Tables.   
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For the rats example: 

 20 3 3 3 3
20

( ) 1 14 1 13 2 10
var[ ] 0.0205

15 14 12
j

j j j

t j

d n d

n

   
        

This variance formula can be used when constructing approximate confidence intervals for the 
integrated hazard.  If the data set is large, then an approximate 95% confidence interval for t   

is: 

 ˆ 1.96 var[ ]t t     

The endpoints of this confidence interval can then be substituted into the formula ( ) tS t e  to 
obtain an approximate 95% confidence interval for ( )S t . 

5.3 Relationship between the Kaplan-Meier and Nelson-Aalen estimates 

The connection between the Kaplan-Meier and Nelson-Aalen estimates is discussed below. 

The Kaplan-Meier estimate can be approximated in terms of ˆ t . 

Recall that the Kaplan-Meier estimate of the distribution function is: 

 ˆ ( ) 1 1

j

j

jt t

d
F t

n

 
    

 
  

To avoid confusion between the Kaplan-Meier and Nelson-Aalen estimates, we will now denote 

the Kaplan-Meier estimate of the distribution function by ˆ ( )KMF t , and the Nelson-Aalen estimate 

of the distribution function by ˆ ( )NAF t , so that: 

 ˆ ( ) 1 1
j

j
KM

jt t

d
F t

n

 
    

 
  

Using the approximation 1xe x   for small x , and replacing x  by j

j

d

n
 , we have: 

 ˆ ˆˆ( ) 1 exp 1 exp( ) ( )

j

j
KM t NA

jt t

d
F t F t

n
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6 Parametric estimation of the survival function 

An alternative approach to estimating the survival function proceeds as follows: 

 assume a functional form for the survival function ( )S t  

 express ( )S t  and the hazard ( )h t  in terms of the parameters of the chosen function 

 estimate the parameters by maximum likelihood. 

Unless the functional form chosen is very simple, estimation will involve the solution of 
several simultaneous equations and must be done iteratively. 

Possible simple functional forms include the exponential and Weibull distributions, and 
Gompertz’ Law, which are all described in Chapter 6. 

For the exponential distribution: 

 ( ) ( ) tS t P T t e     

and for the Weibull distribution: 

 ( ) expS t t     

These can be obtained from the formulae for distribution functions given in the Tables using the 
result ( ) 1 ( )S t F t  .  Gompertz’ Law, which states that: 

 x
x Bc   

is also given in the Tables (on page 32). 

For many processes, such as human mortality, it turns out that no simple functional form 
can describe human mortality at all ages.  However, for estimation purposes this is not a 
problem, since we can divide the age range into small sections, estimate the chosen 
function for each section (the parameters for each section will be different) and then ‘chain’ 
the sections together to create a life table for the whole age (or duration) range with which 
we are concerned (see Section 6.2 below). 

Life tables were introduced in Chapter 6 and are studied in detail in Subject CM1. 

6.1 Maximum likelihood estimation  

We illustrate maximum likelihood estimation by considering the exponential hazard, which 
has one parameter,  .   

In other words, we are considering the case when the future lifetime random variable T  has an 
exponential distribution with parameter  .  This is equivalent to assuming that the force of 

mortality is constant. 

Consider only the single year of age between exact ages x  and 1x  . 
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We follow a sample of n  independent lives from exact age x  until the first of the following 
things happens: 

(a)  their death between exact ages x  and 1x   

(b)  they withdraw from the investigation between exact ages x  and 1x   

(c)  their ( 1)x  th birthday. 

The Core Reading means that each life stops being observed when the earliest of the 3 events 
described above happens to that life. 

Cases (b) and (c) are treated as censored at either the time of withdrawal, or exact age 1x   
respectively. 

Assume that the hazard of death (or force of mortality) is constant between ages x  and 
1x   and takes the unknown value  .  We ask the question: what is the most likely value of 

  given the data in our investigation?  Assume that we measure duration in years since a 

person’s x th birthday. 

Consider first those lives in category (a), who die before exact age 1x  .  Suppose there are 
k  of these.   

Take the first of these, and suppose that he or she died at duration 1t .  Given only the data 

on this life, the value of   that is most likely is the value that maximises the probability that 

he or she actually dies at duration 1t .   

The probability that Life 1 will actually die at duration 1t  is equal to 1( )f t , where ( )f t  is the 

probability density function of T .  So the value of   that we need is the value that 

maximises 1( )f t .   

For the exponential distribution: 

  1
1( ) tf t e   

However, in the investigation, we have more than one life that died.  Suppose a second life 
died at duration 2t .  The probability of this happening is 2( )f t , and the joint probability that 

Life 1 died at duration 1t  and Life 2 died at duration 2t  is 1 2( ) ( )f t f t .  Given just these two 

lives, the value of   we need will be that which maximises 1 2( ) ( )f t f t .    

If we now consider all the k  lives that died, then the value of   we want is that which 

maximises:  

all lives which died

( )if t    

This product is the probability of observing the data we actually did observe. 

It can also be written as: 

 
1deaths

expi
k

t k
i

i
e t  
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We are summing from 1i   to k  because we are assuming that there are k  deaths. 

But what of the lives that were censored?  Their experience must also be taken into 
account. 

Consider the first censored life, and suppose he or she was censored at duration 1kt  .  All 

we know about this person is that he or she was still alive at duration 1kt  .  The probability 

that a life will still be alive at duration 1kt   is  1kS t  .   

We are using a subscript of 1k   because we are assuming there are k  deaths and we are 
labelling the first censored life as Life 1k  .   

For the exponential distribution, we have: 

   1
1

kt
kS t e  
    

Considering all the censored lives, the probability of observing the data we do observe is: 

 
all censored lives 

( )iS t  

This can also be written as: 

 
1all censored lives 

expi
n

t
i

i k
e t 

 

 
   

 
  

since we have n  lives altogether and the censored ones are those labelled Life 1k   up to Life n . 

Now, putting the deaths and the censored cases together, we can write down the probability 
of observing all the data we actually observe – both censored lives and those that died.  
This probability is: 

all censored lives 

( )iS t
all lives which died

( )if t  

This is called the likelihood of the data.   

For the  exponential hazard model, the likelihood function can also be written as: 

 
1 1 1

exp exp exp
k n n

k k
i i i

i i k i
L t t t    

   

     
              

     
    

Question 

Determine the likelihood function when the future lifetime random variable follows the Weibull 
distribution with parameters   and  . 
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Solution 

Under the Weibull model: 

   it
iS t e

  

and: 

   1 it
i if t t e

    

So, in this case the likelihood function is: 

 

censored lives deaths

1

censored lives deaths

1

all livesdeaths

( ) ( )

exp

i i

i i

t t
i

k k
i i

L S t f t

e t e

t t

  

 

 

  

 







   
      

  

 

 



 

where k  is the observed number of deaths. 

 
The maximum likelihood estimate of the parameter  , which we denote by ̂ , is the value 

that maximises this likelihood. 

To obtain ̂ , define a variable i  such that: 

i  = 1 if life i  died 

i  = 0 if life i  was censored 

Then, in the general case, the likelihood can be written: 

1

1

( ) ( )i i
n

i i
i

L f t S t 


   

Now, since ( ) ( ) ( )f t S t h t , or equivalently   t x x tf t p   , the likelihood can also be written: 

1

1 1

( ) ( ) ( ) ( ) ( )i i i i
n n

i i i i i
i i

L h t S t S t h t S t   

 
    

We now substitute the chosen functional form into this equation to express the likelihood in 
terms of the parameter  .  This produces: 

1

exp( )i
n

i
i

L t 
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This is equivalent to the expression: 

 
1

exp
n

k
i

i
L t 



 
   

 
  

given above, bearing in mind that we have observed k  deaths out of the sample of n  lives. 

Noting that whatever value of   maximises L  will also maximise the logarithm of L , we 

first take the logarithm of L : 

1 1

log log
n n

i i
i i

L t  
 

    

We differentiate this with respect to   to give: 




1

1

log

n

i n
i

i
i

L t


 



 


  

Setting this equal to zero produces: 

1

1

n

i n
i

i
i

t









  

so that:  

1

1

ˆ

n

i
i
n

i
i

t


 







 

or equivalently: 

1

ˆ
n

i
i

k

t








 

where k  is the total number of deaths from the n  lives. 

We can check that this is a maximum by noting that:  





2
1

2 2

log

n

i
iL



 
 


 

This must be negative, as both numerator and denominator are necessarily positive (unless 
we have no deaths at all in our data, in which case the maximum likelihood estimate of the 
hazard is 0). 
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Since 
1

n

i
i



  is just the total number of deaths in our data, and 

1

n

i
i

t

  is the total time that the 

lives in the data are exposed to the risk of death, our maximum likelihood estimate of the 
force of mortality (or hazard) is just deaths divided by exposed to risk, which is intuitively 
sensible. 

This is the same estimate for   as the one we obtain from the two-state Markov model in 

Chapter 3.  In that chapter we use the notation d  to represent the observed number of deaths 

and v  to represent the total waiting time.  Here we have 
1

n

i
i

v t


 . 

For parametric distributions with more than one parameter, maximum likelihood estimation 
of the parameters involves the solution of simultaneous equations, the number of 
simultaneous equations being equal to the number of parameters to be estimated.  These 
equations often require iterative methods. 

6.2 Using the estimates for different age ranges  

If we repeat the exercise for other years of age, we can obtain a series of estimates for the 
different hazards in each year of age. 

Suppose that the maximum likelihood estimate of the constant force during the single year 
of age from x  to 1x   is ˆx .  Then the probability that a person alive at exact age x  will 

still be alive at exact age 1x   is just (1)xS .  Given the constant force, then: 

ˆ ˆ(1) exp( )x xS    

This is the maximum likelihood estimate of the survival function at time 1. 

To work out the probability that a person alive at exact age x  will survive to exact age 
2x   we note that this probability is equal to: 

1 1
ˆ ˆ ˆ ˆ(1) (1) exp( )exp( )x x x xS S       

Therefore: 

1 1
ˆ ˆ ˆ ˆ ˆ(1) (1) (2) exp[ ( )]x x x x xS S S        

In general, therefore: 

1

0

ˆ ˆ ˆ( ) exp
m

x m x x j
j

S m p 





 
   
 
 
  

By ‘chaining’ together the probabilities in this way, we can evaluate probabilities over any 
relevant age range. 

Question 

If 60ˆ 0.01  , 61ˆ 0.02   and 62ˆ 0.03  , estimate the values of 60p , 2 60p  and 3 60p . 
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Solution 

The estimates of the survival probabilities are: 

    

   

60

60 61

60 61 62

ˆ 0.01
60

ˆ ˆ 0.01 0.02 0.03
2 60

ˆ ˆ ˆ 0.01 0.02 0.03 0.06
3 60

ˆ 0.99005

ˆ 0.97045

ˆ 0.94176

p e e

p e e e

p e e e
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Chapter 7 Summary 

Estimating the future lifetime distribution 

We can derive many useful functions from the lifetime distribution ( ) [ ]F t P T t  .  However, 
( )F t  is typically unknown and must be estimated from data.   

A non-parametric approach is one in which we do not pre-constrain the form of the 
distribution function before analysing the data. 

Censored data 

Data for some lives may be censored.  The main types of censoring (which are not mutually 
exclusive) are:  

 right censoring 

 left censoring 

 interval censoring 

 random censoring 

 informative censoring 

 non-informative censoring 

 Type I censoring  

 Type II censoring. 

Censored data must be accounted for in the likelihood function.  They tend to make the 
maximisation procedure more complicated. 

Kaplan-Meier model 

The Kaplan-Meier (or product-limit) estimate ˆ ( )KMF t  of the lifetime distribution is a step 

function with jumps at each observed death.  It is calculated with reference to the number 

and timing of deaths and the number of lives alive at each point.  To calculate ˆ ( )KMF t , we 

first need to estimate the discrete hazard function. 

Discrete hazard function 

The discrete hazard function is defined by: 

(1 )j j jP T t T t j k          

where jt  denotes the j th observed lifetime.  It is estimated by: 

 ˆ (1 )j
j

j

d
j k

n
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Kaplan-Meier estimate of the survival function

  ˆˆ ( ) 1
j j

j j
KM j

jt t t t

n d
S t

n


 

 
     

 
    

Variance of the Kaplan-Meier estimator 

We can estimate the variance of the Kaplan-Meier estimator so that we can compare 
lifetime distributions of two or more populations and construct confidence intervals.   

Greenwood’s formula 

  2ˆvar ( ) var ( ) 1 ( )
( )

j

j

j j jt t

d
S t F t F t

n n d
           

Nelson-Aalen model  

An alternative non-parametric approach is the Nelson-Aalen method.  For this method we 
need to estimate the integrated hazard. 

Integrated (or cumulative) hazard  

The integrated hazard is given by: 

0 j

t

t s j
t t

ds 


     

If we know (or can estimate) the integrated hazard function, then we can obtain (an 

estimate of) the survival function using the result ( ) tS t e . 

Nelson-Aalen estimate of the integrated hazard 

 ˆ

j

j
t

jt t

d

n
    

Nelson-Aalen estimate of the survival function 

ˆˆ( ) expt

j

j

jt t

d
S t e

n
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Variance of the Nelson-Aalen estimator of the integrated hazard 

   
3

var
j

j j j
t

t t j

d n d

n


    

Parametric estimation of the survival function 

The survival function can also be estimated by assuming that the future lifetime random 
variable belongs to a particular family of distributions and estimating the parameters of the 
distribution using maximum likelihood.  The general likelihood function is of the form: 

 
censored deaths 

lives 

( ) ( )i iS t f t   
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The practice questions start on the next page so that you can 
keep the chapter summaries together for revision purposes. 
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Chapter 7 Practice Questions 

7.1 A chef specialising in the manufacture of fluffy meringues uses a Whiskmatic disposable electric 
kitchen implement.  The Whiskmatic is rather unreliable and often breaks down, so the chef is in 
the habit of replacing the implement in use at a given time, shortly before an important social 
function or after making the 1,000th fluffy meringue with that implement. 

The following times until mechanical failure (no asterisk) or replacement whilst in working order 
(asterisk) were observed (measured in days of use): 

17, 13, 15*, 7*, 21, 18*, 5, 18, 6*, 22, 19*, 15, 4, 11, 14*, 18, 10, 10, 8*, 17 

(i) State the values , , , , , andj j j jn m k t d c n  for these data, assuming that censoring occurs just 

after the failures were observed. 

(ii) Calculate the Kaplan-Meier estimate of the Whiskmatic survival function. 

(iii) Using Greenwood’s formula, estimate var (16)S  
 .   

(iv) Calculate the Nelson-Aalen estimate of the cumulative hazard function using the given 
data values. 

(v) Use the given data values to estimate 16var[ ] . 

7.2 You have been asked to investigate whether the rate of ill-health retirement of the employees of 
a large company varies with their duration of employment. 

The company’s records show: 

 the date on which an employee was hired 

 the calendar year in which they retired, if an employee left employment as a result of 
ill-health retirement  

 the date of retirement, if an employee reached the normal retirement age of 65 

 the date of leaving, if an employee left the company for any other reason. 

In the context of this investigation consider the following types of censoring and in each case: 

 describe the nature of the censoring 

 state whether or not that type of censoring is present in these data 

 if that particular type of censoring is present, explain how it arises. 

(a) Left censoring 

(b) Right censoring 

(c) Interval censoring 

(d) Informative censoring.  
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7.3 A clinical trial is being carried out to test the effectiveness of a new drug.  Sixty patients were 
involved in the trial, which followed them for 2 years from the start of their treatment.  The 
following data show the period in complete months from the start of treatment to the end of 
observation for those patients who died or withdrew from the trial before the end of the 2-year 
period.   

Deaths:  8, 10, 10, 16, 20 

Withdrawals: 2, 6, 9, 16, 18, 22, 22 

(i) Calculate the Kaplan-Meier estimate of the survival function.  

(ii) Construct an approximate 95% confidence interval for the probability that a patient 
survives for at least 18 months after the start of the drug treatment.  

7.4 A life insurance company has carried out a mortality investigation.  It followed a sample of 
independent policyholders aged between 50 and 55 years.  Policyholders were followed from 
their 50th birthday until they died, withdrew from the investigation while still alive, or reached 
their 55th birthday (whichever of these events occurred first). 

(i) Describe the types of censoring that are present in this investigation. [2] 

(ii) An extract from the data for 12 policyholders is shown in the table below.  Use these data 
values to calculate the Nelson-Aalen estimate of the survival function.   

Life Last age at which life was 
observed 

(years and months) 

Reason for exit 

1 50 9 Died 

2 51 3 Withdrew 

3 51 6 Died 

4 51 6 Died 

5 51 6 Withdrew 

6 52 9 Withdrew 

7 53 3 Withdrew 

8 54 3 Died 

9 54 6 Died 

10 55 0 Reached age 55 

11 55 0 Reached age 55 

12 55 0 Reached age 55 

    [5] 

(iii) Determine an approximate 95% confidence interval for ( )S t  for all values of t , 0 5.t   

   [7] 
    [Total 14] 
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7.5 The following data relate to 12 patients who had an operation that was intended to correct a 
life-threatening condition, where time 0 is the start of the period of the investigation: 

Patient 
number 

Time of operation 
(in weeks) 

Time observation 
ended (in weeks) 

Reason 
observation 

ended 

1 0 120 Censored 

2 0 68 Death 

3 0 40 Death 

4 4 120 Censored 

5 5 35 Censored 

6 10 40 Death 

7 20 120 Censored 

8 44 115 Death 

9 50 90 Death 

10 63 98 Death 

11 70 120 Death 

12 80 110 Death 

 
You can assume that censoring was non-informative with regard to the survival of any individual 
patient. 

(i) Compute the Nelson-Aalen estimate of the cumulative hazard function, ( )t , where t  is 

the time since having the operation. [6] 

(ii) Using the results of part (i), deduce an estimate of the survival function for patients who 
have had this operation. [2] 

(iii) Estimate the probability of a patient surviving for at least 70 weeks after undergoing the 
operation.  [1] 

    [Total 9] 

  

Exam style 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 42  CS2-07: Estimating the lifetime distribution function 

© IFE: 2019 Examinations The Actuarial Education Company 

7.6 A medical study was carried out between 1 January 2011 and 1 January 2016, to assess the 
survival rates of cancer patients.  The patients all underwent surgery during 2011 and then 
attended 3-monthly check-ups throughout the study.  The following data were collected. 

For those patients who died during the study exact dates of death were recorded as follows: 

Patient Date of surgery Date of death 

A 1 April 2011 1 August 2015 

B 1 April 2011 1 October 2011 

C 1 May 2011 1 March 2012 

D 1 September 2011 1 August 2013 

E 1 October 2011 1 August 2012 

 
For those patients who survived to the end of the study: 

Patient Date of surgery 

F 1 February 2011 

G 1 March 2011 

H 1 April 2011 

I 1 June 2011 

J 1 September 2011 

K 1 September 2011 

L 1 November 2011 

 
For those patients with whom the hospital lost contact before the end of the investigation: 

Patient Date of surgery Date of last check-up 

M 1 February 2011 1 August 2013 

N 1 June 2011 1 March 2012 

O 1 September 2011 1 September 2015 

 
(i) Explain whether and where each of the following types of censoring is present in this 

investigation: 

 (a) type I censoring 

 (b) interval censoring; and 

 (c) informative censoring. [3] 

(ii) Calculate the Kaplan-Meier estimate of the survival function for these patients.  State any 
assumptions that you make. [7] 
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(iii) Hence estimate the probability that a patient will die within 4 years of surgery. [1] 
    [Total 11] 

7.7 A study of the mortality of 12 laboratory-bred insects was undertaken.  The insects were observed 
from birth until either they died or the period of study ended, at which point those insects still 
alive were treated as censored.   

The following table shows the Kaplan-Meier estimate of the survival function, based on data from 
the 12 insects. 

 t  (weeks)  ( )S t  

 0 1t    1.0000 

 1 3t    0.9167 

 3 6t    0.7130 

 6 t    0.4278 
 
(i) Calculate the number of insects dying at durations 3 and 6 weeks. [6] 

(ii) Calculate the number of insects whose history was censored. [1] 
    [Total 7] 
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Chapter 7 Solutions 

7.1 (i) Notation 

The original observations are: 

17, 13, 15*, 7*, 21, 18*, 5, 18, 6*, 22, 19*, 15, 4, 11, 14*, 18, 10, 10, 8*, 17 

These can be re-ordered to obtain: 

4, 5, 6*, 7*, 8*, 10, 10 , 11, 13, 14*, 15, 15*, 17, 17, 18, 18, 18*, 19*, 21, 22 

Number of ‘lives’ under investigation, 20n   

Number of Whiskmatic failures observed, 13m   

Number of times at which failures were observed:  10k   

Times at which failures are observed: 

1 2 3 4 5 6 7 8 9 104, 5, 10, 11, 13, 15, 17, 18, 21, 22t t t t t t t t t t           

Number of failures observed at each failure time:  

1 2 3 4 5 6 7 8 9 101, 1, 2, 1, 1, 1, 2, 2, 1, 1d d d d d d d d d d           

Number of remaining lives = 20 13 7n m     

Number of lives censored: 

0 1 2 3 4 5 6 7 8 9 100, 0, 3, 0, 0, 1, 1, 0, 2, 0, 0c c c c c c c c c c c            

Number of lives alive and at risk at it :   

1 2 3 4 5 6 7 8 9 1020, 19, 15, 13, 12, 10, 8, 6, 2, 1n n n n n n n n n n           
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(ii) Kaplan-Meier estimate of survival function 

We have: 

j   jt  jd  jn  ˆ /j j jd n   ˆ1 j j
j

j

n d

n



    

1

ˆ1
j

k
k




  

1 4 1 20 1/20 19/20 19/20 

2 5 1 19 1/19 18/19 9/10 

3 10 2 15 2/15 13/15 39/50 

4 11 1 13 1/13 12/13 18/25 

5 13 1 12 1/12 11/12 33/50 

6 15 1 10 1/10 9/10 297/500 

7 17 2 8 2/8 6/8 891/2,000 

8 18 2 6 2/6 4/6 297/1,000 

9 21 1 2 1/2 1/2 297/2,000 

10 22 1 1 1/1 0/1 0 

 
So the Kaplan-Meier estimate of the survival function is: 

 

19
20

9
10

39
50

18
25

33
50

297
500

891
2,000

297
1,000

297
2,000

1 for 0 4 1 for 0 4
for 4 5

for 5 10

for 10 11

for 11 13

for 13 15ˆ( )
for 15 17

for 17 18

for 18 21

for 21 22

0 for 22

t t
t

t

t

t

tS t
t

t

t

t

t

   
  
  


 
  
   
  
  
  
  

 

0.95 for 4 5

0.9 for 5 10

0.78 for 10 11

0.72 for 11 13

0.66 for 13 15

0.594 for 15 17

0.4455 for 17 18

0.297 for 18 21

0.1485 for 21 22

0 for 22

t

t

t

t

t

t

t

t

t

t


  
  


 
  


 
  

 
  
  




 

(iii) Variance using Greenwood’s formula 

Greenwood’s formula gives 

   22

16 16

ˆˆvar (16) 1 (16) (16)
( ) ( )

j j

j j

j j j j j jt t

d d
S F S

n n d n n d 
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We have: 

j   jt  jd  jn  
( )

j

j j j

d

n n d
  

1 4 1 20 
1

20 19
 

2 5 1 19 
1

19 18
  

3 10 2 15 
2

15 13
  

4 11 1 13 
1

13 12
  

5 13 1 12 
1

12 11
  

6 15 1 10 
1

10 9
  

 
So: 

2

2

297 1 1 2 1 1 1
var (16)

500 20 19 19 18 15 13 13 12 12 11 10 9

(0.594) 0.04091

0.01443

S                        

 





 

(iv) Nelson-Aalen estimate of cumulative hazard function 

The Nelson-Aalen estimate of the cumulative hazard function is: 

 

1
20

1 1
20 19

1 1 2
20 19 15

1 1 2 1
20 19 15 13

1 1 2 1 1
20 19 15 13 12

1 1 2 1 1 1
20 19 15 13 12 10

1 1
20

0 for 0 4

0.05 for 4 5

0.1026 for 5 10

0.2360 for 10 11

0.3129 for 11 13
ˆ 0.3962 for 13 15

0.4962 for 15 17
t

t

t

t

t

t

t

t

 
  
   
    
     
       
       
 2 1 1 1 2

19 15 13 12 10 8
1 1 2 1 1 1 2 2

20 19 15 13 12 10 8 6
1 1 2 1 1 1 2 2 1

20 19 15 13 12 10 8 6 2
1 1 2 1 1 1 2 2 1 1

20 19 15 13 12 10 8 6 2 1

0.7462 for 17 18

1.0796 for 18 21

1.5796 for 21 22

2.5796 for 22

t

t

t

t













       
         
          
          







  

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 48  CS2-07: Estimating the lifetime distribution function 

© IFE: 2019 Examinations The Actuarial Education Company 

(v) Variance of estimator of integrated hazard 

Using the formula from page 33 of the Tables:  

 
16 3 3 3 3 3 3 3

16

1 19 1 18 2 13 1 12 1 11 1 9
var [ ] 0.03353

20 19 15 13 12 10
j

j j j

t j

d n d

n

      
          

7.2 (a) Left censoring 

Data in this study would be left censored if the censoring mechanism prevented us from knowing 
when an employee joined the company.  

This is not present because the exact date of joining is given.  

(b) Right censoring 

Data in this study would be right censored if the censoring mechanism cuts short observations in 
progress, so that we are not able to discover if and when an employee retired as a result of ill 
health.     

Here there is right censoring of those lives who leave employment before their normal retirement 
date for reasons other than ill health.  

(c)  Interval censoring 

Data in this study would be interval censored if the observational plan only allows us to say that 
the duration of employment at the date of ill-health retirement fell within some interval of time 
(and does not allow us to find the exact duration of employment).  

Here we know the calendar year of ill-health retirement and the date of employment, so we will 
know that the duration of employment falls within a one-year interval.  Interval censoring is 
present.    

(d) Informative censoring 

Censoring in this study would be informative if the censoring event divided individuals into two 
groups whose subsequent experience of ill-health retirement was thought to be different.  

Here the censoring event of leaving the company might be suspected to be informative.  Those 
who leave are more likely to be in better health (less likely to have retired on ill-health grounds 
had they remained in employment) because they probably left to take another (perhaps better 
paid and more responsible) job for which they may have been required to pass a medical 
examination.  Similarly, those not resigning their jobs are more likely to retire on ill-health 
grounds.  Informative censoring is present if these groups have different subsequent 
experience.    

7.3 (i) Kaplan-Meier estimate of the survival function 

Let t  denote time measured in months from the start of treatment.  The Kaplan-Meier estimate 
of the survival function is a step function that starts at 1 and steps down every time a death is 
observed.  
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We start with 60 lives, and two of them are censored before the first death, which occurs at 
time 8.  So: 

 ˆ( ) 1S t   for 0 8t   

Assuming that the censoring at time 16 occurs after the death, we have:  

j  jt  jn  jd  ˆ j
j

j

d

n
   ˆ1 j  

1 8 58 1 1
58

 57
58

0.98276  

2 10 56 2 2
56

 54
56

0.96429  

3 16 54 1 1
54

 53
54

0.98148  

4 20 51 1 1
51

 50
51

0.98039  

     
The Kaplan-Meier estimate of the survival function is then: 

  

1 for 0 8

0.98276 for 8 10
ˆˆ( ) 1 0.94766 for 10 16

0.93011 for 16 20

0.91187 for 20 24

j

j
t t

t

t

S t t

t

t




 
      
  

 

   

(ii) 95% confidence interval  

An approximate 95% confidence interval for (18)S  is: 

  ˆ(18) 1.96 var (18)S S    

From (i): 

 ˆ(18) 0.93011S    

The variance term can be calculated using Greenwood’s formula: 

 

     
2

18

2

ˆvar (18) (18)

1 2 1
0.93011

58 57 56 54 54 53

0.001136

j

j

j j jt

d
S S

n n d
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So the required confidence interval is: 

  0.93011 1.96 0.001136 0.8640, 0.9962    

7.4 (i) Types of censoring present 

Right censoring is present since we don’t know the exact future lifetime for the lives that 
withdrew or left the investigation at age 55.  (Right censoring is a special case of interval 
censoring.)   [½] 

Random censoring occurs since we don’t know the withdrawal times in advance.   [½] 

Type I censoring occurs since lives that survive to age 55 are certain to be censored at that age.     
    [½] 

Non-informative censoring is also present since the withdrawals give us no information about the 
future mortality of the lives remaining in the investigation. [½] 

(ii) Nelson-Aalen estimate of the survival function 

Suppose that time is measured in years from age 50 and the withdrawal of life 5 occurs 
immediately after the deaths of lives 3 and 4. 

A timeline of the data is shown below: 

D 2D,C

C

D

C

D

1
12

2
10

Proportion 
of deaths

1
4

1
5

Time

C

0 1
2

1 3
2

2 5
2

3 7
2

4 9
2

5

3C

 
The Nelson-Aalen estimate of the survival function is: 

 
ˆˆ( ) tS t e  

where: 

 

9
12

9 61
12 12 12

6 31 2
12 10 12 12

3 61 2 1
12 10 5 12 12

61 2 1 1
12 10 5 4 12

0 for 0

0.08333 for 1

ˆ 0.28333 for 1 4

0.48333 for 4 4

0.73333 for 4 5

j

j
t

jt t

t

t
d

t
n

t

t



  

   

       


    


     

  

    [3] 
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So: 

 

9
12

9 6
12 12

6 3
12 12
3 6

12 12
6

12

1 for 0

0.92004 for 1

ˆ( ) 0.75327 for 1 4

0.61672 for 4 4

0.48031 for 4 5

t

t

S t t

t

t

  

  

  


 


 

  

    [2] 

(iii) 95% confidence interval 

An approximate 95% confidence interval for the integrated hazard function is: 

 ˆ 1.96 vart t    
  

where:  

 
 

9
12

9 6
12 12

6 3
3 12 12

3 6
12 12
6

12

0 for 0

0.00637 for 1

var 0.02237 for 1 4

0.05437 for 4 4

0.10124 for 4 5

j

j j j
t

t t j

t

t
d n d

t
n

t

t



  

  
       


 


 

   

    [2] 

An approximate 95% confidence interval for the integrated hazard function is then: 

0  for 9
12

0 t   

 0.07305, 0.23971  for 9 6
12 12

1t   

 0.00979, 0.57645  for 6 3
12 12

1 4t   

 0.02633, 0.94034  for 3 6
12 12

4 4t   

 0.10969, 1.35697   for 6
12

4 5t   [2] 
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The integrated hazard must always be a positive number, so we truncate the estimated 
confidence intervals to reflect this, giving: 

0  for 9
12

0 t   

 0, 0.23971   for 9 6
12 12

1t   

 0, 0.57645   for 6 3
12 12

1 4t   

 0.02633, 0.94034  for 3 6
12 12

4 4t   

  0.10969, 1.35697  for 6
12

4 5t   [2] 

This truncation will also ensure that the survival probabilities will be between 0 and 1.  An 
approximate 95% confidence interval for the survival function is: 

1  for 9
12

0 t   

 0.78685,1   for 9 6
12 12

1t   

 0.56189, 1   for 6 3
12 12

1 4t   

 0.39050, 0.97401  for 3 6
12 12

4 4t   

  0.25744, 0.89611  for 6
12

4 5t   [1] 
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7.5 This is Subject 104, September 2000, Question 10. 

(i) Computing the Nelson-Aalen estimate 

The first thing to do is to rewrite the data in terms of the duration since having the operation (call 
this t ), as follows (D = died; C = censored): 

Patient number Duration t Event 

6 30 D 

12 30 D 

5 30 C 

10 35 D 

3 40 D 

9 40 D 

11 50 D 

2 68 D 

8 71 D 

7 100 C 

4 116 C 

1 120 C 

    [2] 

Assuming that lives who were censored at any time t  were at risk of death at time t , we can 
calculate the required statistics as follows: 

 

j  

j th time 

of death 

jt  

Number 
available 
to die at 
time jt  

jn  

Number 
of deaths 
at time jt

jd  

ˆ j
j

j

d

n
   

Estimate of 
cumulative 

hazard function 

 ˆ t  

Values of t  to 

which  ˆ t  

applies 

0 0 12   0 0 30t   

1 30 12 2 0.1667 0.1667 30 35t   

2 35 9 1 0.1111 0.2778 35 40t   

3 40 8 2 0.2500 0.5278 40 50t   

4 50 6 1 0.1667 0.6944 50 68t   

5 68 5 1 0.2000 0.8944 68 71t   

6 71 4 1 0.2500 1.1444 71 120t   

    [4] 
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The Nelson-Aalen estimate, and the range of t  to which it applies, are shown in the last two 
columns of the above table.   

(ii) Estimating the survival function 

This is calculated using:  

ˆˆ( ) exp ( )S t t     

The results are shown in the following table: 

ˆ( )S t  
Value of t  to which 

ˆ( )S t  applies 

1 0 30t   

0.8465 30 35t   

0.7575 35 40t   

0.5899 40 50t   

0.4994 50 68t   

0.4088 68 71t   

0.3184 71 120t   

    [2] 

(iii) Survival probability 

The probability of surviving for at least 70 weeks from the operation is (70)S .  From the table in 

part (ii), we see that ˆ(70) 0.4088S  . [1] 

7.6 This is Subject CT4, April 2007, Question 8 (with the dates changed). 

(i)(a) Type I censoring 

Type I censoring occurs when the censoring times are known in advance.  It is present in this 
investigation since we knew in advance that all lives still in the investigation on 1 January 2016 
were going to be censored on that date. [1] 

(i)(b) Interval censoring 

Interval censoring occurs when the observational plan only allows us to say that the deaths fell 
within some interval of time.  Here we know the exact duration at the time of death for Patients A 
to E.  So there is no interval censoring in respect of these patients.  However, if Patient M, N or O 
had died between the last check-up and the first missed check-up, this would be an example of 
interval censoring.  In this case, the only information we would have about the duration at death 
would be that it fell within a particular 3-month period.   [1] 
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Right censoring is a special case of interval censoring.  It occurs when the censoring mechanism 
cuts short observations in progress.  If contact had been lost with Patients M, N and O for a 
reason other than death, then this would be an example of right censoring.  Right censoring also 
occurs at the end of the investigation since there are patients who are still alive at that time and 
all we know about the lifetimes of these lives is that they are greater than some known value.   [1] 

(i)(c) Informative censoring 

Informative censoring occurs when the censoring mechanism provides some information about 
the future lifetimes.  It is not likely to be present here. [1] 
    [Maximum 3] 

(ii) Kaplan-Meier estimate of the survival function 

We assume that: 

 the lives in the investigation are independent with respect to mortality and all follow the 
same model of mortality [½] 

 the censoring is non-informative [½] 

 the patients with whom contact is lost are censored half-way through the 3-month period 
in which contact with them was lost [½] 

 at duration 4 years, 4 months, the death of Patient A occurred before Patients J and K 
were censored.  [½] 

For each life, duration (ie time since surgery) at exit is shown below.  

Patient Duration at exit Reason for exit 

A 4 years, 4 months Death 

B 6 months Death 

C 10 months Death 

D 1 year, 11 months Death 

E 10 months Death 

F 4 years, 11 months Censored 

G 4 years, 10 months Censored 

H 4 years, 9 months Censored 

I 4 years, 7 months Censored 

J 4 years, 4 months Censored 

K 4 years, 4 months Censored 

L 4 years, 2 months Censored 

M 2 years, 7½ months Censored 

N 10½ months Censored 

O 4 years, 1½ months Censored 

    [2] 
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These events are shown in the timeline below, together with the proportion of survivors at each 
death time: 

0 1
2

1 3
2

2 5
2

3 7
2

4 9
2

5

D 2D

C

D

C CC C CCC

D,2C

14
15

12
14

Proportion 
of survivors

10
11

6
7

Time

 
The Kaplan-Meier estimate of the survival function is: 

 

6
12

6 1014
15 12 12

1014 12 11
15 14 12 12

1014 12 11 4
15 14 11 12 12

10 614 12 4
15 14 11 7 12

6
12

6 1014
15 12 12

104 11
5 12 12

8 11 4
11 12 12

4

1 for 0

for 
ˆ ( ) for 1

for 1 4

for 4 5

1 for 0

for 

for 1

for 1 4

KM

t

t

S t t

t

t

t

t

t

t

  
     
    

    

 
 

  
 

8 4
77 12for 4 5t








 

 [3] 

where t  is measured in time in years since surgery. 

Since our first observed death is at time 6
12t  , the first part of the estimated survival function is: 

 ˆ ( ) 1KMS t     for 6
120 t   

At time 6
12t   there are 15 patients in the at-risk group and 1 of them dies at this time.  So we 

estimate the survival probability to be 1 14
15 151  , and this stays constant until the next 

observed death time, ie until time 10
12t  .  So the second part of the estimated survival function 

is: 

14
15

ˆ ( )KMS t     for 6 10
12 12t   
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At time 10
12t   there are 14 patients in the at-risk group.  (We started with 15 but 1 died at time 

6
12t  .)  Out of these 14, 2 die.  So we estimate the probability of not dying at time 10

12t    to be 

2 12
14 141  , and the probability of still being alive after time 10

12t   to be 14 12
15 14 .  (To be 

alive after time 10
12t  , a  life must have not died at time 6

12t   and not died at time 10
12t  .)  

Our estimate of the survival probability stays constant until the next observed death time, ie time 
11

121t  .   

 So the third part of the estimated survival function is: 

 14 12 12 4
15 14 15 5

ˆ ( )KMS t      for 10 11
12 121t   

The rest of the function follows in a similar way. 

Alternatively, we could assume that Patients M, N and O were censored on the dates of their last 
check-ups.  This gives durations at censoring of 2 years 6 months, 9 months and 4 years, 
respectively.  With this assumption, the Kaplan-Meier estimate of the survival function is: 

6
12

6 1014
15 12 12

1014 11 11
15 13 12 12

1014 11 11 4
15 13 11 12 12

10 614 11 4
15 13 11 7 12

6
12

6 1014
15 12 12

154 10 11
195 12 12

28 11
39 12

1 for 0

for 
ˆ ( ) for 1

for 1 4

for 4 5

1 for 0

for 

for 1

for 1

KM

t

t

S t t

t

t

t

t

t

t

  
     
    

    

 
 

  
  4

12
8 4

13 12

4

for 4 5t








 

 

(iii) Probability that a patient will die within 4 years of surgery 

From (ii), the Kaplan-Meier estimate of this death probability is: 

 8 3
11 11

ˆˆ (4) 1 (4) 1 0.27273KM KMF S       [1] 

7.7 This is Subject CT4, April 2005, Question B5. 

(i) Number of insects dying at durations 3 and 6 weeks 

The estimated survival function has ‘steps’ at times 1, 3 and 6.  This means that deaths can only 
occur at these times. 

The estimate of the discrete hazard at time 1, 1̂ , is: 

 
1

1 0.9167 0.0833
12

    [½] 
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There are 12 insects exposed to the risk of death at time 0.  We are told implicitly that no 
additional insects join the study after time 0, so the number of insects exposed to the risk of 
death immediately before time 1 must be 1 12n  .  The number of deaths at time 1 can only be a 

positive integer, 1 1, 2,d   .  The only feasible values are 1 112 and 1n d  . [1] 

The estimate of the discrete hazard at time 3, 2̂ , is given by: 

  2
1 ˆ1 1 0.7130

12
    

 
 [½] 

So: 

 2
2

2

2ˆ 0.2222
9

d
n

     [½] 

There are 11 insects exposed to the risk of death at time 1.  The number of insects exposed to the 
risk of death immediately before time 3 must be 2 11n  .  The number of deaths at time 3 can 

only be a positive integer, 2 1, 2,d   .  The only feasible values are 2 29 and 2n d  . [1] 

The estimate of the discrete hazard at time 6, 3̂ , is given by: 

  3
1 2 ˆ1 1 1 0.4278

12 9
       

  
 [½] 

So: 

 3
3

3

2ˆ 0.4000
5

d
n

     [½] 

There are 7 insects exposed to the risk of death at time 3.  The number of insects exposed to the 
risk of death immediately before time 6 must be 3 7n  .  The number of deaths at time 6 can only 

be a positive integer, 3 1, 2,d   .  The only feasible values are 3 35 and 2n d  . [1] 

In summary, 1 insect died at time 1, 2 insects died at time 3, and 2 insects died at time 6. [½] 

(ii) Number of insects whose history was censored 

12 insects were observed and 5 died.  So 7 were censored. [1] 
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End of Part 2 

What next?   

1. Briefly review the key areas of Part 2 and/or re-read the summaries at the end of 
Chapters 5 to 7. 

2. Ensure you have attempted some of the Practice Questions at the end of each chapter in 
Part 2.  If you don’t have time to do them all, you could save the remainder for use as part 
of your revision. 

3. Attempt Assignment X2. 
  

 

 

Time to consider …  
 … ‘learning and revision’ products 

Online Classroom – As an alternative to live tutorials, you might consider the Online 
Classroom to give you access to ActEd’s expert tuition and additional support: 

‘Please do an online classroom for everything.  It is amazing.’ 

You can find lots more information, including demos, on our website at www.ActEd.co.uk. 

Buy online at www.ActEd.co.uk/estore 
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All study material produced by ActEd is copyright and is sold 
for the exclusive use of the purchaser.  The copyright is 

owned by Institute and Faculty Education Limited, a 
subsidiary of the Institute and Faculty of Actuaries. 

 

Unless prior authority is granted by ActEd, you may not hire 
out, lend, give out, sell, store or transmit electronically or 

photocopy any part of the study material. 

 

You must take care of your study material to ensure that it 
is not used or copied by anybody else. 

 

Legal action will be taken if these terms are infringed.  In 
addition, we may seek to take disciplinary action through 

the profession or through your employer. 

 

These conditions remain in force after you have finished 
using the course. 
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Proportional hazards models 

 

Syllabus objectives 

4.2 Describe estimation procedures for lifetime distributions. 

4.2.5 Describe models for proportional hazards, and how these models can be 
used to estimate the impact of covariates on the hazard. 

4.2.6 Describe the Cox model for proportional hazards, derive the partial likelihood 
estimate in the absence of ties and state the asymptotic distribution of the 
partial likelihood estimator. 
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0 Introduction 

The true level of mortality for an individual is unknown in practice.  In order to estimate it, we can 
carry out an investigation and make statistical inferences based on the observed data.   

One of the main problems is heterogeneity.  The population may include lives with very different 
characteristics, eg males and females, smokers and non-smokers.  In such circumstances we will 
observe an average mortality rate over the population as a whole.  It would be more informative 
to split the population into homogeneous subgroups of individuals with similar characteristics 
(eg male smokers, female non-smokers) and identify the level of mortality experienced by 
members of each subgroup. 

In this chapter we will consider: 

 how to incorporate in a model the different factors (called covariates) that are used to 
split the population into subgroups 

 proportional hazards models, where the formula incorporates an adjustment to reflect 
the characteristics of each particular individual 

 fully parametric models, where the hazard rate is a simple function of some time 
period ,t  and the limitations of these models 

 the Cox model, which is a particular type of proportional hazards model. 

This chapter is based on the paper ‘An Actuarial Survey of Statistical Models for Decrement 
and Transition Data’ by A S Macdonald, BAJ 2 (1996), by kind permission of the editor of 
BAJ. 
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1 Covariates and proportional hazards models 

1.1 Covariates 

Estimates of the lifetime distribution, whether parametric or non-parametric, are limited in 
their ability to deal with some important questions in survival analysis, such as the effect of 
covariates on survival.   

A covariate is any quantity recorded in respect of each life, such as age, sex, type of 
treatment, level of medication, severity of symptoms and so on.  If the covariates partition 
the population into a small number of homogeneous groups, it is possible to compare 
Kaplan-Meier or other estimates of the survivor function in respect of each population, but a 
more direct and transparent method is to construct a model in which the effects of the 
covariates on survival are modelled directly: a regression model.  In this section, we will 
assume that the values of the covariates in respect of the i th life are represented by a 1 p  

vector, iz . 

The vector notation in this chapter requires some care.  The Core Reading uses the same notation 
for both vectors and scalars.  The notation in the ActEd material is consistent with the Core 
Reading.   When trying questions on this topic, you might want to use the notation z  to denote 

the vector of covariates.   

The covariates can be: 

 direct measurements (eg age or weight) 

 indicator or dummy variables (eg 0 for a male and 1 for a female or 0 for new treatment 
and 1 for placebo) 

 a quantitative interpretation of a qualitative measurement (eg severity of symptoms from 
0 to 5 with 0 representing no symptoms and 5 representing extreme severity). 

For example, the vector iz  might be (sex, age, weight, symptoms).  If the third life is a 68-year-old 

male (with dummy variable 0), weighing 74kg, with mild symptoms of the condition under 
investigation (graded as 1 on a scale from 0 to 5), then we would have 3 (0,68,74,1)z  . 

1.2 Proportional hazards models 

The most widely used regression model in recent years has been the proportional hazards 
model.  Proportional hazards (PH) models can be constructed using both parametric and 
non-parametric approaches to estimating the effect of duration on the hazard function. 

In PH models the hazard function for the i th life, ( , )i it z , may be written: 

 0( , ) ( ) ( )i i it z t g z   

where 0( )t  is a function only of duration t , and ( )ig z  is a function only of the covariate 

vector.  (In keeping with statistical habit, we denote hazards by   rather than  .)  Here, 

0( )t  is the hazard for an individual with a covariate vector equal to zero.  It is called the 

baseline hazard. 
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We will see later that in this type of model, when the covariates all have value zero, the function 
( )ig z  will equal 1. 

Models can be specified in which the effect of covariates changes with duration: 

 0( , ) ( ) ( , )i i it z t g z t   

but because the hazard no longer factorises into two terms, one depending only on duration 
and the other depending only on the covariates, these are not PH models. 

We will have a look in more detail in Section 2.3 at how the proportional element works. 

They are also both more complex to interpret and more computer-intensive to estimate. 
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2 Fully parametric models 

2.1 Parametric models for the hazard function 

In a fully parametric PH model, the strong assumption is made that the lifetime distribution, 
and hence the hazard, belongs to a given family of parametric distributions, and the 
regression problem is reduced to estimating the parameters from the data. 

Recall from Chapter 6 that the PDF of the future lifetime random variable xT  is: 

 
0

( ) exp
t

x t x x t x t x sf t p ds    
    
   

The ‘hazard’ referred to in the Core Reading is just the force of mortality.  The hazard function 
(from age x ) may also be written as ( )h t  or as ( )xh t . 

Distributions commonly used are the exponential (constant hazard), Weibull (monotonic 
hazard), Gompertz-Makeham (exponential hazard) and log-logistic (‘humped’ hazard).   

The general shapes of the more commonly used distributions are illustrated below. 

(a) Exponential (constant hazard) 

 

Question 

Explain why the constant hazard model is described as ‘exponential’. 

Solution 

Under the constant hazard model with hazard rate  , the distribution function of the future 
lifetime of a life aged x  is: 

 
0 0

( ) 1 exp 1 exp 1
t t t

x t x x sF t q ds ds e   


              
      ( 0)t   
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This is the distribution function of an ( )Exp   random variable. 

 
 (b) Weibull (monotonically decreasing hazard) 

 
The PDF of the Weibull distribution is: 

 1( ) exp( )f t c t ct      ( 0, 0, 0c t   ) 

and its CDF is: 

 ( ) 1 exp( )F t ct     ( 0, 0, 0c t   )  

The Weibull model can also be used for a monotonically increasing hazard. 

Question 

Write down the hazard function for the Weibull distribution.  State the values of   for which this 

is: 

(a) decreasing 

(b) constant 

(c) increasing. 

Solution 

Since ( )x t x x tf t p    and ( ) ( ) 1x x t x t xF t P T t q p     , it follows that: 

 
( )

1 ( )
x

x t
x

f t
F t

  


 

So the hazard function for the Weibull distribution is: 

 
1

1exp( )
( )

exp( )

c t ct
h t c t

ct
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Differentiating this gives: 

 2( ) ( 1)h t c t      

(a) The derivative is negative if 1  .  So the hazard function is decreasing if 1  . 

(b) The derivative is 0 if 1  .  So the hazard function is constant if 1  . 

(c) The derivative is positive if 1  .  So the hazard function is increasing if 1  . 

 
(c) Gompertz-Makeham (exponential hazard) 

 

Question 

State Makeham’s law for the force of mortality. 

Solution 

Makeham’s law for the force of mortality is: 

 x
x A Bc    

for some parameters A , B  and c .  This is an exponential hazard since the variable x  appears as 
the power.   
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(d) Log-logistic hazard (‘humped’ hazard) 

 

The log-logistic hazard function is: 

 
( / )

( )
1 ( / )

t
h t

t t




 




  

 

Question 

Give an example of a situation in which the hazard function may be expected to follow each of the 
following distributions: 

(i) exponential 

(ii) decreasing Weibull 

(iii) Gompertz-Makeham 

(iv) log-logistic. 

Solution 

(i) The constant hazard model (exponential) could reflect the hazard for an individual who 
remains in good health.  The level of hazard would reflect the risk of death from unnatural 
causes, eg accident or murder. 

(ii) The decreasing hazard model (decreasing Weibull) could reflect the hazard for patients 
recovering from major heart surgery.  The level of hazard is expected to fall as the time 
since the operation increases. 

(iii) The exponentially increasing hazard model (Gompertz-Makeham) could reflect the hazard 
for leukaemia sufferers who are not responding to treatment.  The severity of the 
condition and the level of hazard increase with the survival time.  Over longer time 
periods, the Gompertz-Makeham model could be suitable for describing the increasing 
chance of death from natural causes as age increases.  (We saw this in Chapter 6.) 
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(iv) The humped hazard (log-logistic) could reflect a hazard for patients with a disease that is 
most likely to cause death during the early stages.  As the initial condition becomes more 
severe, the level of hazard increases.  But once patients have survived the period of 
highest risk, the level of hazard decreases. 

 

2.2 Other applications of these models 

The same distributions are often used as loss distributions with insurance claims data, but 
censored observations complicate the likelihoods considerably and numerical methods are 
usually required.  For the distributions above, the likelihoods can be written down (though 
not always solved) explicitly. 

We will consider loss distributions in more detail in Chapter 15.  The problem of censored claims 
data is discussed in Chapter 18. 

2.3 Use of parametric models 

Parametric models can be used with a homogeneous population (the one-sample case) as 
described in Section 6 of Chapter 7, or can be fitted to a moderate number of homogeneous 
groups, in which case confidence intervals for the fitted parameters give a test of 
differences between the groups which should be better than non-parametric procedures. 

A parametric PH model using the Gompertz distribution might be specified as follows.  The 
Gompertz hazard is: 

( ) tt Bc   

with two parameters B  and c .  If we let the value of the parameter B  depend on the 

covariate vector iz : 

 exp( )T
iB z  

where   is a 1 p  vector of regression coefficients, then through the scalar product T
iz  

the influence of each factor in iz  enters the hazard multiplicatively.  (Note that the ‘T’ 

denotes the transpose of the vector iz , not a lifetime.) 

We then have the PH model: 

 ( , ) exp( )t T
i i it z c z   

Actuaries are frequently interested in both the baseline hazard and the effect of the 
covariates.  As long as numerical methods are available to maximise the full likelihood (and 
find the information matrix), which nowadays should not be a problem, it is not difficult to 
specify any baseline hazard required and to estimate all the parameters simultaneously, 
ie those in the baseline hazard and the regression coefficients. 
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Under PH models, the hazards of different lives with covariate vectors 1z  and 2z  are in the 

same proportion at all times: 

 1 1

2 2

( , ) exp( )

( , ) exp( )

T

T
t z z
t z z

 
 

  

Hence the name proportional hazards model.   

The following graph shows the hazard for two lives under a proportional hazards model.  The 
hazard functions are the same shape.  The ratio of the hazard rates is constant at all times. 

 

Moreover, the specification above ensures that the hazard is always positive and gives a 
linear model for the log-hazard: 

 log ( , ) log T
i i it z t c z    

which is very convenient in theory and practice. 

However, fully parametric models are difficult to apply without foreknowledge of the form of 
the hazard function.  Moreover, in many medical applications answers to questions depend 
mainly on estimating the regression coefficients.  The baseline hazard is relatively 
unimportant.  For these reasons, an alternative semi-parametric approach, originally 
proposed by D R Cox in 1972, has become popular. 

The main problem of using a parametric approach to analyse observed survival times is that if an 
inappropriate family of parametric distributions is chosen, the hazard function will be the wrong 
shape.  Whilst regression parameters can be chosen to maximise the likelihood for the observed 
data, the model will not be suitable for estimation.  Typically, we do not know the form of the 
distribution before analysing the data. 

The hazard function could also be the wrong shape if the population comprises several 
heterogeneous subgroups. 
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3 The Cox proportional hazards model 

3.1 Introduction 

The general formula for the Cox proportional hazards model is given below. 

Cox proportional hazards (PH) model 

The Cox PH model proposes the following form of hazard function for the i th life: 

 0( ; ) ( )exp( )T
i it z t z    

0 ( )t  is the baseline hazard. 

So the hazard for a life with covariates iz  is proportional to the baseline hazard, the 

proportionality factor being the exponential term exp( )T
iz . 

If the covariates for the i th life are  1 2, , ... ,i i i ipz X X X  and the vector of regression parameters 

is  1 2, , ... , p     then 
1

exp( ) exp
p

T
i j ij

j

z X 


 
 
 
 
 .  We are assuming that the entries in the 

vector iz  are positive as they reflect observed quantities, eg age or height. 

If the j th regression parameter is positive, the hazard rate (eg the force of mortality) increases 

with the j th covariate, ie there is a positive correlation between hazard rate and covariate.  For 

example, if obese individuals are more likely to suffer from major heart disease, we would expect 
to find the regression parameter associated with the covariate representing weight to be positive. 

If the j th regression parameter is negative, the hazard rate decreases with the j th covariate, ie 

there is a negative correlation between hazard rate and covariate.  For example, if individuals who 
drink a high volume of non-alcoholic liquids are less likely to suffer from liver disease, we would 
expect to find the regression parameter associated with the covariate representing non-alcoholic 
liquid intake to be negative. 

If the magnitude of the j th regression parameter is large, the hazard rate is significantly affected 

by the j th covariate, ie there is a strong correlation (positive or negative) between hazard rate 

and covariate.  If the magnitude of the j th regression parameter is small, the hazard rate is not 

significantly affected by the j th covariate, ie there is a weak correlation between hazard rate and 

covariate.   

The significance of each covariate can be tested statistically. 
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Question 

Suppose that, in a Cox model, the covariates for the i th observed life are (56, 183, 40) 
representing (age last birthday at the start of the study, height in cm, daily dose of drug A in mg). 

Using the regression parameters   = (0.0172, 0.0028, –0.0306), give a formula for ( ; )it z  in 

terms of 0( )t . 

Solution 

Here we have: 

0

0

0

( ; ) ( ) exp(56 0.0172 183 0.0028 40 0.0306)

( ) exp(0.2516)

( ) 1.286

it z t

t

t

 





      

 

 

  

 

More generally, if the covariates for the i th life are  1 2, , ... ,i i i ipz X X X  and the vector of 

regression parameters is  1 2, , ... , p    , then the ratio of the hazards of lives with covariate 

vectors 1z  and 2z  is: 

  
1

11 1
1 2

2 12
2

1

exp
( ; ) exp( )

exp
( ; ) exp( )

exp

p

j j pT
j

j j jT p
j

j j
j

X
t z z

X X
t z z

X


  
 









 
 
         

     
 
 





 

It is important to realise that this ratio is constant, ie it is independent of t . 

3.2 The utility of the Cox model  

The utility of this model arises from the fact that the general ‘shape’ of the hazard function 
for all individuals is determined by the baseline hazard, while the exponential term accounts 
for differences between individuals.  So, if we are not primarily concerned with the precise 
form of the hazard, but with the effects of the covariates, we can ignore 0( )t  and estimate 

  from the data irrespective of the shape of the baseline hazard.  This is termed a 

semi-parametric approach.   

In other words, by estimating the vector of parameters  , we can use the Cox model to compare 

the relative forces of mortality of two lives (or two homogeneous groups of lives).  However, we 
cannot estimate the absolute force of mortality for an individual without first estimating the 
baseline hazard. 

So useful and flexible has this proved, that the Cox model now dominates the literature on 
survival analysis, and it is probably the tool to which a statistician would turn first for the 
analysis of survival data. 
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Question 

An investigation is being carried out into the survival times of patients who have just undergone 
heart surgery at one of 3 city hospitals –  A, B or C.  The following data have been recorded for 
each patient: 

 1
1 for males

0 for females
Z


 


 

 2
1 if patient attended Hospital B

0 otherwise
Z


 


 

 3
1 if patient attended Hospital C

0 otherwise
Z


 


 

The force of mortality at time t  (measured in days since the operation was performed) is being 

modelled by an equation of the form 0( ) ( )
TZt t e  .  The estimated parameter values are: 

 1̂ 0.031   2̂ 0.025    3
ˆ 0.011   

Use this model to compare the force of mortality for a female patient who attended Hospital A 
with that of: 

(i) a female patient who attended Hospital B 

(ii) a male patient who attended Hospital C. 

Solution 

(i) According to the model, the force of mortality at time t  for a female who attended 
Hospital A is: 

  , 0( ) ( )female A t t   

and the force of mortality at time t  for a female who attended Hospital B is: 

  0.025
, 0( ) ( )female B t t e    

The ratio of these two quantities is:  

 
, 0.025

,

( )
1.0253

( )
female A

female B

t
e

t




   

 So we estimate that the force of mortality for a female who attended Hospital A is 2.53% 
higher than that of a female who attended Hospital B. 
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(ii) Similarly, the force of mortality for a male who attended Hospital C is: 

  0.031 0.011 0.042
, 0 0( ) ( ) ( )male C t t e t e     

So: 
, 0.042

,

( )
0.9589

( )
female A

male C

t
e

t




   

 ie we estimate that the force of mortality for a female who attended Hospital A is 4.11% 
lower than that of a male who attended Hospital C.   

 
In the question above, we had to use 3 dummy variables (ie 3 Z ’s): one for gender (which has 2 
categories), and two for hospital (which has 3 categories).  In general, for a covariate that has n  
categories, we will need 1n  dummy variables.   

The group of lives for whom all the dummy variables are 0 is called the baseline group.  In the 
example above, the baseline group is females who attended Hospital A. 

3.3 Summary 

Before we look at the mathematics underlying the Cox model, it is useful to summarise the 
material we have covered so far.  Understanding the ‘big picture’ will help you to understand the 
mathematics without getting bogged down in the detail. 

The Cox model is a popular mathematical model for the analysis of survival data.  Although the 
model cannot help us to identify the absolute level of mortality of a population, it can help us to 
identify the factors that influence the relative levels of mortality between members of the 
population. 

Under the Cox model, we assume that each individual’s mortality is proportional to some general 
mortality function, called the baseline hazard.  (This is why it is also a proportional hazards 
model.)  What makes the Cox model so flexible is that we do not have to make any assumptions 
about the shape of this baseline hazard before looking at the data.  This helps us to avoid the 
potential pitfall of trying to fit data to an incompatible model (‘a square peg in a round hole’). 

The constant of proportionality for each individual depends on certain measurable quantities 
called covariates.  These may be quantitative (eg age) or qualitative (eg severity of symptoms of a 
certain illness). 

What we don’t yet know is to what extent an individual’s covariates affect that individual’s 
mortality.  This is the subject of the next section. 
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4 Estimating the regression parameters 

The unknown regression parameters provide the link between an individual’s (measurable) 
covariates and the (unknown) level of the individual’s mortality.  We will now consider how to 

estimate the regression parameters,  1 2, , ... , p    . 

4.1 The partial likelihood 

To estimate   in the Cox model it is usual to maximise the partial likelihood.  The partial 

likelihood estimates the regression coefficients but avoids the need to estimate the baseline 
hazard.  Moreover, since (remarkably) it behaves essentially like an ordinary likelihood, it 
furnishes all the statistical information needed for standard inference on the regression 
coefficients. 

Let ( )jR t  denote the set of lives which are at risk just before the j th observed lifetime, and 

for the moment assume that there is only one death at each observed lifetime, that is 
1 (1 )jd j k   .   

Partial likelihood 

The partial likelihood is: 

 
1

( )

exp( )
( )

exp( )

j

Tk j
T

j i
i R t

z
L

z







  
  

Intuitively, each observed lifetime contributes the probability that the life observed to die 
should have been the one out of the ( )jR t  lives at risk to die, conditional on one death 

being observed at time jt .   

So the contribution to the partial likelihood from the first death is the force of mortality for the 
first life to die divided by the total force of mortality for the lives in the at-risk group just prior to 
this event.   

We can also describe this within the framework of Markov jump processes, which are covered in 
Chapters 3-5.  Suppose that the lives are labelled Life 1, Life 2, …, Life N .  Before the first death is 
observed, the process is in the state where all the lives are still alive and in the at-risk group.  Let’s 
call this State 0.  Suppose that the first person to die is Life i .  When this death occurs, the 
process jumps into the state where everyone except the Life i  is still alive.  Let’s call this State i . 

Then the probability that the process jumps into State i  when it leaves State 0 is: 

 
the force of transition from State 0 to State 

the total force of transition out of State 0
i
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Now the force of transition from State 0 to State i  is the force of mortality for Life i , and the 
total force of transition out of State 0 is the sum of the forces of mortality for everyone in the 
at-risk group.  So if Life i  were observed to die at age x , the contribution made to the partial 
likelihood in respect of this death would be: 

 
1 2

( )

( ) ( ) ( )
i

N

x

x x x


    

 

where ( )j x  is the force of mortality for Life j  at age x . 

A contribution is made to the partial likelihood every time a death is observed, and the partial 
likelihood is obtained by multiplying all these contributions together. 

Note that the baseline hazard cancels out and the partial likelihood depends only on the 
order in which deaths are observed.  (The name ‘partial’ likelihood arises because those 
parts of the full likelihood involving the times at which deaths were observed and what was 
observed between the observed deaths are thrown away.)  

The form of the partial likelihood gives the comparative risk of a particular individual dying, given 
that a death occurs.   

For example, if the first life to die was the tallest individual in the population and the i th 
covariate is height, then we may infer that height has a significant influence on mortality.  In 
terms of the Cox model, we may infer that the value of i  is positive.   

Of course, our inferences should be based on all the observed deaths.  By maximising this partial 
likelihood, our estimates of the regression parameters will be based on the order in which the 
deaths occurred.  After all, the model seeks to identify the factors that influence mortality rates 
and hence increase or reduce the chance of an untimely death. 

Question 

A group of six lives was observed over a period of time as part of a mortality investigation.  Each 
of the lives was under observation at all ages from age 55 until they died or were censored.  The 
table below shows the sex, age at exit and reason for exit from the investigation. 

 Life Sex Age at exit Reason for exit 

 1 M       56        death 

 2 F       62        censored 

 3 F       63        death 

 4 M       66        death 

 5 M       67        censored 

 6 M       67        censored 
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The following model has been suggested for the force of mortality: 

 0( | ) ( ) zx Z z x e    

where: 

 x  denotes age 

 0( )x  is the baseline hazard 

 0z   for males and 1z   for females. 

Write down the partial likelihood for these observations using the model above. 

Solution 

Since there are three ages at which deaths occur, the partial likelihood will be the product of 
three terms  one in respect of each death. 

The contribution to the partial likelihood from the first death is: 

 1

1 2 6

(56)
(56) (56) (56)


    

 

where ( )i y  is the force of mortality of the i th life at age y .  In other words, we take the force of 

mortality for the life that dies at the youngest age and divide it by the total force of mortality for 
those alive at that age.   

Under the given model, this is: 

 0

0 0 0 0 0 0

(56) 1

(56) (56) (56) (56) (56) (56) 4 2e e e  


     


     
 

Similarly, the contribution of the second death to the partial likelihood is: 

 3

3 4 5 6

(63)

(63) (63) (63) (63) 3

e

e






   


   
 

Finally, the contribution of the third death to the partial likelihood is: 

 4

4 5 6

(66) 1
(66) (66) (66) 3


  


 

 

Multiplying these three terms together, we obtain the partial likelihood: 

 
1 1

34 2 3 ( 2)( 3)

e Ce
L

e e e e

 

      
   

 

where C  is a constant.   
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4.2 Maximising the partial likelihood 

Maximisation of this expression has to proceed numerically, and most statistics packages 
have procedures for fitting a Cox model. 

Maximisation of this partial likelihood will yield our maximum likelihood estimate of the 
regression parameters and hence provide a link between measurable covariates and mortality (or 
hazard) rates.  The maximisation process is complicated and often cannot be achieved directly.  It 
may be carried out by an iterative numerical technique such as the Newton-Raphson method, 
which uses repeated calculations to refine the choice of regression parameters until the 
maximum is found to a sufficient degree of accuracy. 

In the last question, there was only one covariate and the partial likelihood function was: 

 
( 2)( 3)

Ce
L

e e



 
 

 

In this case it is straightforward to work out the maximum likelihood estimate of the 
parameter  .  Taking logs gives: 

 log log log( 2) log( 3)L C e e        

Differentiating with respect to  : 

 
log

1
2 3

d L e e
d e e

 

 
  

 
 

Setting this equal to 0: 

 

2 2 2

2

1
2

( 2)( 3) ( 3) ( 2)
0

( 2)( 3)

5 6 3 2 0

6 0

2 log6

log6

e e e e e e

e e

e e e e e e

e

     

 

     







     


 

       

  

 

 

 

Differentiating the partial log-likelihood a second time (using the quotient rule) gives: 

 

2 2 2

2 2 2

2 2

log ( 2) ( 3)

( 2) ( 3)

2 3
0

( 2) ( 3)

d L e e e e e e

d e e

e e

e e

     

 

 

 


   

  
 

   
 

 

So the maximum likelihood estimate of   is 1
2

ˆ log6 0.896   . 
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Question 

Suppose that from the investigation in the previous question we now have the following 
additional data: 

 Life Sex Age at exit Reason for exit 

 7 M       56        censored 

 8 F       62        censored 

Explain how these extra data values affect the contribution to the partial likelihood from the first 
death. 

Solution 

We include both these lives in the at-risk group at age 56, using the same assumption that we met 
when working with the Kaplan-Meier and Nelson-Aalen models, ie that censoring occurs 
immediately after a death at the same age.  So we now have 5 males and 3 females at risk at age 

56, and the contribution to the partial likelihood from the first death is 
1

5 3e
. 

 
In practice there might be ties in the data, that is: 

(a) some 1jd  ; or 

(b) some observations are censored at an observed lifetime. 

It is usual to deal with (b) by including the lives on whom observation was censored at time 

jt  in the risk set ( )jR t , effectively assuming that censoring occurs just after the deaths 

were observed.   

Breslow’s approximation 

Accurate calculation of the partial likelihood in case (a) is messy, since all possible 
combinations of jd  deaths out of the ( )jR t  at risk at time jt  ought to contribute, and an 

approximation due to Breslow is often used, namely: 

 
1

( )

exp( )
( )

exp( )

j

j

Tk
j

d
j

T
i

i R t

s
L

z










 
 
  
 




 

where js  is the sum of the covariate vectors z of the jd  lives observed to die at time jt . 
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So, if two lives  A and B, say  are observed to die at time jt , we assume that the contribution to 

the partial likelihood from A’s death is 

( )

( )

( )
j

A j

i j
i R t

t

t







 and the contribution to the partial likelihood 

from B’s death is 

( )

( )

( )
j

B j

i j
i R t

t

t







.  Lives A and B are both included in the at-risk group ( )jR t  in each 

denominator.  This is illustrated in the question below. 

Question 

An investigation was carried out into the survival times (measured in months) of patients in 
hospital following liver transplants.  The covariates are 1iz = 0 for placebo, 1 for treatment X, and 

2iz = weight of patient (measured in kg). 

The observed lifetimes (with weights in brackets) were as follows: 

 Placebo Treatment X 

 3 (83)  6*(58) 

 9 (68)  11(73) 

 14 (75)  14(68) 

 16 (86)  14* (49) 

Observations with an asterisk represent censored observations. 

Using Breslow’s assumption, determine the contribution to the partial likelihood that is made by 
the deaths at time 14. 

Solution 

Just before time 14, there were four lives at risk.  The total force of mortality for these four lives 
at time 14 is: 

 2 1 2 1 2 275 68 49 86
0 0 0 0(14) (14) (14) (14)e e e e             

where 0( )t  denotes the baseline hazard at time t , measured in months since the transplant 

operation. 

The individual forces of mortality for the two lives that die at time 14 are: 

 275
0(14)e   and 1 268

0(14)e    
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So the contribution to the partial likelihood from the deaths that occur at time 14 is: 

 

2

2 1 2 1 2 2

1 2

2 1 2 1 2 2

2 1 2

2 1 2 1 2

75
0

75 68 49 86
0 0 0 0

68
0

75 68 49 86
0 0 0 0

75 68
0 0

75 68 49
0 0 0

(14)

(14) (14) (14) (14)

(14)

(14) (14) (14) (14)

(14) (14)

(14) (14) (14)

e

e e e e

e

e e e e

e e

e e e



     

 

     

  

    



   



   

 

  

 



 



 

  


  




  2

1 2

2 1 2 1 2 2

286
0

143

275 68 49 86

(14)e

e

e e e e



 

     





 

  


    

 

since all the baseline hazard terms cancel. 

 

4.3 Properties of the partial likelihood 

As mentioned earlier, the partial likelihood behaves much like a full likelihood; it yields an 
estimator for   which is asymptotically (multivariate) normal and unbiased, and whose 

asymptotic variance matrix can be estimated by the inverse of the observed information 
matrix.   

Recall that   is an unbiased estimator of   if ( )E   .  The word ‘asymptotically’ means as the 

sample size tends to  . 

The efficient score function, namely the vector function: 

 
1

log ( ) log ( )
( ) , ... ,

p

L Lu    


 

 
   
 

 

plays an important part; in particular solving ˆ( ) 0u    furnishes the maximum likelihood 

estimate ̂ .   

The observed information matrix ˆ( )I   is then the negative of the p p  matrix of second 

partial derivatives: 

 
2 log ( )

( ) (1 , )ij
i j

LI i j p 
 

     

evaluated at ̂ . 
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The variance matrix is the symmetric matrix C , whose ,i j th entry is equal to  cov ,i j   .  The 

above Core Reading is saying that, asymptotically: 

 

1
2 2 2

2
ˆ ˆ1 1 2 1 ˆ

2 2 2

1 2
ˆ ˆ2 1 2 2 ˆ

2 2 2

2
1 2ˆ ˆ ˆ

ln ln ln

ln ln ln
ˆ( )

ln ln ln

p

p

p p p

L L L

L L L

C I

L L L

     

     

     

    

     

    



  



  

  

    
     
 
 
   

           
 
 
 
   

       





   



  

The algebra simplifies considerably when we consider the one-parameter case.  

One-parameter case 

For a model with only one covariate  , say, we calculate the maximum partial likelihood 

estimate of   by solving the equation: 

 
ln

0
d L
d

  

We can also estimate the variance of the maximum partial likelihood estimator   using the 

approximation: 

  
12

2
ˆ

ln
var

d L

d
 








 
   
 

  

This is the estimated value of the Cramér-Rao lower bound. 

Question 

For the scenario described in the question in Section 4.1 (without the extra two lives), we have 
seen that: 

 
( 2)( 3)

Ce
L

e e



 
 

 

 
log

1
2 3

d L e e
d e e

 

 
  

 
 

and: 
2

2 2 2
log 2 3

( 2) ( 3)

d L e e

d e e
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We have also calculated the value of ̂  (the maximum likelihood estimate of  ) to be 0.5log 6 . 

Use this information to construct an approximate 95% confidence interval for   and explain 

what can be inferred from this. 

Solution 

If   is the maximum partial likelihood estimator of  , then the asymptotic variance of   is 

given by: 

 

    1
ˆ

1ˆ ˆ

ˆ ˆ2 2

1

2 2

var ( )

2 3

( 2) ( 3)

2 6 3 6

( 6 2) ( 6 3)

2.02062

I

e e

e e

 

 

 

  








 
  
   

 
  

   





 

So the asymptotic standard error is 2.02062 1.4215 .   

 As   is asymptotically normally distributed, an approximate 95% confidence interval for   is: 

      1
2

ˆ 1.96 var ln6 1.96 1.4215 1.890, 3.682        

Since this interval contains the value 0, we conclude on the basis of these data values that sex is 
not a significant covariate.    

 
A useful feature of most computer packages for fitting a Cox model is that the information 

matrix evaluated at ̂  is usually produced as a by-product of the fitting process (it is used 

in the Newton-Raphson algorithm) so standard errors of the components of ̂  are available.  

These are helpful in evaluating the fit of a particular model. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 24  CS2-08: Proportional hazards models 

© IFE: 2019 Examinations The Actuarial Education Company 

5 Model fitting 

5.1 Assessing the effect of the covariates 

In a practical problem, several possible explanatory variables might present themselves, 
and part of the modelling process is the selection of those that have significant effects.  
Therefore criteria are needed for assessing the effects of covariates, alone or in 
combination. 

A common criterion is the likelihood ratio statistic.  Suppose we need to assess the effect of 
adding further covariates to the model.  In general, suppose we fit a model with p  

covariates, and another model with p q  covariates, which include the p  covariates of the 

first model.   

Each is fitted by maximising a likelihood; let pL  and p qL   be the maximised log-likelihoods 

of the first and second models respectively.   

Likelihood ratio test 

The likelihood ratio statistic is then: 

 2( )p p qL L    

and it has an asymptotic 2  distribution on q  degrees of freedom, under the hypothesis 

that the extra q  covariates have no effect in the presence of the original p  covariates.   

This result is given on page 23 of the Tables. 

The null hypothesis for the likelihood ratio test is: 

 0 1 2: 0p p p qH           

ie the extra covariates are not significant. 

The test statistic is: 

  2 ln lnp p qL L    

where the log-likelihoods are evaluated using the optimised parameter values, ie the maximum 
partial likelihood estimates.  (The Core Reading is using L  rather than lnL  to denote a log-
likelihood here.) 

The null hypothesis is rejected at the 5% significance level if the value of the test statistic is 

greater than the upper 5% point of 2
q .   

This likelihood ratio test is a one-tailed test, as adding extra covariates to a model will increase 
the log-likelihood and hence improve the fit.  This means that the value of the test statistic will 
always be positive.   
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If the value of the test statistic is small, then adding in the extra covariates does not improve the 
fit very much.  If, however, the value of the test statistic is large (ie greater than the upper 5% 

point of 2
q ), then we conclude that the inclusion of the extra covariates significantly improves 

the fit and so is worthwhile. 

Strictly this statistic is based upon full likelihoods, but when fitting a Cox model it is used 
with partial likelihoods. 

For example, suppose we have considered a model for the effect of hypertension on 

survival, in which iz  has two components, with the level of (1)
iz  representing sex and the 

level of (2)
iz  representing blood pressure.   

Suppose we want to test the hypothesis that cigarette smoking has no effect, allowing for 
sex and blood pressure.   

Then we could define an augmented covariate vector (1) (2) (3)( , , )i i i iz z z z   in which (3)
iz  is a 

factor (say, 0 for non-smoker and 1 for smoker) and refit the model.   

The likelihood ratio statistic 2 32( )L L   then has an asymptotic 2  distribution on 1 degree 

of freedom, under the null hypothesis (which is that the new parameter 3 0  ). 

In practice, the likelihood ratio statistic would be calculated numerically using a statistical 
computer package. 

5.2 Building models 

The likelihood ratio statistic is the basis of various model-building strategies, in which: 

(a) we start with the null model (one with no covariates) and add possible covariates 
one at a time; or 

(b) we start with a full model which includes all possible covariates, and then try to 
eliminate those of no significant effect. 

In addition, it is necessary to test for interactions between covariates, in case their effects 
should depend on the presence or absence of each other in the same way as described in 
Subject CS1. 

The likelihood ratio statistic is a standard tool in model selection; for example it was used in 
the UK to choose members of a Gompertz-Makeham family of functions for parametric 
graduations (see Chapter 11). 

We can extend a model to test for interactions between covariates.   

For example, suppose that a study is carried out to ascertain the link between the mortality of 
pensioners and socio-economic group.  The survival times are to be modelled using a Cox 
regression model, which is to include allowance for two other influences on mortality – sex and 
smoking status.  The model is to be used to test for two-way interaction between socio-economic 
group and the other factors. 
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The model might be specified as: 

 0 0
1

( ; ) ( )exp( ) ( )exp
p

T
i i j ij

j

x z x z x z    


 
  
 
 
  

where x  denotes age, and the covariates of the model for the i th life are: 

1iz  = socio-economic group from 0 (low) to 4 (high) 

2iz  =  sex (0 for male, 1 for female) 

3iz  = smoking status (0 for smoker, 1 for non-smoker) 

4 1 2i i iz z z    

5 1 3i i iz z z   

We want to test for interaction between socio-economic group and the other factors.  The null 
hypothesis for this test is: 

0 4 5: 0H    , ie there is no interaction 

To perform this test, we would fit a model with the first 3 covariates 1 2 3( , , )i i iz z z  and another 

model with all 5 covariates 1 5( , ... , )i iz z .  Each model is fitted by maximising the partial likelihood, 

using an appropriate statistics package.  Let 3lnL  and 5lnL  be the maximised log-likelihoods of 

the 3-parameter and 5-parameter models respectively.   

The likelihood ratio statistic is then 3 52(ln ln )L L  .  Under the null hypothesis, this has an 

asymptotic 2
2  distribution.  If the likelihood ratio statistic exceeds the upper 5% point of 2

2 , 

then the null hypothesis should be rejected. 

In the R package survival, the command coxph() fits a Cox proportional hazards model 
to the supplied data. 

R code:  

coxph(formula)  

The argument formula will be similar to that used when fitting a linear model via lm() 
(see Subject CS1) except that the response variable will be a survival object instead of a 
vector.  
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5.3 Using the results 

After fitting the model and analysing the likelihood ratio statistics, we can make inferences about 
how each covariate affects mortality.  This information can be used in many different ways: 

 The model may be used to assess the efficacy of a new medical treatment for patients.  
The treatment would be represented by a covariate, which may be a quantitative 
measure of dose or an indicator, eg 0 for placebo, 1 for treatment. 

 A life insurance company may wish to know how certain covariates affect mortality, so 
that it can charge premiums that accurately reflect the risk for an individual, eg higher 
premiums for smokers.  However, an insurance company will be restricted to covariates 
that can be collected easily and reliably from potential policyholders.  (We will return to 
this idea in Chapter 9, when we discuss heterogeneity within a population.) 

The Cox model can provide an estimate of the relative level of an individual’s mortality in 
comparison to the baseline hazard.  By making certain assumptions about the shape and level of 
the baseline hazard, we can then estimate the absolute level of an individual’s mortality. 
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Chapter 8 Summary 

Covariates 

A covariate is any quantity recorded in respect of each life, such as age, sex, type of 
treatment, level of medication, severity of symptoms and so on. 

Proportional hazards (PH) models 

In a proportional hazards model the hazard function for the i th life, ( ; )i it z , may be written 

as: 

 0( ; ) ( ) ( )i i it z t g z   

The baseline hazard 0( )t  is a function only of the duration t  and ( )ig z  is a function only of 

the covariate vector iz . 

The hazards of different lives are in the same proportion at all times.  This proportion 
depends on the values of the covariates recorded for each life, but not on the baseline 
hazard. 

Fully parametric models 

Fully parametric models assume a lifetime distribution based on a statistical distribution 
whose parameters must then be determined. 

Commonly used distributions include: 

• the exponential distribution (constant hazard) 

• the Weibull distribution (monotonic hazard) 

• the Gompertz-Makeham formula (exponential hazard) 

• the log-logistic distribution (‘humped’ hazard). 

The Cox PH model 

The Cox model is a semi-parametric proportional hazards model under which the force of 
mortality (or hazard function) for an individual life is given by: 

 0( ; ) ( )exp( )T
i it z t z    

The force of mortality is proportional to the baseline hazard 0( )t . 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 30  CS2-08: Proportional hazards models 

© IFE: 2019 Examinations The Actuarial Education Company 

 

 

The Cox model is a proportional hazards model because the hazards of different lives are in 
the same proportion at all times.   This proportion depends on the values of the covariates 
recorded for each life, but not on the baseline hazard 

This proportion depends on the values of the covariates recorded for each life and the values 
of the regression parameters  : 

1 1

2 2

( ; ) exp( )
constant

( ; ) exp( )

T

T
t z z

t z z

 
 

   

It can be used to investigate the effect of different factors on mortality.  The data collected 
for each life in the investigation must include information about the covariates, which may 
be qualitative or quantitative. 

Fitting the regression parameters 

The regression parameters are estimated by maximising the partial likelihood: 

 
1

( )

exp( )
( )

exp( )
j

Tk
j

T
j i

i R t

z
L

z










 

Solving the equation: 

 
1

log ( ) log ( )
( ) , ... , 0

p

L L
u

   
 

 
   
 

 

gives the maximum partial likelihood estimates of 1 2, ,..., p   .  We denote these estimates 

by 1 2
ˆ ˆ ˆ, ,..., p   .  The maximisation procedure is usually carried out using a computer. 

Breslow’s approximation to the partial likelihood 

If there are ties in the data, ie the death times are not distinct, then Breslow’s approximation 
to the partial likelihood can be used: 

 
1

( )

exp( )
( )

exp( )

j

j

Tk
j

d
j

T
i

i R t

s
L
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Distribution of the maximum partial likelihood estimators of the 
regression parameters 

The maximum partial likelihood estimator of the vector of parameters  , which we denote 

by  , has the following asymptotic properties: 

• It has an asymptotic multivariate normal distribution 

• It is asymptotically unbiased 

• Its variance matrix is equal to the inverse of the observed information matrix, ie the 
inverse of the negative of the matrix of second derivatives of the log-likelihood, 

evaluated at the point ̂ . 

So an approximate 95% confidence interval for j  (the j th parameter) is: 

  ˆ 1.96 varj j  

Model testing 

We can compare two models using a likelihood ratio test.  Suppose we want to compare a 
model with p  covariates against an extended model with an extra q  covariates.   

The null hypothesis for this test is: 

 0 1 2: 0p p p qH          

The test statistic is: 

  2 ln lnp p qL L    

where ln pL  and ln p qL   denote the maximised log-likelihoods of the models with p  and 

p q  covariates, respectively. 

If the null hypothesis is true, then the test statistic should be a realisation of a 2
q  random 

variable.  So we reject the null hypothesis at the 5% significance level if the value of the test 

statistic is greater than the upper 5% point of 2
q .   
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The practice questions start on the next page so that you can 
keep the chapter summaries together for revision purposes. 

  

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-08: Proportional hazards models Page 33 

The Actuarial Education Company © IFE: 2019 Examinations 

Chapter 8 Practice Questions 

8.1 You want to use a Cox regression model to estimate the force of mortality for a group of 
endowment assurance policyholders.  You propose using a model that takes account of duration 
(ie the time that has elapsed since the policy was issued) and the age and sex of the policyholder.  
You start by investigating the model:  

 1 1 2 2
1 2 0( , , ) ( ) Z Zx z z x e     

where :  

x  denotes the age of the policyholder 

 1
0 if the duration is less than 1 year 

1 if the duration is at least 1 year
Z


 


 

 2
0 for males

1 for females
Z


 


 

You have estimated the values of the parameters 1  and 2 , and have obtained the following 

results: 

Covariate Parameter Standard error 

Duration 0.416 0.067 

Sex 0.030 0.017 

 
(i) State the class of policyholders to which the baseline hazard refers.  

(ii) Explain whether the duration covariate is significant in determining mortality.    

(iii) Compare the force of mortality for a new female policyholder to that of a male 
policyholder of the same age, who took out a policy 2 years ago.    

     

8.2 (i) Explain what is meant by a proportional hazards model. [3] 

(ii) Outline three reasons why the Cox proportional hazards model is widely used in empirical 
work.   [3] 

    [Total 6] 
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8.3 The Cox proportional hazards model is to be used to model the rate at which students leave a 
certain profession before qualification.  Assuming they stay in the profession, students will qualify 
three years after joining the profession.  In the fitted model, the hazard depends on the time, t, 
since joining the profession and three covariates.  The covariates, their categories and the fitted 
parameters for each category are shown in the table below: 

Covariate Possibility Parameter 

Size of employer Large 0 

 Small 0.4 

Degree studied None 0.3 

 Science –0.1 

 Arts 0.2 

 Other 0 

Location London 0 

 Other UK –0.3 

 Overseas 0.4 

 
(i) Defining clearly all the terms you use, write down an expression for the hazard function in 

this model.  [3] 

(ii) State the class of students that is most likely to proceed to qualification under this model, 
and that which is least likely. [2] 

(iii) A student who has been in the profession for one year moves from a ‘small’ employer to a 
‘large’ employer.  Express the probability that he will qualify with the ‘large’ employer LP  

in terms of the probability that he would have qualified if he had stayed with the ‘small’ 
employer SP , all other factors being equal. [2] 

    [Total 7] 
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8.4 A study has been undertaken into the effect of a new treatment on the survival times of patients 
suffering from a tropical disease.  The following model has been fitted: 

  = 0( ) ( ) exp( )T
ih t h t z  

where  ( )ih t  is the hazard at time t, where t is the time since treatment 

 0 ( )h t  is the baseline hazard at time t 

 z  is a vector of covariates, where: 

  1z = period from diagnosis to treatment in years  

  2z = 0 if existing treatment given, 1 if new treatment given 

  3z = 0 if female, 1 if male 

   is a vector of parameters, where: 

  1 = 0.5 

  2 = 0.01 

  3 = 0.05 

(i) State the group of lives to which the baseline hazard applies. [1] 

(ii) For a male who was given the new treatment 6 months after diagnosis: 

 (a) Write down the hazard function, in terms of 0 ( )h t  only. 

 (b) Express the survival function, in terms of 0 ( )h t  only. [3] 

(iii) For a female given the new treatment at the time of diagnosis, the probability of survival 
for 5 years is 0.75.  Calculate the probability that the male in (ii) will survive 5 years. [3] 

    [Total 7] 

  

Exam style 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 36  CS2-08: Proportional hazards models 

© IFE: 2019 Examinations The Actuarial Education Company 

8.5 (i) Compare the advantages and disadvantages of fully parametric models and the Cox 
regression model for assessing the impact of covariates on survival. [3] 

You have been asked to investigate the impact of a set of covariates, including age, sex, smoking, 
region of residence, educational attainment and amount of exercise undertaken, on the risk of 
heart attack.  Data are available from a prospective study which followed a set of several 
thousand persons from an initial interview until their first heart attack, or until their death from a 
cause other than a heart attack, or until 10 years had elapsed since the initial interview 
(whichever of these occurred first). 

(ii) State the types of censoring present in this study, and explain how each arises. [2] 

(iii) Describe a criterion which would allow you to select those covariates which have a 
statistically significant effect on the risk of heart attack, when controlling the other 
covariates of the model. [4] 

Suppose your final model is a Cox model which has three covariates: age (measured in age last 
birthday minus 50 at the initial interview), sex (male = 0, female = 1) and smoking (non-smoker = 
0, smoker = 1), and that the estimated parameters are: 

 Age 0.01 

 Sex –0.4 

 Smoking 0.5 

 Sex   smoking –0.25 

where ‘sex   smoking’ is an additional covariate formed by multiplying the two covariates ‘sex’ 
and ‘smoking’. 

(iv) Describe the final model’s estimate of the effect of sex and of smoking behaviour on the 
risk of heart attack. [3] 

(v) Use the results of the model to determine how old a female smoker must be at the initial 
interview to have the same risk of heart attack as a male non-smoker aged 50 years at the 
initial interview. [3] 

    [Total 15]
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Chapter 8 Solutions 

8.1 (i) Class of policyholders to which baseline hazard refers 

The baseline hazard refers to male endowment assurance policyholders, who took out their 
policies less than one year ago.    

(ii) Is duration significant? 

An approximate 95% confidence interval for the duration parameter is: 

    0.416 1.96 0.067 0.285, 0.547     

As this interval does not contain 0, we conclude that the duration covariate is significant in 
determining mortality.     

(iii) Comparison of forces of mortality 

According to the model, the force of mortality for a new female policyholder aged x  is 
0.030

0( )x e  ; the force of mortality for a male policyholder at the same age who took out his 

policy 2 years ago is 0.416
0( )x e .  Since: 

 
0.030

0.4460
0.416

0

( )
0.640

( )

x e
e

x e





   

the model implies that the force of mortality for the female is 36% less than the force of mortality 
for the male.     

You could also say that the force of mortality for the male is 56% higher than the force of mortality 
for the female. 

8.2 This is Subject CT4, April 2015, Question 3. 

(i) Proportional hazards models 

Proportional hazards models are used to describe the hazard rate of individuals where this 
depends on both duration (the time since a specified event) and other covariates. [½] 

The hazard rate for each individual consists of a baseline hazard, which is a component that 
depends only on the duration, multiplied by a function that depends only on the values of the 
covariates for the individual. [1] 

The model is ‘proportional’ because the hazard rate for each individual always remains in the 
same proportion to the baseline hazard (and hence also to other individuals). [1] 

The baseline hazard rate corresponds to an individual with all covariates equal to zero. [½] 
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(ii) Advantages of the Cox model 

The Cox regression model allows us to compare individuals with different covariates (eg males 
and females) without needing to consider the form of the baseline hazard rates. [1] 

The Cox model is a commonly used model and reliable software is available for carrying out the 
required calculations.  [½] 

The exponential function ensures that the hazard rate is always positive. [½] 

It is a semi-parametric model, so the baseline hazard rate does not need to be specified in 
advance.   [1] 

8.3 This is Subject 104, April 2003, Question 5. 

(i) Hazard function 

The hazard function for leaving the profession is given by: 

  0 1 2 3 4 5 6( , ) ( )exp 0.4 0.3 0.1 0.2 0.3 0.4t t Z Z Z Z Z Z      Z  [1] 

where: 

 0( )t   baseline hazard at time t since entry into profession 

  1 2 3 4 5 6, , , , ,Z Z Z Z Z ZZ  

 1Z   1 if small employer, 0 if not 

 2Z   1 if no degree, 0 if not 

 3Z   1 if science degree, 0 if not 

 4Z   1 if arts degree, 0 if not 

 5Z   1 if location = UK except London, 0 if not 

 6Z   1 if location = overseas, 0 if not [2] 

(ii) Most and least likely to qualify 

The students most likely to qualify are those with the lowest hazard function, ie those for which 

1 0Z  , 2 0Z  , 3 1Z  , 4 0Z  , 5 1Z   and 6 0Z  .  So the students most likely to qualify are 

those who work for large employers, have science degrees and work in the UK but outside 
London.     [1] 

The least likely to qualify are those for which 1 1Z  , 2 1Z  , 3 0Z  , 4 0Z  , 5 0Z   and 6 1Z  , 

ie those who work for small employers, have no degrees and who work overseas. [1] 

(iii) Probability of qualifying 

The probability that a student who has been in the profession for one year will qualify is: 

 
3

1
exp ( , )t dt  

  z   
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We can think of this as the probability that the student will ‘survive’, ie avoid leaving the 
profession, from time 1 to time 3. 

If the student works for a large employer, the probability is: 

 

2 3 4 5 6

2 3 4 5 6

3 0.3 0.1 0.2 0.3 0.4
01

30.3 0.1 0.2 0.3 0.4
01

exp ( )

exp ( )

Z Z Z Z Z
L

Z Z Z Z Z

P t e dt

e t dt





   

   

   
 

    



  [½] 

If the student works for a small employer, the probability is: 

 

2 3 4 5 6

2 3 4 5 6

2 3 4 5 6

2 3 4 5

3 0.4 0.3 0.1 0.2 0.3 0.4
01

30.4 0.3 0.1 0.2 0.3 0.4
01

30.3 0.1 0.2 0.3 0.40.4
01

0.3 0.1 0.2 0.3 0.4

exp ( )

exp ( )

exp ( )

exp

Z Z Z Z Z
S

Z Z Z Z Z

Z Z Z Z Z

Z Z Z Z

P t e dt

e t dt

e e t dt

e







    

    

   

   

   
 

    

    

 







 

   

6

exp 0.4
3

01

exp 0.4

( )Z

L

t dt

P

  
    





 [1] 

The second last equality follows from the result  AAB Be e . 

So:      exp 0.4 0.67032
L S SP P P   [½] 

8.4 This is Subject 104, September 2004, Question 3. 

(i) Group of lives to which baseline hazard applies 

Lives who are: 

 treated immediately following diagnosis, 1 0z   

 who receive the existing treatment, 2 0z   

 who are female, 3 0z  . [1] 

(ii)(a) Hazard function for male life who received the new treatment six months after diagnosis 

We use the model parameters we are given, together with the values of the regression variables 
for this life: 

 1 2 3
1

year,    1 for the new treatment       1 for a male life
2

z z z    [1] 
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Then: 

       0.21
0 0

1
exp 0.5 0.01 1 0.05 1

2
h t h t h t e        

 
 [1] 

(ii)(b) Survival function for male life who received the new treatment six months after 
diagnosis 

The survival function is: 

 

   

 

 

0

0.21
0

0

0.21
0

0

exp

exp

exp

t

s

t

s

t

s

S t h s ds

h s e ds

e h s ds







    
  

    
  

    
  





  [1] 

(iii) Probability that the life in (ii) will survive for five years 

We use the information given about the female life to determine an expression for the baseline 
hazard.  We can then use this expression to evaluate the probability for the male life. 

For a female life given the new treatment at the time of diagnosis we can write: 

         0.01
0 0exp 0.5 0 0.01 1 0.05 0fh t h t h t e        [½] 

Then: 

 

0.01

5 5
0.01

0
0 0

5 5
0.01

0 0
0 0

(5) exp ( ) exp ( )

exp ( ) exp ( )

0.75

f
s s

e

s s

S h s ds h s e ds

e h s ds h s ds

 

 

            
      

                      



 

 

 [1] 

Rearranging this result gives: 

    
0.015

0
0

exp 0.75 e

s

h s ds




    
  
  [½] 
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Then using the result from (ii)(b) for 5t   we can write: 

 

0.21
5 5

0.21
0 0

0 0

(5) exp ( ) exp ( )

e

m
s s

S e h s ds h s ds
 

              
        

   [½] 

Finally substitution gives: 

    

0.21
0.21

0.01 0.205

0
0

(5) exp ( ) 0.75 0.75 0.7037

e
e

e e
m

s

S h s ds




                   
  [½] 

8.5 This is Subject CT4, September 2007, Question 10. 

(i) Fully parametric models versus Cox regression model 

The Cox regression model is an example of a semi-parametric approach, in which we do not 
pre-constrain the precise form of the hazard function.  It has been the most widely used 
regression model in recent years and is an example of a proportional hazards model. [1] 

Parametric models can be used with a homogeneous population or can be fitted to a moderate 
number of homogeneous groups, in which case confidence intervals for the fitted parameters give 
a test of differences between the groups which should be better than non-parametric procedures. 
    [1]   

However, fully parametric models are difficult to apply without foreknowledge of the form of the 
hazard function, which might be the very object of the study.  For this reason a semi-parametric 
approach can be more popular. [1] 

(ii) Censoring present in this study 

Right censoring and Type I censoring are present at the end of the investigation. [1] 

Random censoring is present since death from a cause other than heart attack can occur at any 
time.    [1] 

(iii) Criterion – likelihood ratio test 

A common criterion is the likelihood ratio test.  Suppose we need to assess the effect of adding 
further covariates to the model.  For example, suppose we fit a model with p  covariates, and 

another model with p q  covariates (which include the p  covariates of the first model). [1] 

Each model is fitted by maximising a likelihood.  Let ln pL  and ln p qL   be the maximised 

log-likelihoods of the first and second models respectively.   [½] 

The null hypothesis for this test is: 

 0 1 2: 0p p p qH           

ie the extra covariates are not significant. [1] 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 42  CS2-08: Proportional hazards models 

© IFE: 2019 Examinations The Actuarial Education Company 

The likelihood ratio statistic is: 

  2 ln lnp p qL L    

where the log-likelihoods are calculated using the maximum partial likelihood estimates.  This has 

an asymptotic 2  distribution, with q  degrees of freedom, under the null hypothesis. [1] 

The null hypothesis will be rejected at the 5% significance level if the value of the test statistic is 

greater than the upper 5% point of 2
q . [½] 

(iv) Estimate of the effect of sex and smoking behaviour on the risk of heart attack 

The final model is: 

  0 0 1 2 3 4( ; ) ( )exp( ) ( )exp 0.01 0.4 0.5 0.25T
i i i i i it z t z t z z z z         

where 4 3 2i i iz z z  .   

The value of 2 0.4    will decrease the hazard function for the i th life if the sex is female, 

2 1iz  .  This implies that, according to the model, females have a lower risk of heart attack. [1] 

The value of 3 0.5   will increase the hazard function for the i th life if the smoker status is 

‘smoker’, 3 1iz  .  This implies that, according to the model, smokers have a higher risk of heart 

attack.    [1] 

The value of 4 0.25    will decrease the hazard function for the i th life if the life is both female 

and a smoker, ie if 4 1iz  .  This implies that, according to the model, whilst female smokers have 

a higher risk of heart attack than female non-smokers, smoking has a much more detrimental 
effect on males than it does on females. [1] 

(v) How old a female smoker must be  

A male 50-year old non-smoker has the baseline hazard function: 

  0 0( ) ( )exp 0 ( )t t t     [½] 

A female smoker has the hazard function: 

   0 1 0 1( ) ( )exp 0.01 0.4 0.5 0.25 ( )exp 0.01 0.15i it t z t z         [½] 

For these two hazard functions to be the same, we require: 

 10.01 0.15 0iz    

ie: 1 15iz    [1] 

So, according to the model, a female smoker must be 65 to have the same risk of heart attack as a 
male non-smoker aged 50. [1] 
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Exposed to risk 
  

Syllabus objectives 

4.4 Estimate transition intensities dependent on age (exact or census). 

 4.4.1 Explain the importance of dividing the data into homogeneous classes, 
 including subdivision by age and sex. 

 4.4.2 Describe the principle of correspondence and explain its fundamental 
 importance in the estimation procedure. 

4.4.3 Specify the data needed for the exact calculation of a central exposed to 
risk (waiting time) depending on age and sex. 

 4.4.4 Calculate a central exposed to risk given the data in 4.4.3. 

4.4.5 Explain how to obtain estimates of transition probabilities. 

 4.4.6 Explain the assumptions underlying the census approximation of waiting 
 times. 

 4.4.7 Explain the concept of the rate interval. 

4.4.8 Develop census formulae given age at birthday where the age may be 
classified as next, last, or nearest relative to the birthday as appropriate, 
and the deaths and census data may use different definitions of age. 

4.4.9 Specify the age to which estimates of transition intensities or probabilities 
in 4.4.8 apply. 
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0 Introduction 

In this chapter we will take a closer look at how to calculate mortality rates from our observed data.  
This might at first sight appear to be a very simple task.  All we need to do is to count the number of 
deaths at each age occurring during a specified observation period and use the estimators derived in 
earlier chapters of this course to obtain a set of mortality rates for the relevant ages. 

Basically, that is all that’s involved.  However, there are a couple of complications that we need to 
overcome. 

First, the multiple-state and Poisson models are based on the assumption that the force of mortality 

x  is constant over a year of age, whereas we know intuitively that it is not. 

The second problem relates to data.  It may be that the data that a life insurance company can 
provide are not classified according to age in precisely the way we would like.  If this is the case, we 
will need to group the data according to an age ‘label’ appropriate to the form of the available data.  
In order to estimate mortality rates at different ages, we will need to decide what age is implied by 
our arbitrary age label.  Additionally, the data may be incomplete for the task ahead. 
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1 Calculating the exposed to risk 

We have seen how the central exposed to risk arises in a probabilistic model of mortality.   

Recall from Chapter 3 that the central exposed to risk is another name for the total waiting time.  
This quantity features in both the two-state Markov model and the Poisson model. 

In this chapter we consider some problems of a computational nature, concerning the 
approximation of exposed to risk from incomplete exposure data. 

The central exposed to risk (or waiting time) is a very natural quantity, intrinsically 
observable even if observation may be incomplete in practice – that is, just record the time 
spent under observation by each life.  Note that this is so even if lives are observed for only 
part of the year of age [ , 1]x x  , for whatever reason. 

The central exposed to risk carries through unchanged to arbitrarily complicated multiple-
decrement or multiple-state models.  As we shall see, it can easily be approximated in terms 
of the kind of incomplete observations that are typically available in insured lives 
investigations.   

 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 4  CS2-09: Exposed to risk 

© IFE: 2019 Examinations The Actuarial Education Company 

2 Homogeneity 

2.1 The problem of heterogeneity 

The multiple-state and Poisson models and analyses are based on the assumption that we 
can observe groups of identical lives (or at least lives whose mortality characteristics are 
the same).   

Such a group is said to be homogeneous.   

In practice, this is never possible.   

Even if we were to limit the scope of a mortality investigation to people of a specified age and a 
specified sex (eg females aged 25), there would still be a wide variety of lives – smokers and 
non-smokers, healthy people and ill people, rocket scientists and actuarial students.  A group of 
lives with different characteristics is said to be heterogeneous.   

As a result of this heterogeneity, our estimate of the mortality rate would be the estimate of the 
average rate over the whole group of lives.  We could use the estimate to predict the rate of 
mortality for a similar group of lives but it would not provide an accurate estimate of the 
probability of death for any single individual.  This could be a particular problem for an insurance 
company that wishes to set premiums that accurately reflect the risk of each individual 
policyholder. 

For example, consider a country in which 50% of the population are smokers.  If 40 0.001   for 

non-smokers and 40 0.002   for smokers, then a mortality investigation based on the entire 

population may lead us to the estimate 40ˆ 0.0015  .  An insurance company that calculates its 

premiums using this average figure would overcharge non-smokers and undercharge smokers.   

Question 

Comment on the suggestion that although the situation above is inherently unfair, it is of no real 
consequence to the insurance company since the average premiums will be sufficient to cover the 
claims.  

Solution 

A company that charges the same premium rate to lives that present different risks (ie to smokers 
and non-smokers) is in an unstable position.  Its premium rate will be based on the aggregate 
expected risk of its applicants for insurance, assuming a certain mix of high risk and low risk lives.  
The office will tend to lose low risk business to its competitors if they are charging different 
premium rates to high and low risk lives, and will itself attract high risk business, so that its 
aggregate premium rate will be inadequate to meet the actual claim cost.  This is called 
anti-selection.  The office will then make losses, which will ultimately threaten solvency. 
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The company can avoid this anti-selection only by charging different premium rates appropriate 
to the different levels of risk presented by the applicants.  This is the process of risk classification.  
The avoidance of anti-selection is therefore one of its key advantages, leading to improved 
financial stability for the insurer and a reduced risk of insolvency.   

 
Throughout the course we have acknowledged that mortality varies with age.  This is an example 
of heterogeneity within a population.  In this section, we extend the argument by looking briefly 
at the other factors affecting individual lives that can cause their underlying mortality to differ. 

2.2 The solution 

We can subdivide our data according to characteristics known, from experience, to have a 
significant effect on mortality.  This ought to reduce the heterogeneity of each class so 
formed, although much will probably remain. 

Among the factors in respect of which life insurance mortality statistics are often sub-
divided are: 

(a) Sex 

(b) Age  (as we have assumed throughout) 

(c) Type of policy  (which often reflects the reason for insuring) 

(d) Smoker/non-smoker status 

(e) Level of underwriting (eg have they undergone a medical examination?) 

(f) Duration in force. 

Others that might be used are: 

(g) Sales channel 

(h) Policy size 

(i) Occupation of policyholder 

(j) Known impairments 

(k) Postcode/geographical location 

(l) Marital status. 

This information will be available from the proposal form, which the individual must complete 
when applying for insurance. 

‘Known impairments’ simply refers to any existing medical conditions that the individual has. 

If sufficient data were available, we could use the Cox regression model (Chapter 8) to identify the 
relevant factors. 
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Question 

Explain how the following factors may influence mortality rates: 

(i)   sales channel (consider a mailshot to selected existing policyholders and an advert in a 
popular tabloid national newspaper) 

(ii)  occupation of policyholder (consider a deep-sea diver, a high-street newspaper vendor and 
an actuary). 

Solution 

(i) The sales channel will determine the section of the population targeted by the insurance 
company.  For example, an advert in a popular tabloid national newspaper will typically be 
read by the lower socio-economic groups within the population.  Different sections of 
society experience very different rates of mortality.  The mortality experienced by the 
lower socio-economic groups within the population is likely to be significantly heavier 
than existing policyholders who have been selected according to favourable lifestyle and 
medical history criteria. 

(ii) Occupation can influence mortality rates directly (eg deep-sea divers suffer a high rate of 
accidental death whilst performing their job) and indirectly (eg actuaries may have access 
to company medical schemes, which will help to identify and cure medical problems 
before they become life threatening).  Other occupations may only be carried out by a 
specific subsection of the population (eg high-street newspaper vendors may typically be 
old people whose health prevents them from doing a more active job). 

 
Two key points are: 

 Sub-division cannot be carried out unless the relevant information is collected, 
generally on the proposal form.  Sometimes factors for which there is strong 
external evidence of an effect on mortality cannot be used because (for example) 
proposal forms have been kept short for marketing or administrative reasons. 

Some insurance products are marketed on the strength of the simplicity and brevity of the 
application process, since some people may be put off by having to provide information 
relating to their lifestyle and medical history etc. 

 Even in quite large investigations, sub-division using many factors results in much 
smaller populations in each class, making the statistics more difficult.  A balance 
must be struck between obtaining more and more homogeneity, and retaining large 
enough populations to make analysis possible. 

The finer the subdivision of the data, the less credible the results of the analysis.  
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3 The principle of correspondence 

Mortality investigations based on estimation of ½x   at individual ages must bring together 

two different items of data: deaths and exposures.  It is self-evident that these should be 
defined consistently, or their ratios are meaningless.  Care is sometimes needed, however, 
because these data are often obtained from different sources in the life office.  For example, 
death data might be obtained from the claims file, while exposure data might be obtained 
from the premium collection file.  There is no guarantee that these use the same definition 
of the policyholders’ ages. 

In a large insurance company the payment of claims and the collection of premiums will be 
handled by different departments who may use different databases or computer systems. 

A precise statement of what we mean by ‘defined consistently’ is given by the principle of 
correspondence. 

Principle of correspondence 

A life alive at time t  should be included in the exposure at age x  at time t  if and only if, 

were that life to die immediately, he or she would be counted in the death data xd  at age x . 

This seems almost a triviality, but it is very important and useful. 

This means that, when we are calculating crude estimates of mortality rates, we should try to 
ensure that the age definition used in the numerator (the number of deaths) is the same as the 
age definition used in the denominator (the exposed to risk). 

Although this may seem obvious at first glance, we will see that the principle of correspondence is 
particularly important when we specify the ages of policyholders by definitions other than ‘age 
last birthday’.  Other definitions that may be used include: 

 age next birthday 

 age nearest birthday. 

We will consider some examples of different age definitions later in this chapter. 
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4 Exact calculation of the central exposed to risk 

4.1 Working with complete data 

The procedure for the exact calculation of c
xE  is obvious: 

 record all dates of birth 

 record all dates of entry into observation 

 record all dates of exit from observation 

 compute c
xE . 

If we add to the data above the cause of the cessation of observation, we have xd  as well, 

and we have finished. 

The central exposed to risk c
xE  for a life with age label x  is the time from Date A to Date B where: 

 Date A is the latest of:    the date of reaching age label x  

     the start of the investigation and 

     the date of entry     

 Date B is the earliest of:   the date of reaching age label 1x   

     the end of the investigation and 

     the date of exit (for whatever reason) 

Question 

If the age label is ‘age nearest birthday’, give the exact age at which a life attains age label x . 

Solution 

Under this definition, a life attains age label x  at exact age ½x  . 

 
Note that: 

 The calculation takes account of all movements into and out of the population (not just 
deaths). 

 All decrements contribute a fraction of a year in the year of exit and increments 
contribute a fraction of a year in the year of entry.   

 The central exposed to risk is independent of the cause of exit under consideration. 

 It is usual to assume an average of 365¼ days in a year in order to convert days of 
exposure to years.   
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Although exact exposed to risk calculations are messy to do by hand, they can be done very easily 
on a computer (eg using the date functions on a spreadsheet) if we have the required information 
for all lives. 

Conventions are often needed to define whether the day of entry or day of exit contributes to the 
total exposed to risk.  We do not count both days.   

Example 

Suppose that a mortality investigation covers the period 1 January 2015 to 31 December 2017.  In 
this investigation, the age label used is ‘age last birthday’.  The table below gives information about 
three males involved in the investigation.   

Life Date of birth Date of joining Date of exit Reason for exit 

A 25.04.83 01.01.15 30.10.16 Death 

B 01.07.83 12.09.16 – – 

C 04.09.82 22.07.17 04.12.17 Withdrawal 

 
We can use these data values to determine the range of dates for which these lives contribute to 

c
xE  at each age where they make a contribution.  We will assume that the day of entry counts in the 

exposed to risk but the day of exit does not. 

Life A joins the investigation at age 31 last birthday.  His periods of contribution to the central 
exposed to risk are as follows: 

31
cE  01.01.15 to 24.04.15 

32
cE  25.04.15 to 24.04.16  

33
cE  25.04.16 to 29.10.16 

Life B joins the investigation at age 33 last birthday.  So his contributions are: 

33
cE  12.09.16 to 30.06.17 

34
cE  01.07.17 to 31.12.17 

Life C joins the investigation at age 34 last birthday.  So his contributions are: 

34
cE  22.07.17 to 03.09.17 

35
cE  04.09.17 to 03.12.17 
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Question 

Now suppose that we are using the age label ‘age next birthday’.  Give the range of dates for 

which the lives in the table above contribute to 34
cE .   

Solution 

Life A has age label ‘34 next birthday’ from 25.04.16 to 24.04.17.  But Life A dies on 30.10.16, so 

his contribution to 34
cE  is from 25.04.16 to 29.10.16.  (His contribution to the central exposed to 

risk at age 34 next birthday is the same as his contribution to the central exposed to risk at age 33 
last birthday.) 

Life B contributes to 34
cE  from 12.09.16 to 30.06.17. 

Life C makes no contribution to 34
cE  based on the age label ‘age next birthday’.   

 

4.2 Working with incomplete data 

All of the remainder of this chapter is about approximate procedures when the data above 
have not been recorded.  We will deal with two questions: 

 What happens when the dates of entry to and exit from observation have not been 
recorded?  (Section 5) 

 What happens if the definition of age does not correspond exactly to the age interval 
x  to 1x   (for integer x )?  (Section 6) 
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5 Census approximations to the central exposed to risk 

In this section we will consider how to calculate c
xE  approximately when the exact dates of entry 

to and exit from observation have not been recorded. 

5.1 The available data 

Suppose that we have death data of the form: 

xd  = total number of deaths age x  last birthday during calendar years 

, 1,...,K K K N   

That is, we have observations over 1N   calendar years of all deaths between ages x  and 
1x  . 

However, instead of the times of entry to and exit from observation of each life being 
known, we have instead only the following census data: 

,x tP  = Number of lives under observation aged x  last birthday at time t  where 

1 Januaryt   in calendar years , 1,..., , 1K K K N K N     

This is in fact similar to the way in which data are submitted to the CMI.   

The CMI is the Continuous Mortality Investigation, which collects data from insurance companies 
in order to create standard mortality tables. 

It is often quite convenient for companies to submit a total of policies in force on a date 
such as 1 January. 

Companies may not take the time to calculate the number of policies in force every day because 
this information would be of limited use.  However, each insurance company is likely to perform 
an annual actuarial valuation to assess its financial position.  The number of policies in force on 
the annual valuation date (usually 1 January in the UK) would be calculated and recorded as part 
of the valuation process. 

5.2 The census approximation to c
xE  

Now define ,x tP  to be the number of lives under observation, aged x  last birthday, at any 

time t .  Note that: 

 
1

,

K N
c
x x t

K
E P dt

 

   

During any short time interval ( , )t t dt  there will be ,x tP  lives each contributing a fraction of a 

year dt  to the exposure.  So, integrating ,x tP dt  over the observation period gives the total 

central exposed to risk for this age.  In other words, c
xE  is the area under the ,x tP  ‘curve’ between 

t K  and 1t K N   .   
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The problem is that we do not know the value of ,x tP  for all t, so we cannot work out the exact 

value of the integral. 

We have the values of ,x tP  only if t  is a 1 January (a census date), so we must estimate c
xE  

from the given census data.  The problem reduces to estimating an integral, given the 
integrand at just a few points (in this case, integer spaced calendar times).  This is a routine 
problem in numerical analysis. 

The simplest approximation, and the one most often used, is that ,x tP  is linear between 

census dates, leading to the trapezium approximation. 

The area of a trapezium is: 

 base  ½ (length of side A + length of side B)  

 

In this case: 

 the base of the trapezium is equal to 1, ie the period between census dates 

 the length of side A is ,x tP , the number of policies in force at the start of the year (at 

time t) 

 the length of side B is , 1x tP  , the number of policies in force at the end of the year (at 

time 1t  ). 

Using the trapezium approximation: 

 
1

, , , 1½( )
K N K N

c
x x t x t x t

t KK
E P dt P P

  




    

This is the method used by the CMI.  It is easily adapted to census data available at more or 
less frequent intervals, or at irregular intervals. 

base

A

B
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Example 

To illustrate how the census approximation works, we will now use it to estimate 55
cE  from the 

following data: 

Calendar year Population aged 55 last 
birthday on 1 January 

2015 46,233 

2016 42,399 

2017 42,618 

2018 42,020 

 
Using the notation 55,tP  to denote the number of lives in the population at time t aged 55 last 

birthday, and measuring time in years from 1 January 2015, the central exposed to risk at age 55 
last birthday for the 3-year period from 1 January 2015 to 1 January 2018 is: 

 
3

55 55,
0

c
tE P dt    

Now, assuming that 55,tP  is linear between the census dates, we have: 

 

55 55,0 55,1 55,1 55,2 55,2 55,3

55,0 55,1 55,2 55,3

1 1 1
2 2 2

1 1
2 2

1 1
46,233 42,399 42,618 42,020

2 2

129,143.5

cE P P P P P P

P P P P

               

   

     



 

Question 

The disreputable insurance company Honest Sid’s Mutual had mixed fortunes in the year 2018.  At 
both the start and the end of the year 547 policies were in force in respect of policyholders aged 
40 last birthday, but these figures do not tell the whole story. 

There was adverse publicity early in the year linking the company’s investment managers with a 
gambling syndicate.  As a result, many policyholders ‘took their money elsewhere’.  Following a 
successful marketing campaign offering a free toaster to all applicants, the number of 
policyholders aged 40 last birthday rose from 325 at 1 June 2018 to 613 at 1 September 2018. 

Calculate an approximate value for the central exposed to risk at age 40 last birthday for the 
calendar year 2018.   
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Solution 

Using the notation 40,tP  to denote the number of policyholders at time t aged 40 last birthday, 

and measuring time in years from 1 January 2018, the central exposed to risk is: 

 
1

40 40,
0

c
tE P dt    

We know the numbers of policyholders on 1 January, 1 June, 1 September and 31 December, ie at 

times 5 8
12 120, , , 1 .  Splitting the integral at these times, we have: 

 
5/12 8/12 1

40 40, 40, 40,
0 5/12 8/12

c
t t tE P dt P dt P dt       

Now assuming that 40,tP  is linear between the census dates: 

     

5 5 8 8
12 12 12 1240 40,0 40,140, 40, 40, 40,

5 1 3 1 4 1
12 2 12 2 12 2

5 3 4
547 325 325 613 613 547

24 24 24

492.25

cE P P P P P P                       
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6 Deaths classified using different definitions of age 

In Section 5, we used a definition of age ‘ x  last birthday’, which identifies the year of age 
[ , 1]x x  .   

All this is saying is that if someone is aged x  last birthday, then their actual age is somewhere 
between x  and 1x  . 

Other definitions could be used, for example: 

(2)
xd  = total number of deaths age x  nearest birthday during calendar years 

, 1,...,K K K N   

(3)
xd  = total number of deaths age x  next birthday during calendar years 

, 1,...,K K K N   

Each of these identifies a different year of age, called the rate interval. 

Rate interval 

A rate interval is a period of one year during which a life’s recorded age remains the same, eg the 
period during which an individual is ‘aged 36 last birthday’ or ‘aged 42 nearest birthday’. 

The key concept is that lives carry the same age label throughout a rate interval.  Given this, it 
follows that the rate interval starts on the day when a life’s age label changes. 

For example, if the age label is ‘age nearest birthday’, a life will go from ‘age 42 nearest birthday’ 
to ‘age 43 nearest birthday’ 6 months before the life’s 43rd birthday, ie at exact age 42½.  In this 
case, the age label changes halfway between birthdays. 

Consequently, estimates of  , or q  based on  , obtained from these data ( (2)
xd  and (3)

xd ) 

will not be estimates of ½x   or xq , but will be estimates of   and q  at other ages.   

  measures the average instantaneous rate of mortality that we observe over the rate interval 

and the  -type rate applies to the age in the middle of the rate interval.  In contrast q  measures 

the probability of death over the next year of age or, more generally, over the next rate interval.  
So the q -type rate applies to the age at the start of the rate interval. 

We summarise the possibilities as follows: 

Definition of x Rate interval ̂  estimates q̂  estimates 

Age last birthday [ , 1]x x   ½x   xq  

Age nearest birthday [ ½, ½]x x   x  ½xq   

Age next birthday [ 1, ]x x  ½x   1xq   
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Age at which estimate applies 

Once the rate interval has been identified (from the age definition used in xd ) the rule is 

that: 

 the crude ̂  estimates   in the middle of the rate interval, and 

 the crude q̂  estimates q  at the start of the rate interval. 

For example, suppose we have details of the number of deaths aged 40 nearest birthday in a 
recent mortality investigation.  In order for a death to contribute to this total, it must have 
occurred between ages 39½ and 40½, ie in the rate interval [39½, 40½] . 

We can use the data to estimate the force of mortality at the age at the midpoint of the rate 
interval, ie to estimate 40 .  We can then estimate the probability of dying during the rate 

interval, 39½q , as ˆ1 e  , where ̂  is the estimated value of 40 . 

Question 

Suppose that an investigation into mortality covers the period 1 January 2017 to 1 January 2018.  
Time is measured in years from 1 January 2017 and ( )xP t  denotes the number of lives at time t  

aged x  next birthday.  The following data have been recorded for each x : 

xd   number of deaths aged x  next birthday 

(0)xP  and (1)xP  

Explain which values of   can be estimated using these data values, and how this can be done. 

Solution 

Since x  is defined to be the age next birthday, we have a rate interval that starts at exact age 
1x   and ends at exact age x .  So the exact age in the middle of the rate interval is ½x  .  So 

½x    is estimated by  x
c
x

d

E
, where: 

  1

0

1
( ) (0) (1)

2
c
x x x xE P t dt P P    

This assumes that ( )xP t  is linear over calendar year 2017.   
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6.1 Consistency between census data and death data 

Whatever the definition of age used to classify the lives, we can calculate the exact exposed to 
risk if we have full information about the dates of entry to and exit from observation.  In practice, 
the information will not be complete but will take the form of census data. 

We must ensure that the census data are consistent with the death data.  We invoke the 
principle of correspondence; we must check the following: 

The census data ,x tP  are consistent with the death data xd  if and only if, were any of the 

lives counted in ,x tP  to die on the census date, he or she would be included in xd . 

The definition of census data corresponding to the rate interval [ ½, ½]x x 

(ie corresponding to an age definition of age nearest birthday) is: 

(2)
,x tP = Number of lives under observation, age x  nearest birthday at time t , where 

t 1 January in calendar year , 1, ..., , 1K K K N K N     

and the definition of census data corresponding to the rate interval [ 1, ]x x  

(ie corresponding to an age definition of age next birthday) is: 

(3)
,x tP = Number of lives under observation, age x  next birthday at time t , where t

1 January in calendar year , 1, ..., , 1K K K N K N     

When different age labels are used for the death data and the census data 

In the event that the death data and the census data use different definitions of age, we 
must adjust the census data.  Unless it is unavoidable, we never adjust the death data, since 
that ‘carries most information’ when rates of mortality are small.  Hence it is always the 
death data that determine what rate interval to use.   

For example, the CMI uses the definition ‘age nearest birthday’ in its work; that is, death 

data as in (2)
xd .  However, some life offices contribute census data classified by ‘age last 

birthday’, because that is what is available from their records.  The latter must be adjusted 
in some way.   

For example, if we define: 

 , 1, ,½( )x t x t x tP P P    

we can see that ,x tP   approximates (2)
,x tP . 

This is because (2)
,x tP  represents the number of lives under observation, aged x  nearest birthday at 

time t .  This group comprises all lives between ages ½x   and ½x  .  Those between the ages of 
½x   and x  are aged 1x   last birthday.  Those between ages x  and ½x   are aged x  last 

birthday.  Assuming that birthdays are uniformly distributed over the calendar year, then ½  of 

the (2)
,x tP  lives will be aged 1x   last birthday and ½  of the (2)

,x tP  lives will be aged x  last birthday. 
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So (2)
,x tP  can be approximated by taking the average of: 

 the number of lives aged between 1x   and x , ie the number of policyholders aged 1x   

last birthday at time t  given by 1,x tP  , and 

 the number of lives aged between x  and 1x  , ie the number of policyholders aged x  

last birthday at time t  given by ,x tP . 

This approximation assumes that the birthdays of the individuals involved are spread uniformly 
over the calendar year, which is usually approximately true. 

Question 

A mortality investigation covered the period 1 January 2017 to 1 January 2018.  Time is measured 
in years from 1 January 2017 and ( )xP t  denotes the number of lives at time t  aged x  last 

birthday.  The following data were recorded for each x : 

xd   number of deaths aged x  next birthday 

 (0)xP  and (1)xP   

(i) Obtain an expression for the central exposed to risk in terms of the available census data 

that may be used to estimate the force of mortality x f  , stating your assumptions. 

(ii) Determine the value of f . 

Solution 

(i) Central exposed to risk 

Since the death data and the census data don’t match, we define a new census function ( )xP t  that 

does match the death data, ie: 

 ( )xP t   number of lives at time t  aged x  next birthday 

Then the central exposed to risk at age x  next birthday is: 

 
1

0

( )c
x xE P t dt    

and, assuming that ( )xP t  is linear between the census dates: 

  1
(0) (1)

2
c
x x xE P P    
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Now: 

 

1

(0) number of lives at time 0 aged  next birthday

number of lives at time 0 aged 1 last birthday

(0)

x

x

P x

x

P 

 

 



  

Similarly: 

 1(1) (1)x xP P     

So, in terms of the recorded census data: 

  1 1
1

(0) (1)
2

c
x x xE P P     

 (ii) Value of f   

Since x  is defined to be the age next birthday, we have a rate interval that ends on the x th 
birthday.  So the exact age at the end of the rate interval is x , and the exact age at the midpoint 

of the rate interval is ½x  .  Hence x
c
x

d

E
 estimates ½x  .  So ½f   . 
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Chapter 9 Summary 

In order to reduce heterogeneity amongst the lives observed in a mortality investigation, we 
should divide our data into homogeneous subgroups according to characteristics known to 
have a significant effect on mortality.  Factors typically used are: 

 sex 

 age  

 type of policy  

 smoker status 

 level of underwriting 

 duration in force 

 sales channel 

 policy size 

 occupation of policyholder 

 known impairments 

 postcode/geographical location 

 marital status. 

This will only be possible if the appropriate information is available and we have sufficient 
data to make such detailed analysis possible. 

The principle of correspondence states that the death data and the exposed to risk must be 

defined consistently, ie the numerator ( )xd  and denominator ( )c
xE  must correspond. 

The exposed to risk can be calculated exactly if we have complete information for every life.  
In practice we may have only limited information relating to the size of the population at 
certain dates known as census dates.  We can use this information to approximate the 
exposed to risk. 

The data will be classified in terms of a rate interval.  A rate interval is a period of one year 
during which a life has a particular age label. 
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Central exposed to risk  

Suppose that ( )xP t  is the number of lives in the investigation at time t  with age label x , and 

the same age classification has been used in both the census data (ie the ( )xP t  function) and 

the death data.  If we know the values of ( )xP t  for , 1, 2,..., 1t K K K K N     , then: 

  
1 1

( ) ( ) ( 1)
2

K N K N
c
x x x x

t KK

E P t dt P t P t
  


     

assuming ( )xP t  varies linearly between the census dates.   

We often define the start of the mortality investigation to be time 0, so that 0K  .   

If the census data and the death data do not match, an adjustment has to be made to the 
formula above to reflect the difference.  In this case, we: 

 define a new population function, ( )xP t  say, that uses the same age classification as 

the death data 

 write a formula for the central exposed to risk in terms of ( )xP t  

 then work out how to express ( )xP t  in terms of the available census data, ie the given 

values of the ( )xP t  function. 

Any assumptions should be clearly stated. 
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Chapter 9 Practice Questions 

9.1 Explain the importance of dividing the data for a mortality investigation into homogeneous 
classes.     

9.2 You have been given the following census counts for a population (covering all ages): 

2016P  Number in population on 1 January 2016 = 20,000 

2017P  Number in population on 1 January 2017 = 40,000 

2018P  Number in population on 1 January 2018 = 30,000 

Estimate the central exposed to risk (all ages) for this population over each of the following 
periods, given only the census counts 2016P , 2017P  and 2018P .  In each case, state any 

assumptions you have made. 

(i) Period: 1 January 2016 to 31 December 2017  

(ii) Period: 1 July 2016 to 30 June 2017  

(iii) Period: 1 January 2018 to 31 December 2018  

(iv) Period: 1 April 2017 to 31 March 2018  

9.3 A mortality investigation was held between 1 January 2016 and 1 January 2018.  The following 
information was collected.  The figures in the table below are the numbers of lives on each census 
date with the specified age labels.   

 Date 

Age last birthday 1.1.16 1.1.17 1.1.18 

48 3,486 3,384 3,420 

49 3,450 3,507 3,435 

50 3,510 3,595 3,540 

 
During the investigation there were 42 deaths at age 49 nearest birthday.  Estimate 49  stating 

any assumptions that you make. [7] 

  

Exam style 
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9.4  (i) List the data required for the exact calculation of the central exposed to risk of lives aged 
x last birthday in a mortality investigation over the two-year period from 1 January 2016 
to 1 January 2018. [2] 

(ii) In an investigation of mortality during the period 1 January 2016 to 1 January 2018, data 
are available on the number of lives under observation, aged x  last birthday, on 1 January 
2016, 1 July 2016 and 1 January 2018. 

 Derive an approximation for the central exposed to risk at age x  last birthday over the 
period in terms of the populations recorded on each of these three dates. [3] 

    [Total 5] 

9.5 A researcher is studying the mortality rates of older males in a certain population over the 
calendar years 2016 and 2017.  The researcher has obtained the following data: 

 the number of males in the population at each age, classified by age next birthday, on 
1 April in 2015, 2016, 2017 and 2018 

 the number of deaths at each age, classified by age next birthday at the time of death. 

You are given the following extract from the data: 

Number of males in population 

Age next birthday At 1/4/15 At 1/4/16 At 1/4/17 At 1/4/18 

81 6,010 5,980 6,130 6,200 

82 5,320 5,310 5,480 5,520 

83 5,680 5,800 5,750 6,030 

84 5,150 5,230 5,250 5,150 

 
Number of deaths 

Age next birthday In 2016 In 2017 

81 354 348 

82 375 391 

83 430 432 

84 442 437 

 
Estimate 81.5  using these data values. [8] 

  

Exam style 

Exam style 
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9.6 A national mortality investigation is carried out over the calendar years 2015, 2016 and 2017.  
Data are collected from a number of insurance companies. 

Deaths during the period of the investigation, x , are classified by age nearest birthday at death. 

Each insurance company provides details of the number of in-force policies on 1 January 2015, 
2016, 2017 and 2018, where policyholders are classified by age nearest birthday, ( )xP t . 

(i) Describe the rate interval being used in this investigation, stating the ages of the lives at 
the start of the rate interval. [1] 

(ii) Derive an expression for the exposed to risk, in terms of ( )xP t , which may be used to 

estimate the force of mortality at each age.  State any assumptions you make. [3] 

(iii) Describe how your answer to (ii) would change if the census information provided by 

some companies was *( )xP t , the number of in-force policies on 1 January each year, where 

policyholders are classified by age last birthday. [3] 
    [Total 7]

Exam style 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 9 Solutions 

9.1 If the groups are not homogeneous, any rates derived will be a weighted average of the 
underlying rates for the different individuals in the group.  The weightings may change with time, 
which will make it very difficult to establish what patterns are emerging.  

If premiums are calculated based on mortality rates derived from heterogeneous groups, then 
anti-selection may occur, with the more healthy lives choosing to insure themselves with an office 
where they will not be charged a premium based on others with an inherent higher level of risk.    

9.2 For periods that fall between the census dates, the approach to use is to apply the trapezium rule 
( base average height ).  For periods that fall outside the census dates, the simplest approach is 

to assume that the population size has remained constant. 

(i) Period: 1 January 2016 to 31 December 2017 

Here we would assume that the population has varied linearly over each calendar year, and we 
would use the approximation: 

 1 1
2016 2017 2017 20182 2

( ) ( ) 30,000 35,000 65,000P P P P        

40

30

20

2016                   2017

 
(ii) Period: 1 July 2016 to 30 June 2017 

Again we would assume that the population has varied linearly over each calendar year.  This 
means that the estimated population sizes in the middle of 2016 and 2017 would be 30,000 and 
35,000.  Here, the widths of each section are ½ year, so we would use the approximation: 

 1 1 1 1
2017 20172 2 2 2

(30,000 ) ( 35,000) 17,500 18,750 36,250P P          

30?

40

35?

2016 2017
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(iii) Period: 1 January 2018 to 31 December 2018 

In the absence of any additional information about the population size after 1 January 2018, we 
would have to assume that it remained constant.  So we would use the approximation: 

 2018 30,000P     

30

2016 2017 2018

30?

 
This approach would be unreliable and hence not very satisfactory.  For example, the population 
numbers could continue on a downward ‘trend’ to 20,000, leading to a central exposed to risk of 
25,000, which is a significantly different figure. 

(iv) Period: 1 April 2017 to 31 March 2018 

Here we would assume that the population has varied linearly over the 2017 calendar year and 
has then remained constant.  This means that the estimated population size on 1 April 2017 
would be 37,500.  So we would use the approximation: 

 31 1
2018 20182 4 4

(37,500 ) 25,312.5 7,500 32,812.5P P         

30

2016 2017 2018

30?37.5?

 
If we had reason to believe that the downward trend seen during 2017 would continue into 2018, 
we would estimate the population at 31 March 2018 to be 27,500, leading to an estimate of 
32,500.     

9.3 The deaths are classified according to age nearest birthday.   Lives aged 49 nearest birthday are 

between the exact ages of 48½ and 49½.  The age in the middle of this rate interval is 49.  So 49

49
c

d

E
 

estimates 49  assuming that the force of mortality is constant over the rate interval. [1] 

From the investigation, we have: 

 49 42d   
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If we define ( )xP t  to be the number of lives at time t  (measured in years from 1 January 2016) 

aged x  last birthday, then we know the values of ( )xP t  for 48, 49, 50x   and 0, 1, 2t  .   

However, the death data and the census data do not match.  So we define a function ( )xP t  that 

does match with the death data.   

Let ( )xP t  denote the number of lives at time t  aged x  nearest birthday. [½] 

Then: 

 
2

49 490
( )cE P t dt   [½] 

and assuming that 49( )P t  varies linearly between the census dates … [½] 

 

   49 49 49 49 49

49 49 49

1 1
(0) (1) (1) (2)

2 2

1 1
(0) (1) (2)

2 2

cE P P P P

P P P

      

      [1] 

Now we need to determine the numerical values of the terms in the expression above.  We have: 

 49(0)  the number of lives at time 0 aged 49 nearest birthdayP   

Lives aged 49 nearest birthday are between the exact ages of 48½ and 49½.  So their age last 
birthday is either 48 or 49. [½] 

Assuming that birthdays are uniformly distributed over the calendar year … [½] 

    49 48 49
1 1

(0) (0) (0) 3,486 3,450 3,468
2 2

P P P       [½] 

Similarly: 

    49 48 49
1 1

(1) (1) (1) 3,384 3,507 3,445.5
2 2

P P P       [½] 

and: 

    49 48 49
1 1

(2) (2) (2) 3,420 3,435 3,427.5
2 2

P P P       [½] 

So: 

 49
1 1

3,468 3,445.5 3,427.5 6,893.25
2 2

cE        [½] 

and: 

 49
42ˆ 0.006093

6,893.25
    [½] 
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9.4 This is Subject 104, September 2003, Question 3 (with the dates changed). 

(i) Data required for exact calculation of central exposed to risk 

For each life observed during the investigation period we need: 

 date of birth 

 date of joining the investigation (if after 1 January 2016) 

 date of leaving the investigation (if before 1 January 2018). [2] 

(ii) Census formula 

Let ( )xP t  denote the number of lives under observation at time t  years aged x  last birthday, and 

suppose that time is measured in years from 1 January 2016. 

We have recorded the values of (0), (½) and (2)x x xP P P , but not (1)xP . 

The central exposed to risk for lives aged x  last birthday over the two-year investigation period is: 

 
2 ½ 2

0 0 ½
( ) ( ) ( )c

x x x xE P t dt P t dt P t dt      [1] 

Assuming ( )xP t  varies linearly between the census dates … [1] 

… we have: 

    1 1 3 1 1 3
(0) (½) (½) (2) (0) (½) (2)

2 2 2 2 4 4
c
x x x x x x x xE P P P P P P P          [1] 

9.5 The rate interval ‘age x  next birthday’ starts at exact age 1x   and ends at exact age x .  So the 
exact age in the middle of this rate interval is ½x  .   

If xd  is the number of deaths aged x  next birthday during the investigation and c
xE  is the 

corresponding central exposed to risk, then x
c
x

d

E
 estimates ½x  .  So 81.5  is estimated by 82

82
c

d

E
 

assuming that the force of mortality is constant over the rate interval. [½] 

From the given data values, we have: 

 82 375 391 766d      [½] 

We have to estimate the value of 82
cE  using the census method.  Suppose that time is measured 

in years from 1/4/15 and let 82( )P t  be the number of males aged 82 next birthday in the 

population at time t .  The investigation covers the years 2016 and 2017.  So: 

 
2.75

82 82
0.75

( )cE P t dt    [1] 
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Time 0.75 corresponds to 1/1/16, the start of the investigation, and time 2.75 corresponds to 
1/1/18, the end of the investigation. 

Splitting the integral at those times when census data are available, ie time 1 (which corresponds 
to 1/4/16) and time 2 (which corresponds to 1/4/17), we have: 

 
1 2 2.75

82 82 82 82
0.75 1 2

( ) ( ) ( )cE P t dt P t dt P t dt       

Assuming that 82( )P t  is linear between the census dates: 

 

     82 82 82 82 82 82 82

82 82 82 82

1 1 1
0.25 (0.75) (1) (1) (2) 0.75 (2) (2.75)

2 2 2

0.125 (0.75) 0.625 (1) 0.875 (2) 0.375 (2.75)

cE P P P P P P

P P P P

       

      [2] 

We know that: 

 82(1) 5,310P    

and: 

 82(2) 5,480P    

However, we must estimate the values of 82(0.75)P  and 82(2.75)P .  Assuming that 82( )P t  is linear 

between time 0 and time 1: 

 82 82 82(0.75) 0.25 (0) 0.75 (1) 0.25 5,320 0.75 5,310 5,312.5P P P         [1] 

Similarly, assuming that 82( )P t  is linear between time 2 and time 3: 

 82 82 82(2.75) 0.25 (2) 0.75 (3) 0.25 5,480 0.75 5,520 5,510P P P         [1] 

So: 

 82 0.125 5,312.5 0.625 5,310 0.875 5,480 0.375 5,510 10,844.0625cE            [1] 

and hence the estimated value of 81.5  is: 

 
766

0.07064
10,844.0625

   [1] 

9.6 (i) Rate interval 

The rate interval is ‘ x  nearest birthday’.  This is the year of age starting at exact age ½x   and 
ending at exact age ½x  .  [1] 
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(ii) Exposed to risk formula 

Looking at the definition of the exposed to risk, we see that the age definition for ( )xP t  is exactly 

the same as the age definition for the deaths.  So we have correspondence between the two 
definitions. 

Suppose that time is measured in years from 1 January 2015 (so that 0t   corresponds to 
1 January 2015 and 3t   corresponds to 1 January 2018).  Then the central exposed to risk at age 
x  nearest birthday is: 

 
3

0

( )c
x xE P t dt    [1] 

and assuming that ( )xP t  is linear between the census dates … [1] 

 

     ½ (0) (1) ½ (1) (2) ½ (2) (3)

½ (0) (1) (2) ½ (3)

c
x x x x x x x

x x x x

E P P P P P P

P P P P

     

      [1] 

(iii) New exposed to risk formula 

For those companies using the census information *( )xP t , there is no longer correspondence 

between the age definition of the deaths and the age in the exposed to risk.  So we need to adapt 

the formula.  For these companies we actually want ( )xP t , the number of lives aged x  nearest 

birthday at time t .  How would these lives be classified, using their age last birthday? 

Consider a group of lives aged x  nearest birthday.  Their true age lies between ½x   and ½x  .  
Some of these lives will have a true age which lies between ½x   and x .  These people are all 
currently aged 1x   last birthday.  The rest will have a true age which lies between x  and ½x  .  

These are all currently aged x  last birthday.  So ( )xP t  is actually a mixture of *( )xP t  and *
1( )xP t .   

Assuming that birthdays are uniformly distributed over the calendar year … [1] 

 * *
1( ) ½ ( ) ( )x x xP t P t P t

     [1] 

So the exposed to risk formula is now: 

 * * * * * * * *
1 1 1 1¼ (0) (0) ½ (1) (1) (2) (2) ¼ (3) (3)c

x x x x x x x x xE P P P P P P P P   
                   [1] 
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Graduation and statistical  

tests 

  

Syllabus objectives 

4.5 Graduation and graduation tests  

4.5.1 Describe and apply statistical tests of the comparison of crude estimates 
with a standard mortality table testing for the overall fit, the presence of 
consistent bias, the presence of individual ages where the fit is poor, the 
consistency of the ‘shape’ of the crude estimates and the standard table.   

For each test describe the formulation of the hypothesis, the test statistic, 
the distribution of the test statistic using approximations where 
appropriate, the application of the test statistic. 

4.5.2 Describe the reasons for graduating crude estimates of transition 
intensities or probabilities, and state the desirable properties of a set of 
graduated estimates. 

4.5.3 Describe a test for smoothness of a set of graduated estimates. 

4.5.5 Describe how the tests in 4.5.1 should be amended to compare crude and 
graduated sets of estimates. 

4.5.7 Carry out a comparison of a set of crude estimates and a standard table, or 
of a set of crude estimates and a set of graduated estimates. 
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0 Introduction 

0.1 Graduation of observed mortality rates 

In previous chapters we have introduced models for mortality over a single year of age, x  
to 1x  , and we have seen how to use these models to estimate ½x .  In practice, an 

investigation will include a considerable range of ages.  For example a national life table will 
include all ages from 0 to over 100. 

We will now consider an investigation where lives are classified according to their age 
nearest birthday.  This will enable us to calculate a crude estimate of x  for each age x . 

The crude mortality rates derived from a mortality investigation will not be the final rates that are 
published for use in actuarial calculations.  The rates will have to pass through a further process 
called graduation. 

Graduation refers to the process of using statistical techniques to improve the estimates provided 
by the crude rates.  The aims of graduation are to produce a smooth set of rates that are suitable 
for a particular purpose, to remove random sampling errors (as far as possible) and to use the 
information available from adjacent ages to improve the reliability of the estimates.  Graduation 
results in a ‘smoothing’ of the crude rates. 

The graduation process itself is covered in Chapter 11, Methods of graduation.  In this chapter we 
look at the aims of graduation and the statistical tests that are used to check the reasonableness 
of the graduated rates. 

0.2 The underlying assumptions 

We now suppose that we have data for all ages from the lowest, denoted 1x , to the highest, 

mx , depending on the investigation. 

Using the Poisson or multiple-state model, for  1 2, , ..., mx x x x , we have: 

 Number of deaths at age x  nearest birthday  xD    

 Central exposed to risk at age x  nearest birthday  c
xE    

 Crude estimate of the force of mortality at exact age x    ˆx   

 Estimator of the force of mortality at exact age x    x   

and we will use the approximate asymptotic distribution: 

  ~ Normal ,c c
x x x x xD E E    

or: 

 
 
  
 

 ~ Normal , x
x x c

xE
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If we assume that the force of mortality is constant between exact age ½x   and exact age 

½,x   then the estimator of x  is x
x c

x

D

E
  .  The approximate distribution of x  was first 

introduced in Chapter 3. 
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1 Comparison with another experience 

1.1 Introduction 

Given the data above (the observed numbers of deaths and the exposed to risk values for each 
age, and our crude estimates), we often want to know if it is consistent with another, known 
experience.  For example, if it is the recent experience of the policyholders of a life 
insurance company, we might ask: 

 Is it consistent with the company’s own past experience, or is the experience 
changing?  This could be important for pricing life insurance contracts. 

 Is it consistent with the published life tables?  This is important if the company 
plans to use published tables for any financial calculations. 

It is important for an insurance company to be aware of the extent to which the mortality 
experienced by its policyholders differs from that of its past experience and published life tables.  
The difference will be reflected in the premiums charged for life assurance contracts.   

Question 

Describe the major problems associated with charging premiums that are: 

(a) too low 

(b) too high. 

Solution 

(a) If premiums are too low, the business will be unprofitable.  The insurance company may 
pay out more in claims and maturities than the invested premiums can provide. 

(b) If premiums are too high, the insurance company is likely to be uncompetitive and may 
lose business.  The office may not write enough business to cover its fixed costs and may 
ultimately need to cease trading. 

 

1.2 Standard tables 

Published life tables based on large amounts of data are called standard tables.  The main 
examples are: 

 National life tables, based on the census data and death registration data of a whole 
country.  In the UK, these are published every 10 years; the largest are the English 
Life Tables (actually based on the population of England and Wales). 

Most countries have a similar approach.   

 Tables based on data from life insurance companies.  In the UK, most life insurance 
companies contribute data to the Continuous Mortality Investigation (CMI), which 
publishes extensive tables for different types of business. 
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The latest are based on 1999-2002 data, and are known as the ‘00 series’ tables, and 
self-administered pension scheme tables based on 2000-06 data, known as 
‘SAPS S1’.  Most life insurance companies use these standard tables very 
extensively, so it is important that they check whether or not their own mortality 
experience is consistent with that of the tables. 

The term ‘consistent’ covers two concepts: the shape of the mortality curve over the 
range of ages and the level of mortality rates. 

1.3 Comparison with standard tables 

We introduce the following notation.  The superscript ‘s’ will denote a quantity from a 

published standard table, eg s
x . 

In rough terms, the question is whether our estimates ˆx  are consistent with the given s
x .  

We will formulate this more precisely, in a way that allows us to derive statistical tests. 

We have: 

 the probabilistic model (multiple-state or Poisson); 

 the data (the observed numbers of deaths, the exposed to risk values and our crude 
estimates ˆx ); and 

 a standard table. 

The hypothesis that we wish to test is that the standard table quantities { }s
x  are the ‘true’ 

parameters of the model at each age x. 

In other words, our null hypothesis is: 

0H :   the mortality rates being tested are consistent with those from the standard table. 

We will reject this null hypothesis if we find evidence that the rates being tested are significantly 
different from those in the standard table. 

We can derive tests of this hypothesis using the distributional assumptions of Section 0.2 
under the hypothesis: 

 ~ ,c s c s
x x x x xD N E E   (approximately) 

Hence we can find test statistics comparing the actual deaths xd  (ie the observed value of 

xD ) with the expected deaths given by these distributions.  We will describe suitable 

statistical tests later in this chapter.   

First, however, we must discuss some general features of mortality experiences, and the 
extent to which we might want to adjust the crude estimates so that they reflect these 
features. 
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2 Graduation 

The crude estimates ˆ{ }x  will progress erratically from age to age.   In large part, this is 

because they have each been estimated independently and hence suffer independent 
sampling errors.   

The smaller the sample size (ie the smaller the population studied), the less smoothly the crude 
estimates are likely to progress. 

For several reasons (discussed below) we would prefer to work with x  values which are 

smooth functions of age.  Therefore, we graduate or smooth the crude estimates, to 
produce a set of graduated estimates that do progress smoothly with age.  We denote these 

{ }x
 . 

The graph below illustrates the type of relationship we would expect to see between the crude rates 
and the graduated rates.  The true underlying rates are likely to be very close to the graduated 
rates. 

 

Three questions that we must answer are: 

(a) Why do we want smoothed estimates?  We discuss this in Section 3. 

(b) How do we carry out the graduation?  (ie produce the x
  from the ˆx ).  This is the 

subject of Chapter 11. 

(c) How do we decide that a given attempt to graduate the crude estimates is 
satisfactory?  We discuss this in Section 4, before resuming our discussion of 
statistical tests of a mortality experience, because statistical tests form part of the 
answer. 

0.000

0.001

0.002

0.003

0.004

30 35 40 45 50

Crude and graduated mortality rates
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Graduation
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3 Reasons for graduation 

3.1 The theoretical argument 

At the heart of our desire to graduate is the intuitive idea that x  should be a smooth 

function of age.  There is some evidence from large investigations to support this, but it is 
nevertheless an assumption. 

It follows that a crude estimate of x  for any age x  also carries information about the 

values of 1x  , 1x   etc.  For example, if the force of mortality is smooth and not changing 

too rapidly, then our estimate of x  should not be too far away from estimating 1x   and 

1x  , as well as being the ‘best’ estimate, in some sense, of x .  By smoothing, we can 

make use of the data at adjacent ages to improve the estimate at each age. 

Another way of looking at this is that smoothing reduces the sampling errors at each age. 

It is intuitively sensible to think that mortality is a smooth function of age.  However, mortality 
rates may show some significant changes at certain ages.  For example, there is often a marked 
increase in mortality amongst young males around the age when individuals start to drive cars or 
ride motorbikes, or start drinking alcohol.  This feature is spread over a period of several years 
and is often referred to as the ‘accident hump’. 

3.2 The practical argument 

A purely practical reason for smoothing mortality data is that we will use the life table to 
compute financial quantities, such as premiums for life insurance contracts.  It is very 
desirable that such quantities progress smoothly with age, since irregularities (jumps or 
other anomalies) are hard to justify in practice. 

We could calculate these quantities using our crude mortality rates, and then smooth the 
premium rates etc directly, but it is much more convenient to have smoothed mortality rates 
to begin with. 

We would never, in any case, apply the results of a mortality experience directly to some 
financial problem without considering carefully its suitability.  This means comparing it with 
other relevant experiences and tables, not just in aggregate but over age ranges of 
particular financial significance.  It is often the case that a mortality experience must be 
adjusted in some way before use, in which case there is little point in maintaining the 
roughness of the crude estimates. 

3.3 Limitations 

What graduation cannot do is remove any bias in the data arising from faulty data collection 
or otherwise. 

Graduation can only produce results as reliable as the original data.  This principle is known as 
‘garbage in, garbage out’. 
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3.4 Summary 

The crude estimates of mortality ( ˆx ) provide an estimate of the true underlying mortality for a 

particular age.  However, since we believe that the underlying rates of mortality will follow a smooth 
curve as the age varies, we can use the additional information provided by the numbers of deaths at 
nearby ages to improve our estimate.  This process of applying statistical techniques to improve the 
estimates provided by crude rates over a range of ages is called graduation. 

The aims of graduation are: 

 to produce a smooth set of rates that are suitable for a particular purpose 

 to remove random sampling errors 

 to use the information available from adjacent ages. 

Question 

Comment on the following statement: 

If the data set includes the whole population, there is no need to graduate the crude rates because 
there will be no sampling errors. 

Solution 

There will still be sampling errors (ie the actual numbers will not be the same as the expected 
numbers) because the study involves a finite population and a finite time period.  Also there are 
other reasons for graduating crude mortality rates, other than to remove sampling errors.   
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4 Desirable features of a graduation 

We list three desirable features of a graduation: 

 smoothness; 

 adherence to data; and 

 suitability for the purpose to hand. 

4.1 Smoothness versus adherence to data 

The reasons for desiring smoothness were discussed above.  At one extreme, we could 
easily smooth the crude estimates by ignoring the data altogether; we want to avoid such 
extremes since we want the graduation to be representative of the experience.  We say that 
we require adherence to data or goodness of fit. 

Smoothness and adherence to data are usually conflicting requirements.  Perfect 
smoothness (extreme example: a straight line) pays little or no attention to the data, while 
perfect adherence to the data means no smoothing at all. 

If the graduation process results in rates that are smooth but show little adherence to the data, 
then we say that the rates are overgraduated.  The graph in Graduation A (see below) is very 
smooth, but it tends to overestimate the crude rates at the younger ages and underestimates them 
at the older ages. 

Overgraduation has an opposite, referred to as undergraduation.  This refers to the case where 
insufficient smoothing has been carried out.  This will tend to produce a curve of inadequate 
smoothness, but better adherence to data.  In this case, the graduated rates will follow the crude 
rates very closely, but will show an irregular progression over the range of ages.  The graph in 
Graduation B (which uses the same data as Graduation A) adheres very closely to the crude rates, 
but it twists and turns erratically. 

      
 Graduation A - overgraduated   Graduation B - undergraduated 

4.2 Testing smoothness and adherence to data 

The ‘art’ of graduation lies in finding a satisfactory compromise. 

The compromise is between smoothness and adherence to data.  The balance between the two 
will be addressed when selecting the graduation method and carrying out the graduation itself 
(see Chapter 11). 
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To assist in this task, we have a battery of tests of smoothness and of adherence to data.  
We describe the usual test of smoothness in Section 5.  The tests of adherence to data have 
much in common with the statistical tests of an experience against a standard table, and we 
will consider these together later in this chapter.  They rely on the assumption that the ‘true’ 

parameters of the underlying probability model are the graduated estimates { x
 }. 

When comparing observed data against a standard table, our null hypothesis is: 

0H :   the mortality rates being tested are consistent with those from the standard table, 

ie there are no significant differences between the two sets of rates. 

When testing the adherence of a graduation to the observed data, our null hypothesis becomes: 

0H :   the true underlying mortality rates for the experience are the graduated rates. 

That is, we replace the assumption: 

 ~ ,c s c s
x x x x xD N E E   

with the assumption: 

 ~ ,c c
x x x x xD N E E    

and then proceed to test the statistical hypothesis (almost) as before. 

4.3 Suitability for the purpose in hand 

The suitability of a graduation for practical work depends very much on what that work is, 
and can only be assessed in particular cases.  However, two very important observations 
are: 

(a) In life insurance work, losses result from premature deaths (benefits are paid sooner 
than expected) so we must not underestimate mortality. 

In the case of term assurance policies, the insurance company will pay a benefit in respect 
of policyholders who die within the specified term.  If we were to underestimate the 
mortality rates when calculating the premiums to charge, the insurance company would 
make a loss – the premiums would be insufficient to cover the benefits paid. 

(b) In pensions or annuity work, losses result from delayed deaths (benefits are paid for 
longer than expected) so we must not overestimate mortality. 

When an individual buys an annuity, the insurance company agrees to provide a regular 
income for the remaining lifetime of that individual.  The company will provide a higher 
income for an individual with a lower expected lifetime, ie a higher rate of mortality.  To 
limit potential losses, the company should err on the low side when determining the 
appropriate rates of mortality to use. 
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4.4 Two examples of graduation 

The examples in this chapter are based on Graduation A and Graduation B, which were shown 
graphically in Section 4.1.  The data for these graduations are shown in the tables that follow.   

The left-hand part of each table shows the crude data ( c
xE , xd  and ˆx ).  The centre column shows 

the graduated rates ( x
 ).  The right-hand columns show some quantities we will use in the 

graduation tests, which we will cover in detail later. 

The details of each graduation will be explained in Chapter 11. 
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Graduation A 

x  
c
xE  xd  ˆx  x

  c
x xE   

c
x x x

x c
x x

d E
z

E










  2

xz  

30 70,000 39 0.000557 0.000388 27.16 2.27 5.16 

31 66,672 43 0.000645 0.000429 28.60 2.69 7.25 

32 68,375 34 0.000497 0.000474 32.41 0.28 0.08 

33 65,420 31 0.000474 0.000524 34.28 −0.56 0.31 

34 61,779 23 0.000372 0.000579 35.77 −2.14 4.56 

35 66,091 50 0.000757 0.000640 42.30 1.18 1.40 

36 68,514 48 0.000701 0.000708 48.51 −0.07 0.01 

37 69,560 43 0.000618 0.000782 54.40 −1.55 2.39 

38 65,000 48 0.000738 0.000865 56.23 −1.10 1.20 

39 66,279 47 0.000709 0.000956 63.36 −2.06 4.23 

40 67,300 62 0.000921 0.001056 71.07 −1.08 1.16 

41 65,368 63 0.000964 0.001168 76.35 −1.53 2.33 

42 65,391 84 0.001285 0.001291 84.42 −0.05 0.00 

43 62,917 86 0.001367 0.001427 89.78 −0.40 0.16 

44 66,537 120 0.001804 0.001577 104.93 1.47 2.16 

45 62,302 121 0.001942 0.001743 108.59 1.19 1.42 

46 62,145 122 0.001963 0.001926 119.69 0.21 0.04 

47 63,856 162 0.002537 0.002129 135.95 2.23 4.99 

48 61,097 151 0.002471 0.002353 143.76 0.60 0.36 

49 61,110 184 0.003011 0.002601 158.95 1.99 3.95 

Total  1,561   1,516.50 
 

 43.17 

 

Graduation A assumed that ln( 1)xe   could be modelled as x   (2 parameters), which was 

fitted using the method of least squares. 
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Graduation B 

x  
c
xE  xd  ˆx  x

  c
x xE   

c
x x x

x c
x x

d E
z

E










  2

xz  

30 70,000 39 0.000557 0.000555 38.85 0.02 0.00 

31 66,672 43 0.000645 0.000658 43.87 –0.13 0.02 

32 68,375 34 0.000497 0.000488 33.37 0.11 0.01 

33 65,420 31 0.000474 0.000432 28.26 0.52 0.27 

34 61,779 23 0.000372 0.000486 30.02 –1.28 1.64 

35 66,091 50 0.000757 0.000596 39.39 1.69 2.86 

36 68,514 48 0.000701 0.000685 46.93 0.16 0.02 

37 69,560 43 0.000618 0.000713 49.60 –0.94 0.88 

38 65,000 48 0.000738 0.000709 46.09 0.28 0.08 

39 66,279 47 0.000709 0.000733 48.58 –0.23 0.05 

40 67,300 62 0.000921 0.000831 55.93 0.81 0.66 

41 65,368 63 0.000964 0.001015 66.35 –0.41 0.17 

42 65,391 84 0.001285 0.001259 82.33 0.18 0.03 

43 62,917 86 0.001367 0.001494 94.00 –0.82 0.68 

44 66,537 120 0.001804 0.001679 111.72 0.78 0.61 

45 62,302 121 0.001942 0.001866 116.26 0.44 0.19 

46 62,145 122 0.001963 0.002134 132.62 –0.92 0.85 

47 63,856 162 0.002537 0.002423 154.72 0.59 0.34 

48 61,097 151 0.002471 0.002498 152.62 –0.13 0.02 

49 61,110 184 0.003011 0.003008 183.82 0.01 0.00 

Total  1,561   1,555.31  9.39 

 

Graduation B assumed that ln( 1)xe   could be modelled as a polynomial of degree 10 (11 

parameters), which was fitted using the method of least squares. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 14  CS2-10: Graduation and statistical tests 

© IFE: 2019 Examinations The Actuarial Education Company 

5 Testing the smoothness of a graduation 

5.1 What is a smooth graduation? 

Mathematical smoothness is usually defined in terms of differentiability, but this is of little 
use in graduation work because many functions that misbehave wildly between integer 
ages are nevertheless differentiable many times. 

The test for smoothness will be used as a check for undergraduation.  It is possible to fit a 
high-order polynomial to any set of observed data, as in the graph below.  The fitted polynomial is 
smooth in the mathematical sense, ie it is differentiable many times, but it does not progress 
smoothly from age to age. 

 

Instead, we seek a more rough-and-ready measure of smoothness having regard to the 
scale with which we work (usually the year of age). 

To test smoothness, we need to calculate the third differences of the graduated quantities { }x
 .  

For example: 

 The first difference 1x x x    
   . 

 The second difference 2
1x x x    

      .   

 The third difference 3 2 2
1x x x    

     . 

The third differences measure the change in curvature.   

The criterion of smoothness usually used is that the third differences of the graduated 

quantities { }x  should: 

 be small in magnitude compared with the quantities themselves; and 

 progress regularly. 

How to judge if this criterion is met takes some practice.  However, since most methods of 
graduation now in use automatically give smooth results, this is not of great importance.   
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5.2 Smoothness test 

In this section we describe how to carry out the smoothness test. 

Question 

Compare the smoothness of the rates in Graduations A and B over the age range 30 to 35. 

Solution 

The third differences are shown in the tables below. 

Graduation A 

x  
x
  x

  2
x
  3

x
  

30 0.000388 0.000041 0.000004 0.000001 

31 0.000429 0.000045 0.000005 0.000000 

32 0.000474 0.000050 0.000005 0.000001 

33 0.000524 0.000055 0.000006  

34 0.000579 0.000061   

35 0.000640    

 
For this graduation, the third differences are very small, which indicates that the graduated rates 
are very smooth. 

Graduation B 

x  
x
  x

  2
x
  3

x
  

30 0.000555 0.000103 –0.000273 0.000387 

31 0.000658 –0.000170 0.000114 –0.000004 

32 0.000488 –0.000056 0.000110 –0.000054 

33 0.000432 0.000054 0.000056  

34 0.000486 0.000110   

35 0.000596    

 
The third differences are larger for Graduation B than for Graduation A (especially when 30x  ) 
and they progress in a less regular manner.  This indicates that Graduation B is not as smooth as 
Graduation A. 
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6 Statistics refresher 

In Section 7 we will look at the statistical tests to assess the reasonableness of a graduation.  This 
section gives a brief review of the background to statistical tests.   

6.1 Statistical tests 

Hypotheses 

Statistical tests assess the plausibility of a particular null hypothesis in relation to an alternative 
hypothesis.  The null hypothesis (denoted by 0H ) corresponds to a neutral conclusion.  In 

graduation tests, the null hypothesis will correspond to a statement that some aspect of a 
proposed graduation is ‘OK’.  The alternative hypothesis (denoted by 1H ) corresponds to a 

definite conclusion.  In graduation tests, the alternative hypothesis will correspond to a statement 
that some aspect of a proposed graduation is ‘no good’. 

Test process 

In statistical tests, we start by first assuming that the null hypothesis is correct.  A test statistic is 
then calculated from the data, on that assumption.  Using statistical theory, the distribution of the 
values that might be obtained from the test statistic, assuming that the null hypothesis is correct, 
can be determined.  If it turns out that the value actually obtained for the test statistic is one that 
would be very unlikely if the null hypothesis were correct, then we conclude that the null 
hypothesis is not plausible, and we reject it in favour of the alternative hypothesis. 

Probability value 

In order to decide what can be considered as ‘very unlikely’, a significance level must be selected 
at the beginning of the test.  The significance level usually used is 5%, which means that if 0H  

were true, the value of the test statistic would only be this extreme by chance 1 time in 20.  Using 
a significance level of 1% would give a stricter test in the sense that we would require a more 
extreme result to indicate that the null hypothesis is not valid. 

The probability value (or p-value) is the probability, calculated assuming 0H  is true, of obtaining a 

value of the test statistic as extreme as the actual value obtained.  If the probability value is 
smaller than the significance level chosen, then we reject the null hypothesis.  A smaller 
probability value indicates a more definite (‘significant’) result. 

A statistical test may be one-tailed or two-tailed, depending on the nature of the test and the 
feature we are interested in. 

One-tailed tests 

In a one-tailed (or one-sided) test, we will be suspicious about a test value that is unusually 
extreme in one direction only.  For instance, a very high test value might worry us whereas a very 
low value would not. 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-10: Graduation and statistical tests Page 17 

The Actuarial Education Company © IFE: 2019 Examinations 

For example, if our hypotheses were: 

 
0

1

: (heads on a coin) 0.5

: (heads on a coin) 0.5

H P

H P




  

then we would use a one-tailed test because only a high number of heads would lead us to reject 
the null hypothesis in favour of the alternative hypothesis. 

Two-tailed tests 

In a two-tailed (or two-sided) test, we will be suspicious about a test value that is unusually 
extreme in either direction, ie either very high or very low. 

For example, if our hypotheses were: 

  
0

1

: (heads on a coin) 0.5

: (heads on a coin) 0.5

H P

H P




  

then we would use a two-tailed test because a low or high number of heads would cast doubt on 
the validity of the null hypothesis. 

Conclusions 

The test will result in one of two outcomes: 

1. The probability value (eg 2%) is lower than the significance level (eg 5%).  In this case, we 
conclude that the test provides sufficient evidence for us to reject the null hypothesis. 

2. The probability value (eg 12%) is not lower than the significance level (eg 5%).  In this 
case, we conclude that the test did not provide sufficient evidence for us to reject the null 
hypothesis. 

Question 

Consider the test: 

 0H : Smoking has no effect on mortality, versus 

 1H : Smoking increases mortality  

(a) State whether this test is one-sided or two-sided. 

(b) Describe the possible conclusions of this test. 

Solution 

(a) This is a one-sided test, since we are only concerned about an increase in mortality.  The 
hypotheses for the corresponding two-sided test are: 

 0H : Smoking has no effect on mortality vs 1H : Smoking affects mortality 
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 Here 1H  includes the possibility that smoking could also reduce mortality. 

(b) If the probability value of the calculated test statistic is smaller than the significance level, 
the conclusion is: ‘The test provides sufficient evidence to reject the null hypothesis and 
conclude that smoking increases mortality.’ 

(This conclusion may not actually be correct.  If we were using a significance level of 5%, 
we would arrive at this conclusion 5% of the time, even if smoking didn’t increase 
mortality.  However, if the probability value is very small eg 0.1%, this is so unlikely that 
nobody would doubt the result.) 

If the probability value of the calculated test statistic is greater than the significance level, 
the conclusion is: ‘The test does not provide sufficient evidence to reject the null 
hypothesis that smoking has no effect on mortality.’ 

(Again, this conclusion may not actually be correct.  It may be that our study wasn’t big 
enough or the test we used wasn’t powerful enough to give a convincing result.) 

 

6.2 Continuity correction 

We often use a continuous distribution as an approximation to a discrete distribution, eg the 
normal distribution as an approximation to the binomial.  When we do so, we must be careful to 
take into account the fact that the discrete distribution can only take certain (usually integer) 
values, whilst the continuous distribution can take any value.   

To ensure that the approximation is acceptable, we estimate the probability of observing a 
particular value under the discrete distribution (ie X x ) by calculating the probability that the 
continuous distribution takes a value between ½ step sizex    and ½ step sizex   .  If X  can 

take any integer value, then the step size between consecutive values is 1, and ( )P X x  becomes 

( ½ ½)P x X x    .  This adjustment is called a continuity correction.   

For example, if we toss a fair coin 20 times, the number of heads has a (20,½)Binomial  

distribution.  Under the Central Limit Theorem, the number of heads ( X ) will have an 
approximate normal distribution with mean 20 ½ 10   and variance 20 ½ ½ 5   .  
Incorporating a continuity correction: 

 
0.5 0.5

(10 heads) (9.5 10.5) (0.2236) ( 0.2236) 0.177
5 5

P P X P Z
 

           
 

   

and: 

 
5.5

(16 heads or more) ( 15.5) 1 (2.4597) 0.007
5

P P X P Z
 

      
 

   

If, however, X  can only take the values 0, 100, 200, …, then the step size between consecutive 
values is 100 and, using a continuity correction, ( 200)P X   becomes ( 150)P X  .   
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6.3 Chi-squared tests 

Purpose 

A chi-squared test can be used to assess whether the observed numbers of individuals who fall 
into specified categories are consistent with a model that predicts the expected numbers in each 
category.  It is a test for overall goodness of fit. 

For example, the following categories might be used: 

Dead/alive at each age: This would enable us to test whether the observed numbers of deaths 
and survivors at each age are consistent with the numbers predicted by the forces of mortality 

x
  for a particular graduation. 

Cause of death:  If the deaths within a population have been classified by cause of death, this 
would enable us to test whether the numbers dying from each cause are consistent with the 
numbers predicted from an assumed set of proportions. 

Rationale 

The formula for the test statistic is 
2( )O E

E
 , where: 

 O  is the observed number in a particular category  

 E  is the corresponding expected number predicted by the assumed probabilities 

 the sum is over all possible categories.   

Each term in the sum represents the square of the discrepancy between the actual and expected 
values for one group (with an appropriate weighting factor applied).  A high value for the total 
indicates that the overall discrepancy is quite large and would lead us to reject the model.  A low 
value indicates that the model is a good fit to the data. 

In some cases, the model assumed in the null hypothesis doesn’t specify the precise probabilities, 
but just gives a general formula or a family of distributions.  In such cases, it will be necessary to 
estimate any unknown parameters to calculate the E’s. 

Chi-squared distribution 

The theory of multinomial distributions tells us that, in situations where a large number of 
individuals can be allocated to different categories based on fixed (but unknown) probabilities, 
this statistic has a chi-squared distribution (approximately), which is tabulated in the statistics 
section of the Tables. 
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Degrees of freedom 

The chi-squared distribution has one parameter, called the number of degrees of freedom (DF), 
which can take the values 1,2,3,….  This parameter reflects the number of independent pieces of 
information present in the data.  The correct number of degrees of freedom to use in a 
chi-squared test depends on the number of constraints that restrict the way individuals can be 
allocated to the different categories. 

To determine the number of degrees of freedom: 

1. Start with the number of groups.  (Each combined group counts as one group.  See 
below.) 

2. If the groups form a set of mutually exclusive and exhaustive categories (so that their 
probabilities must add up to 1) or the expected numbers for each category are 
determined based on the total number for all groups, then subtract 1. 

3. Subtract a further 1 for each parameter that has been estimated. 

Small groups 

The chi-squared distribution provides a good approximation provided the numbers in each group 
are not too small.  If the expected number in a group is small (less than 5 say), a difference of just 
one observation can make a big difference to the value of the test statistic and the approximation 
becomes unreliable.  This problem can be overcome by combining the expected and actual 
numbers in small groups. 

Question 

A study of causes of death in elderly men in the 1970s showed the proportions given in the table 
below.  Carry out a chi-squared test to assess whether these percentages can still be considered to 
provide an accurate description of causes of death in 2015. 

Cause of death Proportion of deaths in 1975 Number of deaths in 2015 

Cancer 8% 286 

Heart disease 22% 805 

Other circulatory disease 40% 1,548 

Respiratory diseases 19% 755 

Other causes 11% 464 

 

Solution 

The total number of deaths is 286 805 1,548 755 464 3,858     . 

We can calculate the expected numbers of deaths from each cause by applying the proportions to 
this total.  For example, the expected number of cancer deaths is 0.08 3,858 308.64  .   
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The figures are given in the table below. 

Cause of death Observed 
frequency, O 

Expected 
frequency, E 

2( )O E
E


  

Cancer 286 308.64 1.661 

Heart disease 805 848.76 2.256 

Other circulatory disease 1,548 1,543.20 0.015 

Respiratory diseases 755 733.02 0.659 

Other causes 464 424.38 3.699 

Total 3,858 3,858 8.290 

 
Here, we have 5 categories.  We haven’t estimated any parameters, but we have calculated the 
expected numbers by assuming that the total is the same as for the actual numbers.  So the 
number of degrees of freedom to use is 5 1 4  . 

From page 169 of the Tables, the upper 5% point of the 2
4  distribution is 9.488.  The observed 

value of our test statistic is 8.290, which is less than 9.488.  So there is insufficient evidence to 
conclude that there has been a change in the pattern of causes of death. 
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7 Statistical tests of a mortality experience 

Here we describe some statistical tests based on the hypothesis that: 

(a) the numbers of deaths at different ages are independent; and 

(b)  ~ ,c s c s
x x x x xD N E E   in the case where we are comparing the experience with a 

standard table; or 

(c)  ~ ,c c
x x x x xD N E E    in the case where we are testing the adherence to data of a 

graduation. 

In parts (b) and (c) of the hypothesis, the normal distribution is used as an approximation to 
the Poisson distributions with small intensity and large exposure. 

Many of the tests that we will describe can be based on the standardised deviations, which 
we now define. 

Deviations and standardised deviations 

The deviation at age x  is defined to be: 

 Actual deaths – Expected deaths 

       or      c s c
x x x x x xD E D E     

and the standardised deviation, denoted xz  is: 

       or      
c s c

x x x x x x
x c s c

x x x x

D E D Ez
E E

 

 





 
  

The xz ’s are often referred to as individual standardised deviations to distinguish them from 

cumulative deviations, which we will meet shortly.  When calculating a numerical value for xz , we 

replace the random variable xD  with the observed value xd . 

Under the assumption that there is a sufficient number of (independent) lives at each age ,x  

we can replace our hypotheses with the following, by virtue of the Central Limit Theorem: 

 ~ (0,1)xz N  1 2, , , mx x x x  

 The xz ’s at different ages are mutually independent. 

Question 

Verify the figure shown in the table for the standardised deviation at age 30 in Graduation B. 
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Solution 

30 30 30
30

30 30

39 70,000 0.000555 39 38.85
0.0241

70,000 0.000555 38.85

c

c

d E
z

E









   
   


  

 

7.1 Chi-squared ( 2 ) test 

The first test we describe is the 2 -test.  Unfortunately, this is the one test where we must 

pay attention to whether we are comparing an experience with a standard table, or testing 
the adherence to data of a graduation. 

In either case, the test statistic is the same.   

As we shall see, the difference relates to the appropriate number of degrees of freedom to use. 

Purpose 

To test whether the observed numbers of deaths at each age are consistent with a particular set of 
graduated mortality rates or a particular standard table.   The chi-squared test will indicate overall 
goodness of fit. 

Rationale 

The chi-squared test can be applied to the numbers of deaths at each age (or in age groups). 

A high value of the chi-squared statistic indicates that the discrepancies between the observed 
numbers and those predicted by the graduated rates or standard table are large, ie the fit is not very 
good.  This may be because of overgraduation. 

Assumptions 

1. There is no heterogeneity of mortality (ie no variation in the mortality rates) within each age 
group and lives are independent. 

2. The expected numbers of deaths are high enough (usually at least 5 in each cell) for the 
chi-squared approximation to be valid. 

Method 

Step 1 

Combine any small groups by pooling the actual and expected deaths, so that the expected 
number of deaths is never less than 5. 
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Step 2 

The test statistic for the chi-squared goodness-of-fit test is: 

 
2( )O E

E
   

Here O  represents the observed number of deaths and  E  represents the expected number of 
deaths predicted by the graduation or standard table.  The sum is taken over all age groups. 

So:  

 
2

2( )
x

O E
z

E


   

and Step 2 is to calculate the observed value of: 

   2

all ages
     

x

x

X z     

X  is called the 2 -statistic. 

Step 3 

Determine the appropriate number of degrees of freedom and compare the observed value of the 
test statistic with the appropriate percentage point of the chi-squared distribution given on 
page 169 of the Tables. 

 If we are comparing an experience with a standard table, then X  can be assumed to 

have a 2  distribution with m  degrees of freedom.  ( m  is just the number of age 

groups in our notation.)  Large values of X  indicate excessive deviations, so we will 

test X  against the upper 5% percentage point of the 2
m  distribution, and say that 

the test fails if 2
;0.95mX  . 

For example, suppose we are comparing the mortality of a population that is divided into 
30 age groups with a standard table.  Then the critical value for the chi-squared test is the 

upper 5% point of 2
30 , ie 43.77. 

 If we are testing the adherence to data of a graduation, X  can be assumed to have a 
2  distribution, but with fewer than m degrees of freedom.  How many fewer 

depends on the method of graduation, so we defer further comment to Chapter 11. 

Conclusion 

If the value of the test statistic exceeds the upper 5% point of the relevant 2  distribution, this 

indicates a poor fit or overgraduation.  The contributions to the test statistic from each term in 
the sum can be used to identify the ages where the fit is worst.   
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If the observed value of the chi-squared statistic is very low, this may indicate undergraduation.  
However, if we suspect undergraduation is a problem we will usually test for it in other ways 
(eg by considering the standardised deviations or applying the smoothness test described in 
Section 5). 

R can carry out a 2   goodness-of-fit test using chisq.test().  See Subject CS1 for more 

details.  

Details are also given in the R part of this course. 

Strengths and weaknesses 

The chi-squared test is a good test for overall goodness of fit.  It can, however, miss certain 
important features. 

Deficiencies of the chi-squared test 

The 2 -test will fail to detect several defects that could be of considerable financial 

importance.  (These comments apply particularly when we are testing a graduation, and for 
ease of exposition we will write as if that were the case.) 

(a) There could be a few large deviations offset by a lot of very small deviations.  In 

other words, the 2 -test could be satisfied although the data do not satisfy the 

distributional assumptions that underlie it.  This is, in essence, because the 2 -

statistic summarises a lot of information in a single figure. 

(b) The graduation might be biased above or below the data by a small amount.  The 
2 -statistic can often fail to detect consistent bias if it is small, but we should still 

wish to avoid it for the reasons given in Section 4.3.   

(c) Even if the graduation is not biased as a whole, there could be significant groups of 
consecutive ages (called runs or clumps) over which it is biased up or down.  This is 
still to be avoided. 

It should be noted that because the 2 -test is based on squared deviations, it tells us 

nothing about the direction of any bias or the nature of any lack of adherence to data of a 
graduation, even if the bias is large or the lack of adherence manifest.  To ascertain this 
there is no substitute for an inspection of the experience. 

Accordingly, we devise tests that will detect these defects (at least, will do so better than 

does the 2 -test). 

These tests are described in the following sections.  We will present these tests in terms of testing 
the goodness of fit of a set of graduated rates to the crude data, but they can equally be applied 
to comparing a set of mortality rates with a standard table. 
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Question 

Apply the chi-squared test to Graduation A. 

Solution 

From the table of values for Graduation A given on page 12, we see that: 

 2 43.17xz    

In this example, it is not difficult to work out how many degrees of freedom to use.  There are 20 
ages.  We have not constrained the totals.  The graduated rates have been calculated by estimating 
2 parameters.  So, the number of degrees of freedom is 20 2 18  . 

From the Tables, the upper 5% point for the 2
18  distribution is 28.87.  The observed value of the 

test statistic exceeds this, so we reject the null hypothesis.  (In fact, the test statistic also exceeds 
42.31, the upper 0.1% point.) 

So, we conclude that the mortality experience does not conform to a formula of the type assumed 
in the graduation. 

 

7.2 Standardised deviations test 

Purpose 

We can use the standardised deviations test to look for the first defect of the chi-squared 
test. 

The defect to which the Core Reading is referring, is the failure to detect a number of excessively 
large deviations.  This test can detect overall goodness of fit.  Where the test reveals a problem 
this might be due to under/overgraduation or the presence of duplicates.  (The problem of 
duplicates is discussed briefly in Chapter 11.) 

Rationale 

The test looks at the distribution of the values of the standardised deviations.   

Under the null hypothesis, the xz ’s comprise a random sample of size m  from the (0,1)N  

distribution.  This test just tests for that normality. 

If the graduated rates are not a good fit, the distribution will not be ‘centred correctly’.  If we have 
undergraduation, then we would expect the standardised deviations to be tightly bunched.  
Conversely, if we have overgraduation, we would expect the standardised deviations to be too 
spread out. 

Assumptions 

The normal approximation provides a good approximation at all ages. 
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Method 

Step 1 

Calculate the standardised deviation xz  for each age or age group. 

Step 2 

Divide the real (number) line into any convenient intervals (the more age groups, the more 
intervals it might be reasonable to use).  For example: 

  3   2   1 0 1 2 3

 

where the intervals at either end are (, 3] and [+3, +).   

Plot or count the number of standardised deviations falling into each of the ranges. 

Step 3 

We can then compare: 

 the observed number of the xz  that fall in each interval; and 

 the expected number of the xz  that should fall in each interval, under the 

hypothesis.  

The hypothesis states that the xz  values are realisations of a standard normal random variable. 

In this example, the expected numbers are: 

Interval ( , 3)   ( 3, 2)   ( 2, 1)  ( 1,0)  (0,1)  (1,2)  (2,3)  (3, )  

Expected 
number 

0  0.02m  0.14m 0.34m 0.34m 0.14m  0.02m  0  
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To formalise the comparison, we can form a 2 -statistic (nothing to do with the use of the 

2 -test mentioned previously): 

2

     all
 intervals

(Actual  Expected)  

Expected
X 

   

which here should have a 2 -distribution with 7 degrees of freedom (since we have used 8 

intervals). 

Note how this differs from the way we previously applied the 2 -test, which was to test whether 

the observed numbers of deaths were consistent with a given set of graduated rates.  Here, we 
are testing whether the observed pattern of the individual standardised deviations (ie the 
numbers falling in each interval) is consistent with a standard normal distribution. 

If the number of age groups is small, we should use a smaller number of intervals, ensuring 
that the expected number of standardised deviations in each interval is not less than five 

(as a rule of thumb), and we then reduce the number of degrees of freedom in the 2-test 
appropriately. 

If there are only a few age groups, a test must be carried out ‘by eye’, by considering the following 
features of the normal distribution. 

Overall shape 

The number of values in each of the ranges should conform broadly with the percentages for the 
normal distribution.   

Absolute deviations 

A related test derives from the fact that, if the xz ’s are a random sample from the (0,1)N  

distribution, half of them should lie in the interval ( 2 3,2 3)  – that is, half of them should 

have an absolute value greater than 2/3.  Thus if we have m  ages, the number of 
standardised deviations exceeding 2/3 in absolute value is a binomial random variable with 
parameters m  and 0.5. 

If there are a lot of values in the tails (ie the absolute deviations are too big), this indicates 
overgraduation or the existence of duplicates.   

In this case a one-tailed test is appropriate, as we usually wish only to identify instances 
where the number of absolute deviations exceeding 2/3 is large.  We reject the null 
hypothesis (of no difference between the standard table and the mortality underlying the 
experience, or of no difference between the graduated rates and the mortality underlying the 
experience) if this number falls in the upper 5% tail of the ( ,0.5)Binomial m  distribution.  If 

20m   a normal approximation to the binomial can be used. 
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Outliers 

In addition to these two tests, we should also look at the values of the individual 
standardised deviations.  If the xz ’s are (0,1)N , individual xz ’s with absolute values 

greater than 1.96 should form at most 1 in 20 of the whole set, and there should be only 1 in 
100 with an absolute value greater than 2.57.  In practice the number of ages we work with is 
often quite small, so these rules should be applied with some flexibility.  As a guideline, we 
can say that with fewer than 20 ages we should be suspicious about any individual 
standardised deviation with a value greater than about 2.0, and regardless of the number of 
ages we should be concerned about any xz  with an absolute value greater than about 2.5. 

Symmetry 

There should be roughly equal numbers of positive and negative standardised deviations (since the 
normal distribution is symmetrical).  An excess of positive values indicates that the graduated rates 
are too low.  An excess of negative values indicates that the graduated rates are too high. 

Conclusion 

If the standardised deviations do not appear to conform to a standard normal distribution, this 
indicates that the observed mortality rates do not conform to the model with the rates assumed 
in the graduation.  The features considered above will indicate the nature of the discrepancy. 

Strengths and weaknesses 

Looking at the distribution of the standardised deviations is a good all round test that detects 
most of the problems that might be present in a graduation. 

Question 

Analyse the distribution of the standardised deviations for Graduation A. 

Solution 

The observed and expected numbers in each range are shown in the table below. 

Interval ( , 3)   ( 3, 2)   ( 2, 1)  ( 1,0)  (0,1)  (1,2)  (2,3)  (3, )  

Observed 0 2 4 4 3 4 3 0 

Expected 0.0 0.4 2.8 6.8 6.8 2.8 0.4 0 

 
There are only 7 values in the range ( 2 3,2 3) .  So, there appear to be too few values in the centre 

of the distribution and too many in the tails.  This might indicate overgraduation (an inappropriate 
graduation formula) or the presence of duplicates. 

The distribution of the standardised deviations is fairly symmetrical, with 10 positive and 10 
negative values.  So there is no evidence of bias in the graduated rates. 
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If we combine the small groups by pooling the values in the ranges ( , 1)   and (1, ) , we can 

apply a chi-squared test to the resulting 4 groups.  The value of the test statistic is: 

2 2 2 2(6 3.2) (4 6.8) (3 6.8) (7 3.2)
10.24

3.2 6.8 6.8 3.2
   

     

This exceeds 7.815, the upper 5% point of the chi-squared distribution with 3 degrees of freedom, 
which confirms that the deviations do not conform to a standard normal distribution.   

(Strictly speaking, the 2 -test should not be used even with this broad grouping since we have 

3.2 5E    in the intervals ( , 1)   and (1, ) .) 

 

7.3 Signs test 

Purpose 

The signs test is a simple test for overall bias. 

In other words, this test checks whether the graduated rates are too high or too low. 

It is designed to identify the second deficiency of the chi-squared test, ie failure to detect where 
there is an imbalance between positive and negative deviations. 

Rationale 

If the graduated rates do not tend to be higher or lower than the crude rates on average, we would 
expect roughly half the graduated values to be above the crude rates and half below.  So, if there 
are m  age groups, the number above (or below) should have a ( ,½)Binomial m  distribution.  An 

excessively high number of positive or negative deviations will indicate that the rates are biased. 

This is normally applied as a two-tailed test, ie we are looking for both positive and negative bias. 

Assumptions 

None. 

Method 

Step 1 

Count how many of the graduated rates lie above/below the crude rates.  We will do this by looking 
at the signs of the individual standardised deviations.  (This can also be done by comparing the 
crude rates with a graduated mortality curve plotted on a graph or by comparing the numerical 

values of  ˆx  and x
 .) 

Step 2 

Calculate the probability value for the test by finding the probability of obtaining a split of 
positive/negative values as extreme as observed. 
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Define the test statistic: 

P  = Number of xz  that are positive 

Alternatively, we could base the test on the number of negative xz ’s.   

Under the hypothesis, ~ ( ,½)P Binomial m . 

So the probability function of P  is: 

1
( )

2

mm
P P x

x

      
  

, 0,1, ,x m   

An excess of either negative or positive deviations is a defect, so we apply a two-tailed test.  
We cannot do so exactly, since the binomial distribution is discrete.  We could find the 
smallest value of k  for which: 

0

1
0.025

2

mk

j

m
j

      
  

  

ie the smallest value of k  for which ( ) 0.025P P k  .  By the symmetry of the ( ,½)Binomial m  

distribution, ( ) ( )P P k P P m k    .  So we want the smallest value of k  for which 

( ) 0.025P P m k   . 

The test would be satisfied (at the 5% level) if k P m k   .  Or, (perhaps more 
satisfactorily) we could just find the p-value corresponding to P .   

If possible, we should calculate the p -value of the test using the probabilities for the binomial 

distribution given on pages 186-188 of the Tables.  However, we can only use the Tables if the 
sample size is one of those listed ( 2, 3, ..., 10n  , 12 or 20). 

Question 

A graduation covers 20 age groups and has resulted in 6 positive and 14 negative deviations.  
Carry out a signs test on these data values. 

Solution 

Under the null hypothesis, (20, ½)P Binomial .  Here we have fewer positive deviations than 

expected.  The p -value of the test is: 

  2 6 2 0.0577 0.1154P P      

The probability of 0.0577 can be found on page 188 of the Tables by looking up 20n  , 0.5p  , 

6x  .  We multiply this probability by 2 because this is a two-tailed test. 
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Since the p -value is greater than 5%, there is insufficient evidence to reject the null hypothesis at 

the 5% significance level.  So we can conclude that the rates are not biased. 

 
If the number of age groups is large, we can use the approximation: 

~ (½ ,¼ )P N m m  

If we use a normal approximation, then we should use a continuity correction since we are 
approximating a discrete (binomial) distribution with a continuous (normal) distribution.   

For a two-tailed test, the probability value must be based on the total probability for both tails of 
the distribution.  For example, we can only reject 0H  at the 5% level if the observed number of 

positives or negatives is greater than the upper 2.5% point or less than the lower 2.5% point of the 
binomial distribution. 

Conclusion 

If the test shows that the number of positive values is very high or very low, this indicates that the 
rates are on average too low or too high (respectively).  An examination of the pattern of the signs 
will indicate the range of ages where the bias is worst. 

Strengths and weaknesses 

Just looking at the signs of the deviations provides no indication of the extent of the discrepancy.  
This test is qualitative rather than quantitative. 

Question 

State the conclusion that can be drawn from an examination of the signs of the deviations for 
Graduation B. 

Solution 

There are 12 positive and 8 negative values for Graduation B.  Here we have more positive 
deviations than expected.  So the p-value is: 

    2 ( 12) 2 1 ( 11) 2 1 0.7483 0.5034P P P P         

The value of 0.7483 comes from page 188 of the Tables. 

Since this is (much) greater than 5%, there is very little evidence of bias in the graduated rates. 
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7.4 Cumulative deviations 

Purpose 

The cumulative deviations test checks whether the overall number of deaths conforms to the model 
with the mortality rates assumed in the graduation.  This test can detect overall goodness of fit.  It 
addresses the problem of the inability of the chi-squared test to detect a large positive or negative 
cumulative deviation over part (or the whole) of the age range. 

The cumulative deviations test detects overall bias or long runs of deviations of the same 
sign. 

Rationale 

Consider the hypothesis: 

~ ( , )c c
x x x x xD N E E  

 

Here, the deviation has (approximate) distribution: 

~ (0, )c c
x x x x xD E N E     

So the accumulated deviation, over the whole age range, has distribution: 

all all
ages ages

( ) ~ (0, )c c
x x x x xD E N E     

and, upon standardising, 

all
ages

  all
ages

( )

~ (0,1)

c
x x x

c
x x

D E

N
E












 

This can be tested in the usual way, using a two-tailed test, since either positive or negative 
deviations are of concern.  As well as applying this test to the whole age range, we can 
apply it to parts of the age range of possible financial significance, provided we choose 
which sub-ranges to test without reference to the data. 

Assumptions 

The normal approximation is reasonable at all ages. 
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Method 

Step 1 

Decide which range of ages to test.  This might be the whole table or just the range of ages that has 
the most financial importance.   The test is not valid if the age range is selected after looking at the 
pattern of the data.  For example, if we spot a blip in one part of the table and decide to apply the 
cumulative deviation test to that part of the table only, the results would be meaningless. 

Step 2 

Calculate xd  (the total observed deaths) and c
x xE   (the total expected deaths), where the 

sum is over the selected age range.   

Step 3 

Calculate the test statistic 
c

x x x
c
x x

d E

E









 


 and use this to determine the p-value using the tables 

for the standard normal distribution. 

Since the total number of deaths must be a whole number, we should, in theory, apply a continuity 
correction when carrying out this test.  However, since the denominator is usually quite big (as we 
are summing over a range of ages), the continuity correction does not often make much difference 
to the value of the test statistic.  As a result, it is usually omitted. 

Conclusion 

If the magnitude (ie the absolute value) of the calculated test statistic is high, this indicates that 
either: 

 the graduated rates are biased (too low if the test statistic is positive, too high if the test 
statistic is negative), or 

 the variance is higher than predicted by the model for the range of ages considered.  This 
could be as a result of duplicate policies, which we will discuss in Section 6 of Chapter 11. 

The cumulative deviations test can only detect features that are present over the whole age range 
considered.  An excess of positive deviations over one age range may ‘cancel out’ an excess of 
negatives over another range. 

A word of warning: many methods of graduation result in a cumulative deviation of zero as 
part of the fitting process, in which case this test cannot be applied. 

Question 

State the conclusion that can be drawn from applying the cumulative deviations test to the whole 
age range of Graduation A. 
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Solution 

From the table given on page 12, the value of the test statistic is: 

1,561 1,516.50
1.143

1,516.50

c
x x x

c
x x

d E

E









 
  


 

This is a two-tailed test, so we compare the value of the test statistic with the upper and lower 
2.5% points of (0,1)N , ie 1.96 .  As 1.96 1.143 1.96   , there is insufficient evidence to reject 

the null hypothesis. 

So, the cumulative deviations test does not provide evidence that the graduated rates are biased. 

 

7.5 Grouping of signs test 

Purpose 

To test for overgraduation. 

The grouping of signs test (also called Stevens’ test) detects ‘clumping’ of deviations of the 
same sign.  It relies on some simple combinatorics.   

Rationale 

The test looks at the number of groups (or runs) of deviations of the same sign and compares this 
with the number that would be expected if the positive and negative signs were arranged in random 
order. 

If the graduated rates are overgraduated, the standardised deviations will not swap from positive to 
negative very often and there will be fewer runs than expected.  If the rates are undergraduated, 
the standardised deviations will swap from positive to negative very often and there will be more 
runs than expected.  However, we do not usually use this test to look for undergraduation.  This is 
because any problems resulting from undergraduation will usually already have been picked up by 
either the smoothness test (if adhering too closely to the crude rates has led to an erratic pattern 
of rates) or by the chi-squared test (if adhering too closely to the crude rates over one part of the 
age range has led to large discrepancies in another part).  So the grouping of signs test is a 
one-sided test as we are worried about a low number of groups. 

Define the test statistic: 

G      Number of groups of positive xz ’s 

Also, suppose that of the m  deviations, 1n  are positive and 2n  are negative. 

The hypothesis is that the given 1n  positive deviations and 2n  negative deviations are in 

random order.  We, therefore, compute the probability that the number of positive groups 
will be at least G  given 1n  and 2n .  Let t    G. 
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(a) There are 2 1n
t
 

 
 

 ways to arrange t  positive groups among 2n  negative signs. 

There are 2( 1)n   places in which the t positive groups can be located: before the first 

negative sign, after the last negative sign or in any of the 2( 1)n   gaps between the signs.   

(b) There are 1 1

1

n
t
 

  
 ways to arrange 1n  positive signs into t  positive groups. 

Question 

Explain why there are 1 1

1

n

t

 
  

 ways to arrange n1 positive signs into t positive groups, assuming 

that the positive signs occur in a given order. 

Solution 

We can define a ‘separator’ as a boundary marking the end of one group and the start of another 
group.  The problem of splitting the 1n  signs into t  groups is equivalent to the problem of placing 

1t   separators in the 1 1n   gaps between the 1n  signs.  (No separator can come before the first 

or after the last sign as a group must contain at least one sign.) 

There are 1 1

1

n

t

 
  

 ways of placing the 1t   separators in the 1 1n   gaps, and so this is the 

number of ways of splitting the 1n  signs into t  groups.   

 

 (c) There are 
1

m
n
 
 
 

 ways to arrange 1n  positive and 2n  negative signs,  

since, by definition, 1 2m n n  . 

Hence, the probability of exactly t  positive groups is  

1 2

1

1 1

1

n n
t t

m
n

    
      

 
 
 

. 

This formula is given on page 34 of the Tables. 

Assumptions 

None. 
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Method 

Step 1 

Determine the sign of the deviation at each age. 

Step 2 

Count the number of groups of positive signs ( G ). 

Step 3 

Since every pair of positive groups must be separated by a negative group, the numbers of 
positive and negative groups will be small or large alike, so a one-tailed test is appropriate.  
We should find the smallest k  such that: 

1 2

1

1

1 1

1
0.05

k

t

n n
t t

m
n



    
       

 
 
 

  

and say that the test has been failed (at the 5% level) if G k .   

Alternatively, we could look up the critical value of the test on page 189 of the Tables.  If the 
number of groups of positive deviations is less than or equal to the critical value given in the 
Tables, we reject the null hypothesis. 

Another alternative is to determine the p-value for the test by calculating the probability that the 
number of groups of positive deviations, G , takes a value less than or equal to the value we have 
observed. 

Question 

A graduation covers 20 age groups.  The number of positive deviations is 6, and the number of 
groups of positive deviations is 2.  Carry out a grouping of signs test using these data values. 

Solution 

From page 189 of the Tables, we see that the critical value is 2 when 1 6n   and 2 14n  .  Since 

we have observed 2 groups of positive deviations, we reject the null hypothesis at the 5% 
significance level and conclude that there is evidence of grouping of deviations of the same sign. 

 
However, if m is large enough ( 20m   or so), we can use a normal approximation as 
follows: 

2
1 2 1 2

3
1 2 1 2

( 1) ( )
~ ,

( )

n n n nG N
n n n n

 
    

 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 38  CS2-10: Graduation and statistical tests 

© IFE: 2019 Examinations The Actuarial Education Company 

This result is also given on page 34 of the Tables.  Because the test statistic can only take integer 
values, a continuity correction should be applied when using a normal approximation. 

Conclusion 

If there are too few runs, this indicates that the rates are overgraduated.  The rates do not adhere 
closely enough to the crude data and may be consistently too high or too low over certain parts of 
the table. 

Strengths and weaknesses 

When applying this test, we arbitrarily chose to count the positive groups, rather than the negative 
groups.  This test can, in some cases, lead to different conclusions depending on whether positive or 
negative groups are considered. 

Question 

Test Graduation A for overgraduation using the grouping of signs test. 

Solution 

Here there are 20 age groups, with 10 positive and 10 negative deviations.  From page 189 of the 
Tables, we see that the critical value is 3 when 1 10n   and 2 10n  .  Looking at the column of xz  

values on page 12, we see that there are 3 runs of positive deviations.  So we reject the null 
hypothesis at the 5% significance level and conclude that there is evidence of grouping of deviations 
of the same sign. 

Alternatively, we could carry out the test using a normal approximation.  The expected number of 
positive runs is:  

10(10 1)
5.5

(10 10)





  

and the variance is: 

2

3
(10 10)

1.25
(10 10)





 

The p-value is ( 3)P G  .  Using (5.5,1.25)N  as an approximation to the distribution of G  and 

incorporating a continuity correction: 

 
3.5 5.5

( 3) (0,1) ( 1.78885) 1 (1.78885) 3.7%
1.25

P G P N
 

        
 

   

Since the p-value is less than 5%, we reject the null hypothesis at the 5% level and conclude that 
there is evidence of grouping of deviations of the same sign. 
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7.6 Serial correlations test 

A final test, detecting grouping of signs of deviations, is the serial correlations test. 

Purpose 

To test for clumping of deviations of the same sign (an issue that will not be picked up by a 
chi-squared test).  If clumping is present, then the graduation has the wrong shape. 

Rationale 

If the graduated rates are neither overgraduated nor undergraduated, we would expect the 
individual standardised deviations at consecutive ages to behave as if they were independent. 

However, if the graduated rates are overgraduated, the graduated mortality curve will tend to stay 
the same side of the crude rates for relatively long periods and, although there will be random 
variations in the numbers of deaths, we would expect the values of consecutive deviations to have 
similar values, ie they will be positively correlated. 

Conversely, if the rates are undergraduated, the graduated curve will cross the crude rates quite 
frequently and the values of consecutive deviations will tend to oscillate, ie they will be negatively 
correlated.  However, we will use this test as a one-sided test to test for overgraduation since 
undergraduation is usually tested for using the smoothness test. 

If correlations are present, we would expect the effect to be strongest at adjacent ages or at ages 
separated by 2 or 3 years. 

Under the null hypothesis, the two sequences (of length 1m  ): 

1 2 2 1, , , ,m mz z z z    

and: 

 2 3 1, , , ,m mz z z z   

should be uncorrelated. 

So should the sequences (of length 2m  ): 

1 2 3 2, , , ,m mz z z z    

and: 

 3 4 1, , , ,m mz z z z  

We call these the lagged sequences, with lag 1 and lag 2 respectively, and we define 
sequences with longer lags in the obvious way. 
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The correlation coefficient of the j th lagged sequences is: 

(1) (2)

1

(1) 2 (2) 2

1 1

( )( )

( ) ( )

m j

i i j
i

j m j m j

i i j
i i

z z z z
r

z z z z






 


 

 



 



 
 

where (1)

1

1 m j

i
i

z z
m j






    and  (2)

1

1 m j

i j
i

z z
m j







  . 

This ratio gives the serial correlation coefficients jr , which can take values in the range 1 1jr   .  

A positive value indicates that nearby values of xz  tend to have similar values, whereas a negative 

value indicates that they tend to have opposite values. 

If m  is large enough, we can approximate (1)z  and (2)z  by 
1

1 m

i
i

z z
m 

  , and simplify the 

above, to obtain: 

1

2

1

( )( )

( )

m j

i i j
i

j m

i
i

z z z z
r

m j z z
m








 









     (10.1) 

or:     

1

2

1

1
( )( )

1
( )

m j

i i j
i

j m

i
i

z z z z
m j

r

z z
m








 









 

The second form shows that this is just the ratio of two averages.  This formula for the 
approximation is given on page 34 of the Tables.   

The difference between this approximation and the exact formula above is negligible for large m .  
However, the approximate formula may be inappropriate for small values of m .  It is generally 
acceptable in practice, but its limitations should be borne in mind and, in particular, if the test is to 
be carried out on real data where m  is small (eg less than 20) then the exact formula should be 
used. 

It is known that ~ (0,1 )jr N m , under the null hypothesis.   

So multiplying jr  by m  should give a value that comes from a standard normal distribution.   

Hence, jr m  can be tested against the (0,1)N  distribution.  Too high a value indicates a 

tendency for deviations of the same sign to cluster. 
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Assumptions 

None. 

Method 

Step 1 

Calculate the standardised deviations xz  for each age or age group. 

Step 2 

Calculate the serial correlation coefficients using the formula: 

1

2

1

1
( )( )

1
( )

m j

i i j
i

j m

i
i

z z z z
m j

r

z z
m








 









  

where 
1

1 m

i
i

z z
m 

   is the overall average of  xz  for the m  ages (or age groups). 

We can use the fact that jr  must take values in the range 1 1jr    to check the calculations for 

reasonableness. 

Step 3 

Multiply by m  to obtain the value of the test statistic and compare this with the percentage 
points of the standard normal distribution. 

Conclusion 

If the test statistic is ‘too positive’, this indicates that the rates are overgraduated.  The rates do not 
adhere closely enough to the crude data and may be consistently too high or too low over certain 
parts of the table. 

Strengths and weaknesses 

The serial correlation test takes into account actual numerical values of the standardised deviations 
(whereas the grouping of signs test ignores the magnitude of the deviations).  As a result, it is 
possible for correlations in one part of the age range to be cancelled out by opposite correlations in 
another part.  This means that the grouping of signs test is usually more powerful, ie it is more likely 
to detect overgraduation if this is present. 

Question 

Carry out the serial correlation test at lag 1 for Graduation A. 
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Solution 

The mean of the individual standardised deviations is: 

49

30

1 1
(2.27 2.69 ... 1.99) 0.18

20 20x
x

z z


       

The denominator of 1r  is: 

49
2

30

1
( ) 2.13

20 x
x

z z


   

The numerator of 1r  is: 

48

1
30

1
( )( ) 0.94

19 x x
x

z z z z


    

So: 

1
0.94

0.44
2.13

r    

and the value of the test statistic is 

20 0.44 1.97   

This is more than 1.6449, the upper 5% point of the standard normal distribution.  So there is 
evidence of grouping of deviations of the same sign. 

 

The serial correlations test can be carried out in R by considering the series of xz ’s as if 

they were a time series and computing the first-order autocorrelation.  

Alternatively, to compute 1r  based on formula (10.1) in R from a set of 50 deviations xz , 
use:  

z1x <- zx[1:49]  
z2x <- zx[2:50]  
cor(z1x, z2x)  

7.7 Testing actual versus expected rates 

We have mainly looked at the tests in the context of testing graduations.  However, the tests 
above can also be used where we wish to test a set of observed rates against an existing table to 
which we think the rates conform. 

The tests will be carried out as previously.  In this case though there is no equivalent to 
undergraduation.  We are looking only for goodness of fit.   
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The statistical tests that assess the significance of differences between observed and expected 
values operate on the basis that the true underlying mortality rates at each age are those 
specified by the expected mortality basis. 

The null hypothesis in this case is: 

0H :  The mortality rates being tested are consistent with the rates from the standard table. 

The purpose of each of the various tests in this case is summarised below. 

Chi-squared test   

This will be a one-sided test for goodness of fit.  The null hypothesis will be rejected if the test 
statistic exceeds the upper 5% level.  In this case the number of degrees of freedom will normally 
just be the number of age groups being considered. 

Distribution of ISDs 

This test will again be used to examine goodness of fit.  In particular it will identify any excessively 
large deviations. 

Signs test 

This test is used to identify any imbalance between positive and negative deviations, ie to ensure 
that the observed rates are not consistently above or below the expected rates. 

Cumulative deviations test 

This test will detect a large positive or negative cumulative deviation, as previously. 

Grouping of signs test 

This test detects excessive clumping of deviations of the same sign.  A small number of groups of 
positive deviations indicates that the shape of the true rates underlying the observed rates is 
significantly different from the expected mortality rates, at least over part of the range.  

Serial correlation test 

This is another one-sided test to detect clumping of deviations of the same sign.  A large positive 
value of the test statistic indicates that the shape of the true rates underlying the observed rates is 
significantly different from the expected mortality rates, at least over part of the range.     
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The chapter summary starts on the next page so that you can 
keep all the chapter summaries together for revision purposes. 
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Chapter 10 Summary 

Purpose of graduation 

The crude mortality rates derived from a mortality investigation are graduated to make them 
acceptable for use in actuarial calculations.  Graduation refers to the process of using 
statistical techniques to improve the estimates provided by the crude rates.  The aims of 
graduation are: 

 to produce a smooth set of rates that are suitable for a particular purpose 

 to remove random sampling errors (as far as possible) 

 to use the information available from adjacent ages to improve the reliability of the 
estimates. 

Graduated rates should move smoothly between adjacent years of age.  This is based on the 
theoretical assumption that underlying mortality rates progress smoothly from year to year 
and on the practical desire to perform financial calculations (eg to calculate premiums) that 
are consistent from one age to the next.  

The process of graduation involves a trade-off between smoothness and goodness of fit.  The 
suitability of a graduation can be assessed using statistical tests.    

Null hypothesis 

The null hypothesis for each of these tests is that the graduated rates are equal to the true 
underlying mortality rates. 

Testing smoothness 

Smoothness (undergraduation) can be judged by examining the third differences of the 
graduated rates. 

1x x x    
    2

1x x x    
       3 2 2

1x x x    
       

Testing goodness of fit 

Many of the tests of goodness of fit are based on the values of the individual standardised 
deviations, which provide information about the individual ages or age groups.  The 
individual standardised deviations are given by: 

 
c

x x x
x c

x x

D E
z

E










  

Under the null hypothesis, these random variables follow the standard normal distribution. 
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Chi-squared test  

The test statistic is: 

2

all ages
    

x

x

z  

Under the null hypothesis, this has a chi-squared distribution.  The number of degrees of 
freedom depends on the number of ages and the method of graduation.   

The chi-squared test gives an overall assessment of the goodness of fit, but can miss features 
such as: 

 bias over the whole age range 

 clumping of the signs of deviations (which may indicate overgraduation) 

 outliers balanced by small deviations. 

Cumulative deviations test  

The test statistic is:  

all
ages

all
ages

( )c
x x x

c
x x

D E

E












   

Under the null hypothesis, this should come from the standard normal distribution. 

The cumulative deviations test looks at the overall deviation over a range of ages. 

Signs test 

If there are m  age groups in total, then under the null hypothesis:  

Number of positive deviations ( ,½)Binomial m  

The signs test looks at the distribution of positive and negative deviations, but it ignores the 
magnitude of the deviations.  The test can be carried out by calculating the p -value.  

Cumulative probabilities are listed on pages 186-188 of the Tables for certain values of m .  
Alternatively, if m  is large, we can use a normal approximation with a continuity correction. 
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Grouping of signs test 

This is a one-tailed test that checks for excessive clumping of deviations of the same sign.  If  

1n = number of positive signs and 2n = number of negative signs, then: 

1 2

1 2

1

1 1

1
P( positive groups) 

n n

t t
t

n n

n

   
    

 
 
 

,  1 1, 1n t   

2
1 2 1 2

3
1 2 1 2

( 1) ( )
Number of positive groups ,

( )

n n n n
N

n n n n

 
    

   approximately 

These formulae are given on page 34 of the Tables.   

The test can also be carried out by comparing the number of groups of positive deviations 
with the critical value.  Critical values are given on page 189 of the Tables.   

Serial correlations test  

The correlation coefficient at lag 1 is: 

 

1

1
1

1
2

1

1
( )( )

1

1
( )

m

i i
i

m

i
i

z z z z
m

r

z z
m








 









  where 

1

1 m

i
i

z z
m 

   

and the test statistic is: 

 1r m   

These formulae are given on page 34 of the Tables.  Under the null hypothesis, the test 
statistic follows the standard normal distribution.  This is a one-tailed test, which tests for 
positive correlation. 

Each of these tests concentrates on different features of the graduation.  Several tests must be 
applied before deciding that a set of graduated rates is acceptable.  However, an unfavourable 
result on just one test may be sufficient to reject a set of rates. 

We can also use these tests to check whether a set of observed mortality rates conforms to 
an existing standard table.  In this case, the null hypothesis is that the rates being tested are 
consistent with those from the standard table. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 48  CS2-10: Graduation and statistical tests 

© IFE: 2019 Examinations The Actuarial Education Company 

 

 

 

 

 

 

 

 

The practice questions start on the next page so that you can 
keep all the chapter summaries together for revision purposes. 
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Chapter 10 Practice Questions 

10.1 Explain why it is necessary to graduate crude rates of mortality for practical use.  

10.2 State the characteristics of a good graduation. 

10.3 Two graduations have been carried out and you have obtained the following results: 

Graduation 1 covers 40 age groups and has produced 13 positive and 27 negative standardised 
deviations. 

Graduation 2 covers 7 age groups and has produced 5 positive and 2 negative standardised 
deviations. 

Carry out the signs test on these graduations, clearly stating the probability value and your 
conclusion in each case. 

10.4 Apply the chi-squared test to Graduation B, given on page 13 of this chapter. 

10.5 Analyse the distribution of the standardised deviations for Graduation B. 

10.6 Apply the grouping of signs test to Graduation B. 

10.7 Carry out the serial correlation test at lag 1 on Graduation B. 

For Graduation B you are given that: 

 1( )( ) 5.10x xz z z z         and     2( ) 9.36xz z   

10.8 Carry out the smoothness test on the following set of graduated rates: 

x  x
  

55 0.00429 

56 0.00478 

57 0.00535 

58 0.00596 

59 0.00667 

60 0.00754 

61 0.00867 

 
10.9 A graduation of a set of mortality rates from age 25 to age 64 has 15 positive individual 

standardised deviations, which occurred in 8 groups. 

Carry out two tests to check the suitability of this graduation.  [6] 

Exam style 
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10.10 (i) Explain why graduated rates, rather than crude estimates of mortality rates, are used in 
the construction of standard mortality tables. [3] 

(ii) A graduation of the mortality experience of the male population of a region of the United 
Kingdom has been carried out using a formula with 3 parameters.  The following is an 
extract from the results. 

Age nearest 
birthday 

Actual 
number of 

deaths 

Graduated 
mortality 

rate 

Central 
exposed to 

risk 
 

x  x  x
  c

xE  c
x xE   

14 3 0.00038 12,800 4.864 

15 8 0.00043 15,300 6.579 

16 5 0.00048 12,500 6.000 

17 14 0.00053 15,000 7.950 

18 17 0.00059 16,500 9.735 

19 9 0.00066 10,100 6.666 

20 15 0.00074 12,800 9.472 

21 10 0.00083 13,700 11.371 

22 10 0.00093 11,900 11.067 

Total 91   73.704 

 
 Use the chi-squared test to test the adherence of the graduated rates to the data.  State 

clearly the null hypothesis you are testing and comment on the result. [4] 

(iii) Perform two other tests that detect different aspects of the adherence of the graduation 
to the data.  For each test state clearly the features of the graduation that the test is able 
to detect, and comment on your results. [8] 

    [Total 15] 

  

Exam style 
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10.11 An insurance company is concerned that the ratio between the mortality of its female and male 
pensioners is unlike the corresponding ratio among insured pensioners in general.  It conducts an 

investigation and estimates the mortality of male and female pensioners, ˆm
x  and ˆ f

x .  It then 

uses the ˆm
x  to calculate what the expected mortality of its female pensioners would be if the 

ratio between male and female mortality rates reflected the corresponding ratio in the PMA92 
and PFA92 tables, xS , using the formula: 

 ˆf m
x x xS   

The table below shows, for a range of ages, the numbers of female deaths actually observed in 

the investigation and the number which would be expected from the f
x . 

Age, x  Actual deaths 

ˆc f
x xE   

Expected deaths 

c f
x xE   

65 30 28.4 

66 20 30.1 

67 25 31.2 

68 40 33.5 

69 45 34.1 

70 50 41.8 

71 50 46.5 

72 45 44.5 

 
(i) Describe and carry out an overall test of the hypothesis that the ratios between male and 

female death rates among the company’s pensioners are the same as those of insured 
pensioners in general.  Clearly state your conclusion. [5] 

(ii) Investigate further the possible existence of unusual ratios between male and female 
death rates among the company’s pensioners, using two other appropriate statistical 
tests.   [6] 

    [Total 11] 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 10 Solutions 

10.1 It is necessary to graduate crude rates for practical use for the following reasons: 

 to make them fit for the purpose for which they are intended  

 to remove random sampling errors, thus better estimating the true underlying mortality 
rates  

 to allow the rate at a particular age to be set with reference to the rates at adjacent ages 

 to produce a set of mortality rates that progresses smoothly from age to age, which 
allows a practical smooth set of premium rates to be produced.  

10.2 A set of graduated rates should adhere to the data and be smooth enough for the purposes that it 
will be used for. 

10.3 For Graduation 1, there are enough values to use a normal approximation.  There are fewer 
positives than expected and: 

 

( 13 positives) [ (40,½) 13]

[ (20,10) 13.5]

13.5 20
(0,1)

10

( 2.0555)

1 (2.0555)

0.0199

P P Binomial

P N

P N

  

 

 
  

 

  

 



 

Since this is a two-tailed test, the p-value is approximately 2 0.0199 0.0398  .  This is less than 
0.05, so there is evidence at the 5% significance level to conclude that there is bias in the graduated 
rates. 

For Graduation 2 there are only 7 values, so an exact calculation must be used.  There are more 
positives than expected and: 

 

7 7 7

7

( 5 positives) [ (7,½) 5] [ (7,½) 6] [ (7,½) 7]

7 7 71 1 1
5 6 72 2 2

21 7 1

2

0.2266

P P Binomial P Binomial P Binomial      

                      
          

 




  

Alternatively: 

 ( 5 positives) 1 ( 4 positives) 1 ( (7,½) 4)P P P Binomial         
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Page 186 of the Tables gives: 

 ( (7,½) 4) 0.7734P Binomial     

Hence: 

 ( 5 positives) 1 0.7734 0.2266P      

as before. 

So, the p-value is 2 0.2266 0.453  , which is not significant.  So, in this case, we conclude that the 
signs test doesn’t provide enough evidence to conclude that the graduation is biased. 

10.4 From the given table of values, we see that: 

2 9.39xz   

There are 20 ages.  We have not constrained the totals.  The graduated rates have been calculated 
by estimating 11 parameters.  So, the number of degrees of freedom is 20 11 9  . 

From page 169 of the Tables, the upper 5% point of 2
9  distribution is 16.92.  The observed value 

of the test statistic is less than this, so we conclude that the graduated rates are a good fit to the 
data. 

10.5 The observed and expected frequencies are as follows: 

Interval ( , 3)   ( 3, 2)   ( 2, 1)  ( 1,0)  (0,1)  (1,2)  (2,3)  (3, )  

Observed 0 0 1 7 11 1 0 0 

Expected 0.0 0.4 2.8 6.8 6.8 2.8 0.4 0 

 
There are no xz  values greater than 2 in magnitude, where we would expect less than 1.  So this 

seems fine.  We would expect around 50% of the xz  values, ie 10, to fall in the range ( 2 3,2 3) , 

but we actually have 13.  This indicates that the deviations are a little smaller in size than 
expected, but this is not a sufficiently extreme result to cast doubt on the null hypothesis.  The 
distribution of the xz  values is fairly symmetrical (12 positive and 8 negative deviations).   

If we combine the small groups by pooling the values in the ranges ( , 1)   and (1, ) , we can 

apply a chi-squared test to the resulting 4 groups.  The value of the test statistic is: 

 
2 2 2 2(1 3.2) (7 6.8) (11 6.8) (1 3.2)

5.625
3.2 6.8 6.8 3.2
   

     

This is less than 7.815, the upper 5% point of 2
3 , so there is insufficient evidence to reject the 

hypothesis that the graduated rates are the true mortality rates underlying the data.  We conclude 
from this test that the graduated rates are a good fit to the data. 

The chi-squared test is not strictly valid here as two of the expected frequencies are less than 5. 
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10.6 The grouping of signs test is a one-tailed test and we are testing to see if there are too few 
positive groups.  Here we have 1 12n   and 2 8n  .  From page 189 of the Tables, we find that the 

critical value of the test is 3.  The observed number of runs of positive deviations is 9.  This is 
greater than the critical value, which indicates that there is no problem with clumping of 
deviations of the same sign. 

10.7 The serial correlation coefficient is: 

1
1

2

1
( )( ) 5.10 191 0.57

1 9.36 20( )

x x

x

z z z z
mr

z z
m

     





 

and the value of the test statistic is: 

 1 2.56r m    

This serial correlation test is a one-tailed test, and a negative test statistic does not lead us to 
reject the null hypothesis that the graduated rates are the true mortality rates underlying the 
data. 

10.8 The first, second and third differences in the graduated rates are shown in the table below: 

x  x
  x

  2
x   3

x   

55 0.00429 0.00049 0.00008 −0.00004 

56 0.00478 0.00057 0.00004 0.00006 

57 0.00535 0.00061 0.00010 0.00006 

58 0.00596 0.00071 0.00016 0.00010 

59 0.00667 0.00087 0.00026  

60 0.00754 0.00113   

61 0.00867    

 
The third differences are small in magnitude compared to the graduated rates, and the numbers 
in the third difference column change fairly smoothly.  So we conclude that the graduated rates 
are smooth.  

10.9 The statistical information given allows us to carry out a signs test and a grouping of signs test 
only. 

The null hypothesis is that the graduated rates are the true mortality rates for the population.  [½] 

Signs test 

The observed value of the test statistic, P , is 15.  If the null hypothesis is true, then the sampling 
distribution of the test statistic will be (40,0.5)Binomial . [1] 
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The number of age groups is large enough so that we can use a normal approximation.  We are 
using a continuous distribution to approximate a discrete distribution, so we should use a 
continuity correction.    

Using a normal approximation with continuity correction: 

 

15.5 40 0.5
( (40,0.5) 15) (0,1)

40 0.5 0.5

( 1.4230)

1 (1.4230)

1 0.9226

0.0774

P Binomial P N
  

     

  

 

 

  [1] 

Since this is a two-tailed test, the p-value is approximately 2 0.0774 0.155  .  Since this is 
greater than 5%, the result is not significant at the 5% level. [1] 

Grouping of signs test 

The observed value of the test statistic, G , is 8.  [½] 

This is a one-tailed test and small values of the test statistic are significant.  The critical values of 
the test statistic are given on page 189 of the Tables.  [½] 

Here 1n , the number of positive deviations is 15 and 2n , the number of negative deviations is 25.  

The critical value of the test statistic at the 5% level of significance is 6. [1] 

So the observed value of the test statistic does not lie in the critical region and the data support 
the null hypothesis.   [½] 

10.10 (i) Reasons for graduation 

We expect the true rates to progress smoothly, with no irregularities. [1] 

Graduation reduces sampling errors at each age by using information from adjacent ages. [½] 

Standard tables are used for premium and reserve calculations, where it is important to have 
unbiased estimates of the true underlying rates. [½] 

Premiums should vary smoothly with age (as policyholders would expect). [1] 

(ii) Chi-squared test 

The null hypothesis is: 

 0 :H  the graduated rates are the true underlying mortality rates for the population [½] 
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We calculate the individual standardised deviations at each age using the formula: 

  
c

x x x
x c

x x

E
z

E

 








  

The ISDs are: 

0.845, 0.554, 0.408, 2.146, 2.328, 0.904, 1.796, 0.407, 0.321     [1] 

The test statistic for the chi-squared test (based on unrounded xz  values) is: 

 2 15.53xz    [1] 

We now compare this with a 2  distribution.  We were given data from 9 ages.  Since the 

graduation was carried out using a formula with 3 parameters, we lose 3 degrees of freedom.  So 
we are left with 6 degrees of freedom.   [½] 

From the Tables, we see that the upper 5% point of 2
6  is 12.59.  As the value of the test statistic 

is greater than this, we reject the null hypothesis and conclude that the graduated rates do not 
provide a good fit to the data.  In particular, it looks like the graduated rates are too low for ages 
17 to 20.   [1] 

(iii)  Two other tests 

You can take your pick here from the individual standardised deviations test, the signs test, the 
cumulative deviations test, the grouping of signs test and the serial correlation test.   

The null hypothesis for all the tests is: 

 0 :H  the graduated rates are the true underlying mortality rates for the population [½] 

ISD Test 

This is a good all round test that detects most of the problems that might be present in a 
graduation including any outliers. [½] 

For this test we compare the xz  values with a standard normal distribution: 

 ( , 3)   ( 3, 2)   ( 2, 1)   ( 1,0)  (0,1)  (1,2)  (2,3)  (3, )  

Obs 0 0 0 4 2 1 2 0 

Exp 0 0.18 1.26 3.06 3.06 1.26 0.18 0 

    [½] 
There are 4 things to consider here:  

 Outliers – there are no ISDs greater than 3 in absolute value, which is good;  however, 
with fewer than 20 age groups, we should be suspicious about any ISD greater than 2 in 
magnitude, and here we have 2 ISDs greater than 2. [½] 

 The balance of positive and negative deviations – this is OK. [½] 
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 Symmetry – the distribution is a bit positively skewed, which is not so good. [½] 

 Proportion of ISDs lying in the range 2 2
3 3( , )  should be 1

2   it is 4
9  here, which is OK. 

    [½] 

The graduated rates fail this test as the ISDs do not appear to be normally distributed.  In 
particular, the graduated rates appear to be too low at ages 17 and 18. [½] 

Signs test 

This is a simple two-tailed test for overall bias. [½] 

There should be roughly equal numbers of positive and negative ISDs.  Under the null hypothesis, 
the number of positive deviations has a (9,0.5)Binomial  distribution. [1] 

We have 5 positives and 4 negatives, which is fine.   [1] 

So we do not reject the null hypothesis and we conclude that there is no evidence of overall bias 
in the graduated rates.  [1] 

Cumulative deviations test 

This is a two-tailed test for overall bias. [½] 

The observed value of the test statistic is: 

 
91 73.704

2.015
73.704

c
x x x

c
x x

E

E

 







 
  


 [2] 

For a test at the 5% significance level, we compare the value of the test statistic with the lower 
and upper 2.5% points of (0,1)N , ie with 1.96 .  Since 2.015 is greater than 1.96, we reject the 
null hypothesis and conclude that the graduated rates are too low overall. [1] 

Make sure that you don’t do both of the signs test and the cumulative deviations test as they both 
test for the same thing. 

Grouping of signs test 

This is a one-tailed test that detects clumping of deviations of the same sign. [½] 

The observed number of positive deviations is 5, and the observed number of negative deviations 
is 4.      [1] 

From the Tables, we find that the critical value is 1 and we reject the null hypothesis if the 
observed number of positive runs is less than or equal to this.   [1] 

The observed number of positive runs is 2, so we do not reject the null hypothesis in this case, 
and we conclude that there is no evidence of grouping of signs. [1] 
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Serial correlation test 

This is an alternative test for grouping of signs, but it takes much longer to carry out this test so 
we don’t recommend that you do it unless you absolutely have to.  Make sure that you don’t carry 
out both the grouping of signs test and the lag-1 serial correlation test since they test for the same 
thing. 

This is a one-tailed test that detects clumping of deviations of the same sign. [½] 

The serial correlation coefficient at lag 1 is: 

 

21
1

18
14

1 22
21

9
14

( )( )
0.2165

0.1643
1.3172

( )

x x
x

x
x

z z z z

r

z z






 

  






 [2] 

and the value of the test statistic is: 

 1 0.1643 3 0.493r m     [½] 

As we are only testing for positive correlation, we compare the value of the test statistic with 
1.6449, the upper 5% point of (0,1)N .  We find that there is insufficient evidence to reject the null 

hypothesis or, in other words, there is no evidence of grouping of signs. [½] 

Comment 

The graduation has not fully taken into account the accident hump, ie the increase in mortality 
around the late teens and early twenties. [½] 

10.11 (i) Goodness-of-fit test 

The null hypothesis is: 

0 :H  the ratios between male and female death rates among the company’s pensioners are the 

same as those of insured pensioners in general. [1] 

An overall test of this hypothesis can be done using a 2  goodness-of-fit test.  The test statistic 

for this test is: 

 


2( )

x

O E
E

 

where O  denotes the observed number of deaths and E  denotes the expected number of 
deaths.   
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Using the given data, the value of the test statistic is: 

 

2 2 2 2

2 2 2 2

(30 28.4) (20 30.1) (25 31.2) (40 33.5)
28.4 30.1 31.2 33.5

(45 34.1) (50 41.8) (50 46.5) (45 44.5)
34.1 41.8 46.5 44.5

0.0901 3.3890 1.2321 1.2612 3.4842 1.6086 0.2634 0.0056

11.334

   
  

   
   

       

  [2] 

This is a one-tailed test.  When comparing an experience with a standard table, the number of 
degrees of freedom in the chi-squared test is the number of age groups considered.  So in this 

case we compare the value of the test statistic with the 2
8  distribution. [1] 

The upper 5% point of 2
8  is 15.51.  Since the value of the test statistic is less than 15.51, there is 

insufficient evidence to reject the null hypothesis.  So we conclude that the ratios between male 
and female death rates among the company’s pensioners are the same as those of insured 
pensioners in general.    [1] 

(ii) Other appropriate tests 

The null hypothesis for all the tests is: 

0 :H  the ratios between male and female death rates among the company’s pensioners are the 

same as those of insured pensioners in general. [½] 

We could also carry out the signs test on these data.  This test checks for overall bias, ie whether 
the actual deaths are systematically higher or lower than the expected deaths.   [½] 

The differences (actual – expected) at each age are: 

 1.6, –10.1, –6.2, 6.5, 10.9, 8.2, 3.5, 0.5 [½] 

6 of these are positive and 2 are negative. 

Let N  denote the number of positive differences.  Under the null hypothesis: 

 (8,½)N Binomial  [½] 

We have observed 6 positives, which is more than the expected number of 4.  From page 187 of 
the Tables: 

          6 1 5 1 0.8555 0.1445P N P N  [½] 

Since this is a two-tailed test, its p -value is: 

     2 6 2 0.1445 0.289P N  [½] 

This is (much) greater than 0.05, so there is insufficient evidence to reject the null hypothesis. [½] 
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Another test that checks for overall bias is the cumulative deviations test.  So you could do this one 
instead of the signs test.  Don’t do both the signs test and the cumulative deviations test as they 
test for the same thing (overall bias). 

The test statistic for the cumulative deviations test is: 

 
O E

E

 


 

Under the null hypothesis, this has a standard normal distribution.  From the given data: 

 305 290.1O E    

So the value of the test statistic is: 

 



305 290.1

0.875
290.1

 

This is a two-tailed test.  Using a 5% significance level, the critical values are 1.96 .  Since the 
value of the test statistic lies between these two critical values, there is insufficient evidence to 
reject the null hypothesis (at the 5% significance level). 

Another test you could do is the standardised deviations test, which tests for outliers.   [½] 

We calculate the individual standard deviation (ISD) at each age using the formula 
O E

E
.  The 

ISDs are: 

 0.3002, 1.8409, 1.1100, 1.1230, 1.8666, 1.2683, 0.5133, 0.0750 [1] 

Under the null hypothesis, these should be random values from the standard normal distribution.  
None of the ISDs are greater than 1.96 in absolute value, ie there are no outliers.  There are 3 

values in the range 2 2
3 3

( , ) , which is slightly lower than the expected value of 4, but this is OK.  [½] 

The balance of positive/negative deviations has already been investigated by the signs test and 
has been found to be satisfactory. 

So there is no evidence to reject the null hypothesis. [½] 

You could also carry out the serial correlation test here.  However, the serial correlation test 
involves a great deal of calculation, and is to be avoided if at all possible. 

You may also have considered carrying out a grouping of signs test.  This test checks for bias over 
parts of the age range.  

Using the notation that is consistent with that used in the Tables, we have:  

  1 the number of positive differences 6n  

  2 the number of negative differences 2n  

  the number of positive groups 2G  
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From page 189 of the Tables, we see that no value of G  would be significant for the given values 
of 1n  and 2n .   

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-11: Methods of graduation Page 1 

The Actuarial Education Company © IFE: 2019 Examinations 

 
Methods of graduation 

 

 

Syllabus objectives 

4.5 Graduation and graduation tests 

4.5.4 Describe the process of graduation by the following methods, and state the 
advantages and disadvantages of each:  

 parametric formula 

 standard table 

 spline functions.   

(The student will not be required to carry out a graduation.) 

4.5.5 Describe how the tests in 4.5.1 (for the comparison of crude estimates with 
a standard table) should be amended to compare crude and graduated sets 
of estimates. 

4.5.6 Describe how the tests in 4.5.1 (for the comparison of crude estimates with 
a standard table) should be amended to allow for the presence of 
duplicate policies. 

4.5.7 Carry out a comparison of a set of crude estimates and a standard table, or 
of a set of crude estimates and a set of graduated estimates. 
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0 Introduction 

In this chapter, we will look at three methods of carrying out a graduation: 

 graduation by parametric formula 

 graduation by reference to a standard table 

 graduation using spline functions. 

The most appropriate method of graduation to use will depend on the quality of the data 
available and the purpose for which the graduated rates will be used. 

The general methodology of graduation is essentially the same under each method.  Once we 
have decided on the appropriate method, we will choose a model to represent the underlying 
force of mortality, fit the model to the crude observed rates and test the graduation for 
adherence to data and (if necessary) smoothness.  Each method can produce many possible 
graduations.  The graduation chosen will be the one whose adherence and smoothness best meet 
the requirements for which the rates are intended. 

Graduation is a compromise between adherence to data (goodness of fit) and smoothness.  The 
balance that we want between these two conflicting objectives is a subjective choice and will 
depend on how the graduated rates will be used.  For example: 

 If we are constructing a standard table of national population mortality, we will be 
interested in maximising the accuracy.  We will put more emphasis on adherence and less 
emphasis on smoothness. 

 If the rates are to be used to calculate premiums and reserves for a life insurance 
company, we will want to ensure that the rates (and hence the premiums and reserves) 
progress smoothly from age to age to avoid sudden changes and inconsistencies.  We will 
put more emphasis on smoothness and less emphasis on adherence.   The mortality rates 
at ages around the accident hump will be less important in this situation as few 
policyholders are likely to be in the age range 18-22.   

Recall that the precise form of some of the statistical tests that we described in Chapter 10 
depends on the method of graduation used.  It’s a good idea to re-read the relevant sections of 
Chapter 10 after completing this chapter. 
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1 Graduation by parametric formula 

1.1 Overview 

The method of graduation most often used for reasonably large experiences is to fit a 
parametric formula to the crude estimates. 

The underlying assumption is that x  can be modelled using an appropriate mathematical 

formula with unknown parameters.  The parameters are typically calculated automatically by a 
computer using numerical methods.   

If the formula used does not include enough parameters, it will not be flexible enough to follow 
the crude rates closely, which may result in overgraduation.  If too many parameters are included, 
sudden bends may appear in the graduated curve, which may result in undergraduation. 

For different values of the parameters, we can assess the smoothness and adherence to data of 
the fitted model.  (In practice we will not need to check smoothness if the number of parameters 
is sufficiently small.) 

We will choose the values of the parameters that provide the most appropriate model, according 
to some pre-defined criterion in respect of goodness of fit. 

1.2 Choosing and fitting parametric formulae 

Two simple (but useful) formulae are: 

Gompertz (1825)   x
x Bc  

Makeham (1860)    x
x A Bc  

We described these simple laws of mortality in Chapter 6. 

In practice, it is usually found that x  follows an exponential curve quite closely over 

middle and older ages (in human populations) so most successful formulae include a 
Gompertz term.  Makeham’s formula is interpreted as the addition of accidental deaths, 
independent of age, to a Gompertz term representing senescent deaths. 

The most recent standard tables produced for use by UK life insurance companies used 
formulae of the form 

 1 2polynomial exp(polynomial )x  

which includes Gompertz and Makeham as special cases. 

Question 

Define 1polynomial  and 2polynomial  for the special case of Makeham’s formula. 
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Solution 

In Makeham’s formula:  

1polynomial A  

  2polynomial log logB x c   

We then have: 

 exp(log log ) x
x A B x c A Bc        

 
A wide range of techniques is available to choose and to fit a curve to a set of crude 
estimates.  Here we just describe how the fitting was carried out in the case of some recent 
UK life insurance standard tables. 

1.3 A practical example  

The available data were deaths and central exposed to risk, and the Poisson model was 
used.  The data were collected by life insurance companies during 1999-2002, and were 
analysed by the Continuous Mortality Investigation (CMI).  Different tables were prepared for 
males and females, and for different classes of insurance and pension business; 
collectively they are known as the ‘00 series’ tables. 

‘Classes’ of insurance refers to the different types of policy, eg whole life annuity or term 
assurance. 

The formulae were of the form: 


   1 2 1 2( , ,..., , , ,..., , )x r r r r sf x        

where 

    2 1
1 2 3polynomial(1) ... r

rx x x     


       2 1
1 2 3polynomial(2) ... s

r r r r sx x x      

In other words, a formula with ( )r s  parameters of the form: 

  1 2polynomial exp(polynomial )x   

was fitted for each table .   

Under the Poisson model (covered in Chapter 3), the probability of observing xd  deaths from a 

central exposed to risk c
xE  where x  denotes age nearest birthday is given by: 

   ( ) exp( )

!

xdc c
x x x x

x x
x

E E
P D d

d
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Therefore, in respect of the age interval  [ ½, ½]x x , the likelihood in the Poisson model 

is: 

 

 

 

  1 1

( ) .exp( ) constants

( ,..., , ) .exp( ( ,..., , ) ) constants

x

x

d c
x x x

d c
r s r s x

E

f x f x E

 

   
 

So the total likelihood, ignoring constants, is: 

   1 1
all ages

( ,..., , ) .exp( ( ,..., , ) )xd c
r s r s x

x

f x f x E     

This likelihood was maximised numerically to obtain maximum likelihood estimates of the 

parameters 1 2, ,..., r s   , and hence 
x . 

Other ways to fit a parametric formula include: 

 minimising the 2 -statistic 
2( )O E

E
 where, for each age group, O  denotes the 

observed number of deaths and E  denotes the expected number of deaths (calculated 
using the fitted model); and 

 minimising the value of the weighted least squares, ie   2ˆ( )x x xw , the sum of the 

squares of the differences between the crude and fitted values of x  with a weighting 

xw  based on the exposed to risk at each age. 

1.4 Other considerations 

Using additional information from other investigations 

For practical use, it is not sufficient to choose and fit a formula using statistical methods 
alone.  It is always necessary to inspect the results in the light of previous knowledge of 
mortality experiences, especially at very young and very old ages where the data may be 
scarce.   

Question 

Describe the experiences that might be available to help us check our results. 

Solution 

We might be able to check our results against: 

 previous investigations of the same population 

 recent investigations of a different population with similar characteristics 

 changes to mortality observed in recent investigations in other countries. 
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The graduated estimates should also be compared with other experiences to see if they 
behave as we would expect.  Examples of the checks that would be applied are: 

 The mortality of males is higher than the mortality of females. 

 The mortality of persons with life insurance policies is lower than that of the 
population as a whole. 

 The mortality of persons who have recently taken out life insurance is lower than 
that of persons who took out life insurance a long time ago (because they have to be 
in good health to obtain life insurance). 

It might be necessary to adjust the graduation to obtain a satisfactory final result. 

Our observations may suggest a different pattern of mortality to that experienced in previous 
investigations.  In these circumstances, we must decide on the relative levels of reliance that we 
can place on each source of information.  If our study is small, we may be more confident that the 
previous investigations reflect the true position.  If our study is large, we may be more confident 
that the pattern of underlying mortality is genuinely different from that of previous investigations. 

Question 

Explain why the mortality of people with life insurance policies might be lower than that of the 
population as a whole. 

Solution 

The mortality of people with life insurance policies might be lower than that of the population as 
a whole for several reasons.  These include the facts that individuals in poor health may be 
refused life insurance and that policyholders may generally belong to a higher socio-economic 
group with a lower rate of mortality. 

 

Financial risks 

We should always consider where the financial risks lie: 

 A life insurance contract pays out on death, so the insurance company will charge 
inadequate premiums if it underestimates mortality. 

 A pension or annuity contract pays out on continued survival, so the insurance 
company will charge inadequate premiums if it overestimates mortality. 

So, if an insurance company wishes to protect itself against the risk of charging inadequate 
premiums, it will try to overestimate mortality for life insurance contracts and underestimate 
mortality for pension or annuity contracts.  At the same time, the insurance company will need to 
ensure that its margins are not so large as to make the premiums uncompetitive. 
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Changes in mortality 

Since insurance companies will use graduated mortality tables to estimate future mortality 
(under insurance contracts yet to be sold) but investigations must be of past mortality, the 
trend of mortality is important.  In most countries mortality has been falling for a long time, 
which means that past mortality is likely to be on the safe side for insurance business but 
not adequate for pension or annuity business.  In respect of the latter it is necessary to 
make some projection of future improvements in mortality. 

Mortality projection is discussed in Chapter 12. 

1.5 The graduation process 

The curve-fitting process described above is only one of several stages that must be carried 
out, often repeatedly, before a satisfactory result is obtained. 

Step 1 – select a graduation formula 

A particular parametric family of curves must be chosen.  For example, the first few (useful) 
families of the general type used by the CMI are: 

 1 2exp( )x     (Gompertz) 

 1 2 3exp( )x     (Makeham) 

  2
1 2 3 4exp( )x x     

and so on. 

Step 2 – determine parameter values 

Given a family of curves, the best-fitting values of the parameters must be found.  The CMI 
used maximum likelihood, but there are many other suitable procedures. 

Other procedures include weighted least squares estimation.  Parameter estimation is usually 
performed on a computer using a statistics package. 

Step 3 – calculate graduated rates 

Calculate the graduated rates at each age using the fitted parametric formula.  This can be done 
on a computer using a spreadsheet. 

Step 4 – test 

Given the best-fitting curve of a given family, the graduated rates must be compared with 
the original data to see if they are acceptably close, according to some test procedures (see 
Chapter 10). 

Usually this process will be carried out for several families of curves, and the final choice 
will be influenced by the ‘goodness of fit’.  However, many other factors influence the 
outcome, and it is not always the best-fitting graduation (in the statistical sense) that gives 
the most suitable result for practical use. 
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2 Graduation by reference to a standard table 

2.1 Overview 

The underlying rationale of the method is as follows: if the class of lives involved in the graduation 
is sufficiently similar to the class of lives on which the standard table is based, then the true 
underlying mortality rates of the lives involved in the graduation should be quite similar to those 
of the standard table.  Even if overall levels of mortality differ between the two, it would still be 
expected that the overall progression of rates from age to age would be similar. 

A ‘standard table’ means a published life table based upon sufficient data to be regarded as 
reliable (for appropriate applications).  Examples include national life tables based on a 
country’s entire population (eg the English Life Tables) and insured lives tables based on 
large numbers of insured lives (eg the ‘00 series’ tables). 

A standard table will always be based on a well-defined class of lives, although this does 
not mean that that class of lives will be perfectly homogeneous.  If we are given the 
mortality experience of a similar group of lives, we might reasonably suppose that it should 
share some of the characteristics of the experience underlying the standard table, such as 
its overall shape.  This is useful if we do not have much data from the experience in which 
we are interested. 

So, we’ll tend to use this method of graduation when we do not have a large amount of data and 
there is a standard table that we think is appropriate.  We make use of the valuable information 
provided by the standard table relating to the general shape of mortality.  An appropriate simple 
equation, involving unknown parameters, is selected to reflect the relationship between the 
mortality rates for the new experience and the rates from the standard table.  For example, if we 
think that the true underlying forces of mortality are a linear function of those from the standard 

table, we might try an equation of the form s
x xa b    .  The graduated rates are then a 

combination of the shape provided by the standard table and the level of mortality observed in 
our investigation. 

Only if the standard table is sufficiently similar to the underlying experience will a satisfactory fit 
to the crude estimates be possible. 

2.2 The graduation process 

Step 1 – select standard table 

We select an existing standard mortality table that is believed to have a similar pattern of mortality 
rates over the age range of interest.  The appropriateness of a particular standard table will be 
assessed by comparing the characteristics of the lives on which it was based and those in the 
current investigation, eg sex, geographical area, period of investigation. 
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Step 2 – find simple link to the standard table 

Let s
x  be the forces of mortality of the standard table.  Then we try to exploit the assumed 

similarity of the experiences by seeking a reasonably simple function ()f  such that

 ( )
 s

xx f  .   

Examples include: 

    s
x xa b    

   ( ) s
x xa bx   

  
 s

xx k   

 
 s

x kx   

where a , b  and k  are suitable constants. 

The search for a suitable function ()f  can be aided by making some simple plots, for 

example a plot of ˆx  against s
x  might indicate a linear relationship.  If it is not possible to 

find a simple relationship, then the supposition that the experiences have similar 
characteristics should perhaps be reconsidered.  It should be remembered that if data are 
scarce, too close a fit to any suggested relationship is not to be expected, especially at 
extreme ages. 

Step 3 – determine parameter values 

Once a possible relationship has been identified, the best-fitting parameters must be found.  
Any suitable method might be used, for example: 

(a) maximum likelihood: the underlying model is that: 

   1( ,..., , )s
x n xf     

where the 1,..., n   are unknown parameters.  The MLEs are then found by 

maximising the likelihoods as in Section 1.3. 

(b) least squares: the parameter values are found that minimise: 

   2

all ages

ˆ( )


x x x

x

w    

where the { }xw  are suitable weights.  Natural weights would be the exposures to 

risk ( )c
xE  at each age, or the inverse of the estimated variance of x . 

Question 

Explain why weights based on the inverse of the estimated variance are a sensible choice. 
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Solution 

Weights that are based on the inverse (ie the reciprocal) of the variance give more weighting to 
the ages where the estimated variance is low (ie where we are more confident about the true 
rate) and less weighting to the ages where the estimated variance is high (ie where we are less 
confident about the true rate).   

 
For example, suppose that a set of crude forces of mortality ( ̂x ) is to be graduated by reference 

to a standard table using the relationship s
x xa b    .  The parameters are to be determined 

using the method of weighted least squares.  So we need to minimise: 

 2 2ˆ ˆ( ) [ ( )]s
x x x x x x

x x
S w w a b          

For each age x , the weight xw  should be proportional to the reciprocal of var( )x .  So here we 

could use: 

    



ˆ

c
x

x
x

E
w  

By differentiating S  with respect to a  and b , we can determine the values of a  and b  that 
minimise S . 

Step 4 – calculate graduated rates 

The assumed relationship with the standard table is then used to calculate the graduated rates 

using the formula ( )s
x xf   . 

Step 5 – test  

The resulting graduation would be subjected to tests of goodness-of-fit to the data (see 
Chapter 10) and, if there is more than one candidate function ()f  (or more than one suitable 

standard table), the goodness-of-fit may be used to assist in the final choice. 

The remarks in Section 1.4 apply also to experiences graduated by this method. 
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3 Graduation using spline functions 

3.1 Overview 

An alternative approach to graduation is to use spline functions.  These are polynomials of 
a specified degree which are defined on a piecewise basis across the age range.  The pieces 
join together at knots, where certain continuity conditions for the functions themselves and 
their derivatives are required. 

So we use a different function over each section of the age range, whilst ensuring that, over the 
whole age range, the function is continuous.  We also require the function to have continuous 
first and second derivatives at the knots. 

The method may be illustrated using cubic splines, or polynomials of degree 3, which are 
commonly used.  They were used, for example, to graduate English Life Table 14 (1980-82).  
Similar, but more complex methods, have been used to graduate more recent English Life 
Tables.  For example, English Life Table 17 (2010-2012) used a linear combination of basis 
splines and a penalisation term to control the smoothness of the resulting fit (see 
Chapter 17 for more discussion of this).  

Suppose we wish to fit a spline through a set of mortality rates x  for ages x  with knots at 

ages 1 2, ,..., nx x x , where 1 2 nx x x   .  The smoothest interpolating spline is the natural 
cubic spline.  This is linear at ages below 1x  and above nx .  This can be written as: 

 


   0 1
1

( )
n

x j j
j

x x       

where: 

 
 

 
3

0
( )

( )

j
j

j j

x x
x

x x x x
  

With this cubic function, we have for 1,2,...,j n : 

 ( ) 0j jx    

 2

0 if
( ) ( ) 0

3( ) if

j
j j j

j j

x x
x x

x x x x
 

   
 

  

 
0 if

( ) ( ) 0
6( ) if

j
j j j

j j

x x
x x

x x x x
 

     
  

which ensures that the function is smooth at the knots. 

Given the definition of ( )j x , we see that for 1x x : 

 1 2( ) ( ) ( ) 0nx x x        
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So, for 1x x : 

 0 1x x      

This is indeed a linear function of x . 

For 1 2x x x  : 

 3
1 1( ) ( )x x x     

and: 2( ) ( ) 0nx x      

So, for 1 2x x x  : 

 3
0 1 1 1( )x x x x         

For 2 3x x x  : 

 3
1 1( ) ( )x x x     

 3
2 2( ) ( )x x x    

and: 3( ) ( ) 0nx x      

So, for 2 3x x x  : 

 3 3
0 1 1 1 2 2( ) ( )x x x x x x           

More generally, for 1k kx x x   , where 1,2,..., 1k n  , we have: 

 3 3
0 1 1 1( ) ( )x k kx x x x x             

and for nx x :  

 

3 3
0 1 1 1

3 2 2 3 3 2 2 3
0 1 1 1 1 1

( ) ( )

( 3 3 ) ( 3 3 )

x n n

n n n n

x x x x x

x x x x x x x x x x x x x

    

   

      

          




 

For this to be a linear function of x , the coefficients of 2x  and 3x  must be 0.  The coefficient of 
2x  is: 

 1 1 2 23 3 3 n nx x x        

and the coefficient of 3x  is:   

 1 2 n       
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So, for linearity, we must have: 

 1 1 2 2 0n nx x x           (1) 

and:    1 2 0n       (2) 

The definition of ( )j x  leads to the following form for the natural cubic spline over the 

whole age range: 

 



   

2

0 1
1

( )
n

x j j
j

x x      

where:  

 


 

    
         

1
1

1 1
( ) ( ) ( ) ( )n j n j

j j n n
n n n n

x x x x
x x x x

x x x x
      

To see that this is equivalent to the formula for x  given earlier, which states that 

0 1
1

( )
n

x j j
j

x x    


    , we will make use of equations (1) and (2). 

Multiplying (2) by nx  gives: 

 1 2 0n n n nx x x       (3) 

Then subtracting (1) from (3): 

 

1 1 2 2 1 1

1 1 2 2 2 2 1 1

2
1 2

1 1 2
1 1 11

( ) ( ) ( ) 0

( ) ( ) ( ) ( )

n n n n n

n n n n n n n n

n
n jn n n

n n j
n n n n n nj

x x x x x x

x x x x x x x x

x xx x x x
x x x x x x

  

   

   

 

   




 
  

      

         

       
                     







   (4) 

In addition, rearranging (2) gives: 

 1 2 1( )n n           

and using (4): 

 

1 2
1 2 2 1 2

1 1

1 2
1 2

1 1

2
11 1 1 2

1 2
1 1 11
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Alternatively, this expression for n  can be obtained by multiplying (2) by 1nx   and then 

subtracting (1). 

So: 

 

0 1
1

2

0 1 1 1
1

2 2 2
1

0 1 1
1 11 1 1
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3.2 The graduation process 

The stages in spline graduation are, therefore: 

Step 1 – make decisions about knots 

Choose the number and value of the knots. 

For each knot, the position of x  (ie the age) is specified, but the value of x  is not.  It is not 

necessary for the knots to be equally spaced. 

Step 2 – preliminary calculations 

Calculate the ( )j x . 

Step 3 – estimate the parameter values 

Fit the equation 





   

2

0 1
1

( )
n

x j j
j

x x      using weighted least squares, where the 

weights are proportional to the inverse of the estimated variance of x . 

That is, we determine the values of 0 , 1 , 1 , 2 , …, 2n   that minimise the expression: 

   22
0 1 1 1 2 2 2 2ˆ ˆ( ) ( ) ( ) ( )x x x x x n n

x x
S w w x x x x       

                   

The value of xw  should be proportional to 
c
x

x

E
d

.  
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Step 4 – calculate the graduated rates 

Calculate the graduated rates using the estimated values of 0 , 1 , 1 , 2 , …, 2n   from 

Step 3. 

Step 5 – test  

The greater the number of knots, the more closely will the graduated rates adhere to the 
crude rates, but the less smooth the graduation will be. 

The resulting graduation would be subjected to tests of goodness-of-fit to the data (see 
Chapter 10) which may assist in finding the optimal number of knots. 

The remarks in Section 1.4 apply also to experiences graduated by this method. 

3.3 Examples of graduations using spline functions 

The graphs below show two graduations (one for males and one for females) for a large 
population of lives similar to those used in English Life Tables No 15 (ELT15).  The circles show the 
crude estimates of the force of mortality at each age (calculated by dividing the number of deaths 
aged x  nearest birthday by the corresponding central exposed to risk).  The solid line shows the 
graduated values, which have been calculated by fitting a cubic spline function with 6 knots, 
positioned at ages 0, 5, 15, 20, 30 and 40 (marked by circles on the x -axis). 

 

The mortality for the male lives over the age range shown includes several contrasting features: 

 relatively high infant mortality at the start (see age 1), which then decreases 

 a flat period of very low mortality between ages 5 and 15 

 an ‘accident hump’ in the late teenage years (see ages 18 and 19) 

 another flat period between ages 20 and 30  

 increasing mortality rates from around age 30. 
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As can be seen, the spline function is able to follow these twists and turns, producing a set of 
graduated rates that progress smoothly but also adhere closely to the crude rates. 

 

The mortality of the female lives has the same features, although these are less pronounced.  
Again, the spline function produces a set of graduated rates that progress smoothly but also 
adhere closely to the crude rates.  

Question 

(i) Write down a formula for calculating the values of x  in the spline graduations illustrated 

in the graphs above in terms of the fitted parameters, the age x  and the functions  ( )j x . 

(ii) Let  3( ) max ( ) ,0j jx x x   .  Write down the formula used to calculate 1( )x  in terms of 

the functions ( )j x . 

Solution 

(i) These graduations each use  6n  knots.  So the equation for x  will have the form: 

0 1 1 1 2 2 3 3 4 4( ) ( ) ( ) ( )x x x x x x                 

(ii) The formula for calculating 1( )x  is: 

  
    

          
6 1 5 1

1 1 5 6
6 5 6 5

( ) ( ) ( ) ( )
x x x x

x x x x
x x x x

    

Here, the first knot is at 1 0x  and the last two are at 5 30x  and 6 40x , so this is: 

   1 1 5 6( ) ( ) 4 ( ) 3 ( )x x x x    
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4 Comparison of different methods 

First, we note that the three methods of graduation described above by no means cover all 
possible methods.  We take parametric formula graduation to be an example of approaches 
used with reasonably large data sets, and the other two to be examples of methods used 
with smaller data sets. 

4.1 Graduation by parametric formula 

The mathematical formula method produces a smooth set of rates and can be a fully automated 
process.  The ability to optimise statistically eliminates any subjectivity from the fitting process.  
The only subjectivity remaining is in the ultimate choice of formula to use.  These properties, 
along with the independence of such a graduation from any other experience, make this method 
ideally suited for use in constructing standard tables. 

The main problem with the method is that a phenomenon such as mortality, which is subject to a 
great number of different influences to different extents over an individual’s lifetime, may be 
impossible to represent adequately by a single mathematical formula.  As a result no single 
function may produce a satisfactory fit, at least over the whole age range.  Heterogeneous data 
(ie data covering a mixture of people with different patterns of mortality – males and females, for 
example) can also make it more difficult to find a function that produces an adequate fit. 

Some specific points about parametric formula graduation are: 

 It is a natural extension of the simple probabilistic models for single years of age, 
parameterised by x .  It is straightforward to extend the statistical theory of 

estimation from one parameter to several, including estimation of standard errors 
and so on, and very often computer software is available to carry out the necessary 
optimisations. 

 The graduation will inherit its smoothness from the smoothness of the function in 
the parametric formula. In general, formulae with a small number of parameters will 
produce an acceptably smooth graduation.  

 Sometimes, when comparing several experiences, it is useful to fit the same 
parametric formula to all of them.  Differences between the fitted parameters, given 
their standard errors, then give insight into the differences between the experiences.   

For example, the difference between parameters may help us to identify trends in 
mortality over time. 

 The approach is very well-suited to the production of standard tables from large 
amounts of data.   

It is not possible to use the method successfully where data are scanty over a wide age 
range. 

 It can, however, be very difficult to find a suitable curve that fits an experience well 
at all ages.  Partly this is because of the different features that predominate at 
different ages (eg infant mortality, the accident hump and exponential mortality after 
middle age).  Partly it may be because cross-sectional studies mix up different 
generations at different ages.  A very likely reason is that there is still a good deal of 
heterogeneity in all mortality studies, even if we classify the data by age, sex, policy 
type, calendar period and so on.   
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For example, if we tried to remove heterogeneity by limiting our investigation to 40-year 
old female policyholders, we might still find large differences in the underlying rates 
because of differences in diet, smoking habits, levels of exercise etc. 

 Care is required when extrapolating.  Most methods of curve fitting will result in a 
good fit where there is most data, which in graduation usually means at middle ages.  
The form of the curve at the extreme ages is therefore sometimes determined by the 
best-fitting parameters at other ages, which means that the curve is, to a large 
degree, extrapolated from the middle ages.  The results at extreme ages can, 
therefore, be quite poor, and might require adjustment.  The same warning applies if 
the graduation is extrapolated beyond the ages for which there are data. 

Given this problem, we may decide to abandon the formula at extreme ages and use an 
adjusted standard table instead. 

 The optimisation procedures can make quantitative allowance for our relative confidence 
in each observed rate by reflecting the amount of data available at each age via the 
weighting factors. 

4.2 Graduation by reference to a standard table 

This method is a very simple way of obtaining a workable set of graduated rates in many practical 
situations.  The process will often follow naturally from an experience investigation involving a 
comparison against a standard table, as described earlier.  Because of the fact that a great deal of 
the form of the function ( )f x  is provided by the standard table, the graduation formula (and 

hence the process itself) is greatly simplified compared with other methods.  As only a few 
parameters may need to be fitted from the data, the amount of information that the data need to 
provide is also less than other methods. 

This dependence on the form of the standard table often leads to a very significant difficulty.  The 
features of the actual experience (and hence the probable progression of the true underlying 
rates with age) may differ significantly from the features displayed by any standard table.  Where 
this is the case, it would never be possible to obtain satisfactory adherence to the data using this 
method, at least without further adjustment to the graduated rates.  It also makes the method 
unsuitable for the purpose of producing standard tables, which need to be fully representative of 
the data.  In this case it would be inappropriate for the graduation to be influenced in this way by 
another experience. 

Some points about graduation by reference to a standard table are: 

 It can be used to fit relatively small data sets where a suitable standard table exists.   

Results based on small data sets will be correspondingly less reliable. 

 Provided a simple function is chosen (eg a polynomial or exponential function of low 
order), and the standard table is smooth to begin with, a smooth graduation should 
result. 

 The collateral information obtained from the standard table can be particularly 
useful in deciding the shape of the graduation at the extreme ages, where there 
might be little or no data. 
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 The method is not suitable for the preparation of standard tables based on large 
amounts of data. 

 The choice of standard table is important; choosing an inappropriate table could 
impart the wrong shape to the entire graduation.   

Features exhibited by the standard table will also be exhibited by the graduated rates.  
These may not be desirable (or representative of the data) for the graduation being 
performed. 

 It is not always easy to choose an appropriate standard table. 

 The simple form of the function means that the fitting process (ie estimation of the 
parameters) is usually easy to carry out. 

4.3 Graduation using spline functions 

Some points about graduation using a spline function are: 

 Provided the number of knots is small, the graduation will usually be smooth. 

 Alternative graduations can be tried by varying the number and position of the 
knots. 

 The method is suitable for quite small experiences as well as very large experiences 
(such as national populations).  It can also be used to produce standard tables.  It is, 
however, not suitable for very small experiences with scanty data at many ages.   

 It is not easy to choose the knots, and experiments with different numbers and 
locations are likely to be needed.  However, past attempts to graduate similar data 
using splines can guide the choice.  Generally, sections of the age range over which 
mortality rates are changing rapidly require more frequent knots than do sections of 
the age range where mortality progresses regularly.  Thus, for human mortality, 
more frequent knots are usually needed at younger ages than, say at ages between 
30 and 90 years. 

 Care is required at extreme ages where data can be scanty. With a natural cubic 
spline, the form of the curve above the highest knot is linear.  Therefore the fit at the 
oldest ages can be quite poor and need adjustment. 

 Splines are particularly useful when the pattern of mortality rates shows significant 
changes in shape.  For example, the spline method would be appropriate if we were 
graduating human mortality rates up to the age of about 30.  At the youngest ages, we 
expect to see high infant mortality.  Mortality is then low through childhood and increases 
in the late teens, where we expect to see the start of the accident hump.  Mortality rates 
decrease for a few years towards the end of the accident hump, before starting to 
increase exponentially after the late 20s. 

The spline method is a special case of graduation using a parametric formula. 
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Question 

An actuary has conducted investigations into the mortality of the following classes of lives: 

(a) the male members of a medium-sized pension scheme 

(b)  the female population of a large developed country. 

The actuary wishes to graduate the crude rates.  State, with reasons, an appropriate method of 
graduation for both of these classes of lives.  

Solution 

(a) Medium-sized pension scheme 

The population is unlikely to be large enough for us to be able to fit a parametric formula directly.  
However, the experience is likely to be similar to one of the published tables, which can be 
adjusted to match this experience. 

So graduation by reference to a standard table would be appropriate here. 

Alternatively, the spline method could be used. 

(b) Large developed country 

The population is likely to be large enough for us to be able to fit a parametric formula directly.  
Flexible formulae, such as the Gompertz-Makeham family, are available.  We may want to use the 
data to produce a standard table, and this should be independent of other standard tables.  In 
addition, we will probably be interested in comparing this experience with other experiences 
(eg the same population 10 years ago), so we don’t want to base the rates on an existing table. 

So graduation by parametric formula or spline function would be appropriate here. 
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5 Statistical tests of a graduation 

We discussed statistical tests of graduations in Chapter 10.  The precise form of some tests 
depends on the method of graduation.  In this section we will return to the subject of statistical 
tests and cover the outstanding issues, now that we have covered these graduation methods.   

In this chapter we will be looking at just two of the tests – the chi-squared ( 2 ) test and the 

cumulative deviations test – as these are the only ones that we need to modify according to the 
method of graduation employed.   

5.1 Comparing one experience with another 

In Chapter 10, we introduced statistical tests of the hypothesis that one experience was the 
same as another.  Often, the question is whether or not an experience for which we have 
data and crude estimates is consistent with a given standard table.   

The tests depended on comparison of the actual deaths observed at each age x  in one 
experience, xd , with the number expected on the basis of the other experience.   

For example, if the second experience was represented by a standard table { }s
x , we 

devised tests based on the deviations  c
x x xD E  . 

5.2 Testing a graduation 

The same tests can be used to test the hypothesis that the graduation adheres to the data, 
by substituting the graduated estimates for the standard table quantities above, and using 

the deviations  c
x x xD E  . 

In effect, we are asking whether or not the observed numbers of deaths are consistent with 
the numbers expected if the graduated estimates are ‘correct’. 

There are two problems.  The first is with the 2 -test.  The second relates to the cumulative 

deviations test. 

Chi-squared test  

Given m  age groups 1( ,..., )mx x , the 2 -statistic: 




1

2( )mx c s
x x x

c s
x xx x

D E
E




 

had a 2  distribution with m  degrees of freedom.  (The superscript ‘s’ denotes the 

standard table as usual.)  This led to a simple statistical test. 

A crucial point in the above reasoning is that the two experiences in question should not be 
the same.  In other words, the data upon which the observed deaths are based should not 
be the same as the data upon which the expected deaths are based.   
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This clearly does not hold when we are testing the adherence of a graduation to the 

observed data – we compute the expected deaths using the graduated quantities { }x , 

which are themselves based on the observed deaths. 

It is still legitimate to use the 2 -test in these circumstances.  The 2 -statistic is 

unchanged (except that mortality according to the standard table has been replaced by mortality 
according to our graduation): 

1

2( )mx c
x x x

c
x x x x

D E

E









  

but we must reduce the number of degrees of freedom. 

 If we used parametric formula graduation, we lose one degree of freedom for each 
parameter fitted. 

 If we used standard table graduation, we lose one degree of freedom for each 
parameter fitted, and we lose some further (indeterminate) number of degrees of 
freedom because of the constraints imposed by the choice of standard table.  Rather 
than suggest how many, it is more important to be aware of the problem when it 
comes to interpreting the result of the test. 

 If we used spline function graduation, one degree of freedom should be subtracted 
for each fitted constant (ie parameter) estimated from the data.  With a natural cubic 
spline, this will involve subtracting one degree of freedom for each knot used.   

As we have already seen, if we use a natural cubic spline with a total of n  knots, then we 
have n  parameters to estimate ( 0 , 1 , 1 , 2 , …, 2n  ).  So we lose n  degrees of 

freedom. 

If the knots are chosen after inspecting the crude rates, additional degrees of 
freedom might be subtracted. 

Question 

For a given set of data, crude estimates ˆ{ }x  for ages 30,31,...,79x  have been calculated.  

These rates have been graduated assuming that the underlying force of mortality follows 

Makeham’s law    x
x A Bc .  The graduated rates are now being tested for adherence to data. 

Give a formula for the test statistic and explain how the test is carried out. 

Solution 

The formula for the test statistic is 
279

30

( )c
x x x

c
x x x

D E

E









 . 

We have 50 age groups (ages 30,31,...,79x ).  In fitting the model, we will have estimated three 

parameters (A, B and c). 
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We compare the value of the test statistic against the 2  distribution with 47 (ie 50 – 3) degrees 

of freedom.  We reject the graduation if the observed value of the test statistic exceeds the upper 

5% point of 2
47 . 

 

Cumulative deviations test 

The second problem when testing a set of graduated rates is that the cumulative deviations 
test cannot be used if the cumulative deviation is automatically zero because of the 
graduation procedure. 

Some methods of graduation may force the cumulative deviation to be close to zero over the age 
range being graduated.  The test is invalidated for such graduations due to the imposition of this 
extra constraint when the curve has been fitted to the data. 
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6 The effect of duplicate policies 

The investigations of life office mortality carried out in the UK by the CMI have one 
particular feature that affects the statistical properties of the resulting estimates: they are 
based on policies and not lives.   

That is, instead of observing persons and recording: 

 c
xE  = Number of person-years observed 

 xd  = Number of deaths 

the CMI observe policies, and record: 

 c
xE  = Number of policy-years observed 

 xd  = Number of policies becoming claims by death. 

So, if a female policyholder born on 1 January 1975 were to own 3 separate life assurance 

policies, she would contribute a maximum of 3 years to the value of 45
cE  in the year 2020.  If she 

were to die in 2021, she would contribute 3 to the value of 46d  in that year. 

The reasons for observing policies rather than lives are that life office record-keeping is 
based on policies, and that it can be very difficult to establish when two policies are, in fact, 
owned by the same person, especially if many life offices pool their data (as in the CMI 
investigations).   

It can be particularly difficult to establish if two policies are owned by the same person if the 
policies were bought from different insurance companies. 

The outcome is that we can no longer be sure that we are observing a collection of 
independent claims; it is quite possible that two distinct death claims are the result of the 
death of the same life.  This is called the problem of duplicate policies. 

The effect of duplicate policies is to increase the variance of the number of claims.  This 
may be seen intuitively by noting that if a person has several policies, then the death of that 
person will cause a greater increase in the number of claims than would the death of a 
person having only one policy.  The ratio by which the variance is increased depends on the 
extent to which people own duplicate policies: it may also vary with age x . 

If the ratios by which the variance was increased were known, we could make allowance for 
the increased variances in tests of a graduation and so on.  Usually they are not known for 
any particular investigation, but the CMI has carried out special investigations from time to 
time to match up duplicate policies in force and hence derive estimates of the ratios 
suitable for use. 
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Chapter 11 Summary 

Methods of graduation 

Three of the most common methods of graduation are: 

 graduation by parametric formula – we assume that mortality can be modelled using 
a mathematical formula 

 graduation by reference to a standard table – we assume that there is a simple 
relationship between the observed mortality and an appropriate standard table 

 graduation using spline functions – we divide the age range into sections and assume 
that the mortality rates in each section can be modelled using a polynomial of a 
certain degree. 

The strengths and weaknesses of these methods can be assessed in terms of the following 
criteria: 

 smoothness 

 adherence to crude rates (goodness of fit) 

 ease of use 

 amount of data required 

 flexibility in allowing for special features 

 validity of the method given the problems. 

We must take care when using some of the statistical tests to assess the adherence of a 
graduation to the observed crude estimates.  Since the actual number of deaths (those 
observed) and the expected number (based on the graduated rates) are based on the same 

set of data, we must reduce the number of degrees of freedom for the 2 -test. 

Duplicate policies 

Duplicate policies (ie lives with more than one policy) can distort the results of an 
investigation.  Allowance can be made for the increase in the variance of the number of 
claims observed due to the existence of duplicate policies. 
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The practice questions start on the next page so that you can 
keep all the chapter summaries together for revision purposes. 
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Chapter 11 Practice Questions 

11.1 State whether each of the following statements is true or false. 

I When graduating by reference to a standard table you always need to test for 
smoothness. 

II If the mortality of a whole population was recorded, there would be no need to graduate 
since random sampling errors would not have occurred. 

III Graduating by reference to a standard table can produce good results even with scanty 
data. 

11.2 Describe the circumstances under which it would be appropriate to graduate the rates in a 
mortality investigation using a parametric formula. 

11.3 An investigation has been carried out into the mortality rates of males under the age of 30 in a 
deprived area of the UK.  The rates are to be graduated using the spline method.  Explain why this 
method is appropriate in this situation.  

11.4 (i) (a) Describe the general form of the polynomial formula used to graduate recent 
standard tables produced for use by UK life insurance companies. 

 (b) Show how the Gompertz and Makeham formulae arise as special cases of this 
formula. [3] 

(ii) An investigation was undertaken of the mortality of persons aged between 40 and 75 
years who are known to be suffering from a degenerative disease.  It is suggested that the 
crude estimates be graduated using the formula: 

  2
0 1 2expx b b x b x       

 (a) Explain why this might be a sensible formula to choose for this class of lives. 

 (b) Suggest two techniques that can be used to estimate the parameter values. [3] 
    [Total 6] 

11.5 An insurance company is investigating the mortality of its annuity policyholders.  The crude 
mortality rates are to be graduated for use in future premium calculations. 

(i) (a) Suggest, giving reasons, a suitable method of graduation in this case. 

 (b) Describe how you would graduate the crude rates. [5] 

(ii) Comment on any further considerations that the company should take into account 
before using the graduated rates in its premium calculations.   [2] 

    [Total 7] 

  

Exam style 

Exam style 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 11 Solutions 

11.1 Most standard tables are already smooth.  Hence a simple transformation of it will leave 
smoothness undisturbed, so I is false.  

Even if the investigation covers the whole population, the numbers of deaths observed will still be 
random and we will still need to graduate the crude rates, so II is false.  (If we use the whole 
population the random variations will probably be quite small, but we would need an infinite 
population to remove them completely!)  

III is true.   

11.2 It would be appropriate to graduate the results of a mortality investigation using a parametric 
formula if: 

 a suitable mathematical formula can be found that can describe mortality rates adequately 
over the entire age range of interest  

 the expected number of deaths is great enough at all ages to give reliable answers  

 the data values can be considered to be complete and accurate, and they are adequately 
subdivided with respect to age, sex and other relevant categories  

 an analytic method or computer software that can determine the optimal parameter values 
is available.  

An example of such a situation would be an investigation of the mortality of a large group of life 
office policyholders or a national mortality investigation. 

11.3 The pattern of mortality rates shows significant changes in shape over the age range 0 to 25 – 
mortality rates are high at the earliest ages, decrease rapidly in the first few months of age, are 
low through the childhood years, increase in the late teens (a feature known as the accident 
hump), and fall away again through the early to mid-20s.  By selecting appropriate knots, we can 
produce a spline function that captures these features. 

The spline method works well with fairly small data sets as well as larger samples.  We are not 
told the population size here, but that is not an issue when using the spline method (as long as 
the population is not very small). 

11.4 This question is based on Subject CT4, September 2006, Question B6, parts (i) and (ii). 

(i)(a) Form of the polynomial formula 

The general form of the polynomial formula is: 

  (1) exp (2)x poly poly    

where (1)poly  and (2)poly  are polynomials in x . [1] 
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(i)(b) Gompertz and Makeham formulae 

We can generate Gompertz’ formula by setting (1)poly  equal to zero, and setting (2)poly  equal to 

a linear function of x , say 1 2x  .  We can now write: 

 1 2
1 2exp( ) ( )x

x x e e        [½] 

This follows Gompertz’ law, ie x
  is of the form xBc  with 1B e  and 2c e . [1] 

We can obtain Makeham’s law in exactly the same way, but by setting (1)poly  equal to a constant 

A  instead of to zero.  [½] 

(ii)(a) Explanation 

Mortality is likely to be an exponentially increasing function over the age range from 40 to 75, so 
this might be a sensible formula since it behaves in the correct way.   [½] 

In addition, the 2x  term might allow for mortality worsening significantly with age for lives 
suffering from degenerative conditions. [½] 

(ii)(b) Estimating the parameter values 

Two possible methods for estimating the parameter values are maximum likelihood estimation 
and least squares estimation. [2] 

11.5 This question is based on Subject CT4, April 2007, Question 2. 

(i)(a) A suitable method of graduation 

Graduation by reference to a standard table would be appropriate when graduating crude 
mortality rates for use in future premium calculations.    [1] 

This method would be appropriate for the following reasons: 

 There is likely to be a suitable standard table available for graduating the mortality rates 
of annuitants.  [½] 

 There are likely to be ages at which the data are scarce, which means that graduation 
using a parametric formula or a spline function would not be appropriate.   [½] 

 Graduation by reference to a standard table will produce smooth graduated rates and will 
use information about the pattern of rates by age from the standard table.  Smoothness is 
a desirable feature of graduated rates. [½] 

(i)(b) Description of the method 

1. Select a standard table that is believed to have a similar pattern of mortality rates over 
the age range of interest, in this case the latest available table for annuitants (divided by 
gender).  [½] 
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2. Look for a simple link between the crude mortality rates and the standard table rates.  We 

would make some simple plots to help us here.  For example, a plot of ˆx  against s
x  

might indicate a linear relationship between the crude rates and the standard table rates.  
If this is the case, we could model the graduated rates using a function of the form 

s
x xa b    .  [½] 

3. Estimate the parameter values using a mathematical technique, eg the method of 
maximum likelihood or least squares estimation. [½] 

4. Calculate the graduated rates using the model with the parameters replaced by their 
estimated values. [½] 

5. Test the graduated rates for goodness of fit.  We don’t need to test for smoothness.  This 
is because the standard table should be smooth already and, provided we have used a 
simple function of the standard table rates to calculate the graduated rates, the 
graduated rates will automatically be smooth.  If there is more than one possible simple 
link between the crude rates and the standard table rates, or more than one suitable 
standard table, the goodness-of-fit test may be used to help us make our final choice. [½] 

(ii) Other considerations 

Since these rates are to be used to calculate premiums for annuitants, the company must be 
careful not to overestimate mortality.  If it used mortality rates that were too high, the premiums 
charged to policyholders would not be sufficient to cover their annuity benefits.  [1] 

On the other hand, if the company uses mortality rates that are lower than its competitors, its 
policies will be expensive and it is likely to lose business. [½] 

The company should also take account of expected future changes in mortality. [½] 
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Mortality projection 

 

Syllabus objectives 

4.6 Mortality projection 

 4.6.1 Describe the approaches to the forecasting of future mortality rates based 
on extrapolation, explanation and expectation, and their advantages and 
disadvantages. 

 4.6.2 Describe the Lee-Carter, age-period-cohort, and p-spline regression models 
for forecasting mortality. 

 4.6.3 Use an appropriate computer package to apply the models in 4.6.2 to a 
suitable mortality dataset. 

 4.6.4 List the main sources of error in mortality forecasts. 

Objective 4.6.3 is covered in more detail in the R part of Subject CS2. 
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0 Introduction 

The projection of future mortality rates is vital for many actuarial purposes, most obviously 
life insurance and pensions.  If its estimates of future mortality are too low, a life insurance 
company may run into financial difficulties (premiums charged may be too low to allow it to 
meet its financial obligations).  On the other hand, a company offering pensions and 
annuities could become uncompetitive.  If estimates of future mortality are too high, on the 
other hand, the opposite problems may arise: the financial commitments of a pension 
scheme may outweigh its resources, but a life insurance company may offer uncompetitive 
rates and lose business to rival companies whose mortality projections are more accurate. 

Governments, too, need accurate forecasts of future mortality rates.  The future population 
of a country, especially the older age population, depends very much on future mortality 
trends.  In ageing populations, this will have major implications for the provision of state 
pensions (including both the amounts offered and decisions about the pensionable age), 
and the funding of health and social care. 

In the past, mortality projections generally relied on an expectation that previous trends in 
mortality improvements would continue, accompanied by consultation with demographers 
and other experts.  For much of the twentieth century this proved reasonably satisfactory.  
However, more recently these methods have generally underestimated improvements in 
mortality, particularly in the period 1990-2010.  An alternative approach along these lines is 
to suppose that, by some future date, mortality will have reached some target level, and to 
examine different ways in which the schedule of age-specific mortality rates might move 
from their present pattern in order to achieve that target. 

Expectation-based methods are described in Section 1. 

Since the early 1990s, interest has moved towards methods which involve the extrapolation 
of past mortality trends based on fitting statistical models to past data.  Some use time 
series methods like those described in Chapters 13 and 14.  Others are extensions to the 
graduation methods described in Chapter 11.  

These methods are described in Section 2.  

Standard epidemiological analyses presume that changes in mortality are associated with 
changes in mortality rates from specific causes of death.  This is the rationale behind the 
cause-deleted life table approach of examining what would happen if mortality from a 
certain cause of death were eliminated.  This leads to a third set of explanatory methods of 
forecasting which attempt to capture the reasons why mortality rates might vary in the 
future.  

A life table is a computational tool that captures a certain mortality experience (eg based on a set 
of graduated mortality rates) which can be used to calculate probabilities of mortality and survival 
that reflect that experience.  The construction and use of life tables is described in Subject CM1. 

Explanatory methods of mortality forecasting are covered in Section 3. 

The Core Reading in this chapter draws on two very good discussions of mortality 
projection methods: H. Booth and L. Tickle (2008) Mortality modelling and forecasting: a 
review of methods (Australian Demographic and Social Research Institute Working Paper 
no. 3, Canberra, Australian National University); and Chapters 12 and 13 of A.S. Macdonald, 
S.J Richards and I.D. Currie, Modelling Mortality with Actuarial Applications (Cambridge, 
Cambridge University Press).  
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Anyone considering using the methods described in this chapter should consult sources such as 
those mentioned in the above Core Reading.  The details of the above reading, however, will not 
be required for the CS2 exam. 
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1 Methods based on expectation 

Official statistical agencies have traditionally based their mortality projections on simple 
expectations (for example a continued exponential decline in age-specific mortality rates).  
The parameters of the future evolution of mortality have been set either by fitting 
deterministic functions to recent mortality trends, or by inviting experts to indicate how far 
and fast they anticipate mortality to fall, and to set ‘targets’.   

One approach involves the use of reduction factors, ,x tR , which measure the proportion by 

which the mortality rate at age x , xq , is expected to be reduced by future year t  .  We can 

write: 

    /
, ,(1 )(1 )t n

x t x x n xR f    

where x  is the ultimate reduction factor, and ,n xf  represents the proportion of the total 

decline expected to occur in n  years.  Expert opinion is used to set the targets x  and 

, .n xf  

Question 

Identify the value of the reduction factor when (a) 0t  , (b) t n , and (c) t   , and so describe 
the amount of reduction in future mortality that is predicted by this formula in each case. 

Solution 

(a) 0t    

The reduction factor becomes: 

 0
,0 ,(1 )(1 ) 1 1x x x n x x xR f            

So the formula predicts the mortality rate for projection year 0 to be the same as the base 
mortality rate, as it should be. 

(b) t n   

Now the reduction factor becomes: 

 1
, , , ,(1 )(1 ) 1 (1 ) 1 (1 )x n x x n x x x x n x x n xR f f f                  

As x  is the lowest possible value for the reduction factor, it follows that (1 )x  is the 

maximum amount of reduction in future mortality that is assumed to be possible at this age.  So, 
at time n , the formula predicts that  a proportion ,n xf  of the maximum possible reduction will 

have been achieved.  
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(c) t     

In this case the reduction factor becomes: 

 /
, ,lim lim (1 )(1 )t n

x t x x n x x
t t

R f  
 

        

because ,0 1n xf  .  So the formula predicts that the reduction factor at age x  can never be 

lower than x , regardless of how far we project mortality rates into the future. 

 
An example of the use of this formula is shown in the Tables on page 109.  This was used for 
projecting the future mortality of insurance company pensioner lives in the construction of the 
PMA92C20 and PFA92C20 tables.  The calendar year 1992 is the base year for the projection, and 
the mortality rate for lives aged x  in calendar year 1992 t  is: 

 , ,0 ,x t x x tq q R    

where ,0xq  is the (graduated) mortality rate for calendar year 1992.  The value of n  was chosen 

to be 20 and examples of the factors used are shown below:  

Age x  x   20, xf   

60 0.13 0.55 

70 0.304 0.498 

80 0.478 0.446 

90 0.652 0.394 

100 0.826 0.342 

110 1 0.29 

 
So, for example, at the time this projection method was proposed, it was expected that mortality 
rates for people aged 70 in any future year could never reduce to below around 30% of the 
current (1992) mortality rate for people aged 70 – ie a reduction of 70%.  The choice of 0.498 for 

20,70f  meant that about 50% of the total reduction was assumed to occur over the first 20 years 

(ie by calendar year 2012).  So, according to this projection model, the mortality rate for people 
aged 70 in 2012 was projected to be: 

   70,20 70,0 70,20 70,0 70,00.304 0.696 1 0.498 0.653q q R q q            

ie a reduction of around 35% from 1992 values. 
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Question 

(i) Using the values of   and f  given above, calculate the reduction factors and hence the 

projected mortality rates for the shaded entries in the table below: 

 

Age 

Year 

1992 1997 2002 

R   q   R   q   R   q   

60 1 0.005914 0.843 0.004983   

80 1 0.075464    0.867 0.065392 

 
(ii) Use the values in the completed table to describe the view that was taken, about the 

expected future progression of mortality rates, when these projections were made. 

Solution 

(i) Reduction factors and projected mortality rates 

For age 60 in calendar year 2002, the reduction factor is: 

  
10

20
60,10 0.13 0.87 1 0.55 0.713614R       

Hence the projected mortality rate in 2002 is: 

 60,10 60,0 60,10 0.005914 0.713614 0.004220q q R      

Similarly, for age 80 in calendar year 2002, we have: 

  
5

20
80,5 0.478 0.522 1 0.446 0.928348R       

and so: 

 80,5 80,0 80,5 0.075464 0.928348 0.070057q q R      

So the completed table is: 

 

Age 

Year 

1992 1997 2002 

R   q   R   q   R   q   

60 1 0.005914 0.843 0.004983 0.714 0.004220 

80 1 0.075464 0.928 0.070057 0.867 0.065392 
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(ii) Expected progression of mortality rates 

The projection reflects the expectation that: 

 mortality will reduce more quickly at younger ages, and will ultimately reduce by a greater 
percentage than at older ages 

 mortality will reduce more quickly in the short term, the speed of reduction reducing 
gradually the longer the projection period. 

 
The second bullet in the above solution can be more clearly appreciated in the following plot of 
the projected mortality rates at age 80 over the first 30 projection years. 

 
 

Methods based on expectation have been widely used in the past, and have the advantage 
of being straightforward and easy to implement.  However, in recent decades they have 
tended to underestimate improvements, especially for male mortality.  One reason for this is 
that progress on reducing male mortality was slow during the 1950s, 1960s and 1970s 
because of lifestyle factors such as cigarette smoking.  The proportion of men who smoked 
was at a maximum among the cohorts born in the late nineteenth and early twentieth 
centuries, and in the post-War decades these cohorts were reaching the age when 
smoking-related deaths peak.  Since the 1980s, changes in lifestyles, and developments in 
the prevention and treatment of leading causes of death such as heart disease and strokes, 
have meant rapid improvements in age-specific mortality for older men which most experts 
failed to see coming.  

There are theoretical problems, too, with targeting.  The setting of the ‘target’ is a forecast, 
which implies that the method is circular; and setting a target leads to an underestimation 
of the true level of uncertainty around the forecast. 

Question 

List and briefly describe the various sources of uncertainty involved in the mortality rates 
projected in the previous question. 
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Solution 

Errors in the estimation of the graduated (base) mortality rates 

 random error in the observed experience data (on which the base-year graduated rates 
were based) 

 errors in fitting the model for the mortality rates to the experience data in the graduation 
process 

Errors in the projection of the base mortality rates into the future 

 Model error: the formula for ,x tR  will not have exactly the right functional form to 

produce a realistic projection of future mortality rates, regardless of the parameter values 
used. 

 Parameter error: the parameter values will be incorrect, ie the values chosen for x  and 

,n xf  for each x  will be subject to error. 

 Random error: the actual mortality rates will differ from the projected rates due to 
random fluctuations in the mortality experience. 

 Changes to the class of lives involved between past and future, eg if we are projecting 
pensioner mortality, the type of people becoming pensioners in future may differ from 
those who were pensioners when the base mortality rates were calculated.  This may be 
because of changing types of pension arrangements or alternative options available, 
changes in the standard of living amongst pensioners, changes in the mix of pensioner 
lives by nationality, etc.   

 
An alternative approach to generating expectations is to ask the population as a whole 
about its health status and general well-being.  Self-reported health status has been found 
to be a good way of identifying ‘healthy’ and ‘unhealthy’ individuals, but it is not clear that it 
can provide useful information on future longevity at the population level. 
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2 Methods based on extrapolation 

2.1 Stochastic models 

Deterministic approaches based on expectation have been largely superseded, other than 
for short-term forecasting.  More advanced approaches use stochastic forecasting models.   

In this section we describe some commonly used models, but we start with a discussion of 
the factors that apply in forecasting mortality. 

2.2 Age, period and cohort factors 

In general, when forecasting mortality, the problem is to produce estimates of ,x tm , the 

central rate of mortality at age x  at time t , for some future time period, based on data for 

,x tm  over some past time period.   

Recall from Chapter 6 that the central rate of mortality at age x  is defined as: 

 

1

0
1 1

0 0

t x x t
tx

x

t x t x
t t

p dt
q

m

p dt p dt

 


 

 


 
  

xm  is therefore a weighted average of the force of mortality over the year of age [ , 1]x x  .  So: 

  ½x xm    

and, if the force of mortality is assumed to be a constant ( x ) over the year of age, then: 

  x xm   

So we can see that xm  is just a slightly different way of representing the force of mortality over a 

given year of age.  As a result, the maximum likelihood estimate of the force of mortality is also an 
estimate of xm , ie: 

 ˆ x
x c

x

m
E


   

where x  is the number of observed deaths over the year of age, and c
xE  is the corresponding 

central exposed to risk. 

When considering the projection of mortality, we need to consider the future year in which the 
mortality rate is expected to apply, as well as the age of the person in that year.  We include the 
additional time argument t  for this purpose. 

The ,x tm  are defined on the basis of two factors: age x  and time (period) t .   
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If we define t  to be the projection year and x  to be the age reached during that projection year, 
then, for example, 60,2030m  is the expected mortality rate of those people who reach the age 

of 60 during the year 2030. 

Age and period can be combined to produce a third factor, the cohort, defined, say, on the 
basis of date of birth.  Because a person aged x  at time t  will have been born at time ,t x  

age, period and cohort are not independent.  

So the mortality rates 60,2030 61,2031 62,2032, , ,m m m  etc all relate to the same cohort of lives 

born in 1970.    

Forecasting models can be classified according to the number of factors taken into account 
in the forecasting processes, as follows: 

 One-factor models  Age 

 Two-factor models  Age, period OR Age, cohort  

 Three-factor models  Age, period, cohort 

The mortality rates for these three models could be written as: 

 One factor:    xm    (1) 

 Two factor (age and period)  ,x tm   (2)  

 Two factor (age and cohort)  ,x cm    (3) 

 Three factor (age, period and cohort) , ,x t cm   (4) 

So, using these conventions for our example: 

 60,2030 60, 1970 60,2030,1970(2) ; (3) ; (4)m m m    

In two-factor models, it has been usual to work with age and period.  It is possible to work 
with age and cohort, but the cohort approach makes heavy data demands and there is the 
largely insoluble problem that recent cohorts have their histories truncated by the present 
day.   

Question 

Describe and compare the data requirements if we wish to produce a table of projected mortality 
rates for pensioners aged 60-100 in 12 years’ time, using the two alternative forms of the two-
factor model. 

Solution 

Age-period model 

Here we need a long enough period of past data to enable us to assess how mortality has been 
changing with calendar time, so that we can construct the period component of the model.  The 
data will also need to relate to persons attaining all the required ages (60-100) over this historical 
period. 
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Age-cohort model 

Here we need sufficient past data to identify differences in mortality according to cohort (year of 
birth).  The historical data will also need to include experience at the required ages (60-100) so 
that the age component of the model can be assessed. 

Comparison 

For an age-period model, the main issue will be having a long enough investigation period to 
assess the effect of time period accurately enough for our projection purposes.  However, as we 
are only projecting over a relatively short (12-year) period, then this problem should be 
surmountable. 

For an age-cohort model, we need enough years of past data to enable the separate cohort 
effects to be accurately assessed.  For example, persons aged 80 in 12 years’ time will be 68 now, 
and it is probable that we will have past data on this cohort of lives (eg for lives aged 67 last year, 
66 in the year before that, and so on.)  However, for lives aged 60 in 12 years’ time, it will be very 
unlikely that we will have any historical data for this cohort (as they will now be aged 48 and the 
past data relating to pensioners at these ages will be very sparse or even entirely absent). 

Moreover, even for cohorts with some relevant past data, the data may not be sufficient to assess 
the mortality effects accurately enough.  So while we might be able to assess the period 
component of the age-period model on 10-20 years of past data (say), we might need 30 or 40 
years of past data per cohort for the cohort component of the age-cohort model. 

For these reasons the age-cohort model is generally harder to use than the age-period model. 

 
In general, most research has found that cohort effects are smaller than period effects, 
though cohort effects are non-negligible.  Examples include the ‘smoking cohort’ mentioned 
above, of males born between 1890 and 1910, which had higher mortality than expected in 
middle-age, and the ‘golden generation’ born between 1925 and 1945 which had lower 
mortality than expected. 

Three-factor models also have the logical problem that each factor is linearly dependent on 
the other two.  Various approaches have been developed to overcome this problem, though 
none are entirely satisfactory because the problem is a logical one not an empirical one. 
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2.3 The Lee-Carter model 

One of the most widely used models is that developed by Lee and Carter in the early 1990s.  
The Lee-Carter model has two factors, age and period, and may be written as follows: 

Lee-Carter model 

  , ,loge x t x x t x tm a b k    

where: 

 ,x tm  is the central mortality rate at age x  in year t   

 xa  describes the general shape of mortality at age x  (more exactly it is the mean of 

the time-averaged logarithms of the central mortality rate at age x ) 

 xb  measures the change in the rates in response to an underlying time trend in the 

level of mortality k  

 tk  reflects the effect of the time trend on mortality at time t , and 

 ,x t  are independently distributed random variables with means of zero and some 

variance to be estimated. 

So, ignoring the error term, the mortality rate at age x  in projection year t  is: 

  , expx t x x tm a b k   

As written above, the Lee-Carter model is not ‘identifiable’.  To obtain unique estimates of 
the parameters xa , xb , and tk  constraints need to be imposed.   

Constraints imposed in the Lee-Carter model 

The usual constraints are that 1x
x

b   and 0t
t

k  . 

For example, without these constraints, there would be an infinite number of combinations of xb  

and tk  values that could be fitted to the same set of observed data values. 

To understand how all the factors contribute to the overall mortality rate in this model, let’s look 
at a hypothetical example.   

If we assume that mortality is improving with time (something that cannot, however, be taken as 
a given), then the time trend factor tk  would be reducing with increasing time t .  So let’s assume 

for simplicity that tk  decreases linearly over time.   

xb  is the relative impact that the time trend has on mortality rates for a given age x .  Evidence 

generally suggests that the time trend is less apparent at older ages, so we would therefore 
assume that the absolute value of xb  reduces with increasing age x .  
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Question 

In a Lee-Carter model the function tk  is decreasing over time.  At ages below 68 the xb  values 

are positive, and at older ages the xb  values are negative (while satisfying the overall constraint 

that 1x
x

b  .)   

Explain how the time trend in mortality rates in the model differs between the two age ranges. 

Solution 

As tk  is a decreasing function of t , a positive value of xb  means that x tb k  is also a decreasing 

function of t .  So the model predicts that mortality rates will reduce over time at ages below 68.  

Conversely, a negative value of xb  means that x tb k  is an increasing function of t .  So the model 

predicts that mortality rates will increase over time at ages 68 and above. 

 

xa  is the overall ‘age-effect’ on mortality in the model.  We can show that this is equal to the 

average value of  ,ln x tm  over the time period for a given age x .  For a time period of n  years 

and again ignoring the error terms: 

    ,
1 1 1

1 1 1
ln 0

n n n

x t x x t x x x
t t t

m a b k na b a
n n n  

 
       

 
    

The constraint 0tk   was deliberately chosen to make this result hold. 

We can also think of  exp xa  as the projected mortality rate at age x  at the median point in the 

projection period (ie at the time point where 0tk  ).  

The following is a Lee-Carter projection model with a 40-year projection period based on the 
above assumptions.  For simplicity, we have only produced projections for ages 60, 65, 70, 75 
and 80.   
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In this example we have assumed that the time trend factor tk  decreases linearly from 1.5 at 

time 0 down to –1.5 at time 40.  So 1.5 0.075tk t  .  The values used for xa  and  xb  are: 

x   xa   exp( )x xa m   xb   

60 –4.70 0.00910 0.24 

65 –4.10 0.01657 0.22 

70 –3.55 0.02872 0.20 

75 –3.05 0.04736 0.18 

80 –2.60 0.07427 0.16 

 
So, for example: 

   4.34 0.018
60, 60 60exp( ) exp 4.70 0.24(1.5 0.075 ) t

t tm a b k t e e          

and hence: 

 

4.34
60,0

4.34 0.018 10
60,10

4.34 0.018 20
60,20

4.34 0.018 30
60,30

4.34 0.018 40
60,40

0.01304

0.01089

0.00910

0.00760

0.00635

m e

m e e

m e e

m e e

m e e
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From the above, we see that:  

 for every year that we project into the future, the mortality rate 60,tm  is multiplied by a 

factor of 0.018e  (or 0.98216), ie it decreases by approximately 1.8% pa  

 the projected mortality rate in 20 years’ time is equal to the value of 60m .   

Similarly: 

   3.25 0.015
70, 70 70exp( ) exp 3.55 0.20(1.5 0.075 ) t

t tm a b k t e e         

which gives: 

 

3.25
70,0

3.25 0.015 10
70,10

3.25 0.015 20
70,20

3.25 0.015 30
70,30

3.25 0.015 40
70,40

0.03877

0.03337

0.02872

0.02472

0.02128

m e

m e e

m e e

m e e

m e e



  

  

  

  

 

 

 

 

 

  

So this time we multiply by a factor of 0.015e   (or 0.98511) for each year that we project into the 
future and hence the values of 70,tm  decrease by approximately 1.5% pa.  The percentage 

reduction is smaller than that for 60,tm  since 70 60b b .    In fact, we can see from the formula: 

 , exp( )x t x x tm a b k   

that the larger the value of xb , the greater the effect of the time trend factor tk .  

Estimation of the Lee-Carter model 

There are several approaches to estimating the Lee-Carter model. 

 The original approach of Lee and Carter first estimated the xa  as the time-averaged 

logarithms of mortality at each age x .   

 For example, if ,ˆ x tm  is the maximum likelihood estimate (MLE) of ,x tm , then: 

    ,
1

1ˆ ˆln
n

x x t
t

a m
n 

   

 is an MLE of: 

   ,
1

1
ln

n

x t x
t

m a
n 
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 They then used singular value decomposition of the matrix of centred age profiles of 

mortality , ˆloge x t xm a  to estimate the xb  and tk .  (Singular value decomposition 

(SVD) is a way of decomposing a matrix into three component matrices, two of 
which are orthogonal and one diagonal.) 

 The details of this are not needed for the CS2 exam, but an outline of how it works goes as 
follows.  The values of the residual errors , ˆloge x t xm a  for different values of x  and t  

form a matrix ( ,  say)M .  The SVD method then writes this in the form M UDV  where D  

is a diagonal matrix (ie a matrix with zeros everywhere apart from down the main 
diagonal), and U  and V  are matrices chosen to give the correct entries for the matrix M .  
If we now ignore the smaller entries along this diagonal and call this new matrix *D ,  the 
values of * *M UD V  still provide a good approximation to the original values but they 
can now be calculated using a formula with just a few parameters (one for each of the 
non-zero diagonal entries).  We can then use these values in place of the actual residuals 
to obtain a set of smoothed mortality rates. 

 From the formula for the Lee-Carter model: 

   , ,ln x t x x t x tm a b k      

 So the idea of the above process is to find the ‘best’ (eg  maximum likelihood) 
combination of xb  and tk  values that fit the observed values: 

        , , ,
1

1ˆ ˆ ˆ ˆln ln ln
n

x t x x t x t
t

m a m m
n 

     

 In selecting these estimates, the required constraints 1x
x

b   and 0t
t

k   would be 

imposed.  

 Macdonald et al propose an alternative method which makes use of the gnm package 
in R.  In this approach the gnm function is used to obtain estimates of the xa , xb , 

and tk .  These estimates will not satisfy the constraints that 1x
x

b   and 

0.t
t

k    However, a simple adjustment of the estimates produced by the gnm 

function will recover estimates of xa , xb , and tk  which do satisfy these constraints. 

 In R gnm (generalised non-linear models) is a separate package which needs downloading 
and installing independently of the basic R system.  

Forecasting with the Lee-Carter model 

The Lee-Carter model has three sets of parameters, xa , xb ,  and tk .  Two of these relate to 

the age pattern of mortality, whereas the third, tk , measures how mortality evolves over 

time.  Forecasting with the model in practice involves forecasting the tk  while holding the 

xa  and xb  constant.   

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-12: Mortality projection Page 17 

The Actuarial Education Company © IFE: 2019 Examinations 

One obvious approach is to use time series methods such as those described in 
Chapters 13 and 14 to forecast the tk .  Lee and Carter originally used a random walk on the 

differenced tk  series, but other auto-regressive and moving average models described in 

Chapter 13 could be used. 

The random walk model may be written as: 

 1t t t tk k k        

where   measures the average change in the tk  and the t  are independent normally 

distributed error terms with variance 2 .   

Because the random walk model assumes that the average increase in tk  is a constant   per unit 

time, we are essentially assuming tk  varies linearly over time.  This is what we assumed in the 

example Lee-Carter model shown earlier. 

Suppose that 0t  is the latest year for which we have data.  Having estimated   using data 

for 0t t , forecasting can be achieved for the first future period, as: 

 
0 01

ˆ ˆt tk k     

and, in general, for l   years ahead: 

 
0 0

ˆ ˆt l tk k l    

Question 

Suppose the last year for which we have data is 2017.  The estimated value of 2017k  from the 

model is 0.93, and the estimate of   is 0.007 .   

Calculate the predicted value of 2025k . 

 Solution 

The predicted value of 2025k  is: 

 2025 2017
ˆ ˆ (2025 2017) 0.93 0.007 8 0.874k k          

 
While the predicted values for this random walk model appear identical in form to those obtained 
using a standard linear regression model, the error terms are modelled differently. 
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Question 

A linear regression model for tk  might be written as: 

 t tk t      

where: 

 2(0, )t N   

for all values of t .  Explain how this differs from the random walk model of tk  defined in the 

Core Reading. 

Solution 

In the linear regression model, t  is the error between the actual value of tk  and its predicted 

value t  . 

In the random walk model, t  is the error between the actual value of the increment (or increase) 

in the value of tk  from its previous value 1tk  . 

 
So, when we make forecasts using the random walk model, the errors accumulate over time, 
meaning that we are increasingly uncertain about our forecasts further into the future.  In a linear 
regression model, the error (between actual and predicted values) is assumed to be stationary, 
ie it has the same distribution (with constant variance) over time.   

̂  is calculated from observed historical data, and so is itself also subject to uncertainty.  If we 

denote the estimator of   as  , then: 

  
2

var
1nt

 


  

where nt  is the number of past years’ data used to estimate   . 

So: 

    
0

2
2 2var var

1t
n

k I I I
t
 

 
      
   

The standard error of the forecast is therefore given by: 

 
0

( )
1

t l
n

SE k l
t
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The standard error can be used to draw confidence intervals around the predicted values 
of tk .  However, these will underestimate the true forecast error, as they only take into 

account error in the estimation of  .  The overall error in the forecast is made up of two 

components: 

 error in the estimation of   

 the fact that the actual future observations will vary randomly according to the value 

of 2 .  

So the actual future value of the k  parameter in year 0t l  will be given by: 

 
0 0 0

1

ˆ ˆ
l

t l t t j
j

k k l  


     

This formula shows the accumulation of all the (incremental) future error terms we mentioned 
earlier. 

See Macdonald et al for a fuller discussion of this point. 

Question 

Consider again the previous calculation question, where the estimated value of 2017k  is 0.93, and 

the estimate of   is 0.007 .  From this we calculated the predicted value of 2025k  to be 0.874. 

Assume the error terms t  are normally distributed with zero mean and common standard 

deviation 0.0055  , and that the estimates of the model parameters were based on 37 years of 
historical data.  Calculate a 95% confidence interval for the value of 2025k . 

 Solution 

A 95% confidence interval for 2025k  is: 

 2025
ˆ 1.96

1n
k I

t

 
     

 

where the values 1.96  are the upper and lower 2.5% points of the standard normal distribution.  

Putting in the given values, the confidence interval is: 

  0.0055
0.874 1.96 8 0.874 0.01437 0.860, 0.888

37 1

 
       

 

Don’t confuse the nt  notation used here with the Student’s t distribution, which features in some 

similar formulae where we have to estimate the value of   when the variance is unknown. 
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Predicted future mortality rates in year 0t l  are then obtained as: 

 
0 0,

ˆ ˆˆ ˆloge x t l x x t lm a b k    

Advantages and disadvantages of the Lee-Carter model 

The Lee-Carter model has the advantage that, once the parameters have been estimated, 
forecasting is straightforward and can proceed using standard time-series methods, the 
statistical properties of which are well known.  The degree of uncertainty in parameter 
estimates, and hence the extent of random error in mortality forecasts, can be assessed.  
The Lee-Carter model can also be extended and adapted to suit particular contexts, for 
example by smoothing the age patterns of mortality using penalised regression splines (see 
Section 2.5 below). 

Disadvantages of the Lee-Carter model include: 

(1)  Future estimates of mortality at different ages are heavily dependent on the original 
estimates of the parameters xa  and xb .  The forecasting assumes that these remain 

constant into the future.  The parameters xa  (the general shape of mortality at 

different ages), and xb  (the change in the rates in response to an underlying time 

trend in the level of mortality) are estimated from past data, and will incorporate any 
roughness in the past data.  They may be distorted by past period events which 
affected different ages to different degrees.  If the estimated xb  values show 

variability from age to age, it is possible for the forecast age-specific mortality rates 

to ‘cross over’ (such that, for example, 65, 66,ˆ ˆt j t jm m   but 65, 1 66, 1ˆ ˆt j t jm m    ).   

 So in some future years the forecast mortality rate is higher at age 65 than it is at age 66. 

 This can be avoided by smoothing the estimates of xa  and xb . 

(2) There is a tendency for Lee-Carter forecasts to become increasingly rough over 
time. 

(3) The model assumes that the underlying rates of mortality change are constant over 
time across all ages, when there is empirical evidence that this is not so. 

(4) The Lee-Carter model does not include a cohort term, whereas there is evidence 
from UK population mortality experience that certain cohorts exhibit higher 
improvements than others. 

(5) Unless observed rates are used for the forecasting, it can produce ‘jump-off’ effects 
(ie an implausible jump between the most recent observed data and the forecast for 
the first future period). 

Extensions to the Lee-Carter model 

Modifications and extensions to the Lee-Carter approach have been suggested to try to 
overcome the disadvantages listed above.  There is evidence that most of these 
modifications and alternatives to the original Lee-Carter model give lower forecast errors 
than the original in respect of age-specific mortality rates, though there is little difference 
when the expectation of life is considered (For details of this, see H. Booth, R.J. Hyndman, 
L. Tickle and P. de Jong (2006) ‘Lee-Carter mortality forecasting: a multi-country 
comparison of variants and extensions’, Demographic Research 15, pp. 289-310). 
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2.4 The age-period-cohort model 

The use of cohort effects in forecasting 

The Lee-Carter model is a two-factor model, taking into account age and period.  It does not 
account for variations in mortality across cohorts.   

Generally, cohort effects are smaller than period effects, but they have been observed for 
certain countries, including the United Kingdom, the United States, France and Japan.  
Models that take into account cohort effects as well as age and period effects have, in some 
circumstances, proved superior to two-factor models in forecasting. 

Age-period-cohort models have substantial disadvantages: 

 The identification problem: any one factor is linearly dependent on the other two.  
Various solutions to this problem have been proposed, including the use of 
three-way classification in data collection, and the imposition of constraints on 
model parameters. 

 Models incorporating cohort effects impose heavy data demands.  To observe the 
mortality of a cohort over all ages requires around 100 years of data.  Cohort data 
truncated at the current age of the cohort can be used, but a model will be needed to 
estimate the experience of the cohort at older ages. 

Adding cohort effects to the Lee-Carter model 

An age-period-cohort extension of the Lee-Carter model may be written: 

 1 2
, ,loge x t x x t x t x x tm a b k b h      

where t xh   is the overall level of mortality for persons born in year t x .  See 

A. E. Renshaw and S. Haberman (2006) ‘A cohort-based extension of the Lee-Carter model 
for mortality reduction factors’,  Insurance, Mathematics and Economics 38, pp. 556-70.   

So in this model we now have two ‘ xb ’ parameters for each age x :  

 1
xb , which is the extent to which the time trend affects mortality rates at age x , and 

 2
xb , which is the extent to which the cohort affects mortality rates at age x . 

The superscripts on the symbols are not powers, but indicate the two different parameter values 

at the given age.  1
xb  is exactly equivalent to xb  in the standard Lee-Carter model.  If we use c  to 

represent the cohort year (as we did in Section 2.2 above), then we could alternatively write the 
age-period-cohort Lee-Carter model as: 

 1 2
, , ,loge x t c x x t x c x tm a b k b h      

which shows more clearly how the three factors (age x , period t  and cohort c ) all influence the 
projected mortality rate.  

In this case the t xh   can be estimated from past data and the forecasting achieved using 

time series methods similar to those described for the tk  parameter in Section 2.3 above. 
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2.5 Forecasting using p-splines 

In Chapter 11, the idea of graduation using splines was introduced.  In this section, we 
extend this idea to forecasting. 

Splines 

We first recap how splines are used for modelling a set of observed mortality rates that are 
assumed to vary only according to age x , ie using a single factor model.  

Recall from Chapter 11 that a spline is a polynomial of a specified degree defined on a 
piecewise basis.  The pieces join together at knots, where certain continuity conditions are 
fulfilled to ensure smoothness.  In Chapter 11, the splines were fitted to an age schedule of 
mortality, so the knots were specified in terms of ages.  Typically, the polynomials used in 
splines in mortality forecasting are of degree 3 (ie cubic).   

In Chapter 11 we saw that the (natural) cubic spline function, with n  knots at values 1 2, , ... nx x x , 

is defined as: 

 0 1
1

( ) ( )
n

j j
j

f x x x   


     

where: 

 3

0
( )

( )

j
j

j j

x x
x

x x x x


 
 

 

Question 

State the continuity conditions that are incorporated in this function, which ensure the 
smoothness of the joins between the successive cubic functions at each knot. 

Solution 

The continuity conditions are, for each knot (ie at values 1 2, , ... nx x x ): 

 the value of the cubic leading into the knot and leading out of the knot are equal at the 
knot 

 the first derivative of the of the cubic leading into the knot and leading out of the knot are 
equal at the knot 

 the second derivative of the cubic leading into the knot and leading out of the knot are 
equal at the knot. 

We also impose the condition that before the first knot, and after the last knot, the spline 
function is linear.   
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So, we can find the ‘best’ cubic spline function that fits the observed mortality rates across the 
observed age range, choosing a function that gives the desired compromise between smoothness 
from age to age and adherence to the observed data values at each age.  

To construct the model, we choose the number of knots (and hence the number of splines 
to use), and the degree of the polynomials in each spline.  We can then use the splines in a 
regression model, such as the Gompertz model. 

To illustrate, the Gompertz model can be written as: 

 log [ ( )] log c
e x e xE D E x     (1) 

where ( xE D ) is the expected deaths at age x , c
xE  is the central exposed to risk at age x , 

and   and   are parameters to be estimated.   

Rearranging (1): 

   ln[ ( )] ln c
x xE D E x     

which is equivalent to: 

 
( )

ln x
c
x

E D
x

E
 

 
  

  
   (2) 

where 
( )x

c
x

E D

E
 is the true force of mortality   for lives labelled as aged x  (since  ( ) c

x xE D E ).   

If the age definition for deaths and exposed to risk is ‘age nearest birthday’, then this will be the 
force of mortality at exact age x , ie x . 

Question 

Show how the Gompertz model just defined relates to the Gompertz law (as shown on page 32 of 
the Tables). 

Solution 

With deaths and exposed to risk aged x  nearest birthday, from (2) the Gompertz model can be 
written: 

 
( )

ln lnx
xc

x

E D
x

E
  

 
   

  
  (3) 

The Gompertz law for the force of mortality at exact age x  is usually written as: 

 x
x Bc    
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This gives: 

 ln ln lnx B x c    

So (3) represents the Gompertz law with B e  and c e . 

However the Gompertz law is a deterministic formula, whereas the Gompertz model is a 
stochastic model of the number of deaths occurring in a specified age group.  So instead of writing 
the model as in (3) we could alternatively define it in stochastic form by replacing ( )xE D  with xD : 

 ln x
xc

x

D
x e

E
 

 
   

  
 

where xe  is a random error term with mean zero (and for which a probability distribution would 

need to be assumed). 

 
If in (1) we replace the term x   by a smooth function defined using splines, we have: 

 
1

log [ ( )] log ( )
s

c
e x e x j j

j
E D E B x


    (4) 

where ( )jB x  are the set of splines, and j  are the parameters to be estimated.  The number 

of splines is s  (see Macdonald et al). 

So all we are doing here is replacing the (relatively inflexible) function x   with the (much 

more flexible) cubic spline function.  We should be able to get a much better fit to the observed 
data than if we just tried to fit the Gompertz law itself.    

In this equation the j  and ( )jB x  correspond to the j  and ( )j x  that we used earlier in this 

chapter (and in Chapter 11) for splines. 

A difference between (4) and the spline graduations we described in Chapter 11 is that, in 
Chapter 11 we fitted the spline directly to observed values of ˆx , whereas here we are fitting the 

spline to observed values of ˆln x , ie using log-transformed data. 

To see that this is the case, consider: 

 
( ) ( )

ln ln ( ) ln lncx x
x x x x xc c

x x

E D E D
E D E

E E
  

 
      

  
  

Comparing this with Equation (4) we can see that the spline function is being used to model ln x . 

Question 

Give one reason for using the log-transformed data in this way. 
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Solution 

Mortality for the middle and older ages generally varies approximately exponentially with 
increasing age, so the logarithm of the mortality rate would be expected to follow an 
approximately linear progression.  By transforming the data in this way, we can expect to be able 
to use a simple polynomial to fit the data. 

 

p-splines 

Spline models will adhere more closely to past data if the number of knots is large and the 
degree of the polynomial in the spline function is high.  For forecasting, we ideally want a 
model which takes account of important trends in the past data but is not influenced by 
short-term ‘one-off’ variations.  This is because it is likely that the short-term variations in 
the past will not be repeated in the future, so that taking account of them may distort the 
model in a way which is unhelpful for forecasting.  On the other hand, we do want the model 
to capture trends in the past data which are likely to be continued into the future. 

Models which adhere too closely to the past data tend to be ‘rough’ in the sense that the 
coefficients for adjacent years do not follow a smooth sequence.   

By this we mean that the sequence of estimated parameter values 1 2
ˆ ˆ ˆ, , ..., s    forms an uneven 

progression.  In practice, it is found that roughness in these parameters also leads to a 
corresponding roughness in the mortality rates that are predicted by the fitted model.  So if we 
can reduce the roughness in the fitted parameters, we should consequently produce a model with 
a smoother progression of mortality rates from age to age.    

The method of p-splines attempts to find the optimal model by introducing a penalty for 
models which have excessive ‘roughness’.  The method may be implemented as follows:  

 Specify the knot spacing and degree of the polynomials in each spline. 

 Define a roughness penalty, ( )P  , which increases with the variability of adjacent 

coefficients.  This, in effect, measures the amount of roughness in the fitted model. 

 ( )P   is a function of the fitted parameter values 1 2
ˆ ˆ ˆ, , ..., s    such that, the more 

irregular the progression of 1 2
ˆ ˆ ˆ, , ..., s    is, the higher ( )P   will be.  

 Define a smoothing parameter,  , such that if 0  , there is no penalty for 
increased roughness, but as   increases, roughness is penalised more and more. 

 Estimate the parameters of the model, including the number of splines, by 
maximising the penalised log-likelihood 

  
1

( ) ( ) ( )
2pl l P      

 where ( )l  is the log-likelihood from model (4). 

So when we wish to estimate the parameters 1 2, , ..., s    (and also the value of the number of 

knots s ), we first define a likelihood function (in terms of those parameters) that is proportionate 
to the probability of the observed mortality rates occurring.  The ‘log-likelihood’ is the natural log 
of this function. 
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The penalised log-likelihood is effectively trying to balance smoothness and adherence to 
the data. 

As the ‘rougher’ values of 1 2
ˆ ˆ ˆ, , ..., s    would cause the mortality rates to adhere more closely to 

the data, so the normal (unpenalised) maximum likelihood estimates would tend to result in 
parameters (and hence fitted mortality rates) that do not progress as smoothly as desired.  The 
penalty factor means that the estimation process automatically compensates for this feature.  We 
can exercise some control over the balance between smoothness and adherence both through 
the choice of penalty function and by changing the value of  .  

Question 

Explain why the following might be a suitable choice of penalty function: 

      2 2 2
1 2 3 2 3 4 2 1( ) 2 2 2s s sP                       

Solution 

The function can be alternatively written as: 

               2 2 2
3 2 2 1 4 3 3 2 1 1 2( ) s s s sP                             

This is the same as: 

 
     

     

2 22
2 1 3 2 1 2

2 2 22 2 2
1 2 2

( ) s s

s

P       

  

 



         

      




 

where r  indicates the value of the r th order difference.  So, minimising ( )P   will attempt to 

select values of j  that minimise the sum of the 2nd differences, in a similar way to the 

smoothness test in graduation, where we want the 3rd differences to be small. 

For example, let’s define: 

  , , ( ) ( )f a b c c b b a     

and compare the values of this function for the sequence (4, 5, 7)  and the sequence (4, 7, 5) .  The 

function yields: 

 
(4, 5, 7) (7 5) (5 4) 2 1 1

(4, 7, 5) (5 7) (7 4) 2 3 5

f

f

      

        
  

So the ‘rougher’ progression yields the larger absolute value of the second difference.   
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Squaring the function ensures that the higher absolute values are the most penalised (by making 
all the values positive), and also places a proportionately greater penalty on the larger absolute 
differences.  This should ultimately result in a smoother final outcome.   

 

Forecasting  

We now turn to forecasting future mortality rates by age x  and time period t , ie using a 
two-factor model.  The basic process is to use a (spline) function to model values of ,ln x tm  by 

time period (or year) t , using a different spline function for each age (or group of ages) identified 
by x .  So now we are fitting the function by time period, rather than by age. 

So we have: 

 , ,
1

log [ ( )] log ( )
s

c
e x t e x t j j

j
E D E B t


   

or: 

 ,
1

ln ( )
s

x t j j
j

m B t


        (5) 

Recall that if x  is an integer and we are grouping data by age nearest birthday, then the mortality 
functions   and m  are essentially interchangeable. 

Forecasting using p-splines is effected at the same time as the fitting of the model to past 
data.  The past data used will consist of deaths and exposures at ages x  for a range of past 
years t .   

Forecasting may be carried out for each age separately, or for many ages simultaneously.  
In the case of a single age x , we wish to construct a model of the time series of mortality 
rates ,x tm  for age x  over a period of years, so the knots are specified in terms of years.  

Having decided upon the forecasting period (the number of years into the future we wish to 
forecast mortality), we add to the data set dummy deaths and exposures for each year in the 
forecast period.  These are given a weight of 0 when estimating the model, whereas the 
existing data are given a weight of 1.  This means that the dummy data have no impact 
on ( )l  .  We then choose the regression coefficients in the model (5) so that the penalty 

( )P   is unchanged.   

p-spline forcasting for single years of age or for many ages simultaneously can be carried 
out using the MortalitySmooth package in R.  

Advantages and disadvantages of the p-spline approach 

The p-spline approach has the advantages that it is a natural extension of methods of 
graduation and smoothing, and it is relatively straightforward to implement in R. 
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It has the following disadvantages: 

 When applied to ages separately, mortality at different ages is forecast 
independently.  So there is a danger that there will be roughness between adjacent 
ages.  This can be overcome by fitting the model and forecasting in two dimensions 
(age and time) simultaneously.   

 There is no explanatory element to the projection (in the way that time-series 
methods use a structure for mortality and an identifiable time series for projection). 

So, when we fit the model we will obtain a set of numbers for the spline coefficients, but 
these don’t have any natural interpretation, and so it is not easy to compare different 
models in terms of the differences in the parameter values obtained. 

 p-splines tend to be over-responsive to an extra year of data (though this can be 
ameliorated by increasing the knot spacing). 

This means that if we fit the model to n  years of data, and fit it again to 1n  years of 
data (eg because we’ve just gathered another complete year of observed experience), the 
model changes more dramatically than we would normally expect (eg compared to the 
case where we are fitting a standard mathematical formula like the Gompertz model).  

Extensions and combinations with the Lee-Carter model 

Several variations on the p-spline approach have been proposed. 

R.J. Hyndman and M.S. Ullah (2007) ‘Robust forecasting of mortality and fertility rates: a 
functional data approach’, Computational Statistics and Data Analysis 51, pp. 4,942-4,956, 
proposed a model which combines the p-spline method with the Lee-Carter model.  This can 
be written as follows: 

 , ,
1

log ( ) error term
J

e x t x t j j
j

m a k b x


    

Here, the xa  represent the average pattern of mortality across years, but smoothed using 

p-splines.  The term ,
1

( )
J

t j j
j

k b x

  replaces the x tb k  in the Lee-Carter model: ( )jb x  are 

basis functions and ,t jk  are time series coefficients.  For each age x  there is a set of J  

such functions and coefficients, estimated using principal components decomposition. 
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The second term is an attempt to allow the model to be structured according to the factors that 
the historical data indicate are significant for the mortality projection.  For example, the data may 
indicate that different time trends are operating for smokers (S) and non-smokers (NS).  So, we 
might then construct the model with the following parameters (showing two ages for example): 

 

Category j  

 

,t jk  

( )jb x  

40x   60x   

Non-smoker , 1.6 0.08t NSk t   (40) 0.24NSb   (60) 0.18NSb   

Smoker , 0.8 0.04t Sk t   (40) 0.32Sb   (60) 0.15Sb   

 
So, according to this model, the time trend has a greater effect: 

 for non-smokers than smokers (because tk  has a steeper negative gradient with t  for 

non-smokers than smokers) 

 for younger ages than older ages (because in all cases (40)b  is greater than (60)b ), there 

being a bigger age effect for smokers than non-smokers (because the difference between 
(40)b  and (60)b  is bigger for smokers than for non-smokers). 
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3 Methods based on explanation 

In this section, we will consider models that take into account the different causes of mortality, 
such as cancer and heart disease. 

The previous approaches take no, or only limited, cognisance of the causal factors 
underlying mortality.  Since causal factors are quite well understood, at least at a general 
level, it might be thought sensible to use this knowledge in forecasting.  For example, if 
cancer is a leading cause of death in a country, and if it seems likely that a significant 
breakthrough in the treatment of cancer is likely, this could be explicitly taken account of in 
mortality projections for that country.   

Question 

Suppose the current mortality rate at age 70 for males in a particular country is 0.01 pa.  An 
analysis of the causes of mortality at this age reveals that 35% of deaths are due to heart disease, 
40% from cancer, and 25% from all other causes.   

Due to the introduction of a revolutionary new treatment, next year it is predicted that the 
mortality rate of males aged 70 due to cancer will be 90% of the current rate.  At the same time, it 
is predicted that the mortality rate due to heart disease will increase by 2% and that due to other 
causes will increase by 1% of their current rates. 

(i) Give a possible reason why the deaths from causes other than cancer might have 
increased. 

(ii) Calculate the expected population mortality rate for male lives aged 70 in one year’s time. 

 Solution 

(i) Why mortality rates from other causes have increased 

Those people who survive the risk of dying from cancer are nevertheless still exposed to the risk 
of dying from the other possible causes.  As the ‘exposed to risk’ of dying from other causes has 
increased, all else being equal we would expect the total number of deaths due to these other 
causes to rise slightly. 

(ii) Projecting the overall mortality rate 

The current rates of mortality of males aged 70 are: 

Heart disease 0.0035 

Cancer 0.0040 

Other  0.0025 

Total 0.01 
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The projected changes lead to the following expected mortality rates by cause of death in one 
year’s time: 

Heart disease 0.0035 1.02 = 0.003570

Cancer 0.0040 0.9  = 0.003600

Other  0.0025 1.01  = 0.002525

Total   0.009695

 
So it is predicted that overall the mortality rate for this age group will reduce by around 3% over 
the next year. 

 

Cause-deleted life table approach 

Consider the following extract from the ELT15 (Males) mortality table (shown on page 69 of the 
Tables): 

Age x  xl   xd   xq   

65 79,293 1,940 0.02447 

66 77,353  2,097 0.02711 

67 75,256   

 
In this table: 

 xl  is the expected number of people surviving to exact age x  

 xd  is the expected number of people dying in the year between exact age x  and exact 

age 1x   

 xq  is the probability of a person who is currently aged exactly x , dying between exact age 

x  and exact age 1x  . 

Question 

Write down a formula for xq  in terms of xl , xd , or both. 

 Solution 

The probability of dying during the year can be calculated as the proportion of lives, currently 
aged x , who are expected to die during the year.  That is: 

 
expected deaths between  and 1

number of survivors at exact age 
x

x
x

dx x
q

x l
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Alternatively, because the number dying during the year is the difference between the numbers 
of survivors at the start and end of the year, we can write: 

 1x x
x

x

l l
q

l


  

or: 

 11 x
x

x

l
q

l
   

 
Now let’s suppose that 10% of the deaths at each of the ages shown in this extract are caused by 
a particular type of cancer.  A new cure for this illness has been introduced that is expected to 
halve the deaths from this cause in the coming year and to eliminate them altogether in all years 
thereafter. 

Question 

Consider a cohort of people currently aged exactly 65, who in the absence of the new cure were 
originally expected to follow the mortality of the ELT15 (Males) table over their next two years of 
age.  Recalculate the entries for xd , xl , and xq  in the above life table, allowing for the changes in 

death rates from this particular cancer that have been predicted for the next two years. 

Solution 

In the first year, 10% of the expected deaths at age 65 were due to this cancer.  This is: 

 0.1 1,940 194    

Halving the expected number of deaths from this cause means that the revised value of 65d  is: 

 65 1,940 0.5 194 1,843d      

(Alternatively this can be calculated as 1,940 0.95 .)  

The revised mortality probability is therefore: 

 65
1,843

0.02324
79,293

q    

The revised number of expected survivors at age 66 is: 

 66 65 65 79,293 1,843 77,450l l d        

The mortality rate at age 66 will now reduce to 90% of its original value (as we have eliminated all 
10% of the deaths that were previously expected in this year of age).  This mortality rate is 
therefore: 

 66 0.02711 0.9 0.02440q      
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So the revised expected number of deaths at age 66 is: 

 66 66 77,450 0.02440 1,890l q      

The number of survivors expected at age 67 is: 

 67 66 66 77,450 1,890 75,560l l d        

So the revised life table looks like this: 

Age x   xl   xd    xq   

65 79,293 1,843 0.02324 

66 77,450  1,890 0.02440 

67 75,560   

 

 
The above projection is not quite accurate as we have not allowed for the increased mortality that 
would be expected from other causes. 

Multiple state modelling 

Greater sophistication in this approach might be achieved using multiple state Markov jump 
process models (as described elsewhere in this course).  The states in the model might include: 

 Healthy 

 Disease state 1 

 Disease state 2 

 … 

 Disease state n   

 Dead. 

The model could incorporate transitions: 

 from healthy to each disease state 

 from healthy to dead (without visiting any disease state) 

 from each disease state to dead 

 from each disease state back to healthy (as appropriate) 

 between the different disease states (as appropriate). 

Such an approach is obviously complex and can involve a huge number of parameters (transition 
rates).  The reliability with which this modelling can be carried out is also doubtful at the present 
time.  Some reasons for this are described below. 
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It might seem surprising that progress in using the explanatory approach has been limited.  
However, the methods require either that long lags are specified between changes in the 
risk factors and changes in mortality, or that the risk factors themselves be forecasted, and 
forecasting developments in the risk factors is likely to be almost as difficult as forecasting 
mortality. 

Decomposition of mortality by cause of death is an integral part of the explanatory 
approach.  However, in practice it is difficult to achieve successfully.  The reasons include: 

 cause of death reporting is unreliable, especially at older ages (where an increasing 
proportion of deaths occur) 

 causes of death often act synergistically, so it is not realistic to posit a single cause 
of death 

 elimination of one cause of death might ‘unmask’ another cause that would not have 
been identified previously 

 the time series of data are often rather short. 
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4 Sources of error in mortality forecasts 

Mortality forecasts are always wrong.  It is of interest to know how wrong they are likely to 
be, and what the main sources of error are.  The latter is important not so much because it 
will help to eliminate errors (this is not possible) but so effort can be focused on the areas 
most likely to cause the forecasts to be at variance with reality, or on the elements of the 
process to which the sensitivity of the outcome is greatest. 

Alho, J.M. (1990) ‘Stochastic methods in population forecasting’, International Journal of 
Forecasting 6, pp. 521-30, classified sources of error as follows: 

1. Model mis-specification.  We might have the wrong parameterisation function, or the 
wrong model. 

2. Uncertainty in parameter estimates. 

3. Incorrect judgement or prior knowledge.  The data set we use as the basis may not 
accurately reflect the mortality we wish to model. 

4. Random variability, including the randomness in the process generating the 
mortality, short term variation due to severe winters or hot summers. 

5. Errors in data (for example age-misstatement). 

In addition, in actuarial applications, especially with small portfolios, the financial risk may 
be concentrated (for example in a small number of high net worth policyholders). 

See S.J. Richards and I.D. Currie (2009) ‘Longevity risk and annuity pricing with the 
Lee-Carter model’, British Actuarial Journal 15(65), pp. 317-65 for a further discussion of the 
risks inherent in mortality forecasting. 

There is a tendency to focus on uncertainty in parameter estimates.  This focus may be 
misdirected.  Stochastic models are good at calculating the level of uncertainty in parameter 
estimates (for example through bootstrapping) and random variability.  But they cannot, of 
themselves, help with model mis-specification or incorrect judgement. 

Bootstrapping is where our existing sample of data (of say n  observations) is used as a population 
from which random smaller samples (of say m n  observations) are repeatedly taken and the 
parameter value estimated each time.  The extent of error observed in these parameter estimates 
can give a good indication of the uncertainty inherent in parameters estimated from sampling in 
general. 

Forecast errors are often correlated, either across age or time.  If errors are positively 
correlated, they will tend to reinforce one another to widen the prediction interval (the 
interval within which we believe future mortality to lie).  If they are negatively correlated, 
they will tend to cancel out.  Normally, positive correlation is to be expected in mortality 
forecasting. This is because we believe age patterns of mortality to be smooth, so the 
mortality rate at any age contains information about the mortality rate at adjacent ages; and 
because any period-based fluctuations in mortality are likely to affect mortality at a range of 
ages. 

For example, if a large (unforecast) reduction in the mortality rate at age 70 occurs as the result of 
a new medical treatment, this is likely to affect the mortality rates at neighbouring ages as well.  
So the forecast error will be more similar at these ages than if the errors were independent (ie the 
errors will tend to be positively correlated).   
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Chapter 12 Summary 

Mortality projection 

Projections of mortality can be made using two-factor models (age x  and time period t , or 
age x  and cohort c ), or three-factor models (age, time period and cohort).  In three-factor 
models the factors are linked by x t c  . 

It is important to know the advantages and disadvantages of using the various two and 
three-factor models. 

The three projection approaches are based on expectation, extrapolation, and explanation.  

Methods based on expectation 

These use simple deterministic models (eg reduction factors), based on expectations of 
target future mortality rates based on expert opinion and/or on recent historical trends. 

Methods based on extrapolation 

Lee-Carter model 

Two-factor stochastic model (age and period): 

 , ,loge x t x x t x tm a b k     

where: 

 xa  is the mean value of ,ln x tm 
   averaged over all periods t  

 tk  is the effect of time t  on mortality (with 0t
t

k  ) 

 xb  is the extent to which mortality is affected by the time trend at age x  (with 

1x
x

b  ) 

 x tb k  is the effect of time t  on mortality at age x   

  ,x t  is the error term (independently and identically distributed with zero mean and 

common variance). 

Time series methods are used to model tk . 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 38  CS2-12: Mortality projection 

© IFE: 2019 Examinations The Actuarial Education Company 

 
 

The parameters are estimated by: 

  ,
1

1 ˆln
n

x t
t

m
n 
  is used to estimate xa  

  ,ˆ ˆln x t xm a  is used to estimate xb  and tk  

Age-period-cohort version of the Lee-Carter model: 

 1 2
, ,loge x t x x t x x t x tm a b k b h      

where: 

 xa  can be fitted (and therefore smoothed) using p-splines 

 ch  is the effect of cohort year c  on mortality 

 2
xb  is the extent to which mortality is influenced by the cohort effect at age x . 

Multi-factor extension of the Lee-Carter model: 

 , , ,
1

log ( )
J

e x t x t j j x t
j

m a k b x 


    

where: 

 ,t jk  is the effect of the time trend on mortality at time t  for group j  

 ( )jb x  is the extent to which mortality is influenced by time for group j  at age x  

It is important to know the advantages and disadvantages of the Lee-Carter model. 

Splines 

Spline functions can be used for modelling mortality rates by age using: 

  
1 1

log [ ( )] log ( ) ln ( )
s s

c
e x e x j j x j j

j j

E D E B x m B x 
 

      

For a cubic spline with s  knots at ages 1 2, , ... sx x x : 

 3

0
( )

( )

j
j

j j

x x
B x

x x x x

 
 

 

To use splines for modelling mortality rates by time period, rather than age, the ( )jB x  would 

be replaced by ( )jB t  with respect to knots at times 1 2, , ... st t t . 
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p-splines 

When estimating the parameters 1 2
ˆ ˆ ˆ, , ... s    using maximum likelihood techniques, we 

maximise the penalised log-likelihood: 

 
1

( ) ( ) ( )
2pL L P       

where ( )P   is a roughness penalty that increases with the degree of irregularity in the 

progression of 1 2
ˆ ˆ ˆ, , ... s   .  This is designed to produce a smoother progression of fitted 

rates with age and/or duration. 

Methods based on explanation 

Projections are made separately by cause of death and combined. 

Possible methods include: 

 cause-deleted life table approach 

 multiple state (Markov) modelling 

Difficulties of the approach include: 

 forecasting future changes in the risk factors / disease states 

 allowing for the lag between changes in the risk factors and their effect on mortality 

 difficulties in identifying and categorising the cause of death 

Sources of error in mortality forecasting 

The main sources of error are: 

 model mis-specification 

 parameter uncertainty 

 incorrect judgement or prior knowledge 

 random variation, including seasonal effects 

 data errors. 
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Chapter 12 Practice Questions 

12.1 (i) Explain the notation and meaning of the parameters x  and ,n xf   in the following 

reduction factor formula: 

     /
, ,1 1

t n
x t x x n xR f        

(ii) State briefly how the values of these parameters are usually determined.  

(iii) The mortality rate for the base year of a mortality projection has been estimated to be: 

  60,0 0.006m    

 It is believed that the minimum possible mortality rate for lives aged 60 is 0.0012.  It is 
also believed that 30% of the maximum possible reduction in mortality at this age will 
have occurred by ten years’ time. 

 Using an appropriate reduction factor, calculate the projected mortality rate for lives aged 
60 in 20 years’ time.  

(iv) Describe the advantages and disadvantages of using an expectation-based approach to 
mortality projections.  

12.2 (i) Discuss a major difficulty that is present in a three-factor age-period-cohort mortality 
projection model that is not found in either an age-period or age-cohort model. [1] 

(ii) The following Lee-Carter model has been fitted to mortality data covering two age groups 
(centred on ages 60 and 70), and a 41-year time period from 1990 to 2030 inclusive: 

   , ,ln x t x x t x tm a b k      

 (a) Define in words the symbols xa , xb , tk  and ,x t . 

 (b) State the constraints that are normally imposed on xb  and tk  in order for the 

model to be uniquely specified. 

 (c) In this model tk  has been set to cover a 41-year time period from 1990 to 2030 

inclusive, such that for projection (calendar) year t : 

   1 0.02t t tk k e      

  where te  is a normally distributed random variable with zero mean and common 

variance.  

  Identify the numerical values of tk  ( 1990,1991, ...2029,2030t  ), ignoring error 

terms.  Hint: they need to satisfy the constraint for tk  that you specified in 

part (b). [5] 

Exam style 
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(iii) Mortality has been improving over time for both ages included in the model in part (ii).  
You have been given the following further information about the model: 

  60 703b b   

  60,2010ˆ 0.00176m    

  70,2010ˆ 0.01328m    

 where  is the predicted mortality rate at age  in calendar year  calculated from the fitted 
model (ie ignoring error terms). 

 (a) State what the above information indicates about the impact of the time trend on 
mortality at the two ages. 

 (b) Use the above information to complete the specification of the model. 

 (c) Use the model to calculate the projected values of  and .  [6] 

(iv) Describe the main disadvantages of the Lee-Carter model. [3] 
    [Total 15] 

12.3 You have fitted a model to mortality data that are subdivided by age  and time period , with a 
view to using the model to project future mortality rates.  For a particular age , the model is 
defined as: 

 2
, ,ln ( ) ln c

x t x tE D E a bt ct          

where ,x tD  is the random number of deaths, and ,
c
x tE  is the central exposed to risk for age 

group x   in time period  t  ( 0t   is the year 1975).  

(i) If ,x tm  is the central rate of mortality for exact age x  in time period t , show that the 

above model is equivalent to: 

  
2

,
t t

x tm A B C   

 stating the values of the parameters A , B  and C .  
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(ii) The model had been fitted to existing data covering the years 1975 to 2017 inclusive.  At 
age 55 the maximum likelihood estimates of the parameters are: 

  ˆˆ ˆ6, 0.007, 0.00007a b c       

 and a plot of the predicted values of 55,tm  is shown in the graph below: 

 

 A colleague has commented that this model is not an adequate fit to the observed data 
and suggests replacing the quadratic function with a cubic spline function, again fitting a 
different function for each age. 

 (a) Set out the revised mortality projection model that uses a cubic spline function as 
suggested by your colleague, defining all the symbols used.  

 (b) Give a possible reason for the inadequate fit of the original model and explain 
how the use of the cubic spline function could improve the model as suggested.  

 (c) A second colleague has challenged the use of cubic splines for this purpose, 
arguing that the resulting fitted model tends to be too ‘rough’. 

  Explain what is meant by ‘rough’ in this context, and describe how the method of 
p-splines could be used to help address this difficulty.  

(iii) Describe the disadvantages of using the p-spline approach.  
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12.4 In a particular country, Y and Z are important terminal diseases that are significant causes of 
death for men at older ages.  The following represents a Markov jump model of the process, for 
male lives aged 70, showing annual constant transition rates: 

 

 

 

 

 

 

 

 

 

 

 

 

(i) Calculate the probability that a healthy male life aged exactly 70 is dead by the end of the 
coming year.   

(ii) An early diagnosis of Disease Z can prevent the disease from entering the terminal phase 
and can lead to a full recovery. 

 A national screening programme has been planned that will increase the rates of early 
diagnosis of Disease Z, and this is expected to reduce the rate of contracting the terminal 
phase of the illness by 70% of the current rate (ie the transition rate from H to Z in the 
above Markov model should reduce by 70%).  All other transition rates are expected to 
remain the same as before. 

 Calculate the revised probability of dying over the year, and hence the percentage 
reduction in the overall probability of mortality achieved.  

(iii) Without performing any more calculations, explain whether a similar screening 
programme for Disease Y (which would reduce the transition rate from H to Y by 70%) 
would result in a greater or lower percentage reduction in the overall 1-year probability of 
mortality.   

Healthy 

H 

Disease 

Y 

Disease 

Z 

Dead 

D 

0.005 0.007 

0.014 

0.4 0.7 
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Chapter 12 Solutions 

12.1 (i) Interpretation of the reduction factor parameters 

x  is the lowest level, expressed as a proportion of the current mortality rate at age x , to which 

the mortality rate at age x  can reduce at any time in the future.  

,n xf  is the proportion of the maximum possible reduction (of (1 )x ) that is expected to have 

occurred by n  years’ time.  

(ii) How the parameters are determined 

Both parameters could be set by expert opinion, perhaps assisted by some analysis of relevant 
recent observed mortality trends.  

(iii) Projected mortality rate at age 60 in 20 years’ time 

We can first calculate 60  as: 

 60
0.0012

0.2
0.006

      

We are also given that 10,60 0.3f  , so we need: 

 20/10 2
60,20 60 60 10,60(1 )(1 ) 0.2 0.8 (1 0.3) 0.592R f             

Hence the projected mortality rate at age 60 in 20 years’ time is: 

 60,20 60,0 60,20 0.006 0.592 0.003552m m R      

(iv) Advantages and disadvantages of using an expectation approach 

Advantages 

 The method is easy to implement.  

Disadvantages 

 The effect of such factors as lifestyle changes and prevention of hitherto major causes of 
death are difficult to predict, as they have not occurred before, and experts may fail to 
judge the extent of the impact of these on future mortality adequately.  

 Because the parameters are themselves target forecasts, there is a circularity in the 
theoretical basis of the projection model (because forecasts are being used to construct a 
model whose purpose should be to produce those forecasts).  

 Setting the target levels leads to an under-estimation of the true level of uncertainty 
around the forecasts.  
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12.2 (i) Difficulty of age-period-cohort models 

Three-factor models have the logical problem that each factor is linearly dependent on the other 
two.  So we need to ensure that the three arguments of the function work together in a 
consistent way in the formulae. [1] 

(ii)(a) Definitions  

In the Lee-Carter model:     

 xa  is the mean value of  ,ln x tm  averaged over all periods t  [½] 

  is the effect of time  on mortality  [½] 

 xb  is the extent to which mortality is affected by the time trend at age x  [½] 

 ,x t  is the error term (independently and identically distributed with zero mean and 

common variance). [½] 

(b) Constraints 

The constraints are: 

 0t
t

k    [½] 

 1x
x

b    [½] 

(c) Numerical values of tk   

tk  is a linear function of calendar year t , whose values must sum to zero over the 41-year time 

period.  So the function needs to pass through zero when t  takes its central value (2010).  Hence: 

 0.02 ( 2,010)tk t     

which gives: 

 0.4, 0.38, .... 0.38, 0.4tk     for 1990,1991, ...2029,2030t   respectively. [2] 

(iii)(a) Effect of time trend at different ages 

Mortality rates at age 60 are assumed to be improving at three times the rate at which they are 
improving at age 70.  [1] 

(b) Complete the specification of the model 

We need values of xa  and xb  at both ages. 

As mortality rates are improving at both ages, the values of 60b  and 70b  are both positive.  Using 

60 70 1b b   we have: 

 70 70 70 603 1 0.25, 0.75b b b b       [1] 
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xa  is the value of  ,ˆln x tm  when 0tk  , which is when 2010t  .   [½] 

So: 

    60 60,2010ˆln ln 0.00176 6.34244a m     [½] 

    70 70,2010ˆln ln 0.01328 4.32150a m     [½] 

(c) Projected values 

We need: 

 2025 0.02 (2,025 2,010) 0.3k         [½] 

At age 60, we have: 

 

 60,2025 60 60 2025

6.56744
60,2025

ˆln 6.34244 0.75 ( 0.3) 6.56744

ˆ 0.00141

m a b k

m e

        

     [1] 

At age 70: 

 

 70,2025 70 70 2025

4.39650
70,2025

ˆln 4.32150 0.25 ( 0.3) 4.39650

ˆ 0.01232

m a b k

m e

        

    [1] 

(iv) Disadvantages of Lee-Carter model 

Future estimates of mortality at different ages are heavily dependent on the original estimates of 
the parameters xa  and xb , which are assumed to remain constant into the future.  These 

parameters are estimated from past data, and will incorporate any roughness contained in the 
data.  In particular, they may be distorted by past period events which might affect different ages 
to different degrees.   [1½] 

If the estimated xb  values show variability from age to age, it is possible for the forecast 

age-specific mortality rates to ‘cross over’ (such that, for example, projected rates may increase 
with age at one duration, but decrease with age at the next).  [½] 

There is a tendency for Lee-Carter forecasts to become increasingly rough over time. [½] 

The model assumes that the underlying rates of mortality change are constant over time across all 
ages, when there is empirical evidence that this is not so. [½] 

The Lee-Carter model does not include a cohort term, whereas there is evidence from some 
countries that certain cohorts exhibit higher mortality improvements than others. [½] 

Unless observed rates are used for the forecasting, it can produce ‘jump-off’ effects (ie an 
implausible jump between the most recent observed mortality rate and the forecast for the first 
future period).   [½] 
    [Maximum 3 for (iv)] 
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12.3 (i) Formula for ,x tm   

Rearranging the original model we have: 

 

  2
, ,

, 2

,

ln ln

ln

c
x t x t

x t
c
x t

E D E a bt ct

D
E a bt ct

E

      

  
     
  
  

   

,

,

x t
c
x t

D

E
 is an unbiased estimator of ,x tm  so:  

 2
,ln x tm a bt ct       

   2
, expx tm a bt ct       

  

2

2

a bt ct

t t

e e e

A B C



   

where: 

 

a

b

c

A e

B e

C e





      

(ii)(a) Revised projection model using cubic spline function 

The mortality projection model would now be: 

  , ,
1

ln ln ( )
J

c
x t x t j j

j
E D E B t



        

where there are J  knots positioned at values 1 2, , ..., Jt t t , j  are parameters to be fitted from 

the data, and: 

 3

0
( )

( )

j
j

j j

t t
B t

t t t t

 
 

  

(b) Reasons for inadequate fit and how it could be improved by cubic spline function 

The trend in mortality over time is unlikely to follow a quadratic function, even after it has been 
log-transformed, as in this model, because the progression of predicted values is likely to be too 
smooth.     
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There may be significant variations in the trends in the past data that may be relevant to future 
projections and which we would therefore like the model to take into account.  

Spline functions are very flexible models in terms of the shape of the function being fitted.  

Adherence to data can be improved both by increasing the number of knots used, and by placing 
the knots in locations where the greatest changes in curvature of the trend line occur.  

However, some smoothing is still a requirement, and using cubic splines generally produces the 
smoothest result (compared to using splines of higher orders).  

(c) Use of p-splines 

The problem with splines is that they can be too flexible, and may cause the model to include 
historical trend variations that are either short-term or past-specific, and which are not expected 
to recur in future.     

To include these features in the model may then be inappropriate or unhelpful when we attempt 
to use the model for forecasting purposes.   

One symptom of this over-adherence, or roughness, in the model, is that the sequence of 

estimated parameters 1 2
ˆ ˆ ˆ, , ..., J    may form an uneven progression, and smoothing this 

progression can help reduce the roughness in the predicted values from the model.  

The method of p-splines attempts to find an optimal model by introducing a penalty for models 
which have excessive ‘roughness’.   

The method may be implemented as follows:  

 Specify the knot spacing and degree of the polynomials in each spline.  

 Define a roughness penalty, ( )P  , which increases with the variability of adjacent 

coefficients.  This, in effect, measures the amount of roughness in the fitted model.  

 Define a smoothing parameter,  , such that if 0  , there is no penalty for increased 
roughness, but as   increases, roughness is increasingly penalised.  

 Estimate the parameters of the model, including the number of splines, by maximising the 
penalised log-likelihood: 

  
1

( ) ( ) ( )
2pl l P       

 where ( )l  would be the usual log-likelihood for the model. 

 The penalised log-likelihood is effectively trying to balance smoothness and adherence to 
the data.   

(iii) Disadvantages of using p-splines 

When applied to ages separately, mortality at different ages is forecast independently so there is 
a danger that there will be roughness between adjacent ages.      
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There is no explanatory element to the projection (in the way that time series methods use a 
structure for mortality and an identifiable time series for projection).  

p-splines tend to be over-responsive to adding an extra year of data.  

12.4 (i) Calculating the 1-year probability of dying 70q   

A healthy person aged 70 can die over one year by following any one of the following three paths: 

(1) transition directly from H to D within one year (HD) 

(2) transition from H to Y followed by transition from Y to D in one year (HYD) 

(3) transition from H to Z followed by transition from Z to D in one year (HZD)  

We need the sum of the probabilities of following each path. 

The one-year probabilities are denoted by HDP , HYDP  and HZDP  respectively.  

Healthy directly to dead 

We need: 

 
1

0

( )HD HH HD
t

P p t dt


     

which is the probability of someone staying healthy until time t , then dying from healthy at that 
point, integrated over all possible times t  within the one year (0 1)t  .   

Now: 

   0.026( ) ( ) HD HY HZ t t
HH HHp t p t e e          

So: 

  
11 0.026

0.026 0.026

0 0

0.014
0.014 0.014 1 0.013820

0.026 0.026

t
t

HD
t

e
P e dt e


 



 
       

  
   

Healthy to dead via Y 

Now we need: 

 
1 1

0 0

( ) (1 ) ( ) (1 )HYD HH HY YD HY HH YD
t t

P p t p t dt p t p t dt 
 

       

This is the probability of staying healthy until time t , contracting disease Y at that point, and then 
dying (from Disease Y) at some point in the remaining (1 )t  of the year. 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-12: Mortality projection Page 51 

The Actuarial Education Company © IFE: 2019 Examinations 

First we see that: 

  (1 ) 1 (1 )YD YYp t p t      

This is because there are only two outcomes over the (1 )t  period for lives starting in state Y – if  

they are not dead by the end of the period, they must still be in state Y.  So: 

 0.4(1 ) 0.4 0.4(1 ) 1 1t t
YDp t e e e         

So: 

 

 

 

1
0.026 0.4 0.4

0

1 1
0.026 0.4 0.374

0 0

0.026 0.374
0.4

0.005 1

0.005

1 1
0.005

0.026 0.374

0.005 0.987112 0.812874

0.005 0.174237

0.000871

t t
HYD

t

t t

t t

P e e e dt

e dt e e dt

e e
e

 



 

 




 

 
  
 
 

           

  

 





 

  

Healthy to dead via Z 

Similarly: 

 
1 1

0 0

( ) (1 ) ( ) (1 )HZD HH HZ ZD HD HH ZD
t t

P p t p t dt p t p t dt 
 

       

where: 

 0.7(1 ) 0.7 0.7(1 ) 1 (1 ) 1 1t t
ZD ZZp t p t e e e            

So: 

 

 
1 1 1

0.026 0.7 0.7 0.026 0.7 0.674

0 0 0

0.674
0.7

0.007 1 0.007

1
0.007 0.987112 0.007 0.278284 0.001948

0.674

t t t t
HZD

t t t

P e e e dt e dt e e dt

e
e

   

  



 
    
 
 

        
    

  

  

So the total probability of dying is: 

 70 0.013820 0.000871 0.001948 0.016639HD HYD HZDq P P P          
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(ii) Effect of the screening programme for disease Z 

The transition rate from H to Z has reduced to: 

 0.3 0.007 0.0021HZ       

The individual probabilities change as follows. 

We need: 

 
1

0

( )HD HH HD
t

P p t dt


      

where: 

   (0.005 0.014 0.0021) 0.0211( ) ( ) HD HY HZ t t t
HH HHp t p t e e e               

So: 

 
1 0.0211

0.0211

0

1
0.014 0.014 0.014 0.989524 0.013853

0.0211
t

HD
t

e
P e dt






          
 

  

 

 
1 1

0.0211 0.4 0.4

0 0

1 1
0.0211 0.4 0.3789

0 0

0.0211 0.3789
0.4

( ) (1 ) 0.005 1

0.005

1 1
0.005

0.0211 0.3789

0.005 0.989524 0.81499

t t
HYD HH HY YD

t t

t t

t t

P p t p t dt e e e dt

e dt e e dt

e e
e

  

 

 

 




      

 
  
 
 

           

  

 

 

 3 0.000873   

 

 
1 1

0.0211 0.7 0.7

0 0

1 1
0.0211 0.7 0.6789

0 0

0.0211 0.6789
0.7

( ) (1 ) 0.0021 1

0.0021

1 1
0.0021

0.0211 0.6789

0.0021 0.989524 0.

t t
HZD HH HZ ZD

t t

t t

t t

P p t p t dt e e e dt

e dt e e dt

e e
e

  

 

 

 




       

 
  
 
 

           

  

 

 

 710761 0.000585   
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So the revised total probability of dying is: 

 70 0.013853 0.000873 0.000585 0.015311HD HYD HZDq P P P          

which is 0.001328 lower than the previous value of 0.016639.  This is a reduction of 8.0%.  

(iii) Effect of the screening programme for Disease Y 

The reduction in mortality rate would be less, for two reasons:  

(1) People with Disease Y live for longer on average than those with disease Z.   

 (Recall that the expected survival time in state s  is: 

    1
s

s
E T


   

 So, with Y Z  , we must have    Y ZE T E T .)  

 So, cutting the number of people contracting Disease Y will have a proportionately lower 
impact on the total number dying during the year compared to Disease Z (ie Z is a more 
serious disease than Y, so reducing the incidence of Z should have the bigger impact on 
mortality rates). 

(2) The transition rate from H to Y is lower than from H to Z.  So reducing this rate to 30% of 
its current level will cause a smaller reduction in the number of people contracting 
Disease Y over the year.  So, even if the mortality rates for the two diseases were the 
same, the impact on the number of people dying would be less (ie Disease Z is commoner 
than Disease Y, so there are fewer deaths from Disease Y  that can be prevented).  

 

 

 

 
  

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 54  CS2-12: Mortality projection 

© IFE: 2019 Examinations The Actuarial Education Company 

End of Part 3 

What next?   

1. Briefly review the key areas of Part 3 and/or re-read the summaries at the end of 
Chapters 8 to 12. 

2. Ensure you have attempted some of the Practice Questions at the end of each chapter in 
Part 3.  If you don’t have time to do them all, you could save the remainder for use as part 
of your revision. 

3. Attempt Assignment X3. 
  

 

 

Time to consider …  
 … ‘revision’ products 

Flashcards – These are available in both paper and eBook format.  One student said: 

‘The paper-based Flashcards are brilliant.’ 

You can find lots more information, including samples, on our website at www.ActEd.co.uk. 

Buy online at www.ActEd.co.uk/estore 
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Time series 1 

 

Syllabus objectives 

2.1 Concepts underlying time series models 

2.1.1 Explain the concept and general properties of stationary, (0)I , and 

integrated, (1)I , univariate time series. 

2.1.2 Explain the concept of a stationary random series. 

2.1.4 Know the notation for backwards shift operator, backwards difference 
operator, and the concept of roots of the characteristic equation of time 
series.   

2.1.5 Explain the concepts and basic properties of autoregressive (AR), moving 
average (MA), autoregressive moving average (ARMA) and autoregressive 
integrated moving average (ARIMA) time series. 

2.1.6 Explain the concepts and properties of discrete random walks and random 
walks with normally distributed increments, both with and without drift. 

2.1.9 Show that certain univariate time series models have the Markov property 
and describe how to rearrange a univariate time series model as a 
multivariate Markov model. 

2.2 Applications of time series models 

2.2.3 Describe simple applications of a time series model, including random 
walk, autoregressive and cointegrated models as applied to security prices 
and other economic variables.
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0 Introduction 

The time series material for Subject CS2 has been split into two parts.   

This chapter gives the basic definitions and simple examples which we will outline in more detail 
below.   

The sections correspond roughly to the syllabus objectives but not necessarily in the same order. 

Firstly, the idea of a time series is introduced.  This is just a sequence of observations that we 
record at regular time intervals.  Financial time series would therefore include the closing price of 
the FTSE 100 index on successive days, the retail prices index in successive months and so on.   

This chapter is mainly concerned with a class of processes that is commonly used to model time 
series data, the so-called ARIMA class.   

It also deals with some of the necessary background theory and definitions that are required.  In 
particular, stationary processes play a major role.  Indeed, it turns out that we can only model 
time series data efficiently if that data is a realisation of a stationary process.  We therefore spend 
some time discussing the stationarity of various ARIMA processes, and if they are not stationary, 
how they can be transformed into stationary ones for the process of modelling.  The only 
technique looked at here for transforming a non-stationary process into a stationary one will be 
differencing the data. 

The next chapter concentrates on some of the practical issues surrounding time series analysis: 

 is the data set a realisation of a stationary process, and if not, how can the data be 
transformed? 

 fitting a model to the (transformed) data 

 forecasting future values. 

Chapter 14 also introduces multivariate time series. 
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1 Properties of a univariate time series 

A univariate time series is a sequence of observations of a single process taken at a 
sequence of different times.  Such a series can in general be written as: 

 1 2( ), ( ), , ( )nx t x t x t    

ie as:    

{ ( ) : 1,2,3, , }ix t i n  

Most applications involve observations taken at equally-spaced times.  In this case the 
series is written as: 

 1 2, , , nx x x    

ie as:    

{ : 1,2,3, , }tx t n  

For instance, a sequence of daily closing prices of a given share constitutes a time series, 
as does a sequence of monthly inflation figures. 

The fact that the observations occur in time order is of prime importance in any attempt to 
describe, analyse and model time series data.  The observations are related to one another 
and cannot be regarded as observations of independent random variables.  It is this very 
dependence amongst the members of the underlying sequence of variables which any 
analysis must recognise and exploit. 

For example, a list of returns of the stocks in the FTSE 100 index on a particular day is not a 
time series, and the order of records in the list is irrelevant.  At the same time, a list of 
values of the FTSE 100 index taken at one-minute intervals on a particular day is a time 
series, and the order of records in the list is of paramount importance. 

Note that the observations tx  can arise in different situations.  For example: 

 the time scale may be inherently discrete (as in the case of a series of ‘closing’ 
share prices) 

 the series may arise as a sample from a series observable continuously through 
time (as in the case of hourly readings of atmospheric temperature) 

 each observation may represent the results of aggregating a quantity over a period 
of time (as in the case of a company’s total premium income on new business each 
month). 
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Figure 13.1:  a time series 

The purposes of a practical time series analysis may be summarised as: 

 description of the data 

 construction of a model which fits the data 

 forecasting future values of the process 

 deciding whether the process is out of control, requiring action 

 for vector time series, investigating connections between two or more observed 
processes with the aim of using values of some of the processes to predict those of 
the others. 

These five key aims will be discussed in more detail throughout this chapter. 

A univariate time series is modelled as a realisation of a sequence of random variables:  

  : 1,2,3, ,tX t n  

called a time series process.  (Note, however, that in the modern literature the term ‘time 
series’ is often used to mean both the data and the process of which it is a realisation.)  A 
time series process is a stochastic process indexed in discrete time with a continuous state 
space. 

It is important to appreciate the difference between tx , which is just a number, and tX , which is 

a random variable.  The latter will be used to model the former; the procedure for finding a 
suitable model is the second of our key objectives given above. 

The sequence { : 1,2,3, , }tX t n  may be regarded as a sub-sequence of a doubly infinite 

collection  { : , 2, 1,0,1,2, }tX t    .  This interpretation will be found to be helpful in 

investigating notions such as convergence to equilibrium. 
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We will often use the shorthand notation X  instead of { : , 2, 1,0,1,2, }tX t      or 

 : 1,2,3, ,tX t n  . 

The phrase, ‘convergence to equilibrium’ may require some explanation.  We will see shortly that 
a stationary process is basically in a (statistical) equilibrium, ie the statistical properties of the 
process remain unchanged as time passes.  If a process is currently non-stationary, then it is a 
natural question to ask whether or not that process will ever settle down and reach (converge to) 
equilibrium.  In this case we can think about what will happen as t gets very large. 

Alternatively, we might think of the process as having started some time ago in the past, perhaps 
indexed by negative t, so that it has already had time to settle down.   

This will be made clearer later, when stationarity is discussed in more detail. 
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2 Stationary random series 

2.1 Stationary time series processes 

The concept of stationarity was introduced in Chapter 1, along with the ideas of strict and 
weak stationarity. 

Question 

Explain what it means for a process X  to be: 

(i) strictly stationary 

(ii) weakly stationary. 

Solution 

(i) A process X is strictly stationary if the joint distributions of 
1 2

, , ...,
nt t tX X X  and 

1 2
, , ...,

nk t k t k tX X X    are identical for all 1 2, , , nt t t  and 1 2, , , nk t k t k t    in J  and 

all integers n.  This means that the statistical properties of the process remain unchanged 
as time elapses. 

(ii) A process X is weakly stationary if ( )tE X  is independent of t  and cov( , )t t sX X   depends 

only on the lag, s . 

A weakly stationary process has constant variance since, for such a process,  
var( ) cov( , )t t tX X X  is independent of t .   

 
In the study of time series it is a convention that the word ‘stationary’ on its own is a 
shorthand notation for ‘weakly stationary’, though in the case of a multivariate normal 
process, strict and weak stationarity are equivalent. 

This is because a distribution of a multivariate normal random variable is completely determined 
by its mean vector and covariance matrix.  We will consider this further in Chapter 14. 

But we do need to be careful in our definition, as there are some processes which we wish 
to exclude from consideration but which satisfy the definition of weak stationarity.   

Purely indeterministic processes 

A process X  is called purely indeterministic if knowledge of the values of 1, , nX X  is 

progressively less useful at predicting the value of NX  as N   .  When we talk of a 

‘stationary time series process’ we shall mean a weakly stationary purely indeterministic 
process. 
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Question 

Let tY  be a sequence of independent standard normal random variables.  Determine which of the 

following processes are stationary time series (given the definition above). 

(i)  sintX t U  , where U is uniformly distributed on the interval  0,2  

(ii)  sint tX t Y   

(iii) 1t t tX X Y   

(iv) 1t t tX Y Y   

(v) 1 12 3 0.5 0.3t t t tX t X Y Y       

Solution 

(i) For this process, 0 sinX U ,  1 sin( )X U ,  2 sin(2 )X U  , ….  Given the value of 0X  , 

future values of the process are fully determined.  So this is not purely indeterministic, 
and is not therefore a stationary time series in the sense defined in the Core Reading. 

(ii) For this process, 0 0sinX Y ,  1 1sin( )X Y ,  2 2sin(2 )X Y  , ….  Since ( )tE X  varies 

over time, this process is not stationary. 

(iii) Here we have:  

  1 1 1( ) ( ) ( ) ( ) ( )t t t t t tE X E X Y E X E Y E X         

 So the process has a constant mean.  However: 

  1 1 1var( ) var( ) var( ) var( ) var( ) 1t t t t t tX X Y X Y X         

 Here we are using the fact that tY  is a sequence of independent standard normal random 

variables.  Since the variance is not constant, the process is not stationary. 

(iv) This process is weakly stationary:  

  1( ) ( ) ( ) 0t t tE X E Y E Y     

and: 

 
2 0

cov , 1 1

0 2
t t k

k

X X k

k
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For example: 

 

1 1

1 1 1

1

cov( , ) cov( , )

cov( , ) 2cov( , ) cov( , )

var( ) var( ) 2

t t t t t t

t t t t t t

t t

X X Y Y Y Y

Y Y Y Y Y Y

Y Y

 

  



  

  

  

 

 In addition, it is purely indeterministic.  From the defining equation, we have: 

  1 0 1X Y Y    

 So 1 1 0Y X Y   and: 

  2 1 2 1 0 2( )X Y Y X Y Y       

 Rearranging gives: 

  2 2 1 0Y X X Y     

 and hence: 

  3 2 3 2 1 0 3( )X Y Y X X Y Y        

 Continuing in this way, we see that: 

  2 1
1 2 3 1 0( 1) ( 1)n n

n n n n nX X X X X Y Y 
             

 From this formula, we see that knowledge of the values of 1X , 2X  and 3X , say, becomes 

progressively less useful in predicting  the value of nX  as n .  

(v) This process has a deterministic trend via the ‘3t’ term, ie its mean varies over time.  So it 
is not stationary. 

 
A particular form of notation is used for time series:  X  is said to be (0)I  (read ‘integrated 

of order 0’) if it is a stationary time series process, X  is (1)I  if X  itself is not stationary but 

the increments   1t t tY X X  form a stationary process, X  is (2)I  if it is non-stationary but 

the process Y  is (1)I , and so on. 

We will see plenty of examples of integrated processes when we study the ARIMA class of 
processes in Section 3.8. 

The theory of stationary random processes plays an important role in the theory of time 
series because the calibration of time series models (that is, estimation of the values of the 
model’s parameters using historical data) can be performed efficiently only in the case of 
stationary random processes.  A non-stationary random process has to be transformed into 
a stationary one before the calibration can be performed.  (See Chapter 14.) 
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Question 

Suppose that we have a sample set of data that looks to be a realisation of an integrated process 
of order 2.  Explain what can we do to the data set in order to model it. 

Solution 

We can difference the data twice, ie look at the increments of the increments. 

 

2.2 Autocovariance function 

The mean function (or trend) of the process is [ ]t tE X  , the covariance function 

cov( , ) [ ] [ ] [ ]s t s t s tX X E X X E X E X  .  Both of these functions take a simpler form in the 

case where X  is stationary: 

 The mean of a stationary time series process is constant, ie t   for all t.   

 The covariance of any pair of elements rX  and sX  of a stationary sequence X  

depends only on the difference r – s.   

Autocovariance function 

We can therefore define the autocovariance function  :k k Z   of a stationary time series 

process X as follows: 

  cov ,k t t k t t k t t kX X E X X E X E X                 

The common variance of the elements of a stationary process is given by: 

 0 var( )tX   

If a process is not stationary, then the autocovariance function depends on two variables, namely 

the time t and the lag k.  This could be denoted, for example,    , cov ,t t kt k X X  .  However, 

one of the main uses of the autocovariance function is to determine the type of process that will 
be used to model a given set of data.  Since this will be done only for stationary series, as 
mentioned above, it is the autocovariance function for stationary series that is most important. 

Because of the importance of the autocovariance function, we will have to calculate it for various 
processes.  This naturally involves calculating covariances and so we need to be familiar with all of 
the properties of the covariance of two random variables.  The following question is included as a 
revision exercise. 
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Question 

Let X  and Y  denote any random variables. 

(i) Express cov( , )X Y  in terms of ( )E X , ( )E Y  and ( )E XY . 

(ii) Express each of the following in terms of cov( , )X Y : 

 (a) cov( , )Y X  

 (b) cov( , )X c , where c  is a constant 

 (c) cov(2 ,3 )X Y  

(iii) Give an equivalent expression for cov( , )X X . 

(iv) Prove, using your formula in (i), that: 

  cov( , ) cov( , ) cov( , )X Y W X W Y W    

(v) Simplify each of the following expressions assuming that { }tX  denotes a stationary time 

series defined at integer times and { }tZ  are independent 2(0, )N   random variables. 

 (a) 2 3cov( , )Z Z  

 (b) 3 3cov( , )Z Z  

 (c) 2 3cov( , )X Z  

 (d) 2 3cov( , )X X  

 (e) 2 2cov( , )X X  

Solution 

(i) cov( , ) ( ) ( ) ( )X Y E XY E X E Y    

(ii) (a) cov( , ) cov( , )Y X X Y  

 (b) cov( , ) 0X c   

 (c) cov(2 ,3 ) 6cov( , )X Y X Y  

(iii) 2 2cov( , ) ( ) [ ( )] var( )X X E X E X X    

(iv) cov( , ) [( ) ] ( ) ( )

( ) [ ( ) ( )] ( )

( ) ( ) ( ) ( ) ( ) ( )

cov( , ) cov( , )

X Y W E X Y W E X Y E W

E XW YW E X E Y E W

E XW E YW E X E W E Y E W

X W Y W
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(v) (a) 2 3cov( , ) 0Z Z  , since they are independent. 

 (b) 2
3 3 3cov( , ) var( )Z Z Z    

 (c) 2 3cov( , ) 0X Z   

 (d) and (e) will depend on the actual process.  If it is stationary, then 2 3 1cov( , )X X  , and 

2 2 0cov( , )X X  . 

 

2.3 Autocorrelation function 

The autocovariance function is measured in squared units, so that the values obtained depend on 
the absolute size of the measurements.  We can make this quantity independent of the absolute 
sizes of nX  by defining a dimensionless quantity, the autocorrelation function. 

Autocorrelation function 

The autocorrelation function (ACF) of a stationary process is defined by: 

 
0

corr( , ) k
k t t kX X 


   

The ACF of a purely indeterministic process satisfies 0k   as k   . 

This statement is intuitive.  We do not expect two values of a (purely indeterministic) time series 
to be correlated if they are a long way apart. 

Question 

Write down the formula for the correlation coefficient between the random variables X  and Y .   

Hence deduce the formula for the autocorrelation function given above. 

Solution 

The formula for the correlation coefficient is: 

   cov ,
corr ,

var( )var( )

X Y
X Y

X Y
    

So: 

 
00 0

cov( , )

var( )var( )
t t k k k

k
t t k

X X

X X
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For a non-stationary process we could define an autocorrelation function by: 

      
   

cov , ,
,

var( ) var( ) ,0 ,0

t t k

t t k

X X t k
t k

X X t t k




 



 


 

However, as with the autocovariance function, it is the stationary case that is of most use in 
practice. 

A simple class of weakly stationary random processes is the white noise processes.  A 

random process  :te t Z  is a white noise if 0tE e     for any t , and: 

 
2 if 0

cov( , )
0 otherwise

k t t k
ke e  

   


 

An important representative of the white noise processes is a sequence of independent 

normal random variables with common mean 0 and variance 2 . 

Strictly speaking a white noise process only has to be a sequence of uncorrelated random 
variables, ie not necessarily a sequence of independent random variables.  We can also have white 
noise processes without zero mean.   

Result 13.1 

The autocovariance function   and autocorrelation function   of a stationary random 

process are even functions of k , that is, k k    and k k  . 

Proof 

Since the autocovariance function  cov ,k t t kX X   does not depend on t, we have: 

      cov , cov , cov ,k t k t k k t k t t t k kX X X X X X           

Thus   is an even function, which in turn implies that   is even. 

This result allows us to concentrate on positive lags when finding the autocorrelation functions of 
stationary processes.   

2.4 Correlograms 

Autocorrelation functions are the most commonly used statistic in time series analysis.  A lot of 
information about a time series can be deduced from a plot of the sample autocorrelation 
function (as a function of the lag).  Such a plot is called a correlogram. 

Typical stationary series 

A typical sample autocorrelation function for a stationary series looks like the one shown below.  
The lag is shown on the horizontal axis, and the autocorrelation on the vertical. 
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1 2 10

-1 

- 0 . 5 

0 . 5 

1 

 

At lag 0 the autocorrelation function takes the value 1, since 0
0

0
1





  .  Often the function 

starts out at 1 but decays fairly quickly, which is indicative of the time series being stationary.  The 
above correlation function tells us that at lags 0, 1 and 2 there is some positive correlation so that 
a value on one side of the mean will tend to have a couple of values following that are on the 
same side of the mean.  However, beyond lag 2 there is little correlation.   

In fact, the above function comes from a sample path of a stationary AR(1) process, namely 

10.5n n nX X e  .  (We look in more detail at such processes in the next section.)   

The data used for the first 50 values is plotted below.  (The actual data used to produce the 
autocorrelation function used the first 1,000 values.)   

0 10 20 30 40 50  

The ‘gap’ in the axes here is deliberate; the vertical axis does not start at zero.  The horizontal axis 
on this and the next graph shows time, and the vertical axis shows the value of the time series X . 

This form of presentation is difficult to interpret.  It’s easier to see if we ‘join the dots’. 
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0 10 20 30 40 50  

By inspection of this graph we can indeed see that one value tends to be followed by another 
similar value.  This is also true at lag 2, though slightly less clear.  Once the lag is 3 or more, there 
is little correlation.   

The previous data set is in stark contrast to the following one. 

Alternating series 

0 10 20 30 40 50
 

The average of this data is obviously roughly in the middle of the extreme values.  Given a 
particular value, the following one tends to be on the other side of the mean.  The series is 
alternating.  This is reflected in the autocorrelation function shown below.  At lag 1 there is a 
negative correlation.  Conversely, at lag 2, the two points will generally be on the same side of the 
mean and therefore will have positive correlation, and so on.  The autocorrelation therefore also 
alternates as shown. 
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1 2 3 4 5 6 7 8 9 10

–1 

      –0.5 

    0.5 

1 

 

The data in this case actually came from a stationary autoregressive process, this time 

10.85n n nX X e   .  This is stationary, but because the coefficient of 1nX   is larger in 

magnitude, ie 0.85 vs 0.5, the decay of the autocorrelation function is slower.  This is because the 

1nX   term is not swamped by the random factors ne  as quickly.  It is the fact that the coefficient 

is negative that makes the series alternate. 

Series with a trend 

A final example comes from the following data generated from 10.1 0.5n n nX n X e   . 

0 10  20 30 40 50  

In this time series, a strong trend is clearly visible.  The effect of this is that any given value is 
followed, in general, by terms that are greater.  This gives positive correlation at all lags.  The 
decay of the autocorrelation function will be very slow, if it occurs at all. 
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 1  2  3  4 5 6 7 8 9  10

 –1 

      –0.5 

    0.5 

1 

 

If the trend is weaker, for example 10.001 0.5n n nX n X e   , then there may be some decay at 

first as the trend is swamped by the other factors, but there will still be some residual correlation 
at larger lags. 

0  10  20  30  40  50
 

The trend is difficult to see from this small sample of the data but shows up in the autocorrelation 
function as the residual correlation at higher lags. 

 1  2  3  4  5 6 7 8 9  10

 –1 

       –0.5 

     0.5 

1 
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Question 

Describe the associations we would expect to find in a time series representing the average 
daytime temperature in successive months in a particular town, and hence sketch a diagram of 
the autocorrelation function of this series. 

Solution 

We expect the temperature in different years to be roughly the same at the same time of year, 
and hence there should be very strong positive correlation at lags of 12 months, 24 months and 
so on.   

Within each year we would also expect a positive correlation between nearby times, for example 
with lags of 1 or 2 months, with decreasing correlation as the lag increases.  On the other hand, 
once we reach a lag of 6 months there should be strong negative correlation since one 
temperature will be above the mean, the other below it.  For example comparing June with 
December.   

The autocorrelation function will therefore oscillate with period of 12 months. 

 5  10 15  20  25

 –1 

      –0.5 

    0.5 

1 

 

 

2.5 Partial autocorrelation function 

Another important characteristic of a stationary random process is the partial 
autocorrelation function (PACF),  : 1,2,k k   , defined as the conditional correlation of 

t kX   with tX  given 1 1, ,t t kX X   .   

Unlike the autocovariance and autocorrelation functions, the PACF is defined for positive lags 
only. 

This may be derived as the coefficient ,k k  in the problem to minimise: 

    
      


2

,1 1 ,2 2 ,t k t k t k k t kE X X X X    
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We can explain the last expression as follows.  Suppose that at time 1t   we are trying to 
estimate tX , but we are going to limit our choice of estimator to linear functions of the k  

previous values 1, ,t k tX X  .  The most general linear estimator will be of the form: 

 ,1 1 ,2 2 ,k t k t k k t kX X X        

where ,k i  are constants.  We can choose the coefficients to minimise the mean square error, 

which is the expression given above in Core Reading.  The partial autocorrelation for lag k is then 
the weight that we assign to the t kX   term. 

Question 

Consider the process 20.5t t tX X e  , where te  forms a white noise process.   

Determine the partial autocorrelation function for this process. 

Solution 

For 1k   we just have the correlation itself.  However, in this case it is clear that the tX  for even 

values of t are independent of those for odd values.  It follows that the correlation at lag 1 is 0.   

For 2k   the partial autocorrelation is the coefficient of 2tX   in the best linear estimator: 

  2,1 1 2,2 2t tX X    

Comparing this to the defining equation suggests that 2 0.5  . 

Similarly, the defining equation suggests that the best linear estimator will not involve 

3 4, ,t tX X   .  It follows that for 3k  , we have 0k  . 

 
For the time series in the previous question, we have 4 0  .  This is in contrast to the actual 

correlation at lag four, since tX  depends on 2tX  , which in turn depends on 4tX  .  tX  and 4tX   

will therefore be correlated.  The partial autocorrelation is zero, however, because it effectively 
removes the impact of the correlation at smaller lags.   

In general it is difficult to calculate the PACF by hand. 

The formula for calculating k  involves a ratio of determinants of large matrices whose 

entries are determined by 1, , k  ; it may be found in standard works on time series 

analysis, and is readily available in common computer packages like R.   
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The diagrams below show the autocorrelation function and partial autocorrelation of an 
(1,1)ARMA  series.  ARMA processes are discussed in detail in Section 3.7. 

 

Figure 13.1: ACF and PACF values of some stationary time series model. 

In particular the formulae for 1  and 2  are as follows: 

Partial autocorrelation function at lags 1 and 2 

 

1
2

1 2 2 1
1 1 2 2

1 1

1

1
det

,
1 1

det
1


   

  
 



 
 

   
  
 
 

 

Note that for each k ,  k   depends on only 1 2, ,..., k   . 

These formulae can be found on page 40 of the Tables.  Their derivations are not required. 

It is important to realise that the PACF is determined by the ACF, as the above expressions 
suggest.  The PACF does not therefore contain any extra information; it just gives an alternative 
presentation of the same information.  However, as we will see, this can be used to identify 
certain types of process. 
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3 Main linear models of time series 

3.1 Introduction 

The main linear models used for modelling stationary time series are: 

 Autoregressive process (AR) 

 Moving average process (MA) 

 Autoregressive moving average process (ARMA). 

The definitions of each of these processes, presented below, involve the standard zero-

mean white noise process  : 1,2,te t   defined in Section 2.3. 

In practice we often wish to model processes which are not (0)I  (stationary) but (1)I .  For 

this purpose a further model is considered: 

 Autoregressive integrated moving average (ARIMA). 

ARMA and ARIMA are pronounced as single words (similar to ‘armour’ and ‘areema’). 

Autoregressive 

An autoregressive process of order p  (the notation ( )AR p  is commonly used) is a 

sequence of random variables  tX  defined consecutively by the rule: 

      1 1 2 2t t t p t p tX X X X e                  

Thus the autoregressive model attempts to explain the current value of X  as a linear 
combination of past values with some additional externally generated random variation.  
The similarity to the procedure of linear regression is clear, and explains the origin of the 
name ‘autoregression’. 

Moving average 

A moving average process of order q , denoted ( )MA q , is a sequence  tX  defined by the 

rule: 

      1 1t t t q t qX e e e    

The moving average model explains the relationship between the tX  as an indirect effect, 

arising from the fact that the current value of the process results from the recently passed 
random error terms as well as the current one.  In this sense, tX  is ‘smoothed noise’. 

Autoregressive moving average 

The two basic processes (AR and MA) can be combined to give an autoregressive moving 
average, or ARMA, process.  The defining equation of an ( , )ARMA p q  process is: 

     1 1 1 1t t p t p t t q t qX X X e e e                    
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Note: ( ,0)ARMA p  is ( )AR p ; (0, )ARMA q  is ( )MA q . 

Autoregressive integrated moving average 

The definition of an ( , , )ARIMA p d q  process is given in Section 3.8. 

3.2 The backwards shift operator, B, and the difference operator, 

Further discussion of the various models will be helped by the use of two operators which 
operate on the whole time series process X. 

The backwards shift operator, B , acts on the process X  to give a process BX  such that: 

   1ttBX X   

If we apply the backwards shift operator to a constant, then it doesn’t change it: 

 B   

The difference operator,  , is defined as 1 B   , or in other words: 

   1t ttX X X     

Both operators can be applied repeatedly.  For example: 

 

2
1 2

2
1 1 2

( ) ( ( )) ( )

( ) ( ) ( ) 2

t t t t

t t t t t t

B X B BX BX X

X X X X X X

 

  

  

       
 

and can be combined as, for example: 

 2
1 2( ) ( (1 ) ) ( ) ( )t t t t t tB X B B X BX B X X X         

The usefulness of both of these operators will become apparent in later sections. 

We could also work out 2
tX  as follows: 

 2 2 2
1 2(1 ) (1 2 ) 2t t t t t tX B X B B X X X X           

Similarly: 

  33 2 3
1 2 31 (1 3 3 ) 3 3t t t t t t tX B X B B B X X X X X              

In addition, we use the difference operator to write 1 2 35 7 3t t t tX X X X      as follows: 

 

1 2 3 1 1 2 2 3

1 2

1 1 2

2 2
1

5 7 3 ( ) 4( ) 3( )

4 3

( ) 3( )

3

t t t t t t t t t t

t t t

t t t t

t t

X X X X X X X X X X

X X X

X X X X

X X
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Question 

Suppose that n nw x .  Give a formula for nx  in terms of 0x  and the differences: 

1 1 1 2 1 1 0, , ,n n n n n nw x x w x x w x x          

Solution 

We have: 

 

1

1 2

1 1 0

0
1

n n n

n n n

n n

n

i
i

x w x

w w x

w w w x

x w



 





 

  



    

 





 

 

The R commands for generating the differenced values of some time series x  are: 

diff(x,lag=1,differences=1)  

for ordinary difference  .   

diff(x,lag=1,differences=3)  

for differencing three times 3 , and: 

diff(x,lag=12,differences=1) 

for a simple seasonal difference with period 12, 12  (see Section 1.4 in Chapter 14).  

3.3 The first-order autoregressive model, AR(1) 

The simplest autoregressive process is the (1)AR , given by: 

 1( )t t tX X e       (13.1) 

A process satisfying this recursive definition can be represented as: 

 
1

0
0

( )
t

t j
t t j

j
X X e   






      (13.2) 

This representation can be obtained by substituting in for 1tX  , then for 2tX  , and so on, until 

we reach 0X .  It is important to realise that 0X  itself will be a random variable in general – it is 

not necessarily a given constant, although it might be. 
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It follows that the mean function t  is given by:  

  0
t

t        

Here the notation t  is being used in place of ( )tE X .  This result follows by taking expectations of 

both sides of Equation (13.2), and noting that the white noise terms have zero mean. 

The white noise terms are also uncorrelated with each other, and with 0X .  It follows that the 

variance of tX  can be found by summing the variances of the terms on the right-hand side.   

The same representation (13.2) gives the variance: 

 
2

2 2
02

1
var( ) var( )

1

t
t

tX X
 




 


 

where, as before, 2  denotes the common variance of the white noise terms  te .   

Question 

Derive this expression. 

Solution 

From Equation (13.2), we have: 

 

1

0
0

1
2 2

0
0

1
2 2 2

0
0

var( ) var ( )

var( ) var( )

var( )

t
t j

t t j
j

t
t j

t j
j

t
t j

j

X X e

X e

X

   

  

  















 
    
 
 

  

 







  

Now using the formula 2 1 (1 )
1

n
n a r

a ar ar ar
r

 
    


  for summing the first n  terms of a 

geometric progression, we see that: 

 
2

2 2
0 2

1
var( ) var( )

1

t
t

tX X
 


 
     

 

 
For the process X  to be stationary, its mean and variance must both be constant.  A quick look at 
the expressions above is enough to see that this will not be the case in general.  It is therefore 
natural to ask for conditions under which the process is stationary.   
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From this it follows that a stationary process X  satisfying (13.1) can exist only if 1  .  

Further requirements are that 0   and that    2 2
0var 1X    . 

It should be clear that we require 0   in order to remove the t -dependence from the mean.  

Similarly, we require 
2

0 2
var( )

1
X







 in order to make the variance constant.  (We are assuming 

0  , otherwise X  is a white noise process, which is certainly stationary.)   

We also require 1  .  One way of seeing this is to note that the variance has to be a finite non-

negative number.   

Notice that this implies that X  can be stationary only if 0X  is random.  If 0X  is a known 

constant, then  0var 0X   and  var tX  is no longer independent of t , whereas if 0X  has 

expectation different from   then the process X  will have non-constant expectation. 

We now consider the situation in which t  , and/or  
2

0 2
var

1
X







.  From what we’ve just 

said, the process will then be non-stationary.  However, what we are about to see is that even if 

the process is non-stationary, as long as 1  , the process will become stationary in the long 

run, without any extra conditions. 

It is easy to see that the difference t   is a multiple of t  and that    2 2var 1tX     

is a multiple of 2t . 

This follows by writing the equations we derived above for the mean and variance in the form: 

 0( )t
t         and  

2 2
2

02 2
var( ) var( )

1 1
t

tX X
 
 

 
   

   
 

Both of these terms will decay away to zero for large t  if 1  , implying that X  will be 

virtually stationary for large t . 

We can also turn this result on its head: if we assume that the process has already been running 
for a very long time, then the process will be stationary.  In other words, any (1)AR  process with 

an infinite history and 1   will be stationary. 

In this context it is often helpful to assume that 1, , nX X  is merely a sub-sequence of a 

process  1 0 1, , , , , nX X X X  which has been going on unobserved for a long time and has 

already reached a ‘steady state’ by the time of the first observation.  A double-sided infinite 
process satisfying (13.1) can be represented as: 

 
0

j
t t j

j
X e 






     (13.3) 
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This is an explicit representation of the value of tX  in terms of the historic values of the 

process e .  The infinite sum on the right-hand side only makes sense, ie converges, if 1  .  The 

equation can be derived in two ways – either using an iterative procedure as used above to derive 
Equation (13.2), or by using the backward shift operator. 

For the latter method, we write the defining equation 1( )t t tX X e       in the form: 

   1 t tB X e     

The expression  1 B  will be invertible (using an expansion) if and only if 1  .  (In fact we 

could expand it for 1   using       11 1 1 11 1B B B  
       .  However, this would give 

an expansion in terms of future values since 1B  is effectively a forward shift.  This would not 
therefore be of much use.  We will not point out this qualification in future.) 

If  1 B  is invertible, then we can write: 

 
   1 2 2

2
1 2

1 1t t t

t t t

X B e B B e

e e e

   

 



 

      

   




 

In other words:   

0

j
t t j

j
X e 






    

This representation makes it clear that tX  has expectation   and variance equal to: 

 
2

2 2
2

0 1

j

j


 









   

if 1  . 

This last step uses the formula for the sum of an infinite geometric progression. 

So, in this case, the process does satisfy the conditions required for stationarity given above. 

We have only looked at the mean and variance so far, however.  We also need to look at the 
autocovariance function.   
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In order to deduce that X  is stationary we also need to calculate the autocovariance 
function: 

 
0 0

2 2 2 2
0

0 0

cov( , ) cov( , )i j
k t t k t j t k i

j i

j k k j k

j j

X X e e  

      

 

   
 

 


 

 

  

 

 
 

The double sum has been simplified here by noting that the covariance will be zero unless the 

subscripts t j  and t k i   are equal, ie unless i j k  .  In this case the covariance equals 2 .  

So in the sum over i , we only include the term for i j k  . 

We have also used the formula 
2

2 2
0 2

0
var( )

1
j

t
j

X
  





  


  from before. 

This is independent of t , and thus a stationary process exists as long as 1  . 

It is worth introducing here a method of more general utility for calculating autocovariance 
functions.  From (13.1) we have, assuming that X  is stationary: 

1

1

1

cov( , )

cov( ( ) , )

cov( , )

k t t k

t t t k

t t k

k

X X

X e X

X X



  







 

 





   





 

implying that: 

 
2

0 21
k k

k
   


 


 

and: 

 
0

kk
k


 


   

for 0k .  

The partial autocorrelation function k  is given by: 

 1 1     

 
2 2

2 2
0

1


 



 


 

Indeed, since the best linear estimator of tX  given 1 2 3, ,t t tX X X   , is just 1tX  , the 

definition of the PACF implies that 0k   for all 1k  .  Notice the contrast with the ACF, 

which decreases geometrically towards 0. 
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The following lines in R generate the ACF and PACF functions for an (1)AR  model: 

 par(mfrow=c(1,2)) 

 barplot(ARMAacf(ar=0.7,lag.max = 12)[-1],main = "ACF of AR(1)", 
 col="red") 
 barplot(ARMAacf(ar=0.7,lag.max = 12,pacf = TRUE),main = "PACF of 
 AR(1)",col="red") 

 
Figure 13.2: ACF and PACF of (1)AR  with 0.7    

Example 

One of the well known applications of a univariate autoregressive model is the description 

of the evolution of the consumer price index  : 1,2,3,tQ t  .  The force of inflation, 

 1lnt t tr Q Q  , is assumed to follow the (1)AR  process: 

 1t t tr r e       

One initial condition, the value for 0r , is required for the complete specification of the 

model for the force of inflation tr . 

The process tr  is said to be mean-reverting, ie it has a long-run mean, and if it drifts away, then it 

tends to be dragged back towards it.  In this case, the long-run mean is  .  The equation for tr

can be written in the form: 

  1t t tr r e       
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If we ignore the error term, which has a mean of zero, then this equation says that the difference 
between r  and the long-run mean at time t , is   times the previous difference.  In order to be 
mean-reverting, this distance must reduce, so we need | | 1 , as for stationarity.  In fact, we 

probably wouldn’t expect the force of inflation to be dragged to the other side of the mean, so a 
realistic model is likely to have  0 1 . 

3.4 The autoregressive model, AR(p) 

The equation of the more general ( )AR p  process is: 

 1 1 2 2( ) ( ) ( )t t t p t p tX X X X e                  (13.4) 

or, in terms of the backwards shift operator: 

 2
1 2(1 )( )p

p t tB B B X e          (13.5) 

As seen for (1)AR , there are some restrictions on the values of the j  which are permitted 

if the process is to be stationary.  In particular, we have the following result. 

Condition for stationarity of an AR(p) process (Result 13.2) 

If the time series process X  given by (13.4) is stationary then the roots of the equation: 

 2
1 21 0p

pz z z        

are all greater than 1 in absolute value.   

(The polynomial 2
1 21 p

pz z z       is called the characteristic polynomial of the 

autoregression.) 

The equation 2
1 21 0p

pz z z        is known as the characteristic equation of the process. 

For an (1)AR  process,  1t t tX X e      , the characteristic equation is: 

  1 0z  

The root of this equation is 1z  .  So for an (1)AR  process to be stationary, we must have: 

 
1

1
| |

  

ie: 

 | | 1   

This is the same stationarity condition that we derived in Section 3.3. 
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It is important to realise what this result does not say.  Although for an (1)AR  process we can look 

at the coefficient   and deduce stationarity if and only if 1  , we cannot do this for higher 

order autoregressive processes.  For example, an (2)AR  process: 

    1 1 2 2t t t tX X X e             

would not necessarily be stationary, just because 1i   for both 1i   and 2.  We would need to 

look at the roots of the characteristic polynomial.   

We can prove the stationarity condition as follows. 

Proof of Result 13.2 

If X  is stationary then its autocovariance function satisfies: 

 
1 1

cov( , ) cov ,
p p

k t t k j t j t t k j k j
j j

X X X e X      
 

 
    
 
 
   

for k p . 

The  ’s are constant and do not therefore contribute to the covariance. 

This is a p -th order difference equation with constant coefficients; it has a solution of the 

form: 

 
1

p
k

k j j
j

A z 


   

for all 0k  , where 1, , pz z  are the p  roots of the characteristic polynomial and 1, , pA A  

are constants.  (We will show this in a moment.)  As X  is purely indeterministic, we must 

have 0k  , which requires that 1jz   for each j . 

Question 

Show by substitution that 
1

p
k

k j j
j

A z 


  is a solution of the given difference equation. 

Solution 

Substituting 
1

p
k

k j j
j

A z 


   into the right-hand side of the difference equation 

1

p

k j k j
j

   


   

we get: 

 
1 1 1 1 1

p p p p p
k j k j

j k j j i i i ji i
j j i i j

A z A z z     
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By definition of iz  as a root of the characteristic equation, we have: 

 
1

1
p

j
j i

j
z


  

So: 

 
1 1

p p
k

j k j i i k
j i

A z  


 
    

as required. 

 
The converse of Result 13.2 is also true (but the proof is not given here):  if the roots of the 
characteristic polynomial are all greater than 1 in absolute value, then it is possible to 
construct a stationary process X  satisfying (13.4).  In order for an arbitrary process X  
satisfying (13.4) to be stationary, the variances and covariances of the initial values 

0 1 1, , , pX X X    must also be equal to the appropriate values. 

Although we do not give a formal proof, we will provide another way of thinking about this result.   

Recall that in the (1)AR   case we said that the process turned out to be stationary if and only if 

tX  could be written as a (convergent) sum of white noise terms.  Equivalently, if we start from 

the equation: 

   1 t tB X e     

then the process is stationary if and only if we can invert the term  1 B , since this is the case if 

and only if 1  . 

Analogously, we can write an AR(p) process in the form: 

  
1 2

1 1 1 t t
p

B B B
X e

z z z


   
             

  

where 1 2, , , pz z z  are the p (possibly complex) roots of the characteristic polynomial.  In other 

words, the characteristic polynomial factorises as: 

 2
1 2

1 2
1 1 1 1p

p
p

z z z
z z z

z z z
  

   
                

   

It follows that in order to write tX  in terms of the process e, we need to be able to invert all p of 

the factors 1
i

B
z

 
 

 
.  This will be the case if and only if 1iz   for all 1,2, ,i p  . 
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Question 

Determine the characteristic polynomial of the process defined by the equation: 

 1 25 2( 5) 3( 5)t t t tX X X e        

and calculate its roots.  Hence comment on the stationarity of the process. 

Solution 

We first rearrange the equation for the process so that all the X  terms appear on the same side.  
Doing this we obtain: 

    1 22 3t t t tX X X e  

We now replace t sX  by sz  , ie we replace tX  by 1, 1tX  by z , and 2tX  by 2z  .  So the 

characteristic polynomial is   21 2 3z z .   

This polynomial can be factorised as  (1 3 )(1 )z z , so its roots are 1
3  and 1.   

This shows that the process is not stationary. 

 
There is no requirement to use the letter z  (or indeed any particular letter) when writing down 
the characteristic polynomial.  The letter   is often used instead. 

Question 

Given that 2   is a root of the characteristic equation of the process: 

11 1
1 2 36 6n n n n nX X X X e       

calculate the other roots and classify the process as ( )I d . 

Solution 

The process can be written in the form: 

      11 1
1 2 36 6n n n n nX X X X e   

So that the characteristic equation is: 

   2 311 1
6 6

1 0    
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We are given that 2   is a root.  So ( 2)  is a factor and hence: 

       2 3 211 1
6 6

1 ( 2)( )a b c        

where a , b  and c  are constants.  The values of a , b  and c  can be determined in several ways, 
eg by comparing the coefficients on both sides of this equation, by long division of polynomials, or 
by synthetic division.  We find that: 

                  2 3 211 1 1 2 1 1
6 6 6 3 2 6

1 2 2 3 1          

So the other roots of the characteristic equation are 3   and 1  .  

The process is not stationary, since the characteristic equation has a root that is not strictly 
greater than 1 in magnitude. 

It is easy to see that differencing the process once will eliminate the root of 1.  The two remaining 
roots (ie 2 and 3) are both strictly greater than 1 in magnitude, so the differenced process is 
stationary.  Hence X  is (1)I . 

 
Often exact values for the k  are required, entailing finding the values of the constants kA .  

From (13.4) we have: 

1 1cov( , ) cov( , ) cov( , ) cov( , )t t k t t k p t p t k t t kX X X X X X e X            

which can be re-expressed as: 

 2
1 1 2 2 { 0}1k k k p k p k                

for 0 k p  .  (These are known as the Yule-Walker equations.)  Here the notation  01 k   

denotes an indicator function, taking the value 1 if 0k  , the value 0 otherwise. 

For 3p   we have 4 equations: 

 3 1 2 2 1 3 0          

 2 1 1 2 0 3 1          

 1 1 0 2 1 3 2          

 2
0 1 1 2 2 3 3            

The second and third of these equations are sufficient to deduce 2  and 1  in terms of 0 , 

which is all that is required to find 2  and 1 .  The first and fourth of the equations are 

needed when the values of the k  are to be found explicitly. 
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The PACF,  : 1k k  , of the ( )AR p  process can be calculated from the defining equations, 

but is not memorable.  In particular, the first three equations above can be written in terms 
of 1 , 2 , 3  and the resulting solution of 3  as a function of 1 , 2 , 3   is the expression 

of 3 . The same idea applies to all values of k  , so that k  is the solution of k  in a system 

of k  linear equations, including those for 1 1   and 
2

2 1
2 2

11

 








 that we have seen 

before.    

It is important to note, though, that 0k   for all k p . 

This result is worth repeating. 

Behaviour of the PACF for an AR(p) process 

For an ( )AR p  process: 

 0k    for k p   

This property of the PACF is characteristic of autoregressive processes and forms the basis 
of the most frequently used test for determining whether an ( )AR p  model fits the data.  It 

would be difficult to base a test on the ACF as the ACF of an autoregressive process is a 
sum of geometrically decreasing components.  (See Section 2 in Chapter 14.) 

Question 

Give a derivation of the equation:  

2
0 1 1 2 2 3 3            

Solution 

The autocovariance at lag 0 is: 

 0 cov ,t tX X  

Expanding the LHS only (which will always be our approach when determining the autocovariance 
function of an autoregressive process), and remembering that the covariance is unaffected by the 
mean  , we see that: 

       0 1 1 2 2 3 3cov ,t t t t tX X X e X      

Now, using the properties of covariance: 

 
 

     

   

0 1 1 2 2 3 3

1 1 2 2 3 3

cov( , ) cov( , ) cov( , ) cov( , )

cov ,

t t t t t t t t

t t

X X X X X X e X

e X
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But: 

 

  

  

   

   

    

1 1 2 2 3 3

1 1 2 2 3 3

2 2

cov( , ) cov( , )

cov( , ) cov( , ) cov( , ) cov( , )

0 0 0

t t t t t t t

t t t t t t t t

e X e X X X e

e X e X e X e e

  

  

 

  

This is because  1 2, ,...t tX X  are functions of past white noise terms, and te  is independent of 

earlier values.  So: 

    2
0 1 1 2 2 3 3         

 
We will now derive a formula for the ACF of an (2)AR  process.  To do this we need to remember a 

little about difference equations.  Some formulae relating to difference equations are given on 
page 4 of the Tables.   

Question 

A stationary (2)AR  process is defined by the equation: 

 5 1
1 26 6t t t tX X X e     

Determine the values of k  and k  for 1, 2, 3,k   . 

Solution 

We do not actually need to calculate 0  in order to find the ACF.  This is always the case for an 

autoregressive process. 

By definition: 

 0

0
0 1


     

The autocovariance at lag 1 is: 

 



  

    



  

  

 

1 1

5 1
1 2 16 6

5 1
1 1 2 1 16 6

5 1
0 16 6

cov( , )

cov( , )

cov( , ) cov( , ) cov( , )

t t

t t t t

t t t t t t

X X

X X e X

X X X X e X



 

  

Rearranging gives: 

  57
1 06 6
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So: 

   5
1 07
    and   1

0

5
1 7


   

Similarly, the autocovariance at lag 2 is: 

 



  

    



  

  

 

2 2

5 1
1 2 26 6

5 1
1 2 2 2 16 6

5 1
1 06 6

cov( , )

cov( , )

cov( , ) cov( , ) cov( , )

t t

t t t t

t t t t t t

X X

X X e X

X X X X e X



 

 

Using the fact that  5
1 07
  , we have: 

    5 5 31
2 0 0 06 7 6 7
      and  2

0

3
2 7


   

In general, for 2k  , we have:  

5 1
1 26 6k k k      

We can solve this second order difference equation.  The characteristic equation (for the 
difference equation, which is unfortunately slightly different to the characteristic equation for the 
process) is: 

   2 5 1 1 1
6 6 2 3

0          

Using the formula on page 4 of the Tables, the general solution of this difference equation is of 
the form: 

    1 1
2 3

kk
k A B    

In order to find the solution we want, we need to use two boundary conditions to determine the 

two constants.  We know that 0 1  and 5
1 7
  .  So: 

 
0

51 1
1 2 3 7

1A B

A B





  

  
 

Solving these equations gives 16
7

A  and 9
7

B  . 

The autocorrelation function is therefore:  

   16 91 1
7 2 7 3

kk
k    
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We are also asked for the partial autocorrelation function.  Using the formulae on page 40 of the 
Tables: 

   5
1 1 7
     


  



2
2 1 1

2 2 6
11

 


   

Also, since this is an (2)AR  process: 

 0k  for  3, 4, 5,k  

 

3.5 The first-order moving average model, MA(1) 

A first-order moving average process, denoted (1)MA , is a process given by: 

 1t t tX e e      

The mean of this process is t  .   

The variance and autocovariance are: 

 2 2
0 1var( ) (1 )t te e        

 2
1 1 1 2cov( , )t t t te e e e          

 0k   for 1k   

Hence the ACF of the (1)MA  process is: 

 0 1   

 1 21








 

 0k   for 1k   

Question 

Show that the moving average process 1n n nX Z Z    is weakly stationary, where nZ  is a white 

noise process with mean   and variance 2 . 
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Solution 

The mean is constant since  ( ) 1nE X    . 

For the covariance: 

     2 2
1 1cov , cov , 1n n n n n nX X Z Z Z Z          

or alternatively: 

   2 2
1var( ) var 1n n nX Z Z       

and: 

      2
1 1 1 2 1 1cov , cov , cov ,n n n n n n n nX X Z Z Z Z Z Z              

   2 1 2 3cov , cov , 0n n n n n nX X Z Z Z Z         

In fact, the covariance at higher lags remains 0 since there is no overlap between the Z ’s.  The 
covariances at the corresponding negative lags are the same. 

Since none of these expressions depends on n, it follows that the process is weakly stationary. 

 
An (1)MA  process is stationary regardless of the values of its parameters.  The parameters 

are nevertheless usually constrained by imposing the condition of invertibility.  This may be 
explained as follows. 

It is possible to have two distinct (1)MA  models with identical ACFs:  consider, for example, 

0.5   and 2  , both of which have 1 2
0.4

1





 


. 

The defining equation of the (1)MA  may be written in terms of the backwards shift operator: 

 (1 )X B e     (13.6) 

In many circumstances an autoregressive model is more convenient than a moving average 
model.   

We may rewrite (13.6) as: 

 1(1 ) ( )B X e     

and use the standard expansion of 1 2 2 3 3(1 ) 1B B B B          to give: 

 2 3
1 2 3( ) ( ) ( )t t t t tX X X X e                  

The expansion referred to here is given on page 2 of the Tables. 
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The original moving average model has therefore been transformed into an autoregression 
of infinite order.  But this procedure is only valid if the sum on the left-hand side is 

convergent, in other words if 1  .  When this condition is satisfied the (1)MA  is called 

invertible.  Although more than one MA process may share a given ACF, at most one of the 
processes will be invertible. 

We might want to know the historic values of the white noise process.  Although the values 

 0 1, , , tx x x  can be observed, and are therefore known at time t, the values of the white noise 

process  0 1, , , te e e  are not.  Can we obtain the unknown e values from the known x values?  

The answer is yes, in theory, if and only if the process is invertible, since we can then write the 
value te  in terms of the x’s, as above.  In practice, we wouldn’t actually have an infinite history of 

x values, but since the coefficients of the x’s get smaller as we go back in time, for an invertible 
process, the contribution of the values before time 1, say, will be negligible.  We can make this 
more precise, as in the following question. 

Question 

Show that the process 1n n nX e e      may be inverted as follows: 

  
1

0
0

( ) ( )
n

n i
n n i

i

e e x  





      

Solution 

A simple algebraic rearrangement shows that 1n n nX e e      can be rewritten as 

1n n ne X e     .  Now using an iterative procedure: 

 

           

1

1 2

12
1 2 1 0

n n n

n n n

n n
n n n

e X e

X X e

X X X X e

 

   

       



 


 

  

    

           





 

Notice that, as n gets large, the dependence of ne  on 0e  will be small provided 1  .   

 
The condition for a (1)MA  process to be invertible is similar to the condition that an (1)AR  

process is stationary.  An (1)AR  process is stationary if and only if the process X can be written 

explicitly in terms of the process e.  The invertibility condition ensures that the white noise 
process e can be written in terms of the X process.  This relationship generalises to ( )AR p  and 

( )MA q  processes, as we will see shortly. 
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It is possible, at the cost of considerable effort, to calculate the PACF of the (1)MA , giving: 

 
2

1
2( 1)

(1 )
( 1)

1

k
k

k k
 








 


 

This formula can be found on page 41 of the Tables. 

This decays approximately geometrically as k   , highlighting the way in which the ACF 

and PACF are complementary:  the PACF of a (1)MA  behaves like the ACF of an (1)AR , and 

the PACF of an (1)AR  behaves like the ACF of a (1)MA . 

 

Figure 13.3: ACF and PACF of (1)MA  with 0.7    

3.6 The moving average model, MA(q) 

The defining equation of the general q th order moving average is, in backwards shift 

notation: 

 2
1 2(1 )q

qX B B B e          

In other words, it is: 

1 1 2 2t t t t q t qX e e e e             

Moving average processes are always stationary, as they are a linear combination of white noise, 
which is itself stationary. 

Recall that for a stationary ( )AR p  process, tX  can be expressed as an (infinite and convergent) 

sum of white noise terms.  This means that any stationary autoregressive process can be 
considered to be a moving average of infinite order.  However, by a moving average process we 
will usually mean one of finite order. 
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The autocovariance function is easier to find than in the case of ( )AR p : 



   
  

   2

0 0 0

( )
q q q k

k i j t i t j k i i k
i j i

E e e       

provided k q .  (Here 0  denotes 1.)   

Note that cov( , ) ( ) ( ) ( ) ( ) 0i j i j i j i je e E e e E e E e E e e     for i j  (since the random variables te  

have 0 mean and are uncorrelated), and 2 2cov( , ) var( ) ( )i i i ie e e E e    .  So, in the double sum 

above, the only non-zero terms will be where the subscripts of t ie   and t j ke    match, ie when 

i j k  .  This means that we can simplify the double sum by writing everything in terms of j .  

We need to get the limits right for j , which cannot go above q k  because i j k   and i  only 

goes up to q .  So we get: 

 2

0

q k

k j k j
j

   





   

This matches the formula above, except that i  has been used in place of j . 

For k q  it is obvious that 0k  .  Just as autoregressive processes are characterised by 

the property that the partial ACF is equal to zero for sufficiently large k , moving average 
processes are characterised by the property that the ACF is equal to zero for sufficiently 
large k .   

The importance of this observation will become apparent in Section 2 of Chapter 14.  We will look 
at an explicit case of this result to make things clearer. 

Question 

Calculate , 0,1,2,3,...k k   for the process: 

1 23 0.25n n n nX e e e       

where ne  is a white noise process with mean 0 and variance 1.   

Solution 

We have: 

 

0

1 2

2 2
1 2

cov( , ) var( )

var( 0.25 )

var( ) ( 1) var( ) 0.25 var( )

1 1 0.0625

2.0625

n n n

n n n

n n n

X X X

e e e

e e e
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1 1

1 2 1 2 3

1 1 2 2

cov ,

cov 0.25 , 0.25

cov( , ) cov(0.25 , )

1 0.25

1.25

n n

n n n n n n

n n n n

X X

e e e e e e

e e e e

 

    

   



    

   

  

 

  

 

 

 
2 2

1 2 2 3 4

2 2

cov ,

cov 0.25 , 0.25

cov(0.25 , )

0.25

n n

n n n n n n

n n

X X

e e e e e e

e e

 

    

 



    





  

 

 
3 3

1 2 3 4 5

cov ,

cov 0.25 , 0.25

0

n n

n n n n n n

X X

e e e e e e

 

    



    



 

The covariance at higher lags is also 0 since there is no overlap between the e’s. 

 
In the solution above, we have expanded the terms on both sides of the covariance expression.  
This will always be our strategy when calculating the autocovariance function for a moving 
average series.  For all other types of series, we just expand the term on the LHS of the covariance 
expression. 

We said above that an (1)MA  process 1t t tX e e      is invertible if 1  , and we drew the 

analogy with an (1)AR  process being stationary.  The same goes for this more general case.  Recall 

that an ( )AR p  process is stationary if and only if the roots of the characteristic equation are all 

strictly greater than 1 in magnitude.  

For an ( )MA q  process we have: 

 2
1 2(1 )q

t q tX B B B e          

The equation: 

 2
1 21 0q

qz z z        

can be used to determine invertibility.  This can be thought of as the characteristic equation of the 
white noise terms.   
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Condition for invertibility of a MA(q) process  

The process X  defined by the equation: 

 1 1 2 2t t t t q t qX e e e e            

is invertible if and only if the roots of the equation:  

 2
1 21 0q

qz z z        

are all strictly greater than 1 in magnitude.   

This is equivalent to saying that the value te  can be written explicitly as a (convergent) sum of X  

values.   

Again,   is often used instead of z  in the characteristic equation. 

It follows that in the same way as a stationary autoregression can be thought of as a moving 
average of infinite order, so a moving average can be thought of as an autoregression of infinite 
order. 

Question 

Determine whether the process 1 22 5 6t t t tX e e e      is invertible. 

Solution 

The equation 21 5 6 (1 2 )(1 3 ) 0          has roots 1 3  and 1 2 , so the process is not 

invertible. 

 
Although there may be many moving average processes with the same ACF, at most one of 
them is invertible, since no two invertible processes have the same autocorrelation 
function.  Moving average models fitted to data by statistical packages will always be 
invertible. 

3.7 The autoregressive moving average process, ARMA(p,q) 

A combination of the moving average and autoregressive models, an ARMA model includes 
direct dependence of tX  on both past values of X  and present and past values of e  . 

The defining equation is: 

  1 1 1 1( ) ( )t t p t p t t q t qX X X e e e                    

or, in backwards shift operator notation: 

  1 1(1 )( ) (1 )p q
p qB B X B B e             
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This might also be written: 

( )( ) ( )n nB X B e     

where ( )B  and ( )B  are polynomials of degrees q and p, respectively. 

If ( )B  and ( )B  have any factors (ie roots) in common, then the defining relation could be 

simplified.  For example, we may have a stationary (1,1)ARMA  process defined by 

   1 1n nB X B e     with 1  .  Since the factors  1 B  are invertible, we can multiply 

both sides of the equation by   11 B   to see  that n nX e .  So this process would actually be 

classified as (0,0)ARMA . 

In general, it would be assumed that the polynomials ( )B  and ( )B  have no common roots. 

Autoregressive and moving average processes are special cases of ARMA processes.  ( )AR p  is the 

same as ( ,0)ARMA p .  ( )MA q  is the same as (0, )ARMA q . 

To check the stationarity of an ARMA process, we just need to examine the autoregressive part.  
The moving average part (which involves the white noise terms) is always stationary.  The test is 
the same as for an autoregressive process – we need to determine the roots of the characteristic 
equation formed by the X  terms.  The process is stationary if and only if all the roots are strictly 
greater than 1 in magnitude. 

Similarly, we can check for invertibility by examining the roots of the characteristic equation that 
is obtained from the white noise terms.  The process is invertible if and only if all the roots are 
strictly greater than 1 in magnitude. 

Neither the ACF nor the PACF of the ARMA process eventually becomes equal to zero.  This 
makes it more difficult to identify an ARMA model than either a pure autoregression or a 
pure moving average. 

Theoretically, both the ACF and PACF of a stationary ARMA process will tend towards 0 for large 
lags, but neither will have a cut off property. 

It is possible to calculate the ACF by a method similar to the method employing the 
Yule-Walker equations for the ACF of an autoregression. 

We will show that the autocorrelation function of the stationary zero-mean (1,1)ARMA   

process: 

1 1t t t tX X e e      (13.7) 

is given by: 

 1 2

(1 )( )

(1 2 )

  


 
 


 

   

1
1, 2,3,k

k k     

These results can be obtained from the formula for k  given on page 40 of the Tables.    
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Figure 13.1 in Section 2.5 shows the ACF and PACF values of such a process with 0.7   

and 0.5  .  

Before we tackle the Yule-Walker equations, we need a couple of preliminary results. 

Using equation (13.7), ie: 

 1 1t t t tX X e e      

we have: 

 
1 1

2

cov( , ) cov( , ) cov( , ) cov( , )t t t t t t t tX e X e e e e e 



   


 

since te  is independent of both 1te   and 1tX  .   

Similarly: 

 
1 1 1 1 1 1

2

cov( , ) cov( , ) cov( , ) cov( , )

( )

t t t t t t t tX e X e e e e e 

  

       

 
 

This enables us to deduce the autocovariance function of X .  Again from (13.7): 

 1 1cov( , ) cov( , ) cov( , ) cov( , )t t t t t t t tX X X X e X e X      

 1 1 1 1 1 1cov( , ) cov( , ) cov( , ) cov( , )t t t t t t t tX X X X e X e X          

and, for 1k  : 

 1 1cov( , ) cov( , ) cov( , ) cov( , )t t k t t k t t k t t kX X X X e X e X          

So: 

 2 2
0 1 (1 )         

 2
1 0     

 1k k    

The solution is: 

 

2
2

0 2

2
1 2

1
1

1 2

1

( )(1 )

1

k
k

 
 



  
 



  

 




 




  2,3,...k  

assuming that the process is stationary, ie that 1  . 
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Hence: 

 1
1 2

0

(1 )( )

(1 2 )

   
  

 
 

 
  

and:  

1
11

1
0 0

k
kk

k
    
 


   , 2,3,k    

Question 

Show that the process 1 2 1 212 10 2 12 11 2t t t t t tX X X e e e         is both stationary and 

invertible. 

Solution 

We start by rewriting the process so that all the 'X s  are on the same side and all the 'e s  are on 
the same side: 

 1 2 1 212 10 2 12 11 2t t t t t tX X X e e e          

The characteristic equation of the AR part is   212 10 2 2 4 3 0         , which has roots 

2 and 3.  The process is therefore stationary. 

The characteristic equation of the MA part is   212 11 2 2 3 4 0         .  The roots of 

this equation are 1.5 and 4.  The process is therefore invertible. 

 

3.8 Modelling non-stationary processes: the ARIMA model 

This is the most general class of models we will consider.  They lie at the heart of the Box-Jenkins 
approach to modelling time series.  In order to understand the rationale underlying the definition, 
it will be useful to give a brief introduction to the Box-Jenkins method; a more detailed discussion 
will be given in Chapter 14. 

Suppose we are given some time series data nx , where n varies over some finite range.  If we 

want to model the data, then we would expect to take sample statistics, in particular the sample 
autocorrelation function, sample partial autocorrelation function and sample mean; these will be 
discussed in more detail in Chapter 14.  The modelling process would then involve finding a 
stochastic process with similar characteristics.  In the Box-Jenkins approach, the model is picked 
from the ( , )ARMA p q  class.  However, the theoretical counterparts of the autocorrelation and 

partial autocorrelation functions are only defined for stationary series.  The upshot of this is that 
we can only directly apply these methods if the original data values are stationary. 
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However, we can get around this problem as follows.  First transform the data into a stationary 
form, which we will discuss in a moment.  We can then model this stationary series as suggested 
above.  Finally, we carry out the inverse transform on our model to obtain a model for the original 
series.  The question remains as to what we mean by ‘transform’ and ‘inverse transform’.   

The backward difference operator can turn a non-stationary series into a stationary one.   For 
example, a random walk: 

 1t t tX X e   

is non-stationary (as its characteristic equation is 1 0  , which has a root of 1).  However, the 
difference: 

 1t t t tX X X e     

is just white noise, which is stationary.   

For the moment we will assume that it’s possible to turn the data set into a stationary series by 
repeated differencing.  We may have to difference the series several times, the specific number 
usually being denoted by d. 

Now assuming we’ve transformed our data into stationary form by differencing, we can model 
this series using a stationary ( , )ARMA p q  process.  The final step is to reverse the differencing 

procedure to obtain a model of the original series.  The inverse process of differencing is 
integration since we must sum the differences to obtain the original series. 

Question 

From a data set 0 1 2, , , , Nx x x x  the first order differences 1i i iw x x    are calculated.   

State the range of values of i  and give an expression for jx  in terms of 0x  and the 'w s . 

Solution 

The values of i  are 1,2,...,N  and: 

0
1

j

j i
i

x x w


   

 
In many applications the process being modelled cannot be assumed stationary, but can 
reasonably be fitted by a model with stationary increments, that is, if the first difference of 
X ,  Y X , is itself a stationary process. 

A process X  is called an ( ,1, )ARIMA p q  process if X  is non-stationary but the first 

difference of X  is a stationary ( , )ARMA p q  process. 

We will now consider some examples. 
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Example 1 

The simplest example of an ARIMA process is the random walk, 1t t tX X e  , which can 

be written 0
1

t

t j
j

X X e


   .  The expectation of tX  is equal to 0E X     but the variance is 

  2
0var X t , so that X  is not itself stationary.   

Here we are assuming (as we usually do) that the white noise process has zero mean. 

The first difference, however, is given by: 

 t t tY X e    

which certainly is stationary.  Thus the random walk is an (0,1,0)ARIMA   process. 

Example 2 

Let tZ  denote the closing price of a share on day t .  The evolution of Z  is frequently 

described by the model: 

  1 expt t tZ Z e    

By taking logarithms we see that this model is equivalent to an (1)I  model, since lnt tY Z  

satisfies the equation: 

 1t t tY Y e     

which is the defining equation of a random walk with drift because 0
1

t
t j

j
Y Y t e


    .  The 

model is based on the assumption that the daily returns  1ln t tZ Z   are independent of the 

past prices 0 1 1, , , tZ Z Z  . 

Example 3 

The logarithm of the consumer price index can be described by the (1,1,0)ARIMA  model: 

 1(1 )ln (1 )lnt t tB Q B Q e           

When analysing the behaviour of an ( ,1, )ARIMA p q  model, the standard technique is to look 

at the first difference of the process and to perform the kind of analysis which is suitable for 
an ARMA model.  Once complete, this can be used to provide predictions for the original, 
undifferenced, process. 

ARIMA(p,d,q) processes 

In certain cases it may be considered desirable to continue beyond the first difference, if the 
process X  is still not stationary after being differenced once.  The notation extends in a 
natural way. 
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Definition of an ARIMA process 

If X  needs to be differenced at least d  times in order to reduce it to stationarity and if the 

d th difference  dY X  is an ( , )ARMA p q  process, then X   is termed an ( , , )ARIMA p d q  

process. 

In terms of the backwards shift operator, the equation of the ( , , )ARIMA p d q  process is: 

 1 1(1 )(1 ) ( ) (1 )p d q
p qB B B X B B e               

An ( , , )ARIMA p d q  process is ( )I d  .  We can think of the classification ( , , )ARIMA p d q  as: 

 ( ) ( ) ( )AR p I d MA q   

We now consider an example where we classify a time series as an ARIMA process. 

To identify the values of p , d  and q  for which X  is an ( , , )ARIMA p d q  process, where: 

 1 2 3 10.6 0.3 0.1 0.25t t t t t tX X X X e e         

we can write the equation in terms of the backwards shift operator: 

 2 3(1 0.6 0.3 0.1 ) (1 0.25 )B B B X B e      

We now check whether the polynomial on the left-hand side is divisible by 1  B; if so, 
factorise it out.  We continue to do this until the remaining polynomial is not divisible by 
1 B . 

 2(1 )(1 0.4 0.1 ) (1 0.25 )B B B X B e      

The model can now be seen to be (2,1,1)ARIMA . 

We should also check that the roots of the characteristic polynomial of tX , ie   21 0.4 0.1  , 

are both strictly greater than 1 in magnitude.  In fact, the roots are 2 6i  .  The magnitude of 

the complex number a bi  is 2 2a b .  So the magnitude of 2 6i   is: 

  22( 2) 6 4 6 10       

The magnitude of 2 6i   is also 10 .  So both roots are strictly greater than 1 in magnitude. 

Differencing once removes the factor of (1 )B .  Hence, the process tX  is stationary, as 

required. 

Alternatively, we could write the equation for the process as: 

        1 2 3 10.6 0.3 0.1 0.25t t t t t tX X X X e e   
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The characteristic equation of the AR part is: 

    2 31 0.6 0.3 0.1 0     

There is no simple formula for solving cubic equations, so we should start by checking whether 1 
is a root of this equation.  Setting  1 , we see that the left-hand side is: 

    1 0.6 0.3 0.1 0   

So 1 is a root, and hence ( 1)  is a factor.  The characteristic polynomial can therefore be 

written in the form: 

   2( 1)( )a b c     

We can determine the values of a , b  and c  by comparing coefficients, by long division of 
polynomials, or by synthetic division.  We find that  0.1a ,  0.4b  and  1c , and the roots of 

the equation   20.1 0.4 1 0   are 2 6i   as stated above, and these are strictly greater 

than 1 in magnitude.  Since the characteristic equation has one root of 1 and the other roots are 
strictly greater than 1 in magnitude, differencing once will give us a stationary process.  So  1d .  
There are two other roots, so  2p .  In addition, 1q  since the moving average part is of 

order 1.  Hence the process is (2,1,1)ARIMA . 

Another alternative is to write the defining equation in terms of the differences.   

The equation: 

 1 2 3 10.6 0.3 0.1 0.25t t t t t tX X X X e e         

can be rearranged as: 

 1 2 3 10.6 0.3 0.1 0.25t t t t t tX X X X e e         

or: 

 1 1 2 2 3 1( ) 0.4( ) 0.1( ) 0.25t t t t t t t tX X X X X X e e             

or: 

 1 2 10.4 0.1 0.25t t t t tX X X e e          

The characteristic equation formed by the X  terms is: 

   20.1 0.4 1 0   

As we have already seen, the roots of this equation are 2 6i  , and these both have a 

magnitude of 10 .  So X  is stationary (2,1)ARMA  and hence X  is (2,1,1)ARIMA . 

ARIMA models play a central role in the Box-Jenkins methodology, which aims to provide a 
consistent and unified framework for analysis and prediction using time series models.  
(See Section 3.1 of Chapter 14.) 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 50  CS2-13: Time series 1 

 

© IFE: 2019 Examinations The Actuarial Education Company 

3.9 The Markov property 

As we saw in Chapter 1, if the future development of a process can be predicted from its 
present state alone, without any reference to its past history, it possesses the Markov 
property.  Stated precisely this reads: 

 
1 21 2| , , , , |

nt s s s n s t sP X A X x X x X x X x P X A X x             

for all times 1 2     ns s s s t , all states 1 2, , , nx x x  and x  in S  and all subsets A  

of S . 

Recall from Section 1 that a time series process is defined as having a continuous state space.  The 
necessity to work with subsets A S  (rather than just having tX a S  ) is to cover these 

continuous state space cases.  For these the probability that tX  takes on a particular value is zero.  

We therefore need to work with probabilities of tX  lying in some interval of S, or more generally 

in some subset.   

A first-order autoregressive process possesses the Markov property, since the conditional 
distribution of 1nX   given all previous tX  depends only on nX .  This property does not 

apply, however, to higher-order autoregressive models. 

Suppose X  is an (2)AR .  X  does not possess the Markov property, since the conditional 

distribution of 1nX   given the history of X  up until time n   depends on 1nX   as well as on 

nX .  But let us define a vector-valued process Y   by  1,
T

t t tY X X  .   

Vector-valued or multivariate processes will be studied in more detail in Chapter 14.  The 
superscript ‘T’ here means transpose, ie we are thinking of Y   as a column vector.   

Given the whole history of the process X  up until time n , the distribution of 1nY   depends 

only on the values of nX  and 1nX   – in other words, on the value of nY .  This means that 

Y  possesses the Markov property. 

We can illustrate this as follows.  The (2)AR  process: 

    1 1 2 2n n n nX X X e    

can be written in matrix form as follows: 

 

 

      
       

      
1 2 1

1 21 0 0
n n n

n n

X X e

X X

 
  

ie: 

 1 2
11 0 0

n
n n

e
Y Y

 


   
    
   

   

We can see from the equation immediately above that future values of the process Y  depend 

only on the current value, and not on the past history of the process. 
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Similarly, the (3)AR  process: 

      1 1 2 2 3 3n n n n nX X X X e     

can be written in matrix form as follows: 

 


 

 

      
             

      
      

1 2 3 1

1 2

2 3

1 0 0 0

0 1 0 0

n n n

n n

n n

X X e

X X

X X

  
  

In general an ( )AR p  does not possess the Markov property (for 1p  ) but we may define a 

vector-valued process  1 1, , ,
T

t t t t pY X X X    which does. 

You will recall from Chapter 1 that a random walk possesses the Markov property.  The 
discussion of the Markov property for autoregressions can be extended to include some 
ARIMA processes such as the random walk, which has already been shown to be an 

(0,1,0)ARIMA  process:  an ( , ,0)ARIMA p d  process does not possess the Markov property 

(for 1p d  ) but we may define a vector-valued process  1 1, , ,
T

t t t t p dY X X X     

which does. 

A moving average, or more generally an ( , , )ARIMA p d q  process with 0q  , can never be 

Markov, since knowledge of the value of nX , or of any finite collection 

 1 1, , ,
T

n n n qX X X    will never be enough to deduce the value of ne , on which the 

distribution of 1nX   depends.  Since a moving average has been shown to be equivalent to 

an autoregression of infinite order, and since a p th order autoregression needs to be 

expressed as a p -dimensional vector in order to possess the Markov property, a moving 

average has no similar finite-dimensional Markov representation. 

Question 

Let 1n n nX e e    be an MA(1) process where (0,1)ne N .  Determine whether this process has 

the Markov property. 

Solution 

The process is not Markov.  We can see this intuitively as follows (although we could explicitly 
calculate some conditional probabilities to give a more formal proof). 

The problem is really whether knowing the value of 2nX   in addition to 1nX   will help in 

predicting the value of nX .  Suppose, for example, that 1 0nX   , ie 1 2 0n ne e   .  We cannot 

deduce the values of the e’s themselves.   

However, the value 2nX   will give us extra information as to the likely value of 2ne  , which in 

turn gives us extra information about the value of 1ne  , which in turn gives us information about 

the value of nX .   
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For example, 2nX   might be very large and positive, which would indicate that 2ne   is more likely 

to be positive, which would indicate that 1ne   is more likely to be negative, which would indicate 

that nX  is more likely to be negative. 
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Chapter 13 Summary 

Univariate time series 

A univariate time series is a sequence of observations  tX  recorded at regular intervals.  

The state space is continuous but the time set is discrete.   

Such series may follow a pattern to some extent, for example possessing a trend or seasonal 
component, as well as having random factors.  The aim is to construct a model to fit a set of 
past data in order to forecast future values of the series. 

Stationarity 

It is easier (more efficient) to construct a model if the time series is stationary.   

A time series is said to be stationary, or strictly stationary, if the joint distributions of 

1 2
{ , ,..., }

nt t tX X X  and   1 2
{ , ,..., }

nt k t k t kX X X  are identical for all 1 2, ,..., nt t t  and 

  1 2, ,..., nt k t k t k   in the time set J  and all integers n .  This means that the statistical 

properties of the process remain unchanged as time elapses. 

For most cases of interest to us, it is enough for the time series to be weakly stationary.  This 
is the case if the time series has a constant mean, constant variance and the covariance   
depends only on the lag. 

We are also interested primarily in purely indeterministic processes.  This means knowledge 
of the values 1 2, ,..., nX X X   is progressively less useful at predicting the value of NX  as 

N . 

We redefine the term ‘stationary’ to mean weakly stationary and purely indeterministic. 

Importantly, the time series consisting of a sequence of white noise terms is weakly 
stationary and purely indeterministic.  White noise is defined as a sequence of uncorrelated 
random variables.  In time series, we assume that white noise has zero mean.  This series has 
constant mean and variance, and covariance that depends only on whether the lag is zero or 
non-zero.  It is purely indeterministic due to its random nature. 

A time series process X  is stationary if we can write it as a convergent sum of white noise 
terms.   

It can be shown that this is equivalent to saying that the roots of the characteristic 
polynomial of the X  terms are all greater than 1 in magnitude.  For example, if the time 
series is defined by 1 1 1 1t t p t p t t q t qX X X e e e               then the 

characteristic polynomial is   11 p
p    .  To find the roots, we set this equal to zero 

and solve. 
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Invertibility 

A time series process X  is invertible if we can write the white noise term te  as a convergent 

sum of the X  terms.   

It can be shown that this is equivalent to saying that the roots of the characteristic 
polynomial of the e  terms are all greater than 1 in magnitude.  For example, if the time 
series is given by 1 1 1 1t t p t p t t q t qX X X e e e               then the characteristic 

polynomial of the e  terms is   11 q
q    .  To find the roots, we set this equal to 

zero and solve. 

Invertibility is a desirable characteristic since it enables us to calculate the residual terms and 
hence analyse the goodness of fit of a particular model. 

Backward shift and difference operators 

The backwards shift operator, B, is defined as follows: 

 1t tBX X    

B   where   is a constant. 

The backward shift operator can be applied repeatedly so that k
t t kB X X  . 

The difference operator,  , is defined as follows: 

 1t t tX X X      

The difference operator can be applied repeatedly so that 1 1
1

k k k
t t tX X X 

   . 

The difference operator and backward shift operator are linked by 1 B   . 

Integrated processes 

A time series process X  is integrated of order d, denoted ( )I d , if its d th difference is 

stationary.  So X  is (0)I  if the process X  itself is stationary, and X  is (1)I  if X  is 
stationary. 

Autocovariance function 

If the time series X  is stationary, then its covariance depends only on the lag k.  In this case, 

we define the autocovariance function as   cov ,k t t kX X  .  
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Autocorrelation function 

If the time series X  is stationary, then its autocorrelation function (ACF)  is: 

  
0

, k
k t t kcorr X X




 

For purely indeterministic time series processes X  (where the past values of X  become less 
useful the further into the future we look), 0k   as k  . 

Partial autocorrelation function 

The partial autocorrelation function (PACF),  : 1,2,k k   , is defined as the conditional 

correlation of t kX   with tX  given 1 1, ,t t kX X   .    Formulae for the partial 

autocorrelation are given on page 40 of the Tables. 

Moving average processes 

A time series process X  is said to be ( )MA q  (or moving average of order q) if it can be 

written as a weighted average of the past q  white noise terms (plus a new white noise 

term): 

 1 1t t t q t qX e e e                 (zero mean) 

 1 1t t t q t qX e e e             (mean  ) 

Features of ( )MA q  time series include: 

 always stationary (as a finite sum of white noise) 

 invertible if all the roots of the characteristic equation    11 0q
q     are 

strictly greater than 1 in magnitude 

 not Markov  

 k  cuts off for k q  

 k  decays geometrically as k  . 

Autoregressive processes 

A time series process X  is said to be ( )AR p  (or autoregressive of order p) if it depends on 

the past p  terms of the series (plus a new white noise term): 

 1 1t t p t p tX X X e                                        (zero mean) 

1 1( ) ( )t t p t p tX X X e                        (mean  ) 
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Features of ( )AR p  time series include: 

 stationary if all the roots of the characteristic equation 11 0p
p        are 

strictly greater than 1 in magnitude 

 always invertible 

 only Markov if 1p   

 k  decays geometrically as k   

 k  cuts off for k p . 

ARMA processes 

A time series process X  is said to be ( , )ARMA p q  (or autoregressive moving average of order 

p, q) if it is the sum of an ( )AR p  and an ( )MA q  time series: 

 

1 1

1 1

t t p t p t

t q t q

X X X e

e e

 

 

 

 

   

  



                                  (zero mean) 

 

1 1

1 1

( ) ( )t t p t p t

t q t q

X X X e

e e

    

 

 

 

      

  



            (mean  ) 

Features of ( , )ARMA p q  time series include: 

 stationary if all the roots of the characteristic equation of the AR part, ie 

11 0p
p       , are strictly greater than 1 in magnitude 

 invertible if all the roots of the characteristic equation of the MA part, ie 

11 0q
q       , are strictly greater than 1 in magnitude 

 only Markov if 1p  , 0q   

 k  decays as k   

 k  decays as k  . 

ARIMA processes 

A time series process X  is said to be ( , , )ARIMA p d q  (or autoregressive integrated moving 

average of order p, d, q) if the d th  difference d
t tY X   is a stationary ( , )ARMA p q  time 

series process. 
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Chapter 13 Practice Questions 

13.1 Give an expression for 1 2 32 5 4t t t tX X X X      in terms of second order differences. 

13.2 A time series is defined by the relationship 1t t tX X Z  , where the tZ  are IID 2(0, )N   random 

variables. 

Determine the relationship between var( )tX  and 1var( )tX  , and hence comment on the 

stationarity of this series.  

13.3 Determine whether the process 1
1 22n n n nX X X e     is stationary. 

13.4 An autoregressive stationary time series tW  is defined by the relationship: 

1 2 30.6 0.4 0.1t t t t tW W W W Z       

for integer times t, where  tZ  represents a set of uncorrelated random variables with mean 0 

and variance 2 . 

(i) Explain why  1cov , 0t tW Z    and    1 1 2cov , cov ,t t t tW W W W   . 

(ii) By considering  cov ,t t kW W   when 0,1,2,3k  , write down a set of four equations 

relating the values of the autocovariance function k  at lags 0,1,2,3k  . 

(iii) Solve the four equations in part (ii) to find both the autocovariance function and the 
autocorrelation function for lags 0, 1, 2 and 3. 

13.5 Calculate the autocorrelation function of the process 1 21 5 6n n n nX e e e     . 

13.6 (i) The first differences of a time series X  can be modelled by the process: 

  10.5n n nX X e     

Determine the model for nX . 

(ii) Show that the process nX  is non-stationary. 

13.7 (i) Show that the relationship 1 2 10.7 0.3 0.7t t t t tY Y Y Z Z       (where the Z ’s denote 

white noise) defines an (1,1,1)ARIMA  process.  

(ii) Show carefully that the relationship 1 3 11.5 0.5 0.5t t t t tS S S Z Z       cannot be 

expressed as an (1,2,1)ARIMA  process.   

13.8 Consider the process with defining equation: 

 1 2 35 4n n n n nX X X X e       

Write this as a vector process that possesses the Markov property. 
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13.9 Let 2n n nX e e    be an MA(2) process where (0,1)ne N . 

(i) Calculate  10 0n nP X X   . 

(ii) Compare your answer to (i) with  1 20 0, 0n n nP X X X     and hence comment on 

whether the process is Markov. 

13.10 Calculate the values of 1  and 2 , the autocorrelation function at lags 1 and 2, for the stationary 

(2)AR  process defined by the equation: 

 1 20.8 0.1n n n nX X X       [4] 

13.11 Consider the time series model defined by: 

 1 1 2 2 3 3t t t t tX X X X          

where { }t  is white noise. 

(i) Show that the autocorrelation coefficient with lag 1 for this process is: 

  1 2 3
1 2

2 1 3 31

  
   




  
 [3] 

(ii) Consider the case where 1 2 3 0.2     . 

 (a) Comment on the stationarity of this model. 

  Hint: 2 3 25 (1.278 )(3.912 2.278 )x x x x x x        

 (b) Calculate 1  and 2 . 

 (c) Calculate the partial autocorrelation coefficients 1  and 2 . 

 (d) Sketch correlograms of the autocorrelation function and the partial 
autocorrelation function.  (You are not required to calculate the coefficients for 
higher lags.) [9] 

    [Total 12] 

  

Exam style 

Exam style 
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13.12 { }tX  is a stationary (1,2)ARMA  time series defined at integer times by the relationship: 

 1 2t t t tX X Z Z      

where ,   are constants and { }tZ  is a purely random process with mean 0 and constant 

variance 2 . 

(i) Define the term ‘weakly stationary process’. [2] 

(ii) Assuming that the above process has a very long history, state the conditions on   and 
  needed to ensure that it is:  

 (a)  stationary 

 (b)  invertible. [2] 

(iii) Show that for any integer s : 

  2 2 2 2
1 2cov( , ) cov( , ) cov( , ) ( )s s s s s sX Z X Z X Z          [3] 

(iv) (a) By considering cov( , )t tX X , 1cov( , )t tX X   and 2cov( , )t tX X  , write down three 

equations involving 0 , 1  and 2 . 

 (b) Hence find expressions for 0 , 1  and 2  in terms of the parameters  ,   and
2 .  [7] 

(v) (a) Calculate the values of 0 , 1 , 2  and 3  in the case where 0.4    and 

0.9   . 

 (b) Hence sketch a graph of the autocorrelation function k  for lags 0,1,2, ,10k    

in this case. [5] 
    [Total 19] 

 

 

 

  

Exam style 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 13 Solutions 

13.1 Using the difference operator, we can write: 

1 2 3 1 1 2 2 3

1 2

1 1 2

2 2
1

2 5 4 2( ) 3( ) ( )

2 3

2( ) ( )

2

t t t t t t t t t t

t t t

t t t t

t t

X X X X X X X X X X

X X X

X X X X

X X

       

 

  



        

    

     

  

 

13.2 The series is defined by the equation: 

 1t t tX X Z   

If we take variances of both sides, we get: 

 2
1var( ) var( )t tX X     

Here we have used the fact that tZ  and 1tX   are uncorrelated.  This is because 1tX   depends only 

on the past values of X  and Z  (ie values for times up to 1t  ), whereas tZ  is a new random value 

at time t  that is not influenced in any way by these earlier values. 

This implies that 1var( ) var( )t tX X  , which contradicts the stationarity requirement, which 

requires (amongst other things) that the variance is independent of time.  So the series cannot be 
stationary.    

13.3 The characteristic equation of the AR part is: 

 21 0.5 0     

The roots of this equation are: 

 
2( 1) ( 1) 4 0.5 1 1 1

1
2 0.5 1

i         
   


 

Since 1 2 1i   , the process is stationary. 

13.4 (i) tW  is only dependent on past Z’s, which are not correlated with the future Z’s.  Therefore 

 1cov , 0t tW Z   .  Also, since tW  is stationary, only the lag matters so the second 

equation holds. 
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(ii) If we take the covariance of both sides of the defining equation with tW , 1 2,t tW W   and 

3tW   in turn, then we obtain the four equations: 

 

2
0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

0.6 0.4 0.1 (1)

0.6 0.4 0.1 (2)

0.6 0.4 0.1 (3)

0.6 0.4 0.1 (4)

    

   

   

   

   

  

  

  

 

 The 2  term in the first equation comes from: 

        2
1 2 3cov , cov 0.6 0.4 0.1 , cov ,t t t t t t t t tW Z W W W Z Z Z Z          

(iii) Equation (2) gives 2 0 16 6    .   

Likewise, from Equation (3) we get 2 0 10.4 0.5    .   

Equating these two expressions for 2  gives 56
1 065
   and hence 54

2 065
  .   

Equation (4) can then be applied to get 483
3 0650
  .   

Finally Equation (1) can be applied to show that 2
00.22508  .   

Rearranging these expressions in terms of 2  we obtain the first four autocovariance 
values: 

2 2 2 2
0 1 2 34.4429 , 3.8278 , 3.6910 , 3.3014            

The autocorrelations are then obtained by dividing by 0 : 

0 1 2 31, 0.862, 0.831, 0.743        

13.5 The autocovariance function is: 

   1 2 1 2cov , cov 5 6 , 5 6

062

135

26

20

n n k n n n n k n k n kX X e e e e e e

k

k

k

k
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For example: 

 

0

1 2 1 2

1 1 2 2

2 2 2

cov( , )

cov( 5 6 , 5 6 )

cov( , ) cov( 5 , 5 ) cov(6 ,6 )

1 ( 5) 6 62

n n

n n n n n n

n n n n n n

X X

e e e e e e

e e e e e e



   

   



    

    

    

 

and similarly for the other values of k . 

Since the autocovariance and autocorrelation functions are even, we can give the results for non-
negative values of k . The autocorrelation function is: 

 0 1    1
35
62

     2
6

62
   0k   for | | 2k   

13.6 (i) Integrated process 

The series 10.5n n nX X e    , can be written: 

 1 1 20.5n n n n nX X X X e       

Rearranging we end up with: 

 1 21.5 0.5n n n nX X X e     

(ii) Show that X is non-stationary 

We have: 

 1 21.5 0.5n n n nX X X e      

which is an (2)AR  process.  Its characteristic equation is: 

21 1.5 0.5 0     

This has roots 
1.5 2.25 2

1
 

, ie 1 and 2.  For stationarity, we require both roots to be strictly 

greater than 1 in magnitude.  This is not the case here, so the process is not stationary. 

13.7 (i) ARIMA(1,1,1) 

The characteristic equation of the AR part is: 

 21 0.7 0.3 0      

The roots of this equation are 1 and 
10
3

 .  Both roots must be strictly greater than 1 in 

magnitude for the series to be stationary.  This is not the case here.  
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Differencing once removes the root of 1 as we can see by subtracting 1tY   from both sides of the 

defining equation.  This gives: 

 

1 1 2 1

1 2 1

0.3 0.3 0.7

0.3( ) 0.7

t t t t t t

t t t t

Y Y Y Y Z Z

Y Y Z Z

   

  

     

       

This can be expressed using the difference operator as: 

 1 10.3 0.7t t t tY Y Z Z        

The characteristic equation of the AR part of the differenced series is: 

 1 0.3 0    

and the root of this equation is 
10
3

 .  So Y  is stationary (1,1)ARMA  and hence Y  is 

(1,1,1)ARIMA .    

(ii) Not an ARIMA(1,2,1) 

The general form of an (1,2,1)ARIMA  model is: 

 2 2
1 1t t t tS S Z Z         

Expanding the  ’s gives: 

 1 2 1 2 3 12 ( 2 )t t t t t t t tS S S S S S Z Z              

ie 1 2 3 1(2 ) (1 2 )t t t t t tS S S S Z Z               

The relationship given is: 

 1 3 11.5 0.5 0.5t t t t tS S S Z Z       

Comparing the coefficients of 1tS   implies that 0.5   .  This correctly makes the 2tS   term 

vanish, but gives the wrong sign for 3tS  .  So this definition is not consistent with an 

(1,2,1)ARIMA  model.   

13.8 We can write 1 2 35 4n n n n nX X X X e       in vector form as follows: 

 
1

1 2

2 3

5 4 1

1 0 0 0

0 1 0 0

n n n

n n

n n

X X e

X X

X X



 

 

       
             

      
      

  

This vector-valued process has the Markov property. 
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13.9 (i) If ne  and 2ne   are independent standard normal random variables, then 

2 (0,2)n ne e N  .  Hence: 

   
 

1 2 1 3

2

0 0 0 0

0

0.5

n n n n n n

n n

P X X P e e e e

P e e

   



      

  



 

(ii) We have: 

   
 
 

 

 

1 2 2 1 3 2 4

2 2 4

2 2 4

2 4

2 2 4

0 0 , 0 0 0, 0

0 0

0 0

0

0 0

0.5

n n n n n n n n n

n n n n

n n n n

n n

n n n n

P X X X P e e e e e e

P e e e e

P e e e e

P e e

P e e e e

      

  

  

 

  

         

    

    


 

    


 

The process is Markov if    1 1 20 0 0 0 , 0n n n n nP X X P X X X        .  Hence, we require 

 2 2 40 0 0.25n n n nP e e e e        . 

Equivalently, we require  2 4 2 0.25n n n nP e e e e        . 

For any given observation   of 2ne  , this is: 

   1 ( ) 0.25       

and the solution to this quadratic is at   0.5    or 2 0ne   . 

In other words,    1 1 20 0 0 0 , 0n n n n nP X X P X X X         only if 2 0ne   .  So the 

process cannot be Markov. 

13.10 The defining equation is: 

 1 20.8 0.1n n n nX X X       

The autocovariance at lag 1 is:  

 

1 1

1 2 1

1 1 2 1 1

0 1

cov( , )

cov( 0.8 0.1 , )

0.8cov( , ) 0.1cov( , ) cov( , )

0.8 0.1

n n

n n n n

n n n n n n

X X

X X X

X X X X X







 



  

    



   

   

     [1] 
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Dividing through by 0  and using the fact that 0 1   gives:  

 1 10.8 0.1      8
1 9
      [1] 

Similarly, the autocovariance at lag 2 is:  

 

2 2

1 2 2

1 0

cov( , )

cov( 0.8 0.1 , )

0.8 0.1

n n

n n n n

X X

X X X





 



  



   

     [1] 

Dividing through by 0  gives: 

 8 73
2 1 9 90

0.8 0.1 0.8 ( ) 0.1             [1] 

The value of 0  is not required here. 

13.11 (i) Autocorrelation coefficient 

Applying the Yule-Walker method by taking covariances with 1tX  , we get: 

 1 1 1 2 2 3 3 1cov( , ) cov( , )t t t t t t tX X X X X X            

ie: 1 1 0 2 1 3 2 0           [½] 

Dividing by 0 : 

 1 1 2 1 3 2         

ie: 2 1 1 3 2(1 )        [½] 

Then taking covariances with 2tX  : 

 2 1 1 2 2 3 3 2cov( , ) cov( , )t t t t t t tX X X X X X            

ie: 2 1 1 2 0 3 1 0           [½] 

Dividing by 0 : 

 2 1 1 2 3 1         

ie: 2 1 3 1 2( )        [½] 

If we eliminate 2  from these two simultaneous equations, we get: 

 2 1 1 3 1 3 1 2(1 ) [( ) ]             [½] 

Rearranging: 

  2 3 1 3 1 1 3 2(1 ) ( )             
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So:  

1 3 2 1 2 3
1 2

2 3 1 3 2 1 3 3(1 ) ( ) 1

     
       

 
 

     
 [½] 

(ii)(a) Stationarity 

In this case the model can be written as: 

 1 2 30.2 0.2 0.2t t t t tX X X X        

Stationarity is determined by the nature of the roots of the characteristic equation: 

 2 31 0.2 0.2 0.2 0       [1] 

Multiplying by 5, this is: 

 2 35 0       

Using the hint given, we can write this as: 

 2(1.278 )(3.912 2.278 ) 0       

  1.278    or  23.912 2.278 0     [½] 

The quadratic equation has roots: 

 
22.278 (2.278) 4(1)(3.912)

1.139 1.617
2

i   
     [1] 

The real root (1.278) and the two complex roots are all strictly greater than 1 in magnitude.   

(Recall that the magnitude of a complex root a bi  is given by 2 2a b .) 

So this model is stationary. [½] 

(ii)(b) ACF at lags 1 and 2 

Using the formula derived in part (i): 

 
2

1 2 3
1 2 2 2

2 1 3 3

0.2 (0.2) 0.24 1
0.72 31 1 0.2 (0.2) (0.2)

  
   

 
   

     
 [½] 

From the second Yule-Walker equation, derived in part (i), we also have: 

 2 1 3 1 2
1 1

( ) (0.2 0.2) 0.2
3 3

             [½] 
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(ii)(c) PACFs at lags 1 and 2 

Using the formulae on page 40 of the Tables: 

 1 1
1
3

    and  
2

2 1
2 2

1

1
41

 



 


 [1] 

(ii)(d) Correlograms 

We’ve already calculated 1
1 3
   and 1

2 3
  .  Higher-lag autocorrelations will satisfy the Yule-

Walker equation 1 2 30.2( )k k k k        .  So the values will tail off quite quickly to zero, 

always taking positive values.  The correlogram (ie graph of k  versus k ) will look like this: 

  [2] 

We’ve already calculated 1
1 3
   and 1

2 4
  .  Since the process is (3)AR , the partial 

autocorrelations will all equal zero from lag 4 onwards.  So the partial correlogram (ie graph of k  

versus k ) will look like this: 

  [2] 

13.12 (i) Weakly stationary process 

A weakly stationary process has constant mean, and the covariance is constant for each fixed lag.  
The variance (a special case of the covariance) is also constant. [2] 
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(ii)(a) Condition for stationarity 

The root of the characteristic equation of the AR part, ie: 

 1 0    

must be strictly greater than 1 in magnitude.  So, for stationarity, we must have 1  . 

(ii)(b) Condition for invertibility 

The root of the characteristic equation of the MA part, ie: 

 21 0    

must be strictly greater than 1 in magnitude.  So, for invertibility, we must have 1  .   [2] 

(iii) Covariances 

Using the definition of the series with t s , we have: 

 

 

 

  

  

1 2

1 2

cov( , ) cov( , )

cov( , ) cov( , ) cov( , )

s s s s s s

s s s s s s

X Z X Z Z Z

X Z Z Z Z Z

 

   [½] 

The first term on the RHS is zero since sZ  is uncorrelated with earlier values of the series.  The 

third term is also zero since { }tZ  is a purely random process.  So:  

 2cov( , ) cov( , ) var( )s s s s sX Z Z Z Z     [½] 

Similarly using the result just proved, with s  replaced by 1s  , we have: 

 

1 1 2 1

2
1 1

cov( , ) cov( , )

cov( , )

s s s s s s

s s

X Z X Z Z Z

X Z

 

 

   

 

  

   [1] 

Finally: 

 

2 1 2 2

1 2 2 2 2

2
1

2 2

cov( , ) cov( , )

cov( , ) cov( , ) cov( , )

cov( , ) 0

( )

s s s s s s

s s s s s s

s s

X Z X Z Z Z

X Z Z Z Z Z

X Z

 

 

 

  

   

    



  

  

  

   [1] 

(iv)(a) Yule-Walker equations 

If we replace one of the tX ’s in cov( , )t tX X  with the definition given for tX , we get: 

 1 2cov( , ) cov( , )t t t t t tX X X Z Z X      
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Using the first and third results from part (iii) gives: 

 2 2 2 2 2 2
0 1 1( ) (1 )                        … (1) [1] 

If we replace the tX  in 1cov( , )t tX X   with the definition given for tX , we get: 

 1 1 2 1cov( , ) cov( , )t t t t t tX X X Z Z X        [1] 

Using the second result from part (iii), this simplifies to: 

 2 2
1 0 00              … (2) [1] 

Similarly: 

 2 1 2 2cov( , ) cov( , )t t t t t tX X X Z Z X        

Using the first result from part (iii), this simplifies to: 

 2 2
2 1 10              … (3) [1] 

(iv)(b) Obtain autocovariances 

Substituting the value of 1  from Equation (2) into Equation (1), rearranging and simplifying gives: 

 
2 2

2
0 2

1 2

1

   


 



 [1] 

Substituting this into Equation (2) gives: 

 
2 2

2
1 2

(1 )

1

     


  



 [1] 

Substituting this into Equation (3) gives: 

 
2 2 2 4

2
2 21

      


  



 [1] 

(v)(a) ACF 

Using the values given for   and  , the numerators in the expressions for 0 , 1  and 2  are 

1.522, –0.3064 and –0.63344. 

So: 

 0 1 2
0.3064 0.63344

1 0.201 0.416
1.522 1.522

            [2] 

If we use the same method as in (iv)(a), we see that subsequent values of   (and hence  ) will 

just include an extra factor of   each time. 
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So:  

 

2

3

0.416 ( 0.4) for 2

0.416 ( 0.4) 0.166

k
k k



    

       [1] 

(v)(b) Graph of ACF 

So the graph of k  looks like this (with the values for 2k   alternating in sign and reducing in 

magnitude): 

  [2] 

 

1 2 3 4 5 6 7 8 9 10
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Time series 2 

 

Syllabus objectives 

2.1 Concepts underlying time series models 

2.1.3 Explain the concept of a filter applied to a stationary random series. 

2.1.7 Explain the basic concept of a multivariate autoregressive model. 

2.1.8 Explain the concept of cointegrated time series. 

2.2 Applications of time series models 

2.2.1 Outline the process of identification, estimation and diagnosis of a time 
series, the criteria for choosing between models and the diagnostic tests 
that might be applied to the residuals of a time series after estimation. 

2.2.2 Describe briefly other non-stationary, non-linear time series models. 

2.2.3 Describe simple applications of a time series model, including random 
walk, autoregressive and cointegrated models as applied to security prices 
and other economic variables. 

2.2.4 Develop deterministic forecasts from time series data, using simple 
extrapolation and moving average models, applying smoothing techniques 
and seasonal adjustment when appropriate. 
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0 Introduction 

We have seen in Chapter 13 that stationary time series are easier to analyse than non-stationary 
ones.  In this chapter we look more closely at the causes of non-stationarity, and we consider a 
number of related questions: 

1. How can we tell whether a time series is stationary or not? 

2. If it is not, how do we go about turning it into a stationary series? 

We shall use the characteristics of the different types of time series that we studied in Chapter 13 
to help to determine an appropriate approach.  The ACF and PACF will be key tools here. 

We also look at the Box-Jenkins approach to fitting and forecasting. 

Once we have chosen an appropriate time series model, two further questions arise. 

1. How do we use the model to determine estimates of the future values of our time series? 

2. Is the model we have chosen a good one?  How well does it fit the data that we already 
have? 

We shall look at possible answers to both these questions in this chapter.   
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1 Compensating for trend and seasonality 

All the methods which we shall investigate in Sections 3 and 4 apply only to a time series 
which gives the appearance of stationarity.  In this section, therefore, we deal with possible 
sources of non-stationarity and how to compensate for them. 

A simple time series plot in R can be generated as:  

ts.plot(x) 
where x  is some (vector) time series data.  

Lack of stationarity may be caused by the presence of deterministic effects in the quantity 
being observed.  Monthly sales figures for a company which is expanding rapidly would be 
expected to show a steady underlying increase, possibly linear or perhaps even 
exponential.  A company which sells greetings cards will find that the sales in some months 
of the year will be much higher than in others.  In both cases there is an underlying 
deterministic pattern and some (possibly stationary) random variation on top of that.  In 
order to predict sales figures in future months it is necessary to extrapolate the 
deterministic trends as well as to analyse the stationary random variation. 

A further cause of non-stationarity may be that the process observed is the integrated 
version of a more fundamental process; in these cases, differencing the observed time 
series may produce a series which is more likely to be a realisation of some stationary 
process. 

In summary, we have identified three possible causes of non-stationarity: 

1. a deterministic trend (eg exponential or linear growth) 

2. a deterministic cycle (eg seasonal effect) 

3. the time series is integrated. 

It is worth pointing out that this list is not exhaustive.  For example, the first two causes are just 
specific cases of general deterministic behaviour.  In theory, this could take many different forms, 
but trends and cycles are the most likely to be met in practice.   

The items on the list are not mutually exclusive either.  Consider a simple random walk with 
probability 0.6 of stepping up, and 0.4 of stepping down.  This can be represented by the 
equation: 

 1n n nX X Z    

where:   

1 with probability 0.6

1 with probability 0.4nZ


 
 

together with the condition that 0 0X  . 

This process is (1)I  since the first difference is stationary, but the process itself is not.   
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On the other hand, the process also has a increasing deterministic trend: 

 1 2 1 2[ ] [ ] [ ] [ ] [ ] 0.2n n nE X E Z Z Z E Z E Z E Z n           

We consider in the following sections how to detect and remove such causes of non-stationarity. 

1.1 Detecting non-stationary series 

The most useful tools in identifying non-stationarity are the simplest:  a plot of the series 
against t , and the sample ACF. 

The sample ACF is an estimate of the ACF based on sample data.  It is defined in Section 2.1. 

Plotting the series will highlight any obvious trends in the mean and will show up any cyclic 
variation which could also form evidence of non-stationarity.  This should always be the 
first step in any practical time series analysis. 

The R code below uses the ts.plot function. 

(It also assumes we have a list of FTSE100 data values.) 

ts.plot(log(FTSE100$Close)) 
points(log(FTSE100$Close),cex=.4) 

generates Figure 14.1, which shows the time series of the logs of 300 successive closing 
values of FTSE100 index. 

 
Figure 14.1: 300 successive closing values of the FTSE100 index, Jan 2017 – Mar 2018; 
log-transformed 
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The corresponding sample ACF and sample PACF are produced using: 

par(mfrow=c(1,2)) 
acf(log(FTSE100$Close)) 
pacf(log(FTSE100$Close)) 

These are shown in Figure 14.2 below. 

 

Figure 14.2:  Sample ACF and sample PACF of the log(FTSE100) data; dotted lines indicate 
cut-offs for significance if data came from some white noise process. 

The sample ACF should, in the case of a stationary time series, ultimately converge towards 

zero exponentially fast,  as for (1)AR  where s
s  .   

The function  s
s  ,  0,1,2,...s   has exponential decay if | | 1  as this is a power function 

whose values are: 

 1,  , 2 , 3 , … 

and this sequence tends to 0 as the power s  tends to  .  

If the sample ACF decreases slowly but steadily from a value near 1, we would conclude 
that the data need to be differenced before fitting the model.  If the sample ACF exhibits a 
periodic oscillation, however, it would be reasonable to conclude that there is some 
underlying cause of the variation. 
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Figure 14.2 shows the sample ACF of a time series which is clearly non-stationary as the 
values decrease in some linear fashion; differencing is therefore required before fitting a 
stationary model.  

See, for example, the change of ACF and PACF for the differenced data:  

 

Figure 14.3:  Data plot, sample ACF and sample PACF of સln(FTSE100). 

The ACF for a stationary ( , )ARMA p q  process decays fairly rapidly.  For example, we have seen 

that the ACF of a moving average process cuts off sharply, and the ACF of an (1)AR  process has 

exponential decay:   kk  .  In theory, this could still actually lead to a slow decay if the 

values of p  and/or q  were high, (eg the autocorrelation of an (100)MA  process wouldn’t cut off 

until lag 100), but in practice the parameter values will be fairly small.  If many parameters are 
used then the resulting model may give a good fit to the sample data, but it is unlikely to be useful 
for forecasting.  A fairly slow decay of the sample autocorrelation function is therefore more likely 
to be interpreted as an indication that the time series needs to be differenced before being 
modelled.   

If the sample autocorrelation function oscillates without decaying rapidly, as we will see in the 
hotel example in Section 1.4, then we might conclude that there is an underlying deterministic 
cycle.  This would have to be removed before fitting a model to the residuals. 

We now look at two methods for removing a linear trend. 
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1.2 Least squares trend removal 

The simplest way to remove a linear trend is by ordinary least squares.  This is equivalent to 
fitting the model: 

t tx a bt y    

where a  and b  are constants and y  is a zero-mean stationary process.  The parameters a  

and b  can be estimated by linear regression prior to fitting a stationary model to the 

residuals ty . 

The formulae for estimating a  and b  are given on page 24 of the Tables. 

1.3 Differencing 

Differencing may well be beneficial if the sample ACF decreases slowly from a value near 1, 
but has useful effects in other instances as well.  If, for instance, t tx a bt y   , then: 

t tx b y     

so that the differencing has removed the trend in the mean. 

Differencing a series d  times will make an ( )I d  series stationary.  In addition however, 

differencing once will also remove any linear trend, as above.   

On the other hand, we could remove the linear trend by using linear regression, as in Section 1.2.  
However, if the series is actually (1)I  with a trend, then least squares regression will only remove 

the trend.  We will still be left with an (1)I  process that is non-stationary.   

For example, consider the simple random walk discussed earlier, which has probability 0.6 of 
stepping up, and 0.4 of stepping down: 

 1n n nX X Z    

where:   

1 0.6

1 0.4nZ


 
 

We have seen that this process has an increasing trend and that [ ] 0.2nE X n .  If we let 

0.2n nY X n  , then [ ] 0nE Y  .  So we have removed the trend.  However, since: 

 1 0.2n n nY Y Z     

we are still left with an (1)I   process that needs to be differenced in order to be stationary.   

We now look at three methods for removing cycles (seasonal variation). 
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1.4 Seasonal differencing 

Where seasonal variation is present in the data, one way of removing it is to take a seasonal 
difference. 

Example 1 

Suppose that the time series x  records the monthly average temperature in London.  A 
model of the form: 

 t t tx y     (14.1) 

might be applied, where   is a periodic function with period 12 and y  is a stationary series.  

Then the seasonal difference of x  is defined as  12 12t ttx x x     and we see that: 

 12 12 12 12 12( ) ( ) ( )t t t t t t t t tx x x y y y y                  

is a stationary process. 

We can then model the seasonal difference of x  as a stationary process and reconstruct the 
original process x  itself afterwards. 

We can use R to plot the time series data and to remove seasonal variation. 
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Figure 14.4 below is generated from the following lines in R, where functions ts.plot, acf 
and pacf are used: 

layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE)) 
  ts.plot(manston1$tmax,ylab="", main="Max temperatures observed at 

each month (2010-2017), Manston, UK") 
points(manston1$tmax,cex=0.4)  
acf(manston1$tmax,main="") 
pacf(manston1$tmax,main="") 

This code assumes that there is a list of data stored as ‘manston1’. 

 

Figure 14.4: Data plot, sample ACF and PACF of temperature data. 
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Seasonal differencing 12  seems to have removed the seasonal behaviour of the data.  See 

Figure 14.5 generated from: 

  layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE)) 
  ts.plot(diff(manston1$tmax,lag=12),ylab="", main="Seasonal 

differenced temperature data") 
  points(diff(manston1$tmax,lag=12),cex=0.4) 
  acf(diff(manston1$tmax,lag=12),main="") 
  pacf(diff(manston1$tmax,lag=12),,main="") 

 

Figure 14.5: Temperature data after appropriate differencing 

Example 2 

The monthly inflation figures are obtained by seasonal differencing of the Retail Prices 
Index.  If tx  is the value of the RPI in month t , the annual inflation figure reported is: 

 12

12
100%t t

t

x x
x
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1.5 Method of moving averages 

The method of moving averages makes use of a simple linear filter to eliminate the effects 
of periodic variation.   

A linear filter is a transformation of a time series x  (the input series) to create an output series y  

that satisfies: 

 t k t k
k

y a x





   

The collection of weights  :ka k Z  forms a complete description of the filter.  The objective of 

the filtering is to modify the input series to meet particular objectives, or to display specific 
features of the data.  For example, an important problem in analysis of economic time series is 
detection, isolation, and removal of deterministic trends. 

In practice a filter  :ka k Z  normally contains only a relatively small number of non-zero 

components. 

A very simple example of a linear filter is the difference operator 1 B   .  Using this filter 
produces: 

 1(1 )t t t ty B x x x       

So, in this case, we have 0 1a  , 1 1a    and 0ka   for all other values of k .  

As a second example, suppose that the input series is a white noise process e , and the filter takes 
the form:  

0 1 11, , , q qa a a      and 0ka   for all other values of k    

Then the output series is ( )MA q , since we have: 

 
0

q

t k t k
k

y e 


    

Conversely, applying a filter of the form: 

0 1 11, , , p pa a a        and 0ka   for all other values of k   

to an input series x  that is ( )AR p  recovers the original white noise series: 

 
1

p

t t k t k t
k

y x x e 
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If x  is a time series with seasonal effects with even period 2d h , then we define a 
smoothed process y by: 

   1 1
1 1 12 2

1

2t t h t h t t t h t hy x x x x x x
h                

This ensures that each period makes an equal contribution to ty . 

For example, with quarterly data a yearly period will have 4 2d h  , so 2h   and we have: 

 2 1 1 2
1 1 1
4 2 2t t t t t ty x x x x x   
      
 

 

In this case the filter has weights: 

 

1
8
1
4

for 2,2

for 1,0,1

0 otherwise

k

k

a k

  
  



  

This is a centred moving average since the average is taken symmetrically around the time t .  
Such a centred moving average introduces the practical problem that the average can only be 
calculated in retrospect, ie there will be a natural delay. 

The same can be done with odd periods 2 1d h  , but the end terms t hx   and t hx   do not 

need to be halved. 

For example, with data every 4 months, a yearly period will have 3 2 1d h   , so 1h   and we 
have: 

  1 1
1
3t t t ty x x x     

In this case the filter has weights: 

 
1
3

for 1,0,1

0 otherwise
k

k
a

   


  

As with most filtering techniques, care must be taken lest the smoothing of the data 
obscure the very effects which the procedure is intended to uncover. 

The method of taking moving averages is one example of a series of approaches known as filtering 
techniques.  We lose some of our knowledge about the variation in the data in exchange for 
(hopefully) a clearer picture of the underlying process. 
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1.6 Method of seasonal means 

The simplest method for removing seasonal variation is to subtract from each observation 
the estimated mean for that period, obtained by simply averaging the corresponding 
observations in the sample. 

Recall that the model in Equation 14.1 has the form: 

 t t tx y     

where   is a periodic function with period 12 and y  is a stationary series.  The term t  contains 

the deviation of the model at time t  due to the seasonal effect.  So: 

 t t ty x       

When fitting the model in Equation 14.1 to a monthly time series x  extending over 10 years 
from January 1990 the estimate for   is x  and the estimate for January  is: 

 1
January 1 13 25 10910
ˆ ˆ( )x x x x        

So, in this case, we can remove the seasonal variation by deducting the January average, 
1

January 1 13 25 10910
( )x x x x x     , from all the January values, deducting the February 

average,  1
February 2 14 26 11010

( )x x x x x     , from all the February values, etc.  

Alternatively, we could deduct Ĵanuary  from all the January values, F̂ebruary  from all the 

February values, etc. 

In R the function decompose can be used to obtain both the moving average and seasonal 
means described in Sections 1.5 and 1.6.  

ts.plot(manston1$tmax,ylab="", main="Max temperatures") 
points(manston1$tmax,cex=0.4) 

The time series data is plotted as in Figure 14.6 below. 
decomp=decompose(ts(manston1$tmax,frequency = 12),type="additive") 

The decomposition is saved as decomp. 
The moving average can be added (in red) using the code: 

lines(as.vector(decomp$trend),col="red") 
The sum of seasonal and moving average trends can be added (in blue) as follows: 

lines(as.vector(decomp$seasonal+decomp$trend),col="blue") 

The resulting graph is shown below.  A colour version is also available online in the tuition 
materials for the R part of CS2. 
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Figure 14.6: Temperature data and its decomposition into moving average (in red) and 
seasonal trend (in blue) added.   

1.7 Transformation of the data 

Diagnostic procedures such as an inspection of a plot of the residuals may suggest that 
even the best-fitting standard linear time series model is failing to provide an adequate fit to 
the data.  Before attempting to use more advanced non-linear models it is often worth 
attempting to transform the data in some straightforward way in an attempt to find a data 
set on which the linear theory will work properly. 

An example of a simple transformation would be logt tY X , which would be used to remove an 

exponential growth effect. 

Variance-stabilising transformations 

Transformations are most commonly used when a dependence is suspected between the 
variance of the residuals and the size of the fitted values.  If, for example, the standard 
deviation of 1t tX X   appears to be proportional to tX , then it would be appropriate to use 

the logarithmic transformation, to work on the time series lnY X . 
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Transformations to increase normality 

In certain applications it may be found that most residuals are small and negative, with a 
few large positive values to offset them.  This may be taken to indicate that the distribution 
of the error terms is non-normal, leading to doubts as to whether the standard time series 
procedures, designed for normal errors, are applicable.  It may be possible to find a 
transformation which will improve the normality of the error terms of the transformed 
process, but care should be taken that this does not lead to instability in the variance.  A 
further caution when using transformed data involves the final step of turning forecasts for 
the transformed process into forecasts for the original process, as some transformations 
introduce a systematic bias.   
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2 Identification of MA(q) and AR(p) models 

The treatment of this section assumes that the sequence of observations  1 2, , , nx x x  

may be presumed to come from a stationary time series process.  The problems of how to 
tell if the assumption of stationarity is reasonable and what to do if it is not have been 
treated in the previous section. 

2.1 Estimation of the ACF and PACF 

The autocovariance and autocorrelation functions, as seen above, play a central role in the 
analysis of time series.  Other descriptive tools, such as the partial autocorrelation function, 

are derived from the ACF.   Faced, then, with a sequence of observations  1 2, , , nx x x  and 

the task of finding a time series model to fit the sequence, a primary concern must be to 
estimate the ACF of the time series process of which the data form a realisation. 

The common mean of a stationary model can be estimated using the sample mean: 


 

1

1
ˆ

n
t

t
x

n
  

The autocovariance function k  can be estimated using the sample autocovariance 

function, denoted kc  or ˆk , given by: 

1

1
ˆ ˆ ˆ( )( )

n

k t t k
t k

x x
n

  
 

    

from which are derived estimates kr  for the autocorrelation function k : 

0

ˆ

ˆ
k

kr



  

The notation ˆk  is sometimes used instead of kr .  The formulae for ̂ , ˆk  and ˆk  are given on 

page 40 of the Tables. 

The collection  :kr k Z  is called the sample autocorrelation function (SACF).  Every time 

series analysis involves at least one plot of kr  against k .  Such a plot is called a 

correlogram. 

It might seem that a more natural choice for the denominator in the definition of the sample 
autocovariance function would be n k , since there are n k  terms being summed.  However, 
the definition given is the most common one used.  One theoretical reason for this is that it has a 
smaller mean square error at large lags, and at smaller lags the difference between the two is 
negligible anyway.  In any case, this estimator is consistent, ie the bias disappears as the sample 
size, n, gets large.   
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The partial autocorrelation function k  can be estimated using the formula involving the 

ratio of determinants to which reference was made in Chapter 13, but with the k  replaced 

by their estimates ˆk .  The resulting function k̂ , called the sample partial autocorrelation 

function (SPACF), and the plot of k̂  against k , called the partial correlogram, are as 

important as the SACF and the correlogram in the analysis of time series. 

As we have seen before, R functions acf and pacf can be used for generating these values. 

For example, the following lines simulate observations from an (1,1)ARMA  model. 

Set the seed to guarantee reproducibility.  The code is: 
 set.seed(123) 

Call the simulated data x : 
 x=arima.sim(n=300,model=list(ar=0.7,ma=0.5)) 
 
Then: 
 par(mfrow=c(1,2)) 
 acf(x,main="Sample ACF") 
 pacf(x,main="Sample PACF") 

produces the graphs below: 

 
Figure 14.7: ACF and PACF of some simulated data from (1,1)ARMA .   
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2.2 Identification of white noise 

A test for whether a particular sequence of observations forms a standard white noise 
process may seem of doubtful usefulness, but one of the techniques of residual analysis 
suggests that the verification of goodness of fit of any model should include a test as to 
whether the residuals form a white noise process.  A suitable test, or portfolio of tests, is 
therefore a valuable asset. 

We are already familiar with this idea from (normal) linear regression – we always have a look at a 
plot of the residuals and carry out other tests to check that the residuals do form a set of 
independent normal random variables. 

There are many tests that could be carried out to see if a sequence of observations is a likely 
realisation of a white noise process.  Some of these tests will be discussed later in the context of 
the diagnostic checking stage of the Box-Jenkins method – see Section 3.5.  For the moment we 
will concentrate on tests associated with the SACF and SPACF. 

Clearly the SACF and SPACF are random, being simple functions of the observations.  In 
particular, even if the original process was a perfectly standard white noise the SACF and 
SPACF would not be identically zero.  The question is what scale of deviation from zero is to 
be expected? 

An asymptotic result states that, if the original model is white noise: 

 t tX e   

then the estimators k  and k   are approximately normally distributed with mean 0, 

variance 1/ n  for each k . 

For large samples, ie large values of n , we have the approximate distributions: 

 
1

0,k N
n

  
 
 

    and     
1

0,k N
n

  
 
 

   

Values of the SACF or SPACF falling outside the range from 2 n  to 2 n  can be taken 

as suggesting that the white noise model is inappropriate.  This range is indicated by 
dashed lines in the standard output in R for ACF and PACF. 

This range is an approximate 95% confidence interval based on the critical value 1.96. 

But some care should be exercised: the cut-off points of 2 n  give approximate 95% 

limits, implying that about one value in 20 will fall outside the range even when the white 

noise model is correct.  This means that one single value of kr  or k̂  outside the specified 

range would not be regarded as significant on its own, but three such values might well be 
significant. 

Rather than testing to see if each individual value of the SACF or SPACF lies outside a confidence 

interval, we can alternatively consider an overall goodness-of-fit test, much like the standard 2  

test.  In other words, we can carry out a test to see if some measure of the overall deviation over 
several lags lies outside some confidence interval. 
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A ‘portmanteau’ test is due to Ljung and Box, who state that, if the white noise model is 
correct, then: 

 
2

2

1

( 2)
m

k
m

k

rn n
n k





  

for each m .   

In the result above, the notation kr  is being used to represent the estimator k  (rather than the 

estimate ˆk ).  This is a one-sided test.  A large test statistic indicates that the data do not 

conform to a white noise process. 

The standard commands for running these tests in R on some observations (simulated 
white noise here) are: 

x <- rnorm (100) 
Box.test (x, lag = 1, type = "Ljung")  

  

Question 

An analysis of the first 369 draws of the National Lottery gave the following SACF values: 

1 0.100r   2 0.056r   3 0.059r   4 0.054r   5 0.005r    6 0.003r   

Use the portmanteau test to ascertain whether these data can be considered to be white noise. 

Solution 

We are testing: 

 0 :H  the residuals form a white noise process 

against: 

 1 :H  the residuals do not form a white noise process 

We have 6m   and 369n  .  So the observed value of the test statistic is: 

 

2 2 2 2 2 2 2

1

0.100 0.056 0.059 0.054 ( 0.005) 0.003
( 2) 369 371

369 1 369 2 369 3 369 4 369 5 369 6

7.298

m
k

k

r
n n

n k

 
                




 

We compare this with the 2
6  distribution.  Since 7.298 is less than 12.59, the upper 5% point of 

2
6 , there is insufficient evidence to reject 0H  at the 5% level.  So we conclude that the residuals 

are consistent with white noise. 
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2.3 Identification of MA(q) 

The distinguishing characteristic of ( )MA q  is that 0k   for all k q .   

A test for the appropriateness of an ( )MA q  model, therefore, is that kr  is close to 0 for all 

k q .  If the data really do come from a ( )MA q  model, the estimators k  for k q  will be 

roughly normally distributed with mean 0, variance 1 2

1

1 2
q

i
i

n 



 
 
 
 

 .   

In other words: 

2

1

1
0, 1 2

q

k i
i

N
n

 


  
      

   

This asymptotic result enables a test to be formulated. 

If we assume that the data do come from a ( )MA q  process, then an approximate 95% confidence 

interval for k  is: 

 2 2

1 1

1 1ˆ ˆ1.96 1 2 , 1.96 1 2
q q

i i
i in n

 
 

    
               

   

So no more than about 1 in 20 values of the sample autocorrelation function should lie outside 
the interval. 

2.4 Identification of AR(p) 

The corresponding diagnostic procedure for an autoregressive model is based on the 
sample partial ACF, since the PACF of an ( )AR p  is distinctive, being equal to zero for 

 .k p   

The asymptotic variance of k  is 1/ n   for each k p .  Again a normal approximation can 

be used, so that values of the SPACF outside the range 2 n  may suggest that the ( )AR p  

model is inappropriate. 

So:  

 
1

0,k N
n

  
 
 

    

and hence an approximate 95% confidence interval for k  is: 

 
1 1

1.96 , 1.96
n n

 
  
 

 

As suggested by the Core Reading, the value 2 may be used as an approximation to 1.96.  
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3 Fitting a time series model using the Box-Jenkins methodology 

In this section we consider the general class of autoregressive integrated moving average 
models – the ( , , )ARIMA p d q  models.  As usual we assume that historical data, comprising a 

time series  : 1,2, ,tx t n , are given.   

We will also assume that deterministic trends and seasonal effects have been removed from the 
data, as in Section 1, although no differencing of the process is assumed – that is part of the Box-
Jenkins method. 

3.1 The Box-Jenkins methodology 

The Box-Jenkins approach allows one to find an ARIMA model which is reasonably simple 
and provides a sufficiently accurate description of the behaviour of the historical data.   

Main steps in the Box-Jenkins approach to modelling  

The main steps of the approach are: 

 tentative identification of a model from the ARIMA class 

 estimation of parameters in the identified model 

 diagnostic checks. 

If the tentatively identified model passes the diagnostic tests, the model is ready to be used 
for forecasting.  If it does not, the diagnostic tests should indicate how the model ought to 
be modified, and a new cycle of identification, estimation and diagnosis is performed. 

The identification process is carried out in Sections 3.2 and 3.3.  In Section 3.4 we look at the 
estimation stage, and finally, in Section 3.5 we describe some diagnostic tests that can be 
performed. 

3.2 Differencing 

An ( , , )ARIMA p d q  model is completely identified by the choice of non-negative integer 

values for the parameters p , d  and q .  The parameter d  is the number of times we have 

to difference the time series x  to convert it to some stationary level.   

In other words, once we have differenced the sample data d  times, the resulting values look like 
a realisation of a stationary process. 

We have already discussed how to detect non-stationary series in Section 1.1.  Recall that there 
are three basic causes of non-stationarity with which we are concerned.  To help identify these, 
we should look at plots of the data values and the SACF.  The plot of the data values should 
highlight any obvious trends or cycles and the latter should also show up as cycles in the SACF.  
We are now assuming that these kind of effects have already been removed.  The other cause of 
non-stationarity is that the time series could be the realisation of an integrated process.  To 
remove this source of non-stationarity the sample series needs to be differenced d  times. 
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The following principles can be used to choose the appropriate value of d : 

1. A time series x  can be modelled by a stationary ARMA model if the sample 
autocorrelation function kr  decays rapidly to zero with k .  If, on the other hand, a 

slowly decaying positive sample autocorrelation function kr  is observed, this 

should be taken to indicate that the time series needs to be differenced to convert it 
into a likely realisation of a stationary random process.   

(This is also mentioned in Section 1.1.) 

2. Let 2ˆd  denote the sample variance of the process ( )d dz x  , ie the sample 

variance of the data values after they have been differenced d  times.  It is normally 

the case that 2ˆd  first decreases with d  until stationarity is achieved and then starts 

to increase.  Therefore d  can be set to the value which minimises 2ˆd .  This could 

be  0d   if the original time series x  is already stationary. 

Question 

The time series tQ  for the monthly RPI given on page 152 of the Tables has SACF: 

 1 0.977r   2 0.954r   3 0.930r   4 0.908r     

Find an appropriate value for d  in this case. 

Solution 

This SACF decays slowly, suggesting that it needs to be differenced.  If we look at the sample 
variances given in the Tables, we find that: 

 2var( ) 11.9tQ    

2var( ) 0.6tQ    

2 2var( ) 0.8tQ   

This suggests that 1d   would be an appropriate value. 

 

3.3 Fitting an ARMA(p,q) model 

Suppose now that the appropriate value for the parameter d  has been found, and the time 

series 1 2{ , , , }d d nz z z   is adequately stationary.  (Notice that a differenced series has d  

fewer observation than the original series.)  We shall assume throughout this section that 
the sample mean of the z  sequence is zero;  if this is not the case, obtain a new sequence 
by subtracting ˆ z   from each value in the sequence.  We shall also assume, for the sake 

of simplicity in setting down the lower and upper limits of sums, that 0d  . 

In the framework of the Box-Jenkins approach we try to find an ( , )ARMA p q  model which 

fits the data z . 
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If either the correlogram or the partial correlogram appears to be close to zero for 
sufficiently large k , an ( )MA q  or ( )AR p  model is indicated.   

We have already seen several times that the ACF of an ( )MA q  process cuts off (ie is equal to 0) 

after lag q , and similarly, the PACF of an ( )AR p  process cuts off after lag p .  We can therefore 

test the SACF and SPACF to see if it likely that they share one of these cut-off properties.  The 
exact tests for this are given in Sections 2.3 and 2.4. 

Otherwise we should look for an ( , )ARMA p q  model with non-zero values of  p  and q .   

A good indicator for possible values of p  and q  in an ( , )ARMA p q  is the number of spikes 

in the ACF and PACF until some geometrical decay to zero is observed.  Since models can 
be readily fitted in R, it is not hard to start with a simple model like (1,1)ARMA  and to work 

up to more complicated models if the simpler ones are deemed inadequate.  

Every additional parameter improves the fit of the model by reducing the residual sum of 
squares.  Taking this to extremes, a model with n  parameters could be found to fit the data 
exactly.   

Recall that n  is the number of observed values of the time series.  If we have the same number of 
parameters as observations, then the optimised model is a perfect fit to the data. 

But this will result in some spurious model with insignificant t -values of parameter 
estimates and the forecasts made with such a model will be found to be practically useless.  
This is known as the problem of overfitting. The question of when to stop adding new 
parameters is addressed by Akaike’s information criterion (AIC), which states that we 
should only consider adding an extra parameter if this results in a reduction of the residual 

sum of squares by a factor of at least 2/ne , or alternatively, one can evaluate for each 
possible model the value of: 

 2 number of parameters
ˆ(model) log( ) 2AIC

n
     

and choose as the most appropriate the one corresponding to the lowest such value. 

3.4 Parameter estimation 

Once the values of p  and q  have been identified, the problem becomes to estimate the 

values of parameters 1 2, , , p    and 1 2, , , q    for the ( , )ARMA p q  model: 

  1 1 2 2 1 1 2 2t t t p t p t t t q t qZ Z Z Z e e e e                    

Least squares estimation suggests itself; this is equivalent to maximum likelihood 
estimation if the te  may be assumed normally distributed.   

Question 

Consider a linear regression model of the form i i iY x e     where 2(0, )ie N  .  Show that 

maximum likelihood estimation and least squares estimation must result in the same parameter 
values. 
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Solution 

The log-likelihood function is given by: 

 

 
2

1

2
2

1

1
ln ,

2

1
( )

2

n
i i

i

n

i i
i

y x
L const

const y x

 
 



 






        
   

   





 

It follows that maximising the log-likelihood must be equivalent to minimising the squared error: 

  2
1

n

i i
i

y x 


   

 
In the case of an ( )AR p  we have: 

 1 1t t t p t pe Z Z Z       

and the estimators 1ˆ ˆ, , p   are chosen to minimise: 

  
2

1 1
1

n

t t p t p
t p

z z z  
 

    

We don’t need to make any distributional assumptions in order to calculate the least squares 
estimates of 1 2, ,..., p    .  However, we do need to make a distributional assumption to 

calculate their maximum likelihood estimates.  The two methods coincide when the errors are 
normally distributed. 

In the case of a more general ARMA process we encounter the difficulty that the te  cannot 

be deduced from the tz .  For example, in the case of (1,1)ARMA  we have: 

 1 1 1 1t t t te z z e      

an equation which can be solved iteratively for te  as long as some starting value 0e  is 

assumed.  For an ( , )ARMA p q  the list of starting values is 0 1( ,..., )qe e .   

The starting values need to be estimated, which is usually carried out by a recursive 
technique.  First assume they are all equal to zero and estimate the i  and j  on that 

basis, then use standard forecasting techniques on the time-reversed process   1, ,nz z  to 

obtain predicted values for 0 1( ,..., )qe e , a method known as backforecasting.  These new 

values can be used as the starting point for another application of the estimation procedure; 
this continues until the estimates have converged. 

This would be a time consuming process to carry out by hand but such iterative procedures are 
easy to implement on a computer. 
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In Figure 14.7, the ACF and PACF plots show some significant spikes in the early lags, 
suggesting some presence of autoregressive and moving average. 

The code: 

fit=arima(x,order=c(1,0,1));fit 

fits the (1,0,1)ARIMA  to this data set, with standard output: 

arima(x = x, order = c(1, 0, 1)) 
Coefficients: 
         ar1     ma1  intercept 
      0.6118  0.5849     0.0911 
s.e.  0.0530  0.0600     0.2224 
sigma^2 estimated as 0.9016:  log likelihood = -410.9,  aic = 829.8 

where the estimated parameters ar1 and ma1 correspond to   and   in the (1,1)ARMA  

model.  The fitted model has AIC = 829.8, which is the smallest value among other possible 
models like (1)AR , (1)MA , (1,2)ARMA  and (2,2)ARMA . 

An alternative method of estimation is based on method of moments estimation.  There are 

p q  parameters to be estimated.  We can calculate the theoretical ACF  k  of an ARMA

( , )p q  process, which will be a function of the  ’s and  ’s.  Then the method of moments 

estimators are those values of   and   such that the theoretical ACF 1, , p q    coincides 

with the observed sample ACF 1, , p qr r  .  This method is easily available for ( )AR p  

models since the corresponding Yule-Walker equations are linear, therefore moment 
estimation requires solving them with respect to the unknown parameters i . 

Question 

It is believed that a set of data values is the realisation of a (1)MA  process 1n n nX e e    where 

the errors are standard normal.  Given that 0 1   and 1 0.25   , use the method of moments 

to estimate the parameter  , ensuring that the fitted process is invertible. 

Solution 

We have 1 0.25r   .  The theoretical values of the autocovariance at lags 0 and 1 are: 

     2
0 1 1cov , cov , 1t t t t t tX X e e e e           

    1 1 1 1cov , cov ,t t t t t tX X e e e e           

So 1 21







.  Equating this with the corresponding sample correlation at lag 1 gives: 

 2
1 2

0.25
4 1 0

11
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Solving this quadratic we get 0.268 or 3.732    . 

Setting 0.268    gives an invertible process; setting 3.732    does not.  So we take 0.268  

to be our estimated value of  . 

 
The final parameter of the model is 2 , the variance of the te , which may be estimated 

using: 

  2 2 2
1 1 1 1

1 1

1 1 ˆ ˆˆ ˆ ˆˆ ˆˆ ( )
n n

t t t p t p t q t q
t p t p

e z z z e e
n n

       
   

          

where ˆte  denotes the residual at time t . 

The residuals are the realised values of the white noise terms. 

The parameter 2  needs to be estimated last as the formula above involves the estimated values 

of the ' s  and ' s .  2  has not been used to estimate the other parameters, whichever 

method is used, so the overall estimation procedure is well-defined.  However, if we use the 
method of moments to estimate the ' s  and ' s , we would have to estimate the errors 

separately (as we would not have estimated these as part of the procedure for the estimation of 
the  ’s and  ’s). 

If the number of observations n  of the time series is sufficiently large there will be little 
difference between the least squares estimates and the method of moments estimates of 
the parameters. 

3.5 Diagnostic checking 

After the tentative identification of an ( , , )ARIMA p d q  model and calculation of the estimates 

1 1
ˆ ˆˆ ˆˆ ˆ, , , ... , , , ... ,p q       we have to perform diagnostic checking.  The principle of this is 

that, if the ( , )ARMA p q  model is a good approximation to the underlying time series 

process, then the residuals ˆte  will form a good approximation to a white noise process. 

One test that we could perform on the residuals is the Ljung and Box portmanteau test, which is 
covered in Section 2.2.  There are other tests, however, some of which are outlined below.   

The following checks are frequently used. 

Inspection of the graph of the residuals 

The visual inspection of the graph of the residuals against t  or the graph of ˆte  against tz  

can help to highlight a poorly fitting model.  If any pattern is evident, whether in the average 
level of the residuals or in the magnitude of the fluctuations about 0, this should be taken to 
mean that the model is inadequate. 

The question is really whether the errors are a likely realisation of a set of independent normal 
random variables.  So a ‘pattern’ is anything that may suggest non-independence. 
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We could be slightly more quantitative with this.  Assuming the errors are independent normal 
random variables there should be a certain proportion of the sample errors within any given 
range.  For example, if the errors were thought to be standard normal, then we would expect 34% 
of the sample values to lie between 0 and 1.   

Inspection of the sample autocorrelation functions of the residuals 

The behaviour of the sample ACF and sample PACF of a white noise sequence have already 
been described.   

This was done in Section 2.2. 

If the SACF or SPACF of the sequence of residuals has too many values outside the range 

2 N , we conclude that the fitted model does not have enough parameters and a new 

model with additional parameters should be fitted.  The Ljung-Box chi-squared statistic may 
also be used for this purpose, but the degrees of freedom of the test statistics needs to be 
reduced by the number of parameters p q  of the ARMA model. 

Here the Core Reading is using N  rather than n  to denote the number of recorded values of the 
time series. 

Counting turning points  

If 1 2, , , Ny y y  is a sequence of numbers, then we say that the sequence has a turning point 
at time k  if either 1k ky y   and 1k ky y  , or 1k ky y   and 1k ky y  .   

If 1 2, , , NY Y Y  is a sequence of independent random variables with continuous distribution, 

then the probability of a turning point at time k is 2
3 , the expected number of turning points 

is 2
3

( 2)N , and the variance is 
16 29

90

N 
.   

This is a result for a sequence of independent random variables.  It is therefore usually applied to 
the residuals of the time series, not to the original time series itself, which will not be 
independent.  The procedure is therefore to calculate the residuals, and then to apply the turning 
point test to them to see if the residuals have a reasonable number of turning points. 

A proof of this result is beyond the scope of Subject CS2.  The formulae for the mean and variance 
of the number of turning points are both on page 42 of the Tables. 

Therefore the number of turning points in a realisation of 1 2, , , NY Y Y  should be within the 

95% confidence interval: 

 2 16 29 2 16 29
2 1.96 , ( 2) 1.96

3 90 3 90

N NN N
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The command: 

 tsdiag(fit) 

generates a graphical summary of the diagnostic checks of the residuals. 

 
where the last plot shows a sequence of p-values of the Ljung-Box test, high values 
observed suggesting good fit, ie residuals close to white noise.   

Figure 14.8: Diagnostic checks of residuals 
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4 Forecasting 

4.1 Box-Jenkins approach to forecasting stationary time series 

Using the Box-Jenkins approach, forecasting is relatively straightforward.  Having fitted an 

ARMA model to the data  1, , nx x  we have the equation: 

                   1 1 1 1( ) ( )n k n k p n k p n k n k q n k qX X X e e e        

Recall that at the start of Section 3.3, it was assumed that the data set to which we were fitting 
the ARMA model had zero mean.  In the expression above the mean   has now been put back in. 

Forecasting future values of an ARMA process 

The forecast value of n kX  given all observations up until time n , known as the k -step 
ahead forecast and denoted ˆ ( )nx k , is obtained from this equation by: 

 replacing all (unknown) parameters by their estimated values; 

 replacing the random variables 1, , nX X  by their observed values 1, , nx x ; 

 replacing the random variables   1 1, ,n n kX X  by their forecast values 

ˆ ˆ(1), , ( 1)n nx x k ; 

 replacing the innovations 1, , ne e  by the residuals 1ˆ ˆ, , ne e ; 

 replacing the random variables   1 1, ,n n ke e  by their expectations, 0. 

For example, the one-step ahead and two-step ahead forecasts for an (2)AR  are given by: 

     1 2 1ˆ ˆ ˆˆ ˆ ˆ(1) ( ) ( )n n nx x x      

    1 2ˆ ˆˆ ˆˆ ˆ ˆ(2) ( (1) ) ( )n n nx x x      

Question 

Write down an expression for the two-step ahead forecast of a general (2,2)ARMA  process. 

Solution 

The two-step ahead forecast is: 

   1 2 2̂ ˆˆ ˆ ˆ ˆˆ ˆ ˆ(2) (1)n n n nx x x e            

 
Thus the k -step ahead forecast is essentially the conditional expectation of the future value 
of the process given all the information currently available at time n . 
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A point estimate of n kX  is less useful than a confidence interval, for which an estimate of 

the variance is required.  A comparison of 1nX  with ˆ (1)nx  shows that the difference 

between them arises from numerous sources, including 1ne , differences between true 

values of parameters and their estimates, and differences between true values of the te  and 

the residuals ˆte   which are used to estimate them.  Calculation of the prediction variance in 

any given case is complicated and is best left to a computer.  In general, though, it is 
possible to state that the variance of the k -step ahead estimator is relatively small for small 
values of k  and converges, for large k , to 0 , the variance of the stationary process X  . 

Question 

Explain why the k-step ahead variance converges toward the variance of the process. 

Solution 

The process is stationary.  So starting from time n  and projecting into the future, the process 
eventually settles down into the equilibrium distribution.   

 

4.2 Forecasting ARIMA processes 

If X  is an ( , , )ARIMA p d q  process, then  dZ X  is ( , )ARMA p q , so the techniques of 

Section 4.1 can be used to produce forecasts and confidence intervals for future values of 
Z .  By reversing the differencing procedure these can be translated into forecasts of future 
values of X . 

For example, suppose that X  is (0,1,1)ARIMA . 

Then 1n n n nZ X X X      is (0,1)ARMA , and 1n n nX X Z  .   

Hence   1 1n n nX X Z , and  ˆ ˆ(1) (1)n n nx x z . 

Question 

Give an expression for the two-step ahead forecast of an (1,2,1)ARIMA  process. 

Solution 

If we define: 

2 2 2
1 2(1 ) (1 2 ) 2n n n n n n nZ X B X B B X X X X            

This implies that: 

 1 22n n n nX Z X X     
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Hence: 

2 1 22n n n nX X X Z      

So the two-step ahead forecast is: 

      ˆ ˆ ˆ2 2 1 2n n n nx x x z    

Since Z  is (1,1)ARMA , it has a defining equation of the form: 

 1 1n n n nZ Z e e          

So: 

  2 1 2 1n n n nZ Z e e            

and: 

  ˆ ˆ ˆˆ ˆ(2) (1)n nz z       

Hence the two-step ahead forecast can be expressed as: 

       ˆ ˆ ˆ ˆˆ ˆ2 2 1 1n n n nx x x z        

 
An ( , , )ARIMA p d q  process with  0d  is not stationary and therefore has no stationary 

variance.  It should come as no surprise, then, that the prediction variance for the k -step 
ahead forecast increases to infinity as k  increases.  This is easily seen in the case of the 
random walk process.  

For predicting three steps ahead: 

 predict(fit,n.ahead=3) 

4.3 Exponential smoothing 

The Box-Jenkins methodology is demanding, requiring a skilled operator to produce 
reliable results.  There are many instances in which a company needs no more than a 
simple forecast of some future value without having to employ a trained statistician to 
provide it.  A much simpler forecasting technique, introduced by Holt in 1958, uses a 
weighted combination of past values to predict future observations. 

One-step ahead forecast using exponential smoothing 

       2
1 2ˆ (1) ( (1 ) (1 ) )n n n nx x x x    

The weights used here are 2, (1 ), (1 ) ,...      .   

Here   is a single parameter, either chosen by the user or estimated by least squares from 
past data.  Typically a value in the range 0.2 to 0.3 is used.   
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A value of   between 0 and 1 will give a weighted average of historic values with less emphasis 
on values that are further back in time. 

The geometrically decreasing weights give rise to the name exponential smoothing. 

Since the weights sum to 1, the exponential smoothing filter is a weighted average of historic 
values, with the weights decreasing geometrically as we go further back in time. 

Question 

Show that the weights sum to 1 when 0 1  . 

Solution 

The weights form a geometric progression with first term   and common ratio 1  .  Using the 
formula for the sum to infinity of a geometric progression, we see that: 

 
 

2(1 ) (1 ) 1
1 1

    


      
 

   

 
The method lends itself easily to regular updating.  It is easy to see that: 

         1 1 1ˆ ˆ ˆ ˆ(1) (1 ) (1) (1) (1)n n n n n nx x x x x x    

so that the current forecast is obtained by taking the previous forecast and compensating 
for the error observed when the actual figure became available. 

This technique works for stationary series, but clearly cannot be applied to series exhibiting 
a trend or seasonal variation.  There are more sophisticated versions of exponential 
smoothing which are able to cope with trends or seasonal variation, and are even well 
equipped to handle slowly varying trends or multiplicative, rather than additive, seasonal 
variation.   
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5 Multivariate time series models 

5.1 Vector autoregressions 

An m -dimensional multivariate time series  1, , nx x  is a sequence of m -dimensional 

vectors.  Each vector tx  is a set of observations of the values of m  variables of interest at 

time t .  A multivariate time series is modelled by a sequence of random vectors 

 1 2, ,X X .  The components of tX  will be denoted (1) ( ), , m
t tX X . 

The second-order properties of a sequence of random vectors are summarised by: 

 the vectors of expected values    tt E X , and 

 the covariance matrices for all pairs of random vectors,  cov ,t t kX X . 

The definition of stationarity is the same in the multidimensional case as it is for univariate 

time series: the vector process is (weakly) stationary if both   tE X  and  cov ,t t kX X  are 

independent of t .  In the stationary case, the notation   will be used to represent the 

common mean vector, k  the covariance matrix  cov ,t t kX X . 

The diagonal elements of the covariance matrix k  are clearly the autocovariances at lag k  

of the individual components of the random vector tX .  The off-diagonal elements  ,k i j  

are called the lag k  cross-covariances of ( )iX  with ( )jX , 
( )( )cov( , )ji

t t kX X . 

Example 1 

A multivariate white noise process is the simplest example of a multivariate random 
process.  Suppose 1 2, ,e e  is a sequence of independent zero-mean random vectors, each 

having the same covariance matrix  . 

  need not be a diagonal matrix, though it must be symmetrical.  In other words, the 
components of the innovations vector need not be independent of one another.  This is a 
multivariate analogue of the zero-mean white noise. 

A vector autoregressive process of order p , denoted ( )VAR p , is a sequence of 

m -component random vectors  1 2, ,X X  satisfying: 

  


   
1

p

jt t j t
j

X A X e   (14.2) 

where e  is an m-dimensional white noise process and the jA  are m m  matrices. 

So a (1)VAR  process has the following structure: 

 1( )t t tX A X e       
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Example 2 

We might believe that interest rates, ti , and tendency to invest, tI , are related to one 

another by the equations: 

 

 

    


     

( )
11 1

( )
21 1 22 1

( )

( ) ( )

i
t i t i t

I
t I t i t I t

i i e

I i I e

  

    
 (14.3) 

where  ie  and  Ie  are zero-mean (univariate) white noises.  They may have different 

variances and are not necessarily uncorrelated; that is, we do not require      cov , 0i Ie e , 

although we do require   ( ) ( )cov , 0i I
ste e  for s t . 

This model can be expressed as a 2-dimensional (1)VAR  process: 

 




                      

( )
111

( )
121 22

0 i
t i t i t

It I t I t

ei i
I I e

 
    

The theory and analysis of a (1)VAR  closely parallels that of a univariate (1)AR .  Iterating 

from Equation (14.2) in the case 1p  , it is clear that: 

 





   
1

0
0

t
j t

t t j
j

X A e A X   

In order that X  should represent a stationary time series, the powers of A  should converge 

to zero in some sense.  The appropriate requirement is that all eigenvalues of the matrix A  
should be less than 1 in absolute value. 

Condition for stationarity of a VAR(1) process 

A process of the form: 

 1( )t t tX A X e      

is stationary if all the eigenvalues of the matrix A  are strictly less than 1 in magnitude. 

The eigenvalues of matrix A  are the values   such that  det( ) 0A I  where I  is the 

identity matrix. 

Eg for a 2-dimensional time series this equation reduces to: 

    11 22 12 21( )( ) 0       

where [ , ] ijA i j    ( 1,2, 1,2)i j . 
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This is because we require: 

 11 12 11 12

21 22 21 22

1 0
det( ) det det 0

0 1
A I

    
 

    
       

                  
 

The appendix to this chapter briefly revises the definition of an eigenvalue. 

Question 

Determine whether the following multivariate time series is stationary: 

 1

1

0.3 0.5

0.2 0.2

X
t t t

Yt t t

X X e

Y Y e





                    
 

Solution 

To check stationarity, we need to calculate the eigenvalues of the matrix 
0.3 0.5

0.2 0.2

 
 
 

, ie we need 

to determine the values of   for which: 

    20.3 0.5
det 0.3 0.2 0.1 0.5 0.04 0

0.2 0.2


   


 

         
 

The solutions of this equation are 0.57   and 0.07   .  Since both eigenvalues are strictly 
less than 1 in magnitude, the process is stationary. 

 
The matrix equation given in the previous question can be written as the pair of equations: 

 
1 1

1 1

0.3 0.5

0.2 0.2

X
t t t t

Y
t t t t

X X Y e

Y X Y e

 

 

  

  
 

Rearranging the first equation we get: 

  1 12 0.3 X
t t t tY X X e     

We can substitute this in the second equation for 1tY   and the similar expression for tY  that it 

implies.  After tidying up we have: 

 1 1 10.5 0.04 0.2 0.5X X Y
t t t t t tX X X e e e        

We can check for stationarity by looking at the roots of the characteristic equation of the 
autoregressive part: 

 21 0.5 0.04 0     
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This has roots –14.25 and 1.75.  Since both roots are strictly greater than 1 in magnitude, the 
process X  is stationary in its own right.   Note that these roots are the reciprocals of the 
eigenvalues calculated in the previous question. 

Similar, though more complicated, requirements can be set out under which a more general 
( )VAR p  process is stationary. 

Fitting a vector autoregression is very similar to the process of fitting a univariate 
autoregression.  Parameter estimation can be carried out by least squares or by method of 
moments.  Some elements of the univariate theory, such as the use of Akaike’s Information 
Criterion, do not translate unchanged into a multivariate setting, but other topics carry 
across relatively easily. 

Example 

The following simple dynamic Keynesian model provides an example of a multivariate 
autoregressive process.   

Keynesian models are studied in economics.  Here we are not really interested in the economic 
theory that leads to this model.  The important point is to understand the vector time series 
equations. 

Denote by tY  the national income over a certain period of time, and denote by tC  and tI  the 

total consumption and investment over the same period.  It is assumed that the 
consumption, tC , depends on the income over the previous period: 

 
  1

1t t tC Y e   

where  1e  is a zero-mean white noise.  The investment, tI , is determined by the 

‘accelerator’ mechanism: 

   
    2

1 2t t t tI C C e  

where  2e  is another zero-mean white noise.  Finally, any part of the national income is 
either consumed or invested; therefore: 

 t t tY C I  

Eliminating the national income we arrive at the following two-dimensional (2)VAR  process:  

 
    1

1 1t t t tC C I e   

   
    2

1 2t t t tI C C e  

Using matrix notation we can rewrite the above equation as: 

 

 

                                 

(1)
1 2

(2)
1 2

0 0

0 0
t t t t

t t t t

eC C C
I I I e

 
 

 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-14: Time series 2 Page 37 

 

The Actuarial Education Company © IFE: 2019 Examinations 

5.2 Cointegrated time series 

Recall that a time series process X  is called integrated of order d , abbreviated as ( )I d  , if 

the process  dY X  is stationary. 

Cointegrated series 

Two time series processes X  and Y  are called cointegrated if: 

(i) X  and Y  are (1)I  random processes, 

(ii) there exists a non-zero vector  ,   such that X Y   is stationary. 

The vector  ,   is called a cointegrating vector. 

In other words, two processes are themselves non-stationary (technically (1)I ), but their 

movements are correlated in such a way that a certain weighted average of the two processes is 
stationary. 

There are a number of circumstances when it is reasonable to expect that two processes 
may be cointegrated: 

 if one of the processes is driving the other 

 if both are being driven by the same underlying process. 

We now consider an example of cointegrated processes.  Understanding the underlying economic 
theory is not so important here.  However, it is important to understand why the processes are 
cointegrated. 

Example 

The following simple model of evolution of the USDollar/GBPound exchange rate tX  

provides an example of a cointegrated model.  It is assumed that the exchange rate 
fluctuates around the purchasing power t tP Q , where tP  and tQ  are the consumer price 

indices for US and UK, respectively.   

This is described by the following model: 

 ln ln t
t t

t

PX Y
Q

  

     1 1( )t t t tY Y e e     

where e  is a zero-mean white noise process.   
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The evolution of lnP  and lnQ  is described by (1,1,0)ARIMA  models: 

           
(1)

1 1 1 11 ln 1 lnt t tB P B P e    

           
(2)

2 2 1 21 ln 1 lnt t tB Q B Q e    

where  1e  and  2e  are zero-mean white noises, possibly correlated.   

ln P and ln Q are both (1,1,0)ARIMA  processes.  The logarithm of the exchange rate is also 

non-stationary.  However: 

  ln ln lnX P Q  

is the (1,1)ARMA  random process Y  and, therefore, is a stationary random process.  

Here we are assuming that  | | 1  .     

It follows that the sequence of random vectors: 

   ln ,ln ,ln : 1,2,t t tX P Q t   

is described by a cointegrated model with the cointegrating vector (1, 1,1) . 

Question 

Two time series X  and Y  are defined by the equations: 

 
1 1

1 1

0.65 0.35

0.35 0.65

X
t t t t

Y
t t t t

X X Y e

Y X Y e

 

 

  

  
 

where Xe  and Ye  are independent white noise processes.   

Show that X  and Y  are cointegrated, with cointegrating vector (1, 1) . 

Solution 

We begin by showing that the processes X  and Y  are (1)I . 

From the first equation we have: 

  1 1
1

0.65
0.35

X
t t t tY X X e     

Using this in the second equation gives: 

    1 1 1 1
1 1

0.65 0.35 0.65 0.65
0.35 0.35

X X Y
t t t t t t t tX X e X X X e e           
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Tidying up we have: 

 1 1 11.3 0.3 0.65 0.35X X Y
t t t t t tX X X e e e        

or equivalently: 

 1 2 1 11.3 0.3 0.65 0.35X X Y
t t t t t tX X X e e e         

The characteristic polynomial of the AR part of this equation is: 

 21 1.3 0.3     

The roots of this equation are 10
3

 and 1.  So X  is not stationary.  Differencing once will eliminate 

the root of 1.  Since the only other root is strictly greater than 1 in magnitude, X  is a stationary 
process.  Hence X  is (1)I . 

The process Y  has a similar structure to that of X , so Y  is also (1)I . 

We now need to show that X Y  is stationary. 

We have equations: 

 
1 1

1 1

0.65 0.35

0.35 0.65

X
t t t t

Y
t t t t

X X Y e

Y X Y e

 

 

  

  
 

Subtracting the second equation from the first we see that: 

  1 1 1 10.3 0.3 0.3X Y X Y
t t t t t t t t t tX Y X Y e e X Y e e             

Setting t t tW X Y  , this is: 

 10.3 ( )X Y
t t t tW W e e    

The process W  is a stationary (1)AR  process since the root of its characteristic equation is 10
3

, 

and this is greater than 1 in magnitude.  (As always, the white noise terms don’t affect the 
stationarity.) 
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6 Some special non-stationary and non-linear time series models 

Although the ARIMA class of processes is the most important for us, there are many other types 
of model.  This section briefly discusses a few of them. 

6.1 Bilinear models 

The general class of bilinear models can be exemplified by its simplest representative, the 
random process X  defined by the relation: 

            1 1 1 1n n n n n nX X e e b X e      

Considered only as a function of X , this relation is linear; it is also linear when considered 
as a function of e  only.  This is why it is called ‘bilinear’.   

The main qualitative difference between the bilinear model and models from the ARMA 
class is that many bilinear models exhibit ‘bursty’ behaviour:  when the process is far from 
its mean it tends to exhibit larger fluctuations.  The difference between this model and an 

(1,1)ARMA  process may be seen to lie in the last term on the right-hand side:  when 1nX  is 

far from   and 1ne  is far from 0 – events which are far from being independent – the final 

term assumes a much greater significance. 

6.2 Threshold autoregressive models 

A simple representative of the class of threshold autoregressive models is the random 
process X  defined by the relation: 

 

 

  
    

1 1 , 1

2 1 1

( ) if
 = 

( ) , if
n n n

n
n n n

X e X d
X

X e X d
 


 

 

The distinctive feature of some models from the threshold autoregressive class is the limit 
cycle behaviour.  This makes the threshold autoregressive models suitable for the 
description of ‘cyclic’ phenomena. 

In an extreme case we might set 2 0   for example.  Then nX  follows an autoregressive process 

until it passes the threshold value d .  At this point nX  returns to   and the process effectively 

starts again.  Thus we get cyclic behaviour as the process keeps resetting.   

6.3 Random coefficient autoregressive models 

Another modification of the AR class of models is that of autoregressive models for which 
the coefficient is random.  In other words: 

    1t t t tX X e    

where  1 2, , , n    is a sequence of independent random variables.   

Such a model could be used to represent the behaviour of an investment fund, with  0  

and  1t ti  with ti  being the random rate of return.   

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-14: Time series 2 Page 41 

 

The Actuarial Education Company © IFE: 2019 Examinations 

The behaviour of these processes can vary widely, depending on the distribution chosen for 
the t , but is in general more irregular than that of the corresponding (1)AR . 

6.4 Autoregressive models with conditional heteroscedasticity 

Financial assets often display the following behaviour.  After a large change in the asset price 
there follows a period of high volatility, which can be in either direction.  Following small changes 
there tend to be further small changes.  In other words, the variance of the process is dependent 
upon the size of the previous value.  This is the property of conditional heteroscedasticity. 

The words ‘homoscedastic’ and ‘heteroscedastic’ just mean having equal (ie constant) or different 
variances respectively.  The ‘c’ is pronounced like a ‘k’ in these words. 

The class of autoregressive models with conditional heteroscedasticity of order p   the 

( )ARCH p   is defined by the relation: 

 


    2
0

1

p

t t k t k
k

X e X     

where e  is a sequence of independent standard normal random variables.  The simplest 

representative of the ( )ARCH p  class is the (1)ARCH  model defined by the relation: 

     2
0 1 1t t tX e X     

If   is zero, it can be shown that cov( , ) 0t sX X  for s t  confirming that tX  is white 

noise with uncorrelated  but not independent components.  

The ARCH models have been used for modelling financial time series.  If tZ  is the price of 

an asset at the end of the t -th trading day, it is found that the ARCH model can be used to 

model   1lnt t tX Z Z , interpreted as the daily return on day t .   

The ARCH family of models captures the feature frequently observed in asset price data that 
a significant change in the price of an asset is often followed by a period of high volatility.  
As may be seen from the (1)ARCH  model, a significant deviation of 1tX  from the mean   

gives rise to an increase in the conditional variance of tX  given 1tX . 
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7 Appendix – Eigenvalues 

  is an eigenvalue of an n n  matrix A  if there is a non-zero vector x , such that: 

 Ax x  

The vector x  is known as the eigenvector.  This equation is equivalent to ( ) 0A I x   where I  is 

the identity matrix, ie the matrix whose diagonal entries are 1 and whose off-diagonal entries 
are 0. 

Hence we have a set of n  linear equations in n  unknowns,  1 , , nx x .  These equations have a 

non-zero solution, if and only if the matrix A I  has zero determinant: 

 det( ) 0A I   

The equation det( ) 0A I   can be solved for   to find the eigenvalues. 

Question 

Calculate the eigenvalues of the matrix 
2 1

4 2
A

 
  
 

. 

Solution 

Here we have: 

 
2 1 1 0 2 1 0 2 1

4 2 0 1 4 2 0 4 2
A I

 
 

 
         

                       
  

We have to solve: 

 
2 1

det 0
4 2




 
  

 

The determinant of the 2 2  matrix 
a b

c d

 
 
 

 is ad bc .  So the eigenvalues of the matrix A  are 

the solutions of the equation: 

    2 22 4 4 4 0            

These are 0 and 4. 
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Chapter 14 Summary 

Box-Jenkins methodology 

The Box-Jenkins methodology gives us a way of fitting an ( , , )ARIMA p d q  time series model to 

an actual data set.  The method consists of the following steps: 

 removing trends and cycles from the data set 

 identifying a model from the ( , , )ARIMA p d q  class 

 estimating parameters 

 diagnostic checks 

 forecasting. 

Removing trends 

Time series data can be modelled efficiently only if stationary.  In particular, any 
deterministic trends or cycles must be removed before applying the modelling procedure.  
There are various ways of doing this.  In addition, a time series may still be non-stationary 
because it is integrated.  In this case the time series must be differenced. 

Let the set of observed values of the time series process be  tx .   

Linear trends in the data can be removed by: 

 least squares trend removal, ie we calculate ˆˆt ty x a bt    where â  and b̂  have 

been determined using linear regression 

 differencing, ie we calculate 1t t t ty x x x    . 

Seasonal trends in the data can be removed by: 

 seasonal differencing, eg if seasonal variation is observed in monthly data, we 
calculate 12t t ty x x    

 method of moving averages (applying a filter), eg if seasonal variation is observed in 
monthly data, we calculate:  

    6 5 1 1 5 6
1

0.5 0.5
12t t t t t t t ty x x x x x x x                

 method of seasonal means, eg if seasonal variation is observed in monthly data, we 
subtract from each observation the estimated mean for that month.   
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It may be possible to remove other trends in the data via a transformation.  For example, if 

the  tx  values appear to have an exponential trend, we could apply the transformation 

logt ty x . 

Fitting an ARIMA process – choosing a value for d  

The following principles can be used to choose an appropriate value for d . 

1. If the sample autocorrelation function kr  decays slowly to 0, this indicates that 

 there are still trends in the data and that the data should be differenced again. 

2. Let 2ˆd  denote the sample variance of the process d
tx ,  then d  can be set to the 

 value which minimises 2ˆd  . 

Fitting an ARIMA process – choosing values for p and q 

If the underlying time series process is ( )MA q , then we would expect the sample 

autocorrelation function ˆk  (or kr ) to cut off for k q .   It can also be shown that the 

estimator k  has the following approximate distribution for k q :  

 2

1

1
0, 1 2

q

k i
i

N
n

 


  
      

   

We might conclude that the ACF cuts off for k q  if 95% of the ˆk  values fall within the 

confidence interval:  

 2 2

1 1

1 1ˆ ˆ1.96 1 2 , 1.96 1 2
q q

i i
i in n

 
 

    
               

   

If the underlying time series process is ( )AR p , then we would expect the sample partial 

autocorrelation function k̂  to cut off for k p .   It can also be shown that the estimator k  

has the following approximate asymptotic distribution: 

  
1

0,k N
n

  
 
 

   

We might conclude that the PACF cuts off for k p  if 95% of the k̂  values fall within the 

confidence interval:  

 
1 1

1.96 , 1.96
n n
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Otherwise, we look to fit an ( , )ARMA p q  model.  In practice, we might start with an 

(1,1)ARMA  model and then apply diagnostic tests on the residuals to see whether this is a 

reasonable fit.  If not, we would try adding more parameters. 

Akaike’s Information Criterion (AIC) states that we should only consider adding an extra 
parameter if this results in a reduction of the residual sum of squares by a factor of at least 

2 ne . 

The formula for the ˆk  is given on page 40 of the Tables.  The sample partial autocorrelation 

can then be calculated using the formulae (also on page 40 of the Tables) but with k  

replaced by ˆk . 

Parameter estimation 

Once we have identified p , d  and q , we move forward with a time series of the form: 

 1 1 2 2 1 1 2 2t t t p t p t t t q t qX X X X e e e e                     

The parameters, the alphas and betas can be estimated as follows: 

 least squares estimation (which is equivalent to maximum likelihood estimation if 
the error terms can be assumed to be normally distributed) 

 method of moments, where we equate population autocorrelations k  with sample 

autocorrelations ˆk . 

The final parameter of the model is 2 , the variance of the te , which may be estimated 

using: 

 2 2

1

1 ˆˆ
n

t
t p

e
n


 

   where t̂e  denotes the estimate of the residual at time t 

Diagnostic tests 

If the model chosen is a good fit to the data, we would expect the estimates of the residuals 

 t̂e  to show the characteristics of white noise (ie a set of uncorrelated random variables 

with zero mean).  Examples of diagnostic tests include: 

 checking that the graph of the  t̂e  terms is patternless 

 the  t̂e  terms appear to be close to zero 

 the turning point test: the number of points of inflexion in the graph of the  t̂e  

terms should fall within the 95% confidence interval: 

     16 29 16 292 2
2 1.96 , ( 2) 1.96

3 90 3 90
N N

N N
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 the sample autocorrelation ˆk  of the  t̂e  terms is close to zero and has an 

approximate 
1

0,N
n

 
 
 

 distribution so that 95% of its values should fall within the 

confidence interval 
1 1

1.96 , 1.96
n n

 
  
 

 

 the Ljung and Box ‘portmanteau’ test: if the  t̂e  terms are white noise then they 

should be uncorrelated.  Under the null hypothesis that the residuals are white 

noise, the sample autocorrelation kr  of the  t̂e  terms satisfies:  

2
2

1
( 2)

m
k

m
k

r
n n

n k





   for each m    

This is a one-sided test. 

Forecasting 

Future values of the time series can be forecast using k -step ahead forecasting.  We use the 
notation ˆ ( )nx k  to be the estimate of the expected value of n kX   (given the observations up 

to nX ).  To determine ˆ ( )nx k , we take our time series equation and: 

 replace all unknown parameters by their estimated values 

 replace the random variables 1 ,..., nX X  by their observed values 1 ,..., nx x  

 replace the random variables 1 1,...,n n kX X    by their forecast values 

ˆ ˆ(1),..., ( 1)n nx x k   

 replace the innovations 1 ,..., ne e  by the residuals 1̂ ˆ,..., ne e  

 replace the random variables 1 1,...,n n ke e    by 0 (their expectations). 

An alternative to 1-step ahead forecasting is exponential smoothing.  We use the notation 
ˆ (1)nx  to be the estimate of the expected value of 1nX   (given the observations up to nX ).   

 2
1 2ˆ (1) (1 ) (1 )n n n nx x x x   

         

This is a weighted average of the past values but there is less emphasis on older values.  The 
parameter   is called the smoothing parameter.  Rearrangements include: 

  1ˆ ˆ(1) (1 ) (1)n n nx x x           

and:  

 1 1ˆ ˆ ˆ(1) (1) (1)n n n nx x x x     
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Multivariate time series 

We can write a univariate time series in multivariate (or vector) form.   

For example, the time series 1 1 2 2 1t t t t tX X X e e         can be written as 

 
1 2

1 1 1

2 2 2

0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

t t t

t t t

t t t

X X e

X X e

X X e

  

  

  

        
                 

        
        

 

ie 1t t tX AX Be   

The advantage of the vector form is that it displays the Markov property. 

The vector process is stationary if the eigenvalues   of the matrix A  are all strictly less than 

1 in magnitude.  The eigenvalues are found by solving  det 0A I   where I  is the 

identity matrix. 

Cointegrated series 

Two time series processes X and Y are called cointegrated if: 

(i) X and Y are I(1) random processes 

(ii) there exists a non-zero vector (called the cointegrating vector)  ,   such that 

 X Y   is stationary. 

We might expect that two processes are cointegrated if one of the processes is driving the 
other or if both are being driven by the same underlying process. 

Other non-linear, non-stationary time series 

Other examples of time series include: 

 bilinear models, which exhibit ‘bursty’ behaviour: 

     1 1 1 1n n n n n nX X e e b X e               

 threshold autoregressive models, which are used to model ‘cyclical’ behaviour: 

  1 1 , 1

2 1 1

( ) if
 = 

( ) , if
n n n

n
n n n

X e X d
X

X e X d

 


 
 

 

  
    

 

 random coefficient, autogressive models: 

   1t t t tX X e        

where  1 2, , , n    is a sequence of independent random variables. 
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 autoregressive conditional heteroscedasticity (ARCH) models, which are used to 
model asset prices, where we require the volatility to depend on the size of the 
previous value: 

   20
1

p

t t k t k
k

X e X   
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Chapter 14 Practice Questions 

14.1 The following table shows some data for the d th order differences of an observed time series tx ,

1,2, ,100t   : 

Properties of d
tx  0d   1d   2d   3d   4d   

Sample 
autocorrelation 

coefficients 

1r  0.97 0.41 0.03 –0.24 –0.41 

2r  0.92 –0.19 –0.49 –0.42 –0.25 

3r  0.88 –0.17 –0.16 –0.01 0.06 

4r  0.85 0.04 0.19 0.26 0.22 

Sample variance  162.3 7.4 8.5 16.4 40.7 

 
State, with reasons, the most appropriate value of d  if this series is to be modelled using an 

( , , )ARIMA p d q  model.  

14.2 A time series, X , is believed to conform to the (1)AR  model 1n n nX X   , where   is a white 

noise process.  The value of the parameter   is unknown. 

(i) The table below shows an extract of the calculation of the residuals for this model when 
  is assumed to equal 0.6 and 0.7. 

n  … 15 16 17 18 19 20 … 

nx  … 371 507 B  449 272 76 … 

Residuals ( 0.6  ) … 357 A  –48 295 3 –87 … 

Residuals ( 0.7  ) … 354 247 –99 C  –42 –114 … 

 
 Complete the table by calculating the values of A , B  and C .   

(ii) List the tests that could be applied to the residuals to test the model for goodness of fit.  

14.3 An ( , , )ARIMA p d q  model is to be fitted to the RPI data on page 152 of the Tables. 

(i) Explain why the value 1d   would be considered the most appropriate choice for the 
parameter d .   

(ii) Comment on whether there is any evidence of seasonal variation in this dataset. 
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14.4 An (0,1,1)ARIMA  model of the form 1t t tE        , where { }t  is zero-mean white noise 

and 1  , is to be fitted to the NAEI data on page 153 of the Tables. 

(i) State why the condition 1   has been imposed.  

(ii) Estimate the value of  .  

(iii) Estimate the value of   by equating the sample and theoretical autocorrelations for lag 1 

for the series { }tE .  

(iv) Use this model to estimate 120E , the value of the series for Jan-02, given that 119ˆ 3.1.    

(v) Explain why this estimate might not be reliable. 

14.5 From a sample of 50 consecutive observations from a stationary process, the table below gives 
values for the sample autocorrelation function (ACF) and the sample partial autocorrelation 
function (PACF): 

Lag ACF PACF 

1 0.854 0.854 

2 0.820 0.371 

3 0.762 0.085 

The sample variance of the observations is 1.253. 

(i) Suggest, giving reasons, an appropriate model based on this information. [2] 

(ii) Consider the (1)AR  model: 

   1 1t t tY a Y e   

 where te  is a white noise error term with mean zero and variance 2 .  

 Calculate method of moments (Yule-Walker) estimates for the parameters of 1a  and 2  

on the basis of the observed sample.   [4] 

(iii) Consider the (2)AR  model: 

  1 1 2 2t t t tY a Y a Y e     

 where te  is a white noise error term with mean zero and variance 2 .  

 Calculate method of moments (Yule-Walker) estimates for the parameters of 1a , 2a  and 
2  on the basis of the observed sample. [7] 

(iv) List two statistical tests that could be applied to the residuals after fitting a model to time 
series data.  [2] 

    [Total 15] 

Exam style 
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14.6 The following data is observed from 500n   realisations from a time series: 

 
1

13,153.32
n

i
i

x


 , 2

1

( ) 3,153.67
n

i
i

x x


    and 
1

1
1

( )( ) 2,176.03
n

i i
i

x x x x





    

(i) Estimate, using the data above, the parameters  , 1  and   from the model: 

  1 1( )t t tX X        

 where t   is a white noise process with variance 2 . [7] 

(ii) After fitting the model with the parameters found in (i), it was calculated that the number 
of turning points of the residuals series t̂  is 280. 

 Perform a statistical test to check whether there is evidence that t̂  is not generated from 

a white noise process. [3] 
    [Total 10] 

14.7 (i) State the three main stages in the Box-Jenkins approach to fitting an ARIMA time series 
model.   [3] 

(ii) Explain, with reasons, which ARIMA time series would fit the observed data in the charts 
below.     [2] 

 
Now consider the time series model given by: 

 1 1 2 2 1 1 t t t t tX X X e e         

where te  is a white noise process with variance 2.  

(iii) Derive the Yule-Walker equations for this model. [6] 

(iv) Explain whether the partial autocorrelation function for this model can ever give a zero 
value.   [2] 

    [Total 13] 

  

Exam style 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 14 Solutions 

14.1 The strongest clue in this question is the sample variance, which should have a small value when 
an appropriate value of d  is found.  We can rule out 0d   because the sample variance is much 
bigger here.  1d   or 2d   seem likely candidates, since the sample variance is low for these, but 
then starts to increase when 3d  .  

We also expect the sample autocorrelation coefficients to decay rapidly to zero.  Again, this rules 
out 0d  .  1d   looks good and has a more regular pattern than the higher values of d .  

Putting these clues together suggests that we should select 1d  , as this value satisfies the 
required criteria, and going to 2d   doesn’t result in any worthwhile improvement.  

In fact the series used here was a simulation of an (2,1,0)ARIMA  process.  So d really is equal to 1. 

14.2 (i) Completed table 

The completed table looks like this: 

n   … 15 16 17 18 19 20 … 

nx   … 371 507 256 449 272 76 … 

Residuals ( 0.6  ) … 357 284 –48 295 3 –87 … 

Residuals ( 0.7  ) … 354 247 –99 270 –42 –114 … 

 
The missing numbers are calculated as follows: 

 507 0.6 371 284A       

 0.6 507 48 256B B        

 449 0.7 256 270C       

(ii) Tests on residuals 

The tests described in the Core Reading are: 

 inspection of the graph of the residuals  

 inspection of the SACF and SPACF  

 the portmanteau test  

 counting turning points.  
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14.3 (i) Explain why 1d    

The parameter d  should be the smallest non-negative integer for which the series { }d
tQ  can be 

considered to be stationary.  

The graph in the Tables strongly suggests that { }tQ  itself has an upward trend and is therefore not 

stationary.    

The sample autocorrelations of { }tQ  decay slowly from 1 which indicates differencing is required.  

However, the sample autocorrelations of { }tQ  do not decay slowly from 1 which indicates that 

no further differencing is required.  

The sample standard deviation of the values is minimised for { }tQ .  This also indicates that 

1d  .     

If there is any conflict between the two criteria then we should use the principle of parsimony in 
choosing the value for d .  

(ii) Seasonal variation 

Seasonal variation means that an annual cycle is present in the data. 

The sample autocorrelation for lag 12 (ie 0.637) for the series { }tQ , which we would otherwise 

consider to be stationary, is positive and significantly different from zero.  This suggests the 
presence of a 12-monthly cycle.  

Note that, because { }tQ  doesn’t appear to be stationary, the value of 12r  for this series would be 

quite high, whether or not seasonality was present. 

14.4 (i) Reason for condition 

This condition ensures that the model is invertible.  

(ii) Estimate 

Since the white noise has mean zero, we know that [ ]tE E   . 

If we equate [ ]tE E  to the sample mean of the first differences shown in the Tables, this gives 

ˆ 0.4  .    

(iii) Estimate  

We can calculate the autocovariances of { }tE  for lags 0 and 1 for this model to be: 

 2 2
0 (1 )      and  2

1   

where 2  is the variance of the white noise series.   
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So:  

 1 21







   

Equating this to the sample value gives: 

 
2

0.245
1




 


 

This leads to the quadratic equation: 

 20.245 0.245 0      ˆ 0.262 or 3.82      

Since 1  , we conclude that ˆ 0.262   .  

(iv) Estimate 120E   

We first need to estimate 120E .  The actual value will be: 

 120 120 119E         

We estimate this using the equation: 

 120 119
ˆˆ ˆˆ 0E      , so 120

ˆ 0.4 0 0.262(3.1) 0.4E        

We can then calculate the required estimate as: 

 120 119 120
ˆ ˆ 134.1 ( 0.4) 133.7E E E        

(v) Why estimate may not be reliable 

We can see from the graph (and from the value of 12r  for { }tE ) that the series contains a strong 

seasonal component, which we have not allowed for in this model.  

The actual value for Jan-02 (not shown in the Tables) was 132.4, which is significantly different 
from our estimate. 

14.5 This is Subject CT6, September 2008, Question 10. 

(i) Appropriate model 

From the figures given it looks like the ACF is decaying slowly and the PACF is cutting off after 
lag 2.  This is a characteristic of an (2)AR  model. [2] 

(ii) Parameter estimates 

As a starter step: 

 2
1 1cov( , ) cov( , )t t t t tY e a Y e e     [½] 
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Consider the autocovariance with a lag of 1: 

 1 1 1 1 1 1 0 1 1cov( , ) cov( , )t t t t tY Y a Y e Y a a           [1] 

Because we are told in the question that the sample ACF with lag 1 is 0.854, this is our estimate of 

1 , so we have: 

 1̂0.854 a   [½] 

Consider the autocovariance with a lag of 0: 

 2
0 1 1 1 1cov( , ) cov( , )t t t t tY Y a Y e Y a        [½] 

Because we are told in the question that the sample ACF with lag 1 is 0.854 (our estimate of 1 ) 

and the sample variance is 1.253 (our estimate of 0 ), we have: 

 

0

1
1

0

ˆ 1.253

ˆ
ˆ0.854 0.854 1.253

ˆ



 




     [1] 

From 2
0 1 1a    : 

 2 2 2ˆ ˆ1.253 0.854 1.253 0.339       [½] 

(iii) Parameter estimates 

Consider the autocovariance with a lag of 1: 

 

1 1 1 1 2 2 1 1 0 2 1

1
1

2

cov( , ) cov( , )

1

t t t t t tY Y a Y a Y e Y a a

a
a

  



        

 


 [1] 

Consider the autocovariance with a lag of 2: 

 

2 2 1 1 2 2 2 1 1 2 0

2 2
1 1 2 2

0 2 0 0
2 2

cov( , ) cov( , )

(1 )
1 1

t t t t t tY Y a Y a Y e Y a a

a a a a
a

a a

  

  

        

 
  

 
 [1] 

From this: 

 
2
1 2 2

2
2

(1 )
1

a a a
a

  



 [½] 
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Because we are told in the question that the sample ACF with lag 1 is 0.854 (our estimate for 1 ) 

and that the sample ACF with lag 2 is 0.820 (our estimate of 2 ), we have: 

 

1

2

2
1 2 2

2

ˆ
0.854

ˆ1

ˆ ˆ ˆ(1 )
0.820

ˆ1

a
a

a a a
a




 



 [1] 

Replacing 1̂a  by 2ˆ0.854(1 )a  in the second equation, we get: 

 

2 2
22 2 2

2 2
2

2 2
2

2

ˆ ˆ ˆ0.854 (1 ) (1 ) ˆ ˆ0.820 0.854 (1 )
ˆ1

ˆ0.820 0.854 (1 0.854 )

ˆ 0.335

a a a
a a

a

a

a

  
   



   

   [1] 

By substituting this back into the first equation above, we get 1̂ 0.568a  . [½] 

Consider the autocovariance with a lag of 0: 

 2
0 1 1 2 2 1 1 2 2cov( , ) cov( , )t t t t t tY Y a Y a Y e Y a a            [½] 

Because we are told in the question that the sample ACF with lag 1 is 0.854, the sample ACF with 
lag 2 is 0.820 and the sample variance is 1.253, we have: 

 

0

1
1

0

2
2

0

ˆ 1.253

ˆ
ˆ0.854 0.854 1.253

ˆ

ˆ
ˆ0.820 0.820 1.253

ˆ



 


 




   

     [1] 

From 2
0 1 1 2 2a a      : 

 

2

2

ˆ1.253 0.568 0.854 1.253 0.335 0.820 1.253

ˆ 0.301





      

   [½] 

(iv) Tests 

We could mention any two of the following: 

 Portmanteau (Ljung and Box) test 

 Turning points test 

 Inspection of the graph of the residuals 
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 Inspection of the values of the sample autocorrelation function based on their 95% 
confidence intervals  

 Inspection of the values of the sample partial autocorrelation function based on their 95% 
confidence intervals [2] 

14.6 This is Subject CT6, September 2009, Question 6. 

(i) Estimation of parameters 

The value of   is estimated by the sample mean: 

 
13,153.32ˆ 26.31

500
x     [1] 

To estimate 1  and  , we consider the Yule-Walker equations: 

 

0

1 1

1 1

2
1 1

var( ) cov( , )

cov( , )

cov( , ) cov( , )

t t t

t t t

t t t t

X X X

X X

X X X



 

 

  





 

 

 

    [1] 

since: 

 2
1 1 1 1cov( , ) cov( , ) cov( , ) cov( , ) 0t t t t t t t t tX X X                 

In addition: 

 

1 1

1 1 1

1 1 1 1

1 0

cov( , )

cov( , )

cov( , ) cov( , )

0

t t

t t t

t t t t

X X

X X

X X X



 

 

 



 

  



 

 

   [1] 

 1
1 1

0

 


     [½] 

Now using the formulae for ˆk  and ˆk  given on page 40 of the Tables: 

 2
0

1

1 3,153.67ˆ ( )
500

n

i
i

x x
n




     [½] 

 
1

1 1
1

1 2,176.03ˆ ( )( )
500

n

i i
i

x x x x
n







      [½] 
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So: 

 1
1

0

ˆ 2,176.03ˆ 0.6900
ˆ 3,153.67



     [½] 

 1 1ˆ ˆ 0.6900     [1] 

and: 

 

2
0 1 1

2

2

ˆ ˆ ˆ ˆ

3,153.67 2,176.03 ˆ0.6900
500 500

3,153.67 2,176.03ˆ 0.6900 3.3044
500 500

ˆ 1.8178

   







 

   

    

    [1] 

(ii) Turning point test 

The null and alternative hypotheses are: 

 0 :H  the residuals are from a white noise process 

 1 :H   the residuals are not from a white noise process [1] 

Using the formulae from page 42 of the Tables, we have: 

 

2
( ) 498 332

3

16 500 29
var( ) 88.567

90

E T

T

  

 
 

 

The value of the test statistic is: 

 
280 0.5 332

5.47
88.567

 
   [1] 

which should be from a (0,1)N  distribution if 0H  holds.  Since 5.47 1.96    we have very strong 

evidence to reject 0H .  This suggests that the residuals are not from a white noise process. [1] 

14.7 This is Subject CT6, September 2013, Question 9. 

(i) Box-Jenkins approach 

The three main stages in the Box-Jenkins methodology are: 

• Tentative identification of a model from the ARIMA class. [1] 

• Estimation of parameters in the identified model. [1] 

• Diagnostic checks. [1] 
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(ii) ARIMA time series to fit the observed data in the charts  

The ACF cuts off (becomes 0) at all lags greater than 1, whereas the PACF decays towards 0.  
Hence we have an (1)MA . [2] 

(iii) Yule-Walker equations 

We start with some useful preliminary equations: 
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and: 
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The Yule-Walker equations are as follows: 
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In general, for lags 2k  : 

 11 22k k k       [1] 
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 (iv) Can the partial auto-correlation function ever give a zero value? 

For an ( )MA q  process, where 1q  , the PACF tends towards 0 but does not completely cut off. 

    [1] 

Here, we have an (2,1)ARMA  process, ie 1q  .  Hence the PACF tends towards 0 but does not 

completely cut off.  There will always be a small partial autocorrelation.  [1] 
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Loss distributions 

 

 

Syllabus objectives 

1.1 Loss distributions, with and without risk sharing 

1.1.1 Describe the properties of the statistical distributions which are suitable for 
modelling individual and aggregate losses. 

1.1.5 Estimate the parameters of a failure time or loss distribution when the data 
is complete, or when it is incomplete, using maximum likelihood and the 
method of moments.  

1.1.6 Use R to fit a statistical distribution to a dataset and calculate appropriate 
goodness-of-fit measures. 
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0 Introduction 

General insurance companies need to investigate claims experience and apply mathematical 
techniques for many purposes.  These include:  

 premium rating (ie deciding what premium rates to charge policyholders) 

 reserving (ie assessing how much money should be set aside to cover the cost of claims) 

 reviewing reinsurance arrangements 

 testing for solvency (ie assessing the company’s financial position). 

In this chapter we will look at loss distributions.  These are statistical distributions that are used to 
model individual claim amounts.  We will introduce some new distributions and we see how these 
can be fitted to observed claims data.  We can then test for goodness of fit, and use the fitted loss 
distributions to estimate probabilities. 

The total amount of claims in a particular time period is a quantity of fundamental 
importance to the proper management of an insurance company.  The key assumption in all 
the models studied here is that the occurrence of a claim and the amount of a claim can be 
studied separately.  Thus, a claim occurs according to some simple model for events 
occurring in time, then the amount of the claim is chosen from a distribution describing the 
claim amount. 

Note carefully the distinction here.  The frequency of claim amounts when plotted against size 
might look like this: 

 

The statistical distributions in this chapter are used to approximate this distribution, which is 
called a loss distribution.  For example, we might to decide to use a loss distribution like this as an 
approximation to the claims arising in the graph above: 
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A range of statistical techniques can be used to describe the distribution of random 
variables.  The object is to describe the variation in claim amounts by finding a loss 
distribution that adequately describes the claims that actually occur.  As usual this can be 
done at two levels. 

At a first level, it can be assumed that the claims arise as realisations from a known 
distribution.  For example, it may be possible to assume that the logarithm of the claim 
amount follows, to a reasonable approximation, a normal distribution with known mean and 
known standard deviation.  Knowledge of the claim amount process would be complete, 
and interest would then centre on the consequences for insurance.  For example, claims 
above a certain level might trigger some reinsurance arrangements or claims below a 
certain level might never be lodged if a policy excess was in force. 

A policy excess means that the policyholder has to pay the first part of any claim.  For example, 
with car insurance in the UK the policyholder often has to pay the first £200 of any claim.  The 
insurer pays the rest. 

In practice the exact claims distribution will hardly ever be known.  At this second level a 
standard method of proceeding is to assume that the claims distribution is a member of a 
certain family.  The parameters of the family must now be estimated using the claim amount 
records by an appropriate method such as maximum likelihood.  Complications will arise if 
large claims have been limited (reinsurance) or some small claims have not been lodged 
(policy excess). 

We will consider the effects of reinsurance and policy excesses in Chapter 18. 

Many studies have been made of the kind of distribution that can be used to describe the 
variation in claim amounts. 

The typical pattern is as shown in the histogram above, with a few small claims, rising to a peak, 
then tailing off gradually with a few very large claims. 

The general conclusion is that claims distributions tend to be positively skewed and long 
tailed. 
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1 Simple loss distributions 

In this section we will review some of the properties of the statistical distributions that are used 
to model claim amounts.  In most cases we use a positively skewed, continuous distribution.   

Recall that, for a continuous random variable, X : 

 the cumulative distribution function (CDF) is: 

   ( ) ( )XF x P X x   

 the probability density function (PDF) is: 

  ( ) ( )X Xf x F x   

 probabilities can be expressed in terms of the PDF or CDF: 

    ( ) ( ) ( ) ( )
b

X X X
a

P a X b f x dx F b F a   

 the moment generating function (MGF) is: 

    ( ) ( ) ( )tX tx
X X

x

M t E e e f x dx   

The CDF, PDF and MGF may also be denoted without the subscript as ( )F x , ( )f x  and ( )M t , 

respectively, provided the meaning is clear.   

The formulae for the densities, the moments and the moment generating functions (where 
they exist) for the distributions discussed in this chapter are given in the Formulae and 
Tables for Actuarial Examinations. 

In the Tables, the abbreviation DF is used for cumulative distribution function. 

1.1 The exponential distribution 

A random variable X  has the exponential distribution with parameter  0  if it has CDF: 

 ( ) 1 xF x e  ,  0x  

In that case we write ~ ( )X Exp  . 

The PDF is:  

( ) , 0xf x e x      

The mean and variance are 
1


 and 
2

1


 respectively.  
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The PDF can also be written as: 

  /1 xf x e 


   

where   is the mean.   

The MGF is:  


   
 

1

( ) 1
t

M t


 ,  t   

All of these formulae are given on page 11 of the Tables. 

Question 

A portfolio of insurance policies contains two types of risk.  Type I risks make up 70% of claims 
and give rise to loss amounts that are exponentially distributed with mean 500.  Type II risks give 
rise to loss amounts that are exponentially distributed with mean 1,000. 

Let X  denote the amount of a randomly chosen loss.  Determine ( )E X , var( )X  and ( )XM t . 

Solution 

Since the amount of a loss depends on the type of risk from which it arises, we calculate ( )E X  using 

the conditional expectation formula (from Subject CS1).  This formula is given on page 16 of the 
Tables.  In this case: 

 
( ) ( ( |Type)) ( |Type I) (Type I) ( |Type II) (Type II)

500 0.7 1,000 0.3 650

E X E E X E X P E X P  

    
  

Similarly: 

 2 2 2 2( ) ( ( |Type)) ( |Type I) (Type I) ( |Type II) (Type II)E X E E X E X P E X P     

Now: 

  22 2 2( |Type I) var( |Type I) ( |Type I) 500 500 500,000E X X E X       

Here we are using the fact that the variance of an exponential random variable is the square of its 

mean.  So the variance of losses from Type I risks is 2500 .  We can use the same approach for 
Type II risks: 

  22 2 2( |Type II) var( |Type II) ( |Type II) 1,000 1,000 2,000,000E X X E X      

So: 

 2( ) 500,000 0.7 2,000,000 0.3 950,000E X        
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Hence: 

 
2var( ) 950,000 650 527,500X      

Alternatively, we could calculate var( )X  using the conditional variance formula, which is also 

given on page 16 of the Tables: 

 var( ) [var( |Type)] var[ ( |Type)]X E X E X    

For notational convenience, let var( |Type)V X  and let ( |Type)W E X .  Then V  has the 

following distribution: 

v   2500   21,000   

( )P V v   0.7 0.3 

 
So: 

 2 2( ) 500 0.7 1,000 0.3 475,000E V        

In addition, we can calculate var( )W  from the distribution of W : 

w   500  1,000 

( )P W w   0.7 0.3 

 
We have: 

 ( ) 500 0.7 1,000 0.3 650E W         

 2 2 2( ) 500 0.7 1,000 0.3 475,000E W        

and hence: 

 2var( ) 475,000 650 52,500W      

So: 

 var( ) [ ] var[ ] 475,000 52,500 527,500X E V W       

Finally, we will consider the moment generating function of X .  Again, we will use the conditional 
expectation formula: 

 
( ) ( ) ( |Type)

( |Type I) (Type I) ( |Type II) (Type II)

tX tX
X

tX tX

M t E e E E e

E e P E e P
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( |Type I)tXE e  is the MGF of the exponential distribution with mean 500, ie: 

 1( |Type I) (1 500 )tXE e t     

Similarly, ( |Type II)tXE e  is the MGF of the exponential distribution with mean 1,000, ie: 

 1( |Type II) (1 1,000 )tXE e t     

So: 

 1 1( ) 0.7(1 500 ) 0.3(1 1,000 )XM t t t       

 
We can use R to simulate values from statistical distributions, plot their PDFs, and calculate 
probabilities and percentiles.  An example involving the exponential distribution is given below. 

Suppose we have an exponential distribution with parameter  0.5 .  The R code for 
simulating 100 values is given by: 

 rexp(100,rate=0.5) 

The PDF is obtained by dexp(x, rate=0.5) and is useful for graphing.  For example: 

plot(seq(0:5000),dexp(seq(0:5000), rate=0.5),type="l") 

To calculate probabilities for a continuous distribution we use the CDF which is obtained by 
pexp.  For example, to calculate  ( 2) 0.6321206P X  we use the R code: 

 pexp(2,rate=0.5) 

Similarly, the quantiles can be calculated with qexp. 

This code can be adapted to deal with other statistical distributions. 

1.2 The gamma distribution 

The random variable X  has a gamma distribution with parameters  0  and  0  if it has 
PDF: 

  1( ) exp( ), 0
( )

f x x x x


 


 

In that case we write ~ ( , )X Ga   .   

This may also be written as ( , )Gamma  .   

The gamma function, ( ) , appears in the denominator of this PDF.  The definition and 

properties of this function are given on page 5 of the Tables. 
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The mean and variance of X  are: 

( )E X 


   


2

var( )X 


 

Question 

If  ( , )X Gamma  , show that the MGF of X  is: 

 


   
 

( ) 1X
t

M t



 

Solution 

Using the definition of the MGF, we have: 

 
      

   ( )1 1
0 0

1 1
( ) ( )

( ) ( )
t X t x x t x

XM t E e e x e dx x e dx     
 

 

We can make the integrand look like the PDF of the ( , )Gamma t    distribution by writing: 

 
          1 ( )
0

1
( ) ( )

( )
t x

XM t t x e dx
t


   

 
 

This integral is equal to 1 provided   0t , so: 

 ( ) 1 , for X
t t

M t t
t

    
  

                    
 

 

By differentiating the MGF, we can obtain the non-central moments, ( )kE X , 1,2,3,...k : 

 2( ) (0), ( ) (0),X XE X M E X M etc     

The variance and skewness can be obtained more quickly using the cumulant generating function 
(CGF).  Recall that: 

 ( ) ln ( )X XC t M t  

Question 

Suppose that  ( , )X Gamma  .   

Derive formulae for the skewness and coefficient of skewness of X .  
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Solution 

The skewness of X  is its third central moment,   
3( ( ))E X E X .  It can be obtained by 

differentiating the CGF three times and evaluating the third derivative when  0t . 

Since  ( , )X Gamma  : 

 


          
   

( ) ln 1 ln 1X
t t

C t



 

  

Differentiating using the chain rule: 

 

 

 

 

              
    

                
     

                
     

1 1

2 2

2

3 3

2 3

1
( ) 1 1

1
( ) ( 1) 1 1

1 2
( ) ( 2) 1 1

X

X

X

t t
C t

t t
C t

t t
C t


   

 
   

 
   

  

So: 

 


     
 

3

3 3
2 0 2

skew( ) (0) 1XX C
 

 
  

The coefficient of skewness of X  is: 

 
 


3/2

skew( )
coeff of skew( )

var( )

X
X

X
 

The variance can also be obtained from the CGF: 

 


     
 

2

2 2
0

var( ) (0) 1XX C
 

 
  

So: 

 
 

   
3

3/2 2 3/2 1/2
skew( ) 2 / 2 2

coeff of skew( )
( / )var( )

X
X

X

 
  

  

 
Formulae for the PDF, MGF, mean, variance, non-central moments and coefficient of skewness of 
the gamma distribution are all given on page 12 of the Tables. 
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There is no closed form (ie no simple formula) for the CDF of a gamma random variable, which 
means that it is not easy to find gamma probabilities directly without using a computer package 
such as R.  However, these probabilities can be obtained using the relationship between the 
gamma and chi-squared distributions. 

Relationship between gamma and chi-squared distributions 

If  ( , )X Gamma   and 2  is an integer, then: 

 2
22 X     

This result is also given on page 12 of the Tables. 

As an illustration of how this relationship can be used, suppose that  (10,4)X Gamma  and we 

want to calculate ( 4.375)P X .  Using the result above, we know that 2
208X  , so: 

      2
20( 4.375) (8 8 4.375) ( 35)P X P X P   

From page 166 of the Tables, we see that: 

  2
20( 35) 0.9799P    

So: 

    ( 4.375) 1 0.9799 0.0201P X  

The R code for simulating a random sample of 100 values from the gamma distribution with 
 2  and  0.25  is: 

 rgamma(100, 2, 0.25) 

Similarly, the PDF, CDF and quantiles can be obtained using the R functions dgamma, 
pgamma and qgamma. 

1.3 The normal distribution 

The normal distribution arises in a variety of contexts.  It is of limited use for modelling loss 
distributions because of its symmetry (as loss distributions tend to be positively skewed). 

Question 

Derive the formula for the MGF of a standard normal random variable. 
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Solution 

Suppose that  (0,1)X N .  Then the PDF of X  is: 

2½1
( )

2
xf x e


    

and the MGF is: 

 
 

  

 

   
2 2½ ½( 2 )1 1

( ) ( )
2 2

t X tx x x tx
XM t E e e e dx e dx

 
 

Completing the square gives: 

 


 



 
2 2½ ½( )1

( )
2

t x t
XM t e e dx


 

The integrand in the expression immediately above is the PDF of a ( ,1)N t  random variable. 

Integrating this over all possible values of x  gives the total probability, which is 1.  So: 


2½( ) t

XM t e  
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2 Other loss distributions 

The distributions given in Section 1 (exponential, gamma, normal) all have easily derivable MGFs.  
However, there is a wide variety of other distributions that may also be used to model losses.  We 
consider some of these here.  None of the distributions in this section have an MGF that is easy to 
derive or use. 

2.1 The lognormal distribution 

The definition of the lognormal distribution is very simple: X  has a lognormal distribution if 

log X  has a normal distribution.  When 2log ~ ( , )X N   , 2~ log ( , )X N   . 

So the range of values taken by the lognormal distribution is 0 to  . 

As usual, log here refers to the natural logarithm, ie log base e . 

The mean and variance of a lognormal random variable can be obtained from the MGF of the 

corresponding normal distribution.  If  2log ( , )X N   , then: 

 ln( ) ( ) ( )X YE X E e E e   

where 2ln ( , )Y X N    .  However: 

 
21

2( ) (1)Y
YE e M e

 
   

So 
21

2( )E X e
 

 . 

Similarly: 

 
22 2 2 2( ) ( ) (2)Y

YE X E e M e       

and hence: 

 
2 2 2 2 2 22

2 2 ½ 2 2 2 2var( ) 1X e e e e e e                         
   

  

Alternatively, the mean and variance can be derived using integration. 

Formulae for the PDF, mean, variance, non-central moments and coefficient of skewness of the 
lognormal distribution are given on page 14 of the Tables. 

Lognormal probabilities can be evaluated by expressing them as standard normal probabilities 
and looking up the values given on pages 160 and 161 of the Tables. 

The R code for simulating values and obtaining the PDF, CDF and quantiles from the 
lognormal distribution is similar to the R code used for other continuous distributions using 
the R functions rlnorm, dlnorm, plnorm and qlnorm. 
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2.2 The two-parameter Pareto distribution  

A random variable X  has the Pareto distribution with parameters  0  and  0  if it has 
CDF: 

 
    

( ) 1F x
x





 ,  0x  

In that case we write ~ ( , )X Pa   . 

It is easily checked by differentiating ( )F x  with respect to x  that the Pareto distribution 

has PDF: 


 1

( )
( )

f x
x







,  0x  

Question 

Suppose that  ( , )X Pa  .  Derive a formula for ( )E X . 

Solution 

The expected value is: 

 


 
  1

0

( ) ( )
( )x

E X x f x dx x dx
x







  

One way to simplify this is to use the substitution t x  .  Using this substitution: 

 
  

   
     1 1

1
( ) ( )E X t dt t dt t dt

t


   


  

    

Integrating gives: 

   
   

       
          

1
1( )

1 1 1
t t

E X
 

 

 

   
   

 

This expression is valid only if the powers in the bracketed terms are both negative, ie if 1  . 

Alternatively, this formula could be derived using integration by parts. 

 
Formulae for the CDF, PDF, mean, variance, non-central moments and coefficient of skewness of 
the Pareto distribution are given on page 14 of the Tables. 
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Let’s now consider the median of the Pareto distribution.  By definition, the median m  is the point 
where   ( ) ( ) ½F m P X m .  So, in this case, we have: 

    
1

1
2m




 

and this can be rearranged to give:  

1(2 1)m    

We can compare the median and the mean by drawing a graph.  We have just seen that the 

mean,  , is  equal to 
1



.   

A sketch of the graphs of 
m


 (bottom curve) and 



 (top curve) for values of 1   is shown 

below: 

  

From this we see that the mean is always greater than the median, ie the Pareto distribution is 
always positively skewed. 

There is no built in R code for the Pareto distribution so we would have to define the 
functions rpareto, dpareto, ppareto and qpareto from first principles as follows: 

 rpareto <- function(n,a,l){ 
 rp <- l*((1-runif(n))^(-1/a)-1) 
 rp} 

 dpareto <- function(x,a,l){ 
 a*l^(a)/((l+x)^(a+1))} 

 ppareto <- function(q,a,l){ 
 1-(l/(l+q))^a} 

 qpareto <- function(p,a,l){ 
 q <- l*((1-p)^(-1/a)-1) 
 q} 
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2.3 The Burr distribution 

The CDF of the Pareto distribution ( , )Pa    is: 

( ) 1
( )

F x
x







 


,  0x  

A further parameter  0  can be introduced by setting: 

 


( ) 1
( )

F x
x



 



,  0x  

This is the CDF of the transformed Pareto or Burr distribution.  The additional parameter 
gives extra flexibility when a fit to data is required. 

Formulae for the CDF, PDF and non-central moments of the Burr distribution are given on page 15 
of the Tables. 

There is no built in R code for the Burr distribution so we would have to define the functions 
rburr, dburr, pburr and qburr from first principles as follows: 

 rburr <- function(n,a,l,g){ 
 rp <- (l*((1-runif(n))^(-1/a)-1))^(1/g) 
 rp} 

 dburr <- function(x,a,l,g){ 
 ((a*g*l^a)*x^(g-1))/((l+x^g)^(a+1))} 

 pburr <- function(q,a,l,g){ 
 1-(l/(l+q^g))^a} 

 qburr <- function(p,a,l,g){ 
 q <- (l*((1-p)^(-1/a)-1))^(1/g) 
 q} 

2.4 The three-parameter Pareto distribution 

The PDF of the Pareto distribution ( , )Pa    is: 


 1

( )
( )

f x
x







,  0x  

Another generalisation of the Pareto distribution is to add a further parameter k  so that the 
PDF becomes: 

 
1( )

( ) , 0
( ) ( ) ( )

k

k
k xf x x

k x




 
 


 






 


 

Formulae for the PDF, mean, variance and non-central moments of the three-parameter Pareto 
distribution are given on page 15 of the Tables. 
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The three-parameter Pareto distribution is equivalent to the two-parameter Pareto distribution 
when 1k  .   

The moments of the generalised Pareto can be obtained either directly by evaluating 

 ( ) ( )n n

x
E X x f x dx  or by using a conditional expectation argument. 

Here the Core Reading is using the phrase ‘generalised Pareto distribution’ to refer to the 
three-parameter Pareto distribution.  However, this is not the same as the generalised Pareto 
distribution that we will meet in Chapter 16. 

The easiest way to evaluate the integral expression: 

  ( )n

x

x f x dx  

is to make it look like the PDF of another three-parameter Pareto distribution. 

Question 

Suppose that X  has a three-parameter Pareto distribution with parameters  ,   and k .  Derive 
formulae for ( )E X  and var( )X . 

Solution 

The mean is: 

1

0 0

( ) ( )
( )

( ) ( )( ) ( ) ( )( )

k k

k k
k x k x

E X x dx dx
k x k x

 

 
   

   

 
 

   
 

        

This expression can be simplified by making the integrand look like the PDF of the Pareto 
distribution with parameters 1  ,   and 1k  : 

1

0

( 1) ( 1) ( )
( )

( ) ( ) ( 1) ( 1)( )

k

k
k k x

E X dx
k k x




  
  




     


        

Since this integrand is a PDF, integrating it over all possible values of x  gives us 1.  So: 

( 1) ( 1)
( )

( ) ( ) 1
k k

E X
k

 
 

   
 

  
 

Here we are using the result ( ) ( 1) ( 1)       , which is given on page 5 of the Tables. 

We can use a similar method to calculate the second moment: 

1 1
2 2

0 0

( ) ( )
( )

( ) ( )( ) ( ) ( )( )

k k

k k
k x k x

E X x dx dx
k x k x
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Making the integrand look like the PDF of the Pareto distribution with parameters 2  ,   and 
2k  , we have: 

 
2 1 2

2 2
0

( 2) ( 2) ( ) ( 1)
( )

( ) ( ) ( 1)( 2)( 2) ( 2)( )

k

k
k k x k k

E X dx
k k x




   
   

 


      
 

          

So the variance is: 

 

22 2 2 2

2

2

2

2

2

( 1) ( 1)( 1) ( 2)
( 1)( 2) 1 ( 1) ( 2)

( 1) ( 2 )

( 1) ( 2)

( 1)

( 1) ( 2)

k k k k k k

k k k k k

k k

     
    

   

 

 
 

            

    


 

 


 

 

 

There is no built in R code for the three-parameter Pareto distribution, so we would have to 
define the function dgpareto from first principles as we did for the Pareto.  However, since 
the CDF does not exist in closed form it is not easy to create functions to obtain 
probabilities, percentage points or simulated values. 

2.5 The Weibull distribution 

The Pareto distribution is a distribution with an upper tail that tends to 0 as a power of x .  
This gives a distribution with a much heavier tail than the exponential.  The expressions for 
the upper tails of the exponential and the Pareto distributions are: 

 exponential   ( ) exp( )P X x x  

 Pareto    ( ) ( / ( ))P X x x    

So, if we want to choose a model with a thick tail so as not to underestimate the probability of a 
large claim, we might well choose the Pareto distribution to model our claims (assuming that it is 
a suitable distribution in other respects). 

However, these are not the only types of tail. 

There is a further possibility.  Set: 

    ( ) exp( ), 0P X x x   

There are now two cases.  If  1 , a distribution with a tail intermediate in weight between 

the exponential and the Pareto will be obtained, while if  1 , the upper tail will be lighter 

than the exponential (  1  is the exponential distribution).   
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This distribution is called the Weibull distribution, a very flexible distribution, which can be 
used as a model for losses in insurance, usually with  1 .  A random variable X  has a 

Weibull distribution with parameters  0c  and  0  if it has CDF: 

  ( ) 1 exp( )F x cx ,  0x  

In that case we write ~ ( , )X W c  .  (Note the change from   to c; this is the notation used in 

the Tables for Actuarial Examinations). 

The PDF of the ( , )W c   distribution is: 

 1( ) exp( )f x c x cx  ,  x > 0 

Formulae for the CDF, PDF and non-central moments of the Weibull distribution are given on 
page 15 of the Tables. 

Question 

Suppose that X has a Weibull distribution with parameters c  and  .  Derive a formula for ( )E X . 

Solution 

The mean is: 

 1

0

( ) cxE X x c x e dx



    

Making the substitution u cx , so that 1du
c x

dx
   and 

1/u
x

c

   
 

 gives: 

 
1/

0

( ) uu
E X e du

c


   

   

Now, manipulating the integrand so that it looks like the PDF of a 
 

 
 

1
1 ,1Gamma


 random 

variable, we have: 

 


 
      

 1/
1/

0

1 1 1
( ) 1

(1 1 / )
uE X u e du

c


 
 

The integral is now equal to 1 (as we’re integrating a PDF over all possible values of the random 
variable).  So: 

 
 

   
  1/

1 1
( ) 1E X

c 
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The R code for simulating a random sample of 100 values from the Weibull distribution with 
 2c  and  0.25  is: 

 rweibull(100, 0.25, 2^(-1/0.25)) 

R uses a different parameterisation for the scale parameter, c. 

Similarly, the PDF, CDF and quantiles can be obtained using the R functions dweibull, 
pweibull and qweibull. 

Alternatively, we could redefine them from first principles as follows: 

 rweibull <- function(n,c,g){ 
 rp <- (log(1-runif(n))/c)^(1/g) 
 rp} 

 dweibull <- function(x,c,g){ 
 c*g*x^(g-1)*exp(-c*x^g)} 

 pweibull <- function(q,c,g){ 
 1-exp(-c*x^g)} 

 qweibull <- function(p,c,g){ 
 q <- (log(1-p)/c)^(1/g) 
 q} 

2.6 Illustration of tail weights 

The PDFs shown in the diagram below illustrate the difference in the tails of the exponential, 
Pareto and Weibull distributions.  All four of the distributions have a mean of 1,000.   

G1 is a Weibull distribution with parameters 2   and 7
2

7.854 10
2,000

c
     (standard 

deviation = 522.7). 

G2 is an exponential distribution with 
1

0.001
1,000

    (standard deviation = 1,000). 

G3 is a (two-parameter) Pareto distribution with 3   and 2,000   (standard deviation = 

1,732). 

G4 is a Weibull distribution with ½   and 
1

0.04472
500

c    (standard deviation = 2,236). 
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3 Estimation 

The methods of maximum likelihood, moments and percentiles can be used to fit 
distributions to sets of data.   

We can check the fit in R by plotting a histogram of the data and superimposing the density 
function of the fitted distribution.  Better yet, we can plot an empirical density function from 
the data using the function density and add the true density function of the fitted 
distribution. 

A better way is to use the qqplot function to compare the sample data to simulated values 
from the fitted model distribution.  A straight diagonal line indicates perfect fit: 

 qqplot(<simulated theoretical values>, <sample values>) 
 abline(0,1) 

The fit of the distribution can also be tested formally by using a  2  test.  The method of 

percentiles is outlined in Section 3.3; the other methods and the  2  test have been covered 

in Subject CS1, Actuarial Statistics 1.   

We will now give a summary of the method of moments and maximum likelihood estimation.  We 
will also introduce the method of percentiles and give a brief reminder of how the chi-squared 
test can be used to check the fit of a statistical distribution to a data set. 

3.1 The method of moments 

For a distribution with r  parameters, the moments are as follows: 

 


 
1

1 n
j

j i
i

m x
n

    j = 1, 2 … r 

where: 

 ( | )j
jm E X  , a function of the unknown parameter,  ,  being estimated 

 n  the sample size 

 ix  the i th value in the sample 

The estimate for the parameter,  , can be determined by solving the equation above.  
Where there is more than one parameter, they can be determined by solving the 

simultaneous equations for each jm . 

So, for example, if we are trying to estimate the value of a single parameter, and we have a sample 
of n  claims whose sizes are 1 2, , , nx x x , we would solve the equation: 

 
1

1
( )

n

i
i

E X x
n 

   

ie we would equate the first non-central moments for the population and the sample. 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 22  CS2-15: Loss distributions 

© IFE: 2019 Examinations   The Actuarial Education Company 

If we are trying to find estimates for two parameters (for example if we are fitting a gamma 
distribution and need to obtain estimates for both parameters), we would solve the simultaneous 
equations: 

 
1

1
( )

n

i
i

E X x
n 

   and 2 2

1

1
( )

n

i
i

E X x
n 

   

In fact, in the two-parameter case, estimates are often obtained by equating sample and population 
means and variances.  If we use the n-denominator sample variance:  

 
 

 
    

  
 2 2 2 2

1 1

1 1
( )

n n

n i i
i i

s x x x nx
n n

  

this will give the same estimates as would be obtained by equating the first two non-central 
moments. 

More generally, we use as many equations of the form 
1

1
( )

n
k k

i
i

E X x
n 

  , 1, 2,k    as are needed 

to determine estimates of the relevant parameters. 

3.2 Maximum likelihood estimation 

The likelihood function of a random variable, X , is the probability (or PDF) of observing 
what was observed given a hypothetical value of the parameter,  .  The maximum 
likelihood estimate (MLE) is the one that yields the highest probability (or PDF), ie that 
maximises the likelihood function. 

For the sample in Section 3.1 above, the likelihood function ( )L   can be expressed as:  

  


 
1

( ) |
n

i
i

L P X x   for a discrete random variable, X  

or: 

  |



1

( )
n

i
i

L f x   for a continuous random variable, X  

To determine the MLE the likelihood function needs to be maximised.  Often it is practical to 
consider the log-likelihood function: 

  


  
1

( ) log ( ) log |
n

i
i

l L P X x    for a discrete random variable, X 

or: 

  


  
1

( ) log ( ) log
n

i
i

l L f x    for a continuous random variable, X 
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If ( )l    can be differentiated with respect to  , the MLE, expressed as ̂ , satisfies the 

expression: 

 ˆ( )
d l
d




 = 0 

Where there is more than one parameter, the MLEs for each parameter can be determined 
by taking partial derivatives of the log-likelihood function and setting each to zero. 

The determination of MLEs when the data are incomplete is covered in Chapter 18. 

We will now look at the distributions described earlier in this chapter and consider how the 
parameters can be estimated in each case. 

The exponential distribution 

It is possible to use the method of maximum likelihood (ML) or the method of moments to 
estimate the parameter of the exponential distribution. 

For example, suppose that an insurance company uses an exponential distribution to model the 
cost of repairing insured vehicles that are involved in accidents, and the average cost of repairing 
a random sample of 1,000 vehicles is £2,200. 

We can calculate the maximum likelihood estimate of the exponential parameter as follows. 

Let 1 2 1,000, , ,x x x  denote the individual repair costs. 

The likelihood of obtaining these values for the costs, if they come from an exponential distribution 
with parameter  , is: 

1,000
1,000 1,000 1,000

1

i ix x x

i

L e e e       


    

(where 


 
1,000

1

1
1,000 i

i
x x denotes the average claim amount). 

We want to determine the value of   that maximises the likelihood, or equivalently the value that 
maximises the log-likelihood: 

ln 1,000ln 1,000L x    

Differentiating with respect to  : 

1,000
ln 1,000L x


 

   

This is equal to 0 when: 

1
x
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The second derivative is: 

2

2 2
1,000

log L

 

   

Since the second derivative is negative when 
1
x

  , the stationary point is a maximum.  So, ̂ , the 

maximum likelihood estimate of   is 
1
x

, or 
1

2,200
. 

Alternatively, we could argue that the likelihood function is continuous and is always positive (by 

necessity) and that 0n xne     as 0   or   .  So any stationary point that we find must 
be a maximum. 

To obtain ML estimates in R, we could use the fitdistr in the MASS package as follows: 

 fitdistr(<data vector>,"exponential") 

Or we could define the log-likelihood function and use the function nlm on the negative 
value of the log-likelihood function. 

 nlm(-<log likelihood function>, <vector of parameters>) 

So to fit an exponential distribution to a vector <data> with initial estimate of  0.5  we 
would use: 

 params <- 0.5 
 n <- length(<data>) 
 sx <- sum(<data>) 
 fMLE <- function(params) {n*log(params[1])-params[1]*sx} 
 nlm(-fMLE,params) 

The gamma distribution 

The moments have a simple form and so the method of moments is very easy to apply.  The 
MLEs for the gamma distribution cannot be obtained in closed form (ie in terms of 
elementary functions) but the moment estimators can be used as initial estimators in the 
search for the MLEs. 

It is more convenient to obtain MLEs for the gamma distribution using a different 
parameterisation.  Set  /    and estimate the parameters   and  .  Then recover the 

MLE of   by setting ˆ ˆ ˆ/   .  This uses the invariance property of maximum likelihood 

estimators. 

The invariance property says that if ̂  is the maximum likelihood estimator of   and ( )f   is a 

function of  , then ˆ( )f   is the maximum likelihood estimator of ( )f  . 

For the gamma distribution,   is a function of both   and  . 
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To obtain ML estimates in R, we could use the fitdistr in the MASS package as follows: 

 fitdistr(<data vector>,"gamma") 

However, it is better to include the initial estimates obtained from the method of moments 
(and put a lower limit of say, 0.001 > 0, to prevent invalid answers).  For example: 

 fitdistr(<data vector>,dgamma, list(shape = <alpha>,  
rate = <lambda>), lower = 0.001) 

Alternatively, we could define the log-likelihood function and use the function nlm on the 
negative value of the log-likelihood function as before. 

The normal distribution 

The method of moments and maximum likelihood estimation are both straightforward to apply in 
this case.  Both give the following estimates: 

 ˆ x    and 2 2

1

1ˆ ( )
n

i
i

x x
n




   

The estimate for the population variance is 
1n

n


  the usual sample variance.  Of course, 

provided the sample size is large, there will be little difference between estimates calculated 
using the two different sample variance formulae. 

The lognormal distribution 

Estimation for the lognormal distribution is straightforward since   and 2  may be 

estimated using the log-transformed data.  Let 1 2, , ..., nx x x  be the observed values and let 

logi iy x .  The MLEs of   and 2  are y  and 2
ys , where the subscript y  signifies a 

sample variance ( n -denominator) computed on the y  values. 

In other words, the maximum likelihood estimate of 2  is: 

  22

1

1ˆ
n

i
i

y y
n




   

Alternatively the method of moments can be used to estimate the parameters. 

As an example, suppose that based on an analysis of past claims, an insurance company believes 
that individual claims in a particular category for the coming year will be lognormally distributed 
with a mean size of £5,000 and a standard deviation of £7,500.  The company wants to estimate 
the proportion of claims that will exceed £25,000. 
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To do this, it needs to estimate the parameters,   and 2 , of the lognormal distribution.  Equating 

the formulae for the mean and standard deviation of the lognormal distribution to the values given 
gives: 

21
2 5,000e

 
   and  

21 2
2 1 7,500e e

  
   

Dividing the second equation by the first gives: 

2 7,500
1 1.5

5,000
e      

2 1.179   

We can now solve for  : 

log 5,000 ½(1.179) 7.928     

So the proportion of claims expected to exceed £25,000 is: 

 

  

 

 
  

 

  

( 25,000) (ln ln25,000)

( (7.928,1.179) ln25,000)

ln25,000 7.928
(0,1)

1.179

1 (2.025) 0.021

P X P X

P N

P N
 

ie 2.1% of claims are expected to exceed £25,000. 

To obtain ML estimates in R, we could use the fitdistr in the MASS package as follows: 

 fitdistr(<data vector>,"log-normal") 

Alternatively, we could define the log-likelihood function and use the function nlm on the 
negative value of the log-likelihood function as before. 

The two-parameter Pareto distribution 

The method of moments is very easy to apply in the case of the two-parameter Pareto 
distribution, but the estimators obtained in this way will tend to have rather large standard 

errors, mainly because 2S , the sample variance, has a very large variance. However, the 
method does provide initial estimates for more efficient methods of estimation that may not 
be so simple to apply, like maximum likelihood, where numerical methods may need to be 
used. 
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Question 

Claims arising from a particular group of policies are believed to follow a Pareto distribution with 

parameters   and  .  A random sample of 20 claims gives values such that 1,508x   and 

2 257,212x  .  Estimate   and   using the method of moments. 

Solution 

Suppose that X  is the claim amount random variable.  Then: 

 ( )
1

E X






  

Rearranging the variance formula to find 2( )E X , we have: 

 
2

2 2 2
( ) var( ) [ ( ) ]

( 1)( 2)
E X X E X


 

  
 

 

So we set: 

1,508
75.4

1 20



 


 and  

22 257,212
12,860.6

( 1)( 2) 20


 
 

 
 

Squaring the first of these equations and substituting into the second, we see that: 

 
22 75.4 ( 1)

12,860.6
2



 




 

Solving this equation, we find that the method of moments estimates of   and   are 9.630 and 
650.7, respectively. 

 

The three-parameter Pareto distribution 

Things are not quite so easy for the three-parameter Pareto distribution. 

As for estimation, the CDF does not exist in closed form, so the method of percentiles is not 
available.   

The method of percentiles is described in Section 3.3. 

ML can be used, but again suitable computer software is required; the method of moments 
can provide initial estimates for any iterative scheme. 

We will need to define the log-likelihood function and use the function nlm on the negative 
value of the log-likelihood function as before. 
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The Weibull and Burr distributions 

Neither the method of moments nor maximum likelihood is elementary to apply if both c 
and   are unknown (although if a computer is available, as would be the case in practice, 

the equations are simple enough).   

To obtain ML estimates in R, we could use the fitdistr in the MASS package as follows: 

 fitdistr(<data vector>,"weibull") 

However, it is better to include the initial estimates obtained from the method of percentiles 
(and put a lower limit of say, 0.001 > 0, to prevent invalid answers).  For example: 

 fitdistr(<data vector>,dweibull,  
list(shape = <gamma>, scale = <c^(-1/gamma)>, lower = 0.001) 

Alternatively, we could define the log-likelihood function and use the function nlm on the 
negative value of the log-likelihood function as before. 

In the case where   has the known value  , maximum likelihood is easy enough. 

To do this, we let i iy x .  If the original distribution is Weibull, the y  values now have an 

exponential distribution.  If the original distribution is Burr, the y  values now come from a Pareto 

distribution.  This can be seen by comparing the CDFs. 

In the case of the Weibull, the MLE of c can now be determined in the usual way.  In the case of 
the Burr distribution, the estimates have to be calculated numerically (since the MLEs of the 
parameters of the Pareto distribution cannot be calculated algebraically). 

3.3 The method of percentiles 

The distribution function of the ( , )W c   distribution is an elementary function, and a simple 

method of estimation of both c and   is based on this.  The method involves equating 

selected sample percentiles to the distribution function; for example, equate the sample 
quartiles, the 25th and 75th sample percentiles, to the population quartiles.  This 
corresponds to the way in which sample moments are equated to population moments in 
the method of moments.  This method will be referred to as the method of percentiles. 

In the method of moments, the first two moments are used if there are two unknown 
parameters, and this seems intuitively reasonable (although the theoretical basis for this is 
not so clear).  In a similar fashion, when using the method of percentiles, the median would 
be used if there were one parameter to estimate.  With two parameters, the best procedure 
is less clear, but the lower and upper quartiles seem a sensible choice. 

Example 

Estimate c  and   in the Weibull distribution using the method of percentiles, where the 

first sample quartile is 401 and the third sample quartile is 2,836.75. 
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Solution 

The two equations for c  and   are: 

 (401) 1 exp( 401 ) 0.25F c         

(2,836.75) 1 exp( 2,836.75 ) 0.75F c       

which can be rewritten as: 

 401 ln0.75c       

and: 2,836.75 ln0.25c      

Dividing, it is found that   = 0.8038, and hence c  = 0.002326, where ~ denotes the 

percentile estimate.  Note that   is less than 1, indicating a fatter tail than the exponential 

distribution gives. 

We can apply the method of percentiles to any distribution for which it is possible to calculate a 
closed form for the cumulative distribution function, although the resulting algebra can be messy. 

Question 

Claims arising from a particular group of policies are believed to follow a Pareto distribution with 
parameters   and  .  A random sample of 20 claims has a lower quartile of 11 and an upper 
quartile of 85.  Estimate the values of   and   using the method of percentiles. 

Solution 

The cumulative distribution function of the Pareto distribution is ( ) 1F x
x




     
.   

1Q , the lower quartile of the distribution, satisfies the equation: 

 
 

    
1

1
( ) 1 0.25F Q

Q





  

and 3Q , the upper quartile of the distribution, satisfies the equation: 

 
 

    
3

3
( ) 1 0.75F Q

Q





  

So: 

   1/
1 3 / 4 1Q      

  and             1/
3 1 / 4 1Q      
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The method of percentiles estimates   and   are obtained by setting 1 11Q  and 3 85Q : 

      
 1/11 3 / 4 1  

      
 1/85 1 / 4 1  

We can eliminate   by dividing these equations.  This gives: 

 
 
 

1/

1/

3 / 4 111
85 1 / 4 1















   

We cannot solve this algebraically but it can easily be done on a computer, eg using the goalseek 

function in Excel.  Doing this, we find that 1.284   and hence 43.790  . 

 
These estimates are very different from those obtained using the method of moments.  (In an 
earlier question, we calculated the method of moments estimates of   and   to be 9.630 and 
650.7, respectively.) 

The method of percentiles is very unreliable for estimating the parameters of a Pareto 
distribution unless we use extremely large samples.  In this particular case, the method of 
percentiles is unlikely to give us reasonable estimates unless we use samples of, say, 1,000 or 
more. 

We now turn to the Burr distribution.   

Since the CDF exists in closed form, it may be possible to fit the Burr distribution to data by 
using the method of percentiles; ML will certainly require the use of computer software that 
allows non-linear optimisation. 

We will need to define the log-likelihood function and use the function nlm on the negative 
value of the log-likelihood function as before. 

 

 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-15: Loss distributions Page 31 

The Actuarial Education Company © IFE: 2019 Examinations 

4 Goodness-of-fit tests 

As mentioned earlier, one way of testing whether a given loss distribution provides a good model 
for the observed claim amounts is to apply a chi-squared goodness-of-fit test.   

Recall that the formula for the test statistic is 
2( )O E

E
 , where: 

 O  is the observed number in a particular category  

 E  is the corresponding expected number predicted by the assumed probabilities 

 the sum is over all possible categories.   

A high value for the total indicates that the overall discrepancy is quite large and would lead us to 
reject the model. 

As an example, suppose that an insurance company uses an exponential distribution to model the 
cost of repairing insured vehicles that are involved in accidents, and the average cost of repairing 
a random sample of 1,000 vehicles is £2,200.  A breakdown of the repair costs revealed the 
following numbers in different bands: 

Repair cost, £ Observed number 

0 – 1,000 200 

1,000 – 2,000 300 

2,000 – 3,000 250 

3,000 – 4,000 150 

4,000 – 5,000 100 

5,000+ 0 

 
We can use this information to test whether the exponential distribution provides a good model for 
the individual repair costs. 

Here we are testing: 

0H : repair costs are exponentially distributed 

against: 

1H : repair costs are not exponentially distributed 

In order to apply the chi-squared test, we need to calculate the expected number of repair costs in 
each interval based on the assumption that the null hypothesis is true. 
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Using the maximum likelihood estimate of the value of   (ie 1 / 2,200 ), the probability that an 

individual repair cost will fall in the interval £2,000 - £3,000 is: 

3,000 3,000 2,000 3,000

2,000
2,000

0.1472x xe dx e e e               

and the expected number for this band is: 1,000 0.1472 147.2   

The expected numbers for all the intervals can be calculated in a similar way, giving the following 
results: 

365.3, 231.8, 147.2, 93.4, 59.3, 103.0 

The value of the test statistic is: 

   
     

2 2 2 2( ) (200 365.3) (300 231.8) (0 103.0)
331.89

365.3 231.8 103.0
O E

E
 

We have 6 intervals, but we have equated the totals and estimated one parameter.  So there are 
6 1 1 4    degrees of freedom.   

The observed value of the chi-squared statistic far exceeds 14.86, the upper 99.95% point of the 
chi-squared distribution with 4 degrees of freedom (given on p169 of the Tables).  So we can reject 

0H  with almost total confidence and conclude that the repair costs do not conform to an 

exponential distribution. 

In fact we need only work out the value of the first term in the chi-squared statistic to see that we 
will reject the null hypothesis. 

This conclusion is supported by the observation that, if the values did come from an exponential 
distribution, we would expect the numbers in each band to decline steadily.  However, we 
recorded 100 fewer values in the first band than in the second. 

 

  

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-15: Loss distributions Page 33 

The Actuarial Education Company © IFE: 2019 Examinations 

  

Chapter 15 Summary 

Loss distributions 

Individual claim amounts can be modelled using a loss distribution.  Loss distributions are often 
positively skewed and long-tailed.   

The (cumulative) distribution function of X  is denoted by ( )XF x .  It is defined by the equation:

( ) ( )XF x P X x  . 

The (probability) density function of X  is denoted by ( )Xf x .  It is defined by the equation: 

( ) ( )X Xf x F x , wherever this derivative exists. 

Distributions such as the exponential, normal, lognormal, gamma, Pareto, Burr and Weibull 
distributions are commonly used to model individual claim amounts.   

Once the form of the loss distribution has been decided upon, the values of the parameters 
must be estimated.  This might be done using the method of maximum likelihood, the method 
of moments, or the method of percentiles.  Goodness of fit can then be checked using a 
chi-squared test. 

Method of moments 

The method of moments involves equating population and sample moments to solve for the 
unknown parameter values.  If there is one parameter to estimate, we equate the population 
mean with the sample mean.  If there are two parameters to estimate, we could equate the 
first two non-central population moments with the equivalent non-central sample moments.  
Equivalently, we could equate the first two central population moments with the equivalent 
central sample moments, noting that (for equivalence) we would need to use the 
n-denominator sample variance. 

Method of maximum likelihood 

The steps involved in finding a maximum likelihood estimate (MLE) are as follows: 

 write down the likelihood function L  – this the probability/PDF of obtaining the 
values we have observed 

 take logs and simplify the resulting expression 

 differentiate the log-likelihood with respect to each parameter to be estimated – this 
will involve partial differentiation if there is more than one parameter to be 
estimated 

 set the derivatives equal to 0 and solve the equations simultaneously 

 check that the resulting values are maxima.   
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Method of percentiles 

The method of percentiles involves equating population and sample percentiles to solve for the 
unknown parameter values.  If there is just one parameter to estimate, we equate the 
population median with the sample median.  If there are two parameters to estimate, we 
equate the population lower and upper quartiles with the sample lower and upper quartiles. 

Testing goodness of fit 

We can test whether a given loss distribution provides a good model for the observed claim 
amounts by applying a chi-squared goodness-of-fit test. 

The formula for the test statistic is 
2( )O E

E
 , where: 

 O  is the observed number in a particular category  

 E  is the corresponding expected number predicted by the assumed probabilities 

 the sum is over all possible categories.   

Under the null hypothesis (that the model is correct), the test statistic has a chi-squared 
distribution. 
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Chapter 15 Practice Questions 

15.1 Losses arising from a portfolio follow a Pareto distribution with parameters 3   and 2,000  .   

Calculate the probability that a randomly chosen loss amount exceeds the mean loss amount. 

15.2 Suppose that X  has a Weibull distribution with parameters c  and  .   

(i) Using the formula for ( )rE X  given in the Tables, write down an expression for var( )X .   

(ii) Show that, when 1  ,  this reduces to the formula for the variance of an exponential 

random variable.  

15.3 Show that if ½  , the standard deviation of the Weibull distribution is greater than the mean, 

whereas if 2   the opposite is true. 

15.4 The random variable X  follows a gamma distribution with parameters  20  and  0.1 .  
Determine the value of a  such that: 

 ( ) 0.05P X a   

15.5 The random variable X  has a Burr distribution with parameters 2   and 500  .   

(i) Show that the maximum likelihood estimate of the parameter  , based on a random 
sample 1 2, , , nx x x  is:  

2
ˆ

log(500 ) log 500i

n

x n
 

  
  

 You may assume that this is a maximum.  

(ii) Evaluate this based on a sample consisting of the five values 52, 109, 114, 163 and 181.  

15.6 Claim amounts from a particular group of policies have the following distribution: 

Amount £200 £500 

Probability p  1 p  

 
In a random sample of 40 claims, 25 were for £200 and the other 15 were for £500.   

Calculate the maximum likelihood estimate of p . 

15.7 A loss amount random variable has MGF: 

 2 3( ) 0.4(1 20 ) 0.6(1 30 )M t t t       

Calculate the expected loss amount. 
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15.8 Individual claim amounts on a portfolio of motor insurance policies follow a gamma distribution 
with parameters   and  .  It is known that 0.8   for all drivers, but the value of   varies 
across the population.   

Given that (200,0.5)Gamma  , calculate the mean and variance of a randomly chosen claim 

amount.   [5] 

15.9 (i) The distribution of claims on a portfolio of general insurance policies is a Weibull 
distribution, with density function 1( )f x  where: 

   
2

1( ) 2 ( 0)cxf x cxe x  

 It is expected that one claim out of every 100 will exceed £1,000.  Use this information to 
estimate c.  [2] 

(ii) An alternative suggestion is that the density function is 2( )f x , where: 

   2( ) ( 0)xf x e x  

 Use the same information as in part (i) to estimate  . [2] 

(iii) (a) For each of 1( )f x  and 2( )f x  calculate the value of M  such that: 

    ( ) 0.001P X M  

 (b) Comment on these results. [3] 
    [Total 7] 

15.10 A random sample of 100 claim amounts 1 2 100, , ,x x x  is observed from a Weibull distribution 

with parameter 2  , where c  is unknown.  For these data: 

 2487,926 976,444,000 sample median 4,500i ix x     

(i) Show that the maximum likelihood estimate for c  based on a sample of size n  is given 
by: 

  
2ˆ ic n x   

 and hence estimate the value of c . [4] 

(ii) Estimate the value of c  using the method of moments. [2] 

(iii) Calculate the method of percentiles estimate of c . [2] 
    [Total 8] 

15.11 Claims arising from a certain type of insurance policy are believed to follow an exponential 
distribution.  The lower quartile claim is 200.   

Calculate the mean claim size. [3] 

Exam style 

Exam style 

Exam style 

Exam style 
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Chapter 15 Solutions 

15.1 Let X  denote the loss amount random variable.  Then  (3,2000)X Pa  and  


2,000
( ) 1,000

3 1
E X .  

So the required probability is: 

 
                    

3 3
2,000 2,000

( 1,000) 1 (1,000) 1 1 0.29630
2,000 1,000 3,000XP X F   

15.2 (i) Variance 

We have: 

 
   

        
   

2
1/ 2/

1 1 2 1
( ) 1 and ( ) 1E X E X

c c  
  

So: 

 
    

           
      

2
2 2

2/ 1/
2 1 1 1

var( ) ( ) [ ( )] 1 1X E X E X
c c

  

(ii) Simplification when   1   

When 1  , this becomes: 

                

2 2

2 2 2
1 1 2 1 1

(3) (2)
c cc c c

 

which is the formula for the variance of an ( )Exp c  random variable.  

15.3 When ½  : 

 
 

  
2 2 2

(1 2) 2! 2
( )E X

c c c
   

 
 

  2
4 4 4

(1 4) 4! 24
( )E X

c c c
   

and: 

 
 

     
 

2
2 2

4 2 4
24 2 20

var( ) ( ) [ ( )]X E X E X
c c c

   

So the standard deviation is 
2
20

c
 , which is greater than ( )E X .  
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When 2  : 

 
  

 
½ ½

(1 ½) (1.5)
( )E X

c c
   

Using the properties of the gamma function given on page 5 of the Tables: 

     (1.5) 0.5 (0.5) 0.5    

So: 

  


½ ½
0.5 0.886227

( )E X
c c

   

Also: 

 


   
  2

2 ½
(1 2 ½) (2) 1

( )E X
c cc

   

and: 

 
  

      
 

 
2

2 2
½

1 0.5 1 0.25
var( ) ( ) [ ( )]X E X E X

c cc
   

So the standard deviation is 





½
1 0.25 0.463251

c c
 , which is less than ( )E X .  

In fact the mean and standard deviation are equal when 1  . 

15.4 We can calculate the value of a  using the relationship between the gamma distribution and the 
chi-squared distribution: 

   2
2 20(20,0.1) 2 0.1X Gamma X    

So: 

      2
40( ) (0.2 0.2 ) ( 0.2 ) 0.05P X a P X a P a   

ie 0.2a  is the upper 5% point of 2
40 .  From page 169 of the Tables, we see that the upper 5% 

point of this chi-squared distribution is 55.76.  So: 

  
55.76

278.8
0.2

a   

The value of a  can also be determined in R using the command (0.95,20,0.1)qgamma .  The R 

command q  gives us the percentiles of a distribution.  We follow the letter q  with the name of the 

distribution.  Here we want the upper 5% point, ie the 95th percentile, so the first argument is 
0.95.  The second and third arguments are the parameters of the gamma distribution. 
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15.5 (i) Maximum likelihood estimate 

The likelihood function is: 

 

1

1

1
1

1

1
1

( , , ) ( )

( )

( )

n

i
i

n
i

i i

n
n n n i

i i

L f x

x

x

x

x



 




 

  





  




























    

Taking logs: 

 
1 1

ln ln ln ln ( 1) ln ( 1) ln( )
n n

i i
i i

L n n n x x      
 

           

Differentiating with respect to  : 

 
1

ln ln ln( )
n

i
i

n
L n x

  
  

      

This is equal to 0 when: 

 

1
ln( ) ln

n

i
i

n

x n


 




 
  

Since we can assume that this is a maximum, we can say that the maximum likelihood estimate 
of   is: 

 

1

ˆ

ln( ) ln
n

i
i

n

x n


 




 
   

(ii) Numerical value 

For the sample given, we have 
5

2

1
ln(500 ) 47.6245i

i
x


  .  So: 

 
5ˆ 0.3021

47.6245 5ln500
  


  

  is the easy parameter to estimate.    and   are much more difficult to estimate using MLE 

because of the form of the last term in the log-likelihood function. 
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15.6 Let X  denote the claim amount random variable.  Then the likelihood function is: 

    25 15 25 15( 200) ( 500) (1 )L C P X P X C p p      

where C  is a constant. 

The log-likelihood function is: 

 ln ln 25ln 15ln(1 )L C p p     

Differentiating this with respect to p  gives: 

 
ln 25 15

1
d L
dp p p

 


 

Now: 

 

ln 25 15
0

1

25 25 15

25 40

25
0.625

40

d L
dp p p

p p

p

p

  


  

 

  

 

So we have a stationary point when 0.625p  .  To determine the nature of the stationary point, 

we check the sign of the second derivative: 

 
2

2 2 2
ln 25 15

(1 )

d L

dp p p
  


 

This is negative when 0.625p  .  (In fact, this second derivative is always negative.)  So the 

maximum likelihood estimate of p  is 0.625.   

15.7 Differentiating the MGF: 

3 4

3 4

( ) 0.4( 2)( 20)(1 20 ) 0.6( 3)( 30)(1 30 )

16(1 20 ) 54(1 30 )

M t t t

t t

 

 

        

   
  

The expected loss amount is: 

 (0) 16 54 70M      
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15.8 Let X  denote the amount of a randomly chosen claim.  We know that | ( ,0.8)X Gamma  .  So, 

using the conditional expectation formula: 

 
1

( ) ( ( | )) ( )
0.8 0.8

E X E E X E E
     

 
  [1] 

Then using the fact that (200,0.5)Gamma  :  

 
1 200

( ) 500
0.8 0.5

E X     [1] 

Using the conditional variance formula: 

 
2 2 2

1 1
var( ) (var( | )) var( ( | )) var ( ) var( )

0.80.8 0.8 0.8
X E X E X E E

              
  

  [2] 

Then using the fact that (200,0.5)Gamma  :  

 
2 2 2

1 200 1 200
var( ) 1,875

0.50.8 0.8 0.5
X       [1] 

15.9 This is Subject 106, September 2003, Question 5. 

(i) Estimate c 

The random variable X  has a Weibull distribution.  Comparing the given PDF with the Weibull 
PDF from page 15 of the Tables: 

      
 

2 1
1( ) 2 2cx cxf x cxe c x e     

We are told that ( 1,000)P X  is expected to be 0.01 and we know that: 

     
21,000( 1,000) 1 (1,000) cP X F e  [1] 

Setting this equal to 0.01 gives the estimated value of c  to be: 

     6
2

ln0.01ˆ 4.605 10
1,000

c  [1] 

(ii) Estimate 

Here, X  has an exponential distribution and: 

     1,000( 1,000) 1 (1,000)P X F e  [1] 

Setting this equal to 0.01 gives the estimated value of   to be: 

     3ln0.01ˆ 4.605 10
1,000

 [1] 
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(iii)(a) Calculate M 

We require M  such that: 

    ( ) 1 ( ) 0.001P X M F M  

For the Weibull distribution with   64.605 10c : 

 

  





   


 

6 24.605 10

2
6

0.001

ln0.001
1,500,000

4.605 10

1,225

Me

M

M  [1] 

For the exponential distribution with   34.605 10 : 

 
  

    


34.605 10
3

ln0.001
0.001 1,500

4.605 10
Me M  [1] 

(iii)(b) Comment 

The probability that the Weibull random variable exceeds 1,225 is 0.001 but the probability that 
the exponential random variable exceeds 1,225 is more than 0.001.  This is because the 
exponential distribution has a heavier tail than the Weibull. [1] 

A graph of the distributions is shown below: 

x200 400 600 800 1000 1200 1400

f(x)

0.0005

0.001

0.0015

0.002
Exponential PDF

Weibull PDF
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Looking more closely at the tails, it is clear that the exponential distribution has a heavier tail than 
the Weibull distribution: 

x1000 1100 1200 1300 1400 1500

f(x)

0.00002

0.00004

0.00006

0.00008

0.0001

Exponential PDF

Weibull PDF

 

15.10 (i)(a) Maximum likelihood estimate 

The PDF of the Weibull distribution is: 

 1( ) cxf x c x e
   , 0x   

So the likelihood function in this case is: 

 
2 2 2
1

1( ) 2 2 constantn icx cx c xn
nL c cx e cx e c e         [½] 

Taking logs, we obtain: 

 2

1
ln constant ln

n

i
i

L n c c x


     [½] 

Differentiating this with respect to c , we obtain: 

 2ln i
d n

L x
dc c

   [½] 

This is equal to 0 when: 

 
2
i

n
c

x



  [½] 
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We can check that this does give us a maximum by examining the second derivative of the 
log-likelihood: 

 
2

2 2
ln

d n
L

dc c
    [½] 

This is negative when 
2
i

n
c

x



.  So, ĉ , the maximum likelihood estimate of c  is 
2
i

n

x
. [½] 

Substituting the sample data results into the formula from part (i)(a) gives: 

    7100ˆ 1.0241 10
976,444,000

c  [1] 

(ii) Method of moments estimate 

We obtain the corresponding method of moments estimate for c  by equating the sample and 
population means.   

Using the formula for the mean of the Weibull distribution with 2   (given on page 15 of the 

Tables) and the properties of the gamma function (given on page 5 of the Tables), we have: 

 
   

  


½ ½ ½

1 ½ 0.5 (0.5) 0.5
( )E X

c c c
  [1] 

From the data we have: 

  
487,926

4,879.26
100

x   [½] 

Equating ( )E X  and x  gives: 

    
         
   

 
2 2

80.5 0.5ˆ 3.299 10
4,879.26

c
x

 [½] 

(iii) Method of percentiles estimate 

The median of the distribution is the value of M  such that ( ) ½F M  .   

Equating this to the sample median of 4,500 gives the method of percentiles estimate, c : 

           
24,500 8

2
ln½

(4,500) 1 ½ 3.423 10
4,500

cF e c  [2] 
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15.11 Since the lower quartile is 200, we have: 

(200) 0.25F    

Also, using the fact that claim amounts follow an exponential distribution: 

 
200(200) 1F e     [½] 

So: 

 200 1 0.25 0.75e       [½] 

Taking logs: 

 
1

ln0.75 0.0014384
200

      [1] 

So the mean claim amount is: 

 
1

695.21

    [1] 
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Extreme value theory 

 

 

 

Syllabus objectives 

1.4 Introduction to extreme value theory. 

1.4.1 Recognise extreme value distributions, suitable for modelling the distribution 
of severity of loss and their relationships. 

1.4.2 Calculate various measures of tail weight and interpret the results to 
compare the tail weights. 
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0 Introduction 

In this chapter we look at how we can model extreme events.  In the context of insurance, these 
are events that are very unlikely but can have a large financial impact.  Examples include natural 
catastrophes such as earthquakes, man-made catastrophes such as aeroplane crashes and 
financial events such as stock market crashes.   

Our first thought in modelling extreme events might be to fit a distribution to past data and then 
to use the tails of the distribution to estimate the probability of future extreme events.  For 
example, consider a data set of past claim amounts on an insurer’s motor insurance portfolio.  An 
actuary could fit a loss distribution to these data values.  However, the estimation of the 
parameters of the distribution would be heavily influenced by the bulk of the past claims data, 
which is likely to be non-extreme.  Relatively little weight would be placed on the extreme data in 
the fitting process.  Therefore, if the insurer uses the fitted distribution to estimate the probability 
of future extreme events, such events may be underestimated. 

Better modelling of extreme events can be done by considering distributions that are fitted 
specifically to the tail of a dataset rather than to the entire dataset.  We consider two such 
distributions: 

1. the generalised extreme value distribution is studied in Section 2 

2. the generalised Pareto distribution in studied Section 3. 

In Section 4, we look at measures of tail weight, ie how likely extreme values are to occur. 
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1 Extreme events and extreme value theory 

1.1 Extreme events 

Question 

Define an ‘extreme’ event in terms of its frequency and severity. 

Solution 

An extreme event is one that occurs with very low frequency and very high severity. 

 

1.2 Difficulties modelling extreme events 

Low frequency events involving large losses can have a devastating impact on companies 
and investment funds.  The ‘credit crunch’ that started in 2007 was an example of this.  It 
generated more extreme movements in share prices than had been seen for over 20 years 
previously. 

The credit crunch highlighted many deficiencies in the modelling of extreme events by financial 
providers.  For example: 

 Financial risk events such as asset price movements were often modelled using normal 
distributions.  However, empirical evidence suggests that this is not the case in practice.  
We discuss this further below. 

 Distributions were typically fitted to whole (rather than extreme) datasets of asset price 
movements.  This resulted in fitted distributions that understated the probability of 
extreme events. 

 Many financial providers focused on the losses predicted to occur at the 99th percentile 
or 99.5th percentile point of a distribution.  Providers held capital to meet the losses at 
these points.  Little attention was paid to the expected loss (or range of losses) beyond 
these points. 

 The models failed to recognise that, in times of financial crisis, correlations between risk 
events increase.  Hence the models underestimated the joint probability of multiple 
extreme risk events happening at once. 

Since the credit crunch, there has been increased focus on the techniques used to model extreme 
events. 

So it is important to ensure that we model the form of the distribution in the tails correctly.  
However, the low frequency of these events also means that there is relatively little data to 
model their effects accurately. 

Hence the irony of the situation – the tail data with which to fit the distribution is sparse, yet the 
distribution is being used to model tail risk events. 
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Many types of financial data tend to be much more narrowly peaked in the centre of the 
distribution and to have fatter tails than the normal distribution.  This shape of distribution 
is known as leptokurtic.  For example, when share prices are modelled, large price 
movements occur more frequently than predicted by the normal distribution.  So the normal 
distribution may be unsuitable for modelling the large movements in the tails. 

The word ‘leptokurtic’ is a measure of the kurtosis of a distribution, which is the fourth 
standardised central moment of a distribution:     

4X
E




     
   

  

All (univariate) normal distributions have kurtosis equal to three and are described as mesokurtic.  
A distribution with kurtosis greater than three is leptokurtic (more peaked with fatter tails).  A 
distribution with kurtosis less than three is platykurtic (a broader peak with more slender tails).   

One reason for these fat tails is that the volatility of financial variables does not remain 
constant, but varies stochastically over time.  This property is known as heteroscedasticity. 

The volatility of a random variable is equivalent to its standard deviation. 

Question 

The graph below compares two distributions for the price of a share in one year’s time: 

 a 2(5, )N   distribution with constant volatility, 1    

 a 2(5, )N   distribution where the volatility is heteroscedastic, ie 0.5   and 1.5    

with equal probability. 
 

 

Comment on the relative shape of the graphs. 
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Solution 

In the case where the volatility is variable, the resultant probability density function is more 
peaked with fatter tails, ie it is leptokurtic.   

 
When empirical asset return data values are analysed, they exhibit volatility clustering, ie periods 
of sustained high volatility and periods of sustained low volatility.  This suggests that volatility of 
asset return data is not constant but heteroscedastic. 

Even if we select an appropriate form of fat-tailed distribution, if we attempt to fit the 
distribution using the whole of our dataset, this is unlikely to result in a good model for the 
tails, since the parameter estimates will be heavily influenced by the main bulk of the data in 
the central part of the distribution.   

This is illustrated by the graph below, which shows the frequency of (log) returns on the FTSE-100 
between April 1984 and September 2017.  A normal distribution has been fitted to the whole 
dataset.  It can be seen, from the graph, that the normal distribution underestimates the 
probability of the extreme events in the lower tail and overestimates extreme events in the upper 
tail. 
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1.4 Extreme value theory 

Fortunately, better modelling of the tails of the data can be done through the application of 
extreme value theory.  The key idea of extreme value theory is that the asymptotic 
behaviour of the tails of most distributions can be accurately described by certain families 
of distributions.   

Question 

Explain what is meant by the phrase ‘asymptotic behaviour of the tails of a distribution’ in the 
paragraph above. 

Solution 

The phrase is referring to how the distribution behaves in the limit, as a certain parameter (such 
as the number of observations in a sample) tends to infinity. 

 
More specifically, the maximum values of a distribution (when appropriately standardised) 
and the values exceeding a specified threshold (called threshold exceedances) converge to 
two particular families of distributions as the sample size increases. 

These two families of distributions are: 

 generalised extreme value distributions, and 

 generalised Pareto distributions. 

We look at these in Sections 2 and 3 respectively. 
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2 Generalised extreme value (GEV) distribution 

If we are dealing with losses that have typical sizes, ie ones whose values come from the 
central part of the distribution, we can make use of the Central Limit Theorem.   

This tells us that, if we calculate the mean, X , of a set of n  values taken from a loss 

distribution that has mean    and variance 2 , the standardised value, 
X

n





, can be 

approximated using the standard normal distribution. 

However, the most financially significant part of a loss distribution is usually the right-hand 
tail where the large losses occur.  These are the extreme values of the distribution.  So, is 
there a similar way to approximate the behaviour of the extreme values in the tail of the 
distribution? 

The Core Reading here is referring to a distribution of losses (rather than returns or profits) and so 
we are concerned with the extreme right-hand tail of the loss distribution. 

2.1 Maximum values 

One approach is to look at 1 2max{ , , , }M nX X X X , the maximum value in a set of n 

values.  This is referred to as a block maximum.   

Question 

The dataset below shows the claim amounts in £000s in respect of a commercial property 
portfolio over a period of a year. 

Claim 
number 

Claim 
amount 

 Claim 
number 

Claim 
amount 

 Claim 
number

Claim 
amount 

 Claim 
number 

Claim 
amount 

1 9  17 12  33 19  49 118 
2 28  18 35  34 17  50 55 
3 20  19 12  35 66  51 14 
4 8  20 75  36 55  52 94 
5 102  21 80  37 81  53 54 
6 152  22 42  38 140  54 81 
7 23  23 9  39 64  55 62 
8 108  24 122  40 9  56 83 
9 42  25 145  41 9  57 23 

10 12  26 13  42 36  58 19 
11 110  27 16  43 185  59 55 
12 9  28 113  44 135  60 104 
13 22  29 9  45 25    
14 37  30 8  46 16    
15 147  31 12  47 55    
16 128  32 84  48 31    
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(i) Determine the values of MX  where the block size is: 

 (a) 5n    

 (b) 10n    

(ii) Comment on the trade-off between the block size and the values of MX  that will be used 

to fit the extreme value distribution. 

Solution 

(i)(a) The values of MX  are  102,152,147,128,145,113, 84,140,185,118, 94,104 . 

(i)(b) The values of MX  are  152,147,145,140,185,104 . 

(ii) The larger the block size, the fewer the number of blocks (eg when 10n   there are six 
blocks whereas when 5n   there are twelve blocks).  The fewer the number of blocks, the 
fewer (but more ‘extreme’) the values of MX  that will be used to fit the extreme value 

distribution.   

 
If we look at a number of such blocks, we find that these maximum values can be 

standardised in a similar way, ie we can calculate expressions of the form M n

n

X 



 that can 

be approximated by a particular type of distribution – called an extreme value distribution. 

As with the Central Limit Theorem, we are interested in determining the distribution of the 
standardised quantity: 

M n

n

X 



  

where 1 2max{ , ,..., }M nX X X X  with each iX  representing an observed loss.  The n  and n  are 

appropriately chosen constants.  We will give an example of these in the next section.   

2.2 Distribution of the (standardised) maximum values 

In order to determine the distribution of this standardised quantity, we consider its CDF.   

If the values are independent and identically distributed (IID), each with cumulative 
distribution function, ( )F x , the cumulative distribution function of the block maximum is: 

 

   

     

 

 

1 2

1 2

,  ,  ... ,  

...

M n

n

n

n

P X x P X x X x X x

P X x P X x P X x

P X x

F x
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We can attempt to standardise the values of MX  by finding a sequence of constants 

1 2, ,   and 1 2, , 0    so that the limiting distribution: 

 lim lim
nM n

n nn nn

XP x F x
 

 

        
 

 

depends only on x.   

The Extreme Value Theorem tells us that it is possible to find such values of n  and n  for 

most common distributions. 

For example, if the individual losses are distributed exponentially with ( ) 1 xF x e   , we 

can set 
1

lnn n


  and 
1

n 
 . 

We don’t need to concern ourselves with how these values for n  and n   are chosen for the 

exponential distribution, only that they can be chosen. 

Question 

Let ( )X Exp  , 
1

lnn n


  and 
1

n 
  for all n .   

By substituting in for n  and n  and by using the CDF of the exponential distribution, determine 

the CDF of the limiting distribution of the standardised values of MX :  

 lim lim
nM n

n n
n nn

X
P x F x


 

 

 
      

 
 

(Hint: lim 1
n

x

n

x
e

n

   
 

.) 

Solution 

(i) The solution below forms part of the Core Reading. 

  

 

  

1 1
lim lim ln

1 1
lim 1 exp ln

lim 1 exp ln

lim 1
x

n
n

n nn n

n

n

n

n

nx
e

n

F x F x n

x n

x n

e e
n
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The last line in the Core Reading above follows from the hint: 

lim 1 lim 1
x

nnx x
e

n n

e e
e

n n

 


 

                      
  

This distribution is known as the standard Gumbel distribution. 

The standard Gumbel distribution is a particular type of extreme value distribution, which 
we consider in more detail later on. 

 

2.3 GEV distribution 

More generally, whatever the underlying distribution of the data, the distribution of the 
standardised maximum values will converge to a distribution called the generalised extreme 

value (GEV) distribution as n increases, ie  lim ( )
n

n nn
F x H x 


    . 

In Section 2.2, we considered the specific case where the underlying distribution is  X Exp  .  

However, the generalised extreme value distribution is more generic than this and caters for a 
number of different underlying distributions for X .   

The cumulative distribution function of the GEV distribution is: 

 

 

1

exp 1 0

( )

exp exp 0

x

H x

x

 









                
             

    

This distribution has three parameters: 

 a location parameter    

 a scale parameter 0   

 a shape parameter  . 

The parameters   and   just rescale (shift and stretch) the distribution.  They are 

analogous to (but do not usually correspond to) the mean and standard deviation. 

The parameter   determines the overall shape of the distribution (analogous to the 

skewness) and its sign (positive, negative or zero) results in three different shaped 
distributions.   

Question 

Derive the PDF for the GEV distribution. 
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Solution 

In the case where 0  : 

 
1

( ) exp 1
x

H x
 



           

 

We must differentiate this expression to obtain the PDF.  Let 
 x

u
 




  and   
1

1v u    so 

that ( ) exp( )H x v  .  Then: 

du
dx




   

 
 1

1
1

11 1 ( )
1 1

dv x
u

du




 
  

 
    

        
   

  

and     
1

1( ) ( )
exp exp 1 exp 1

dH x x
v u

dv




 





                        

. 

So the PDF is: 

     

     

1 1

1 1

1

1

( )
( )

( )

1
exp 1 1

1
1 exp 1

dH x
h x

dx

dH x dv du
dv du dx

x x

x x

 

 

    
   

   
  

  

  



  

                        

                     

 

In the case where 0  : 

 
( ) exp exp

x
H x
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Again, we must differentiate the above expression to obtain the PDF.  Let 
x

u





  and 

exp( )v u   so that ( ) exp( )H x v  .  Then: 

1du
dx 

   

   
exp exp

xdv
u

du




 
       

 
  

and       ( )
exp exp exp exp exp

xdH x
v u

dv




  
               

. 

So the PDF is: 

   

   

( )
( )

( )

1
exp exp exp

1
exp exp

dH x
h x

dx

dH x dv du
dv du dx

x x

x x

 
  

 
  



  

     
                  

    
            

  

 

2.4 Fréchet, Weibull and Gumbel GEV distributions 

The GEV family of distributions subdivides into three distinct classes depending on the value of 
the shape parameter,  .  These are called: 

 Fréchet-type GEV distributions – when 0    

 Weibull-type GEV distributions – when 0   

 Gumbel-type GEV distributions – when 0  . 

Each type gives rise to a different shape of PDF as can be seen in the three graphs below. 
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Fréchet-type GEV distributions 

 

Weibull-type GEV distribution 

 

Gumbel-type GEV distributions 
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Question 

Comment briefly on the range of values that x  takes for each of the Fréchet-type, Weibull-type 
and Gumbel-type GEV distributions, with reference to the three graphs above. 

Solution 

 When 0  , x  is bounded below and when 0  , x  is bounded above. 

 When 0  , x  is unbounded.   

 
We will now explain algebraically how these bounds arise. 

Fréchet-type GEV distribution 

For 0  , the distribution is a Fréchet-type GEV distribution.  Earlier, we derived the PDF as: 

     
1 11

1
( ) 1 exp 1

x x
h x

    
  

                       

 

In order for the PDF to be non-negative, we require the expression 
 

1
x 


 
  

 
 to be positive.  

(The other factors in the PDF are positive since 0   and the exponential function takes positive 

values only.)   

Since 0  , this results in a lower bound on the values that x  can take: 

 
1 0

x 



      x x
  
 


       

The Fréchet-type GEV distributions tend to be those most suitable for modelling extreme financial 
(loss) events.  This is because there is no upper bound to the loss events but also because of the 
tail of the distribution.  Fréchet-type GEV distributions have a heavier tail (ie a tail that decays 
more slowly to 0) than other types of GEV distribution.  This is due to the behaviour of the PDF: 

 The factor 
 

1

exp 1
x  


          

 tends to 1 as x  . 

 The factor  
   11

1
1

x  
 

 
 

  
 

 tends to 0 as x  .  It decays in accordance with 

what is known as the negative power law, ie in proportion to kx  where 0k  .   
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Weibull-type GEV distribution 

For 0  , the distribution is a Weibull-type GEV distribution.  The PDF is of the same form as the 

Fréchet-type GEV distribution, ie it is given by: 

     
1 11

1
( ) 1 exp 1

x x
h x

    
  

                       

 

Question 

Determine a bound for values of x  for the Weibull-type GEV distribution.   

Solution 

In order for PDF to be positive, we require the factor 
 

1
x 


 
  

 
 to be positive.  Since 0  , 

this results in an upper bound on the values that x  can take: 

 
1 0

x 



 
 

 1    
x

x x
    

  
 

          

 
We might expect to fit such a distribution to, for example, the ages of a human population 
(indicating an upper bound to possible age) or where a loss is certain not to exceed a certain value 
(for example, if such losses are reinsured).   

Gumbel-type GEV distribution 

When 0  , the GEV distribution reduces to the Gumbel distribution.   

In this case, the PDF is given by: 

1 ( ) ( )
( ) exp exp

x x
h x

 
  

    
          

 

This has a tail that decays exponentially.  The decay is more rapid (ie the tail is lighter) than that 
for the Fréchet-type GEV distribution given the same values of   and  .   

If 0   and 1   this becomes the PDF of the standard Gumbel distribution (whose CDF we saw 

in the example in Section 2.2). 

The standard Gumbel distribution is the extreme value distribution arising from an 
exponential distribution. 
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2.5 Choosing the form of the GEV distribution 

If we know the form of the underlying distribution, it is possible to work out the limiting 
distribution of the maximum value.  We can then use the appropriate member of the GEV 
family to model the tail of the distribution. 

Note the distinction between the distribution that applies to the full dataset (the underlying 
distribution) and the distribution that we are using to model the extreme values (the GEV 
distribution).  Different underlying distributions are closely related to different GEV distributions.  
The relationship depends on factors such as whether the underlying distribution has a finite end 
point (ie whether there is a lower or upper bound to the values that can be taken by the 
underlying random variable), and whether the tail of the PDF of the underlying distribution 
exhibits exponential or power decay. 

The underlying distribution will determine which of the three different types of GEV 
distribution will arise, as indicated in the table below.  The three types are distinguished by 
the sign of the shape parameter   and are named after their original discoverers. 

 GEV distributions (for the maximum value) corresponding to 
common loss distributions 

Type WEIBULL GUMBEL FRÉCHET 

Shape parameter 0   0   0   

Underlying Beta Chi-square Burr 

distribution Uniform Exponential F 

 Triangular Gamma Log-gamma* 

  Lognormal Pareto 

  Normal t 

  Weibull  

Range of values 
permitted x 




      x   x 



   

 
* Note that X loggamma  if ln X Gamma .   

Unhelpfully, the extreme value distribution corresponding to the Weibull distribution from the 
Tables is actually of the Gumbel type (rather than the Weibull type). 
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Mathematicians have determined criteria that can be used to predict which family a 
particular distribution belongs to.  As a rough guide: 

 underlying distributions that have finite upper limits (eg the uniform distribution) are 
of the Weibull type (which also has a finite upper limit).   

 ‘light tail’ distributions that have finite moments of all orders (eg exponential, 
normal, lognormal) are typically of the Gumbel type 

 ‘heavy tail’ distributions whose higher moments can be infinite are of the Fréchet 
type.   

For example, suppose we have monthly claim data stored in a matrix data with the first 
column month and the second column claim. 

To calculate the block maxima for these claims using block sizes of 12 months, we would 
use the following R code: 

 block<-(data-1)%/%12+1 
 blockmax<-aggregate(claim~block,data,max) 

We can plot a histogram of the block maxima using the hist function and an empirical 
density function using density in the plot function (if there is enough data).  We can then 
superimpose a GEV distribution to see if it is a good approximation. 

 GEV <- function(z) {1/beta*(1+gamma*(z-alpha)/beta)^- 
 (1+1/gamma)*exp(-((1+gamma*(z-alpha)/beta)^(-1/gamma))) } 
 lines(<sequence of x values>,GEV(<sequence of x values)) 

The qqplot function is used to compare the sample data to simulated values from a fitted 
GEV model. 

We can estimate the maximum likelihood values as we did in Chapter 15 by defining the 
log-likelihood function and using the function nlm on the negative value of the 
log-likelihood function as before. 

 

Question 

In the question in Section 2.1, the block maximum, MX  took the values: 

 102,152,147,128,145,113, 84,140,185,118, 94,104  

when the block size was 5. 

Plot these points on a frequency diagram and suggest a type of GEV distribution that might be 
appropriate. 
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Solution 

A frequency diagram representing the above block maximum data is given below: 

  
The data set is too small to be able to suggest a type of GEV distribution with any confidence.  
However, the upper tail decay appears to be rapid, which might lead us to consider a 
Gumbel-type GEV distribution. 

 
 

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0-25 25-50 50-75 75-100 100-125 125-150 150-175 175-200 200-225

claim amounts £000s

pr
ob

ab
ili

ty

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-16: Extreme value theory Page 19 

The Actuarial Education Company © IFE: 2019 Examinations 

3 Generalised Pareto distribution (GPD) 

3.1 Threshold exceedances 

As an alternative to focusing on the maximum value, we can consider the distribution of all 
the values of the variable that exceed some (large) specified threshold, eg all claims 
exceeding £1 million.  For large samples, the distribution of these extreme values converges 
to the generalised Pareto distribution.  This enables us to model the tail of a distribution by 
selecting a suitably high threshold and then fitting a generalised Pareto distribution to the 
observed values in excess of that threshold. 

For example, under excess of loss reinsurance, this distribution could be used to model the claim 
amounts above a retention limit, ie the amounts that will pass to the reinsurer.  Excess of loss 
reinsurance is studied in detail in Chapter 18. 

If we let X  be a random variable with cumulative distribution function, F , then the excess 
over the threshold, u , is |X u X u  .   

Question 

The dataset below shows the claim amounts in £000s in respect of a commercial property 
portfolio over a period of a year.  (This is the dataset from the question in Section 2.1.) 

Claim 
number 

Claim 
amount 

 Claim 
number 

Claim 
amount 

 Claim 
number

Claim 
amount 

 Claim 
number 

Claim 
amount 

1 9  17 12  33 19  49 118 
2 28  18 35  34 17  50 55 
3 20  19 12  35 66  51 14 
4 8  20 75  36 55  52 94 
5 102  21 80  37 81  53 54 
6 152  22 42  38 140  54 81 
7 23  23 9  39 64  55 62 
8 108  24 122  40 9  56 83 
9 42  25 145  41 9  57 23 

10 12  26 13  42 36  58 19 
11 110  27 16  43 185  59 55 
12 9  28 113  44 135  60 104 
13 22  29 9  45 25    
14 37  30 8  46 16    
15 147  31 12  47 55    
16 128  32 84  48 31    

 
(i) Calculate the values of |X u X u   when: 

 (a) 100u   

 (b) 125u   
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(ii) Comment on the trade-off in the choice of the threshold, u . 

Solution 

(i)(a) The values of 100| 100X X   are  2, 52, 8,10, 47, 28, 22, 45,13, 40, 85, 35,18, 4 . 

(i)(b) The values of 125| 125X X   are  27, 22, 3, 20,15, 60,10 . 

(ii) The higher the value of the threshold, the more extreme the values of X .  However, using 
a higher threshold means that we have fewer values with which to fit the extreme value 
distribution.  

 

For example, suppose we have monthly claim data stored in a matrix data with the first 
column month and the second column claim. 

To calculate the threshold exceedances, xe, for these claims, at the threshold u we would 
use the following R code: 

 x<-data[,-1] 
 xe<-x[x>u]-u 

Sometimes, the value of the threshold, u , may be specified, eg if it is a reinsurance retention 
limit.  Other times, we may need to make a judgement as to where the threshold should be.  
Typically we may choose the threshold to be say the 90th or 95th percentile of the underlying 
distribution.  The choice of u  also depends on there being a sufficient volume of data available 
above the selected threshold. 

If the maximum possible value of X  is Fx   , the cumulative distribution function of the 

excess is (for 0 Fx x u   ): 

( , )
( ) ( | )

( )

( , )

( )

( ) ( )

( )

( ) ( )

1 ( )

u
P X u x X uF x P X u x X u

P X u

P X x u X u
P X u

P X x u P X u
P X u

F x u F u
F u

  
    



  




   




 



  

For example, if the individual losses are distributed exponentially with   1 xF x e   , we 

have: 

   
 

( ) ( )1 1
( ) 1

1 1

x u u u x u
x

u uu

e e e eF x e
ee
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So, in this case, the threshold exceedances follow the same exponential distribution as X , 
irrespective of the threshold applied.   

This is the memoryless property of the exponential distribution. 

Question 

With reference to the question above, use the method of maximum likelihood to fit a distribution 
to the threshold exceedances when the underlying claims distribution is exponential and the 
threshold is chosen to be 100. 

Solution 

The values of 100| 100X X   are  2, 52, 8,10, 47,28, 22, 45,13, 40, 85, 35,18, 4 . 

The result in the Core Reading above tells us that, if  X Exp   then  |W X u X u Exp     . 

The likelihood function is given by: 

 
11 1

( ) ( ) exp exp
n n n

n
W i i i

ii i

L f w w w    
 

 
      

 
    

Using the data values above, we have 14n   and 
14

1
409i

i
w


 , so that: 

 14( ) exp 409L      

 Taking natural logs: 

ln ( ) 14ln 409L      

Differentiating with respect to  : 

ln ( ) 14
409

d L
d


 

   

This is equal to 0 when: 

14
409

   

Differentiating a second time 

2

2 2
ln ( ) 14

0 max
d L

d
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So the maximum likelihood estimate of   is 
14
409

 or 0.0342, and hence the fitted distribution for 

the threshold exceedances is (0.0342)Exp . 

 

3.2 Generalised Pareto distribution 

More generally we find that, whatever the underlying distribution of the data, the distribution 
of the threshold exceedances will converge to a generalised Pareto distribution as the 
threshold u  increases, ie lim ( ) ( )uu

F x G x


 . 

The generalised Pareto distribution is a two-parameter distribution with CDF: 

  
1 1 0

1 exp 0

x

G x
x









         
 

   
 

 

This distribution has two parameters: 

 a scale parameter 0   

 a shape parameter  . 

When 0  , this distribution reduces to the exponential distribution. 

When 0  , the CDF is: 

 ( ) 1 exp
x

G x


 
   

 
  

which is the CDF of the  1Exp   distribution. 

When 0  , the CDF is:  

( ) 1 1 1 1
x x

G x
x

   
  

 
     

                
  

which is the CDF of the  ,Pareto    distribution. 

Question 

Derive the PDF for the generalised Pareto distribution. 
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Solution 

In the case when 0  : 

 ( ) 1 1
x

G x





 

   
 

 

Let 1
x

v


   so that ( ) 1G x v    .  Then: 

1dv
dx 

     and    
 1

11( )
1

dG x x
v v

dv


  



 
    

    
 

 

So the PDF is: 

 

1

1

( )
( )

( )

1
1

1
1

dG x
g x

dx

dG x dv
dv dx

x

x






 

 

 

 



 

 
   

 

 
  

 

  

In the case when 0  : 

 ( ) 1 exp
x

G x


 
   

 
 

Differentiating with respect to x , we see that the PDF is: 

1
( ) exp

x
g x

 
 

  
 

 

 
The two graphs below illustrate the PDF of the generalised Pareto distribution, using different 
values for the scale parameter,  , and the shape parameter,  . 
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4 Measures of tail weight 

There are a number of measures we can use to quantify the tail weight of a particular 
distribution, ie how likely very large values are to occur. 

Depending on the context, an exponential, normal or lognormal distribution may be 
considered to be a suitable baseline to use for comparison. 

Tail weight is a measure of how quickly the (upper) tail of a PDF tends to 0.  If the PDF of random 
variable, AX , tends to 0 as x   more slowly than the PDF of random variable, BX , then AX  is 

said to have a heavier tail than BX .  We will consider four ways of measuring tail weight: 

1. the existence of moments 

2. limiting density ratios 

3. the hazard rate 

4. the mean residual life. 

4.1 Existence of moments 

Recall that the kth moment of a continuous positive-valued distribution with density 
function ( )f x  is: 

 
0

( )kx f x dx


  

The quantity that is being determined here is the kth non-central moment, ( )kE X . 

In order for the kth moment to exist, then the integral expression above must converge (ie take a 
finite value).   

For example, for the gamma distribution with density function: 

1( )
( )

xf x x e


 


 


  

the kth moment exists for all values of k, indicating that it has a relatively light tail.   

Question 

Derive a formula for ( )kE X  for 1,2,3,...k   when ( , )X Gamma   . 

Solution 

If ( , )X Gamma   , then: 

1 1

0 0

( )
( ) ( )

k k x k xE X x x e dx x e dx
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The integrand can be transformed into the PDF of a ( , )Gamma k    distribution by adjusting 

terms inside and outside of the integral as follows: 

1

0

( )
( )

( )( )

k
k k x

k
k

E X x e dx
k


  

 

 
   


    

Since the integral of a PDF over all values of x  is equal to 1, the expression reduces to: 

( )
( )

( )
k

k
k

E X


 
 




 for 1,2,3,...k    

(This expression is given on page 12 of the Tables.) 

The moments can also be obtained from the moment generating function by differentiation. 

 
However, for some distributions, the value of the kth moment does not exist beyond a 
certain value of k (ie its value becomes infinite). 

For the Pareto distribution with density function: 

1
( )

( )
f x

x






 



  

the kth moment only exists when k  .   

So a Pareto distribution (with a low value of the parameter  ) will have a much thicker tail. 

For  ,X Pa   , the mean and variance are given in the Tables as follows: 

 ( )
1

E X






    and    

2

2
var( )

( 1) ( 2)
X


 


 

  

From the denominators of these two expressions, we see that the mean is defined only for 1   
and the variance is defined only for 2  .   

4.2 Limiting density ratios 

We can compare the thickness of the tail of two distributions by calculating the relative 
values of their density functions at the far end of the upper tail.  For example, if we compare 
the Pareto distributions with parameters 2   and 3   (both with the same value of  ), 
we find that: 

 
2 3

2
3 4

3

( ) 22 3
lim lim lim ( )

( ) 3( ) ( )x x x

f x x
f x x x




  
 



  

       
   

 

This confirms that the distribution with 2   has a much thicker tail. 

If we compare the gamma distribution with the Pareto distribution, we find that the presence 
of the exponential factor in the gamma density results in a limiting density ratio of zero, 
which confirms that the gamma distribution has a lighter tail.   
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Question 

Consider the (0.5, 0.005)Gamma  and (4, 300)Pa  distributions, both of which have a mean of 100 

and a variance of 20,000. 

Use the ‘limiting density ratio’ method to compare these two distributions. 

Solution 

Comparing the two density functions and taking the limit as x  , we have: 

 
 

0.5 4
0.5 0.0050.005

(0.5) 5

0.5 5 0.005

( ) 4 300
lim lim

( ) (300 )

lim (300 )

gamma x

x xPareto

x

x

f x
x e

f x x

C x x e

 
 

 



          

 

 

In the above expression, C  is a (very small) constant.  (We know that  0.5    from the 

properties of the gamma function given on page 5 of the Tables.) 

As x  , the 0.005xe  factor tends to 0, the 0.5x factor tends to 0 and the  5300 x  factor 

tends to infinity, and so the overall expression tends to 0.  (To see, this, try some large values of x
.)   Therefore: 

 
( )

lim 0
( )

gamma

x Pareto

f x

f x
   

This suggests that the gamma distribution has a lighter tail than the Pareto distribution. 

 

We can obtain the values of the PDF of two distributions X1 and X2 for, say, x  values 1 to 
1,000 and then calculate the ratio, R , using: 

 R = X1/X2 

We can then plot the graph of R  against x  to determine which of X1 and X2 has the thicker 
tail. 

4.3 Hazard rate 

The hazard rate of a distribution with density function ( )f x  and distribution function ( )F x  

is defined as: 

 
( )

( )
1 ( )

f xh x
F x




 

We have already seen this formula in Chapter 8.  Recall that the hazard rate is the rate of failure 
given survival up until that point. 
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Question 

 (i) Determine the hazard rate for: 

 (a) the ( )Exp   distribution 

 (b) the ( , )Pa    distribution. 

(ii) Comment on the differences between these hazard rates. 

Solution 

(i)(a) The hazard rate for the exponential distribution is: 

( )
( )

1 ( )

x

x
f x e

h x
F x e




 




  


 

(i)(b) The hazard rate for the Pareto distribution is: 

  1
( )

( )
1 ( )

f x
h x

xF x xx




 

  
      

 

(ii) The exponential hazard rate is constant (ie it is independent of x , which demonstrates 
the memoryless property of the exponential distribution), whereas the Pareto hazard rate 
is a decreasing function of x .   

 
We can interpret the hazard rate by analogy with x , the force of mortality at age x .   

The force of mortality has been discussed in detail in earlier chapters. 

(The force of mortality at age x  (  0 x  ) is defined as: 

 


     
0

1
lim [ ]x

h
P T x h T x

h
  

where T  is a random variable measuring a person’s length of life. See Chapter 6, 
Section 1.3.) 

If the force of mortality increases as a person’s age increases, relatively few people will live 
to old age (corresponding to a light tail).  If, on the other hand, the force of mortality 
decreases as the person’s age increases, there is the potential to live to a very old age 
(corresponding to a heavier tail). 

For the gamma distribution we find that, if 1   (ie it is an exponential distribution), the 

hazard rate is constant, but if 1  , it is a decreasing function of x  (indicating a heavier tail 

than the exponential distribution) and if 1  , it is an increasing function (indicating a 
lighter tail than the exponential distribution). 
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The graph below illustrates the hazard function for the ( , )Gamma   distribution for different 

values of   and 0.2  .  The axes of the graph are the hazard function 
( )

( )
1 ( )

f x
h x

F x



 against x .   

 
 
The formula for hazard function in each of the three cases is: 

  

 

2

2

2 1
22

2 1 2
20 0

( )
( )

1 ( ) 1 1

x
x

x xt t

x e
f x xe

h x
F x t e dt te dt

 

 





 


  


  
   

when 2    

  

 

1 1
1

1 1
10 0

( )
( )

1 ( ) 1 1

x
x

x xt t

x ef x e
h x

F x t e dt e dt

 

 





 


  


  
   

when 1    

  

 

0.5 0.5

0.5 0.5

0.5 1 0.5
0.5

0.5 1 0.5
0.50 0

( )
( )

1 ( ) 1 1

x x

x xt t

x e x ef x
h x

F x t e dt t e dt

 


  


   


   


  
   

 when 0.5  .   

 
For the Pareto distribution, we find that the hazard rate is always a decreasing function 
of ,x  confirming that it has a heavy tail. 

We derived these results for the exponential and Pareto distributions in the previous question. 

The R code to calculate the hazard rate, H , for a Weibull distribution with parameters g  and 

 1 gb c  is given by: 

 H<-dweibull(x,g,b)/(1-pweibull(x,g,b)) 

We can then plot the graph of H  against x  to determine the thickness of its tail. 
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4.4 Mean residual life 

The mean residual life of a distribution with density function ( )f x  and distribution function 

( )F x  is defined as: 

 
 ( ) ( ) 1 ( )

( )
1 ( )( )

x x

x

y x f y dy F y dy
e x

F xf y dy

 



 
 


 


 

This function gives the expected remaining survival time given survival up until this point.   

Question 

(i) Determine the mean residual life for: 

 (a) the ( )Exp   distribution 

(b) the ( , )Pa    distribution where 1  .   

(ii) Comment on the behaviour of these functions. 

Solution 

(i)(a) The mean residual life for the exponential distribution is: 

 1 ( )
( )

1 ( )

1

1

y
x x

x

y

x
x

F y dy e dy
e x

F x e

e

e












  









 



    

 

 

(i)(a) The mean residual life for the Pareto distribution with 1    is: 

 

1 1

1 ( )
( ) ( ) ( )

1 ( )

1 1
( ) ( ) ( ) 0 ( )

1 1

1

xx
x

x

dyF y dy y
e x x y dy

F x

x

x y x x

x
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(ii) The exponential mean residual life is constant whereas the Pareto mean residual life is an 
increasing function of x .   

When 0x   the mean residual life is equal to the mean of the underlying distribution, as we 
would expect. 

 

Again we can interpret this in terms of mortality as the expected future lifetime, o
xe .   

We discussed expected future lifetimes in Chapter 6.  There we derived the formula: 

 
0

x t xe p dt


     

However since: 

 0

0

( ) 1 ( )
( ) 1 ( )

t x
t x

x

p S t x F t x
p

p S x F x
   

  


 

we have:  

 0
{1 ( )}

1 ( )x

F t x dt
e

F x




 





 

Then making the substitution y t x  , we see that: 

 
{1 ( )}

( )
1 ( )

x
x

F y dy
e e x

F x


 
 




  

If the expected future lifetime decreases with age, relatively few people will live to old age 
(corresponding to a light tail), but if it increases, there is the potential to live to a very old 
age (corresponding to a heavier tail). 

For the gamma distribution we find that, if 1   (ie it is an exponential distribution), the 

mean residual life is constant, but if 1  , it is an increasing function of x  (indicating a 

heavier tail than the exponential distribution) and if 1  , it is a decreasing function 
(indicating a lighter tail than the exponential distribution). 

The graph below illustrates the mean residual life for the ( , )Gamma   distribution for different 

values of   and 0.2.    The axes of the graph are the mean residual life 
 1 ( )

( )
1 ( )

x
F y dy

e x
F x








 

against x . 
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For the Pareto distribution, we find that the mean residual life is always an increasing 
function of x , confirming that it has a heavy tail. 

We derived these results for the exponential and Pareto distributions in the previous question. 

The R code for the survival function of a Weibull distribution with parameters g  and 

 1 gb c  is given by: 

 Sy<-function(y) {(1-pweibull(y,g,b))} 

Hence, the mean residual life for x is given by ex as follows: 

 int<-integrate(Sy,x,Inf) 
 ex<-int$value/(1-pweibull(x,g,b)) 

We can then plot the graph of ex against x. 
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Chapter 16 Summary 

Extreme events 

An extreme event is one with a very low frequency and very high severity.   

Modelling extreme financial events is difficult due to: 

 lack of historic data in the tails of the distribution 

 the ‘true’ distribution of many types of financial data being more leptokurtic (more 
peaked with fatter tails) than the normal distribution 

 the volatility of financial variables being heteroscedastic (varying over time) 

 parameter estimates being inappropriately influenced by the main bulk of the data 
in the middle of the distribution. 

Better modelling of the tails of the data can be done using extreme value theory. 

Extreme value theory 

Extreme value theory attempts to model the asymptotic behaviour of the tails of 
distributions.  There are two main approaches: 

1. modelling the maximum values of a distribution – using the generalised extreme 
value family of distributions 

2.   modelling the values exceeding a threshold – using the generalised Pareto family of 
distributions.   

Generalised extreme value distributions 

Let: 

 losses iX  be IID with cumulative distribution ( )iF x  

 1 2max{ , , , }M nX X X X   be the block maxima 

 1 ,..., n  and 1 ,..., 0n    be suitable sequences of real constants. 

Then, if n  is sufficiently large, the distribution of the standardised block maxima, M n

n

X 



, 

is asymptotically described by the generalised extreme value (GEV) family of distributions 
with CDF:  

  ( ) lim lim ( ) nM n
n n

n nn

X
H x P x F x
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The cumulative distribution function of the GEV distribution is: 

1
( )

exp 1 0

( )

( )
exp exp 0

x

H x

x

  


 


              
           

 

The three parameters of the GEV family are: 

 a location parameter,   

 a scale parameter, 0   

 a shape parameter,  . 

There are three types of GEV distributions, which are distinguished by the sign of the shape 
parameter  .  Each type corresponds to different underlying loss distributions: 

 GEV distributions (for the maximum value) 
corresponding to common loss distributions 

Type WEIBULL GUMBEL FRÉCHET 

Shape parameter 0   0   0   

Underlying distribution Beta Chi-square Burr 

 Uniform Exponential F 

 Triangular Gamma Log-gamma 

  Lognormal Pareto 

  Normal t 

  Weibull   

Range of values 
permitted 

x



   x    x
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Generalised Pareto distributions

Let losses iX  be IID with cumulative distribution ( )iF x .  Then the distribution of the 

conditional losses above a threshold, u , will converge (whatever the underlying distribution 
of the data) to a generalised Pareto distribution (GPD) with CDF: 

  ( ) ( )
( ) lim ( ) lim lim

1 ( )u
u u u

F x u F u
G x F x P X u x X u

F u  

 
     


 

The CDF of the GPD is of the form: 

 

1 1 0

( )

1 exp 0

x

G x
x









         
  

    
 

 

The two parameters of the GPD family are: 

 a scale parameter, 0   

 a shape parameter,  . 

Measures of tail weight 

There are a number of measures we can use to quantify the tail weight of a particular 
distribution, ie how likely very large values are to occur: 

 the existence of moments 

– The existence of all moments, ( )kE X , for all positive integers, k , indicates a 

light tail.  If moments exist only up to a positive integer, k , this is an 
indication that the distribution has a heavy tail. 

 limiting density ratios 

– The limiting value, as x  , of the ratio of two PDFs can be used to 
determine which distribution has the lighter or heavier tail. 

 the hazard rate 

– An increasing (decreasing) hazard rate, 
( )

( )
1 ( )

f x
h x

F x



, corresponds to a 

lighter (heavier) tail. 

 the mean residual life 

– An increasing (decreasing) mean residual life, 
 1 ( )

( )
1 ( )

x
F y dy

e x
F x








, 

corresponds to a heavier (lighter) tail. 
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The practice questions start on the next page so that you can 
keep the chapter summaries together for revision purposes. 
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Chapter 16 Practice Questions 

16.1 (i) Explain what is meant by an extreme event and give two examples in an insurance 
context. 

(ii) Explain why it is important to model extreme events separately from other events. 

16.2 (i) Describe the generalised extreme value (GEV) distribution. [7] 

(ii) Outline an alternative approach that can be used in place of the GEV distribution to model 
extreme events.   [3] 

(iii) State the key advantage of the method outlined in (ii) over that described in (i). [1] 
     [Total 11] 

16.3 The claim amounts in a general insurance portfolio are independent and follow an exponential 
distribution with mean £2,500. 

(i) Calculate the probability that an individual claim will exceed £10,000. [1] 

(ii) Calculate the probability that, in a sample of 100 claims, the largest claim will exceed 
£10,000 using: 

 (a) an exact method 

(b) an approximation based on a Gumbel-type GEV distribution.   [5] 

You are given that, for an exponential distribution with parameter  , the approximate 
distribution of 1max{ , , }nX X  for large n is a Gumbel-type GEV distribution with CDF: 

 ( ) exp exp n

n

x
H x




   
          

 where 
1

lnn n


  and 
1

n 
  

(iii) State the two key assumptions made in (ii)(a). [1] 
    [Total 7] 

16.4 If individual losses, X ,  follow a ( , )Pa    distribution, determine the distribution of the threshold 

exceedances, |W X u X u   .   

16.5 Compare the limiting value of the density functions for a ( , )Gamma   and an ( )Exp   

distribution when 1   and hence determine which has the heavier tail. 

16.6 (i) Determine the hazard rate for the Weibull distribution with parameters 0c   and 0  . 

(ii) Comment on the behaviour of the hazard rate. 

Exam style 

Exam style Exam style 
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16.7 (i) Show that:  

 
1

12
23 2

4
2

6
9

y

x

e dy P x


  
  

 
   [5] 

Hint: use the substitution 
1
23u y  and transform the integrand into the PDF of the (2,1)Gamma  

distribution. 

(ii) Hence deduce an expression involving a chi-squared probability for the mean residual life 

for the 
1

3,
2

W  
 
 

 distribution.   [2] 

(iii) By calculating the values of mean residual life function when 1x  , 4x   and 9x  , 

determine whether the mean residual life of the 
1

3,
2

W  
 
 

 distribution is an increasing or 

decreasing function of x .   [2] 
    [Total 9] 
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Chapter 16 Solutions 

16.1 (i) Extreme events 

Extreme events are outcomes that have a very low probability of occurrence but involve very 
large sums of money.    

In an insurance context, they may arise as a result of a single cause that has a high financial cost 
(eg a bodily injury claim or complete destruction of a building) …  

… or as an accumulation of events with a related cause (eg flood damage to a large number of 
houses in one town).  

(ii) Why extreme events are modelled separately 

The majority of risk events fall within the main body of the fitted distribution and can usually be 
modelled reasonably accurately by one of the standard statistical distributions.  

However, there is usually a lack of past data on extreme events. 

If a distribution is fitted to the whole dataset, the parameter estimates will reflect where the bulk of 
the data values lie rather than the extreme events.  This might mean the fitted distribution 
understates the probability of future extreme events.   

Therefore, a different approach to modelling extreme events is taken, eg by considering the 
distribution of block maxima or the distribution of threshold exceedances. 

16.2 (i) Describe the GEV distribution 

The maximum value, MX , in a sample of n  IID random variables 1 2, ,..., nX X X  tends to a 

particular distribution as the sample size increases.  This is called the generalised extreme value 
(GEV) distribution.    [1] 

The GEV distribution has CDF: 

 

1
( )

exp 1 0

( )

( )
exp exp 0

x

H x

x

  


 


              
           

 [1] 

The key parameter is the shape parameter,  . [½] 

When 0  , we have the Fréchet-type GEV distribution. [½]  

This is the limiting form for ‘heavy tail’ underlying distributions with a finite lower bound, such as 
the Pareto distribution.                                         [1] 

When 0  , we have the Weibull-type GEV distribution. [½] 
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This is the limiting form for underlying distributions with a finite upper bound, such as the 
uniform distribution.    [1] 

When 0  , we have the Gumbel-type GEV distribution.   [½] 

This is the limiting form for most other underlying distributions that have finite moments, such as 
the normal and lognormal distributions.   [½] 

The parameters   and   are the location and scale parameters, respectively.  These will differ 

depending on the underlying distribution. [½] 

(ii) Alternative approach 

As an alternative to focusing upon a single maximum value, we can consider the distribution of all 
the claim values that exceed some threshold, u .  The distribution of |X u X u   is called the 

threshold exceedances distribution. [1] 

A similar theory to GEV predicts that the limiting distribution, as u  , is a generalised Pareto 
distribution (GPD).  [½] 

The GPD has CDF: 

 

1 1 0

( )

1 exp 0

x

G x
x









         
  

    
 

 [1] 

The parameters   and   are the scale and shape parameters, respectively.   

In order to fit the tail of a distribution we need to select a suitably high threshold and then fit the 
GPD to the values in excess of that threshold.   [½] 

(iii) Key advantage of the GPD method 

The GPD method has the advantage that it uses a larger part of the data and models all the large 
claims above the threshold, not just the single highest value. [1] 

16.3 (i) Probability of a claim greater than £10,000 using an exponential distribution 

The claims distribution is 
1

2,500
Exp

 
 
 

.    

Using the formula for CDF of an exponential random variable given on page 11 of the Tables, we 
have: 

 10,000 4( 10,000) 1 ( 10,000) 1 (10,000) 0.0183XP X P X F e e           [1] 
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(ii)(a) Probability that at least one claim will exceed £10,000 using an exact method 

The required probability is:   

 

   

 

   

 

1 100 1 100

1 100

1 100

1004

max{ , , } 10,000 1 max{ , , } 10,000

1 10,000, , 10,000

1 10,000 10,000

1 1 0.8425

P X X P X X

P X X

P X P X

e

   

   

     

   

 





 [2] 

(ii)(b) Probability that at least one claim will exceed £10,000 using an approximate method 

The approximate distribution of 1 100max{ , , }X X  is a Gumbel-type GEV distribution with CDF:   

100

100
( ) exp exp

x
H x




   
          

  

where: 

 100 2,500 ln100 11,512.93      and   100 2,500   [1] 

So:   

 

   1 100 1 100

100

100

max{ , , } 10,000 1 max{ , , } 10,000

10,000
1 exp exp

10,000 11,512.93
1 exp exp

2,500

1 0.1602 0.8398

P X X P X X




   

   
           

             

  

 

 [2] 

(iii) Assumptions 

The two key assumptions are that all claims come from an exponential distribution with mean 
£2,500 and that they are statistically independent.   [1]  
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16.4 The CDF of the threshold exceedances is given by:   

 
( ) ( )

( )
1 ( )u

F x u F u
F x

F u
 




   

If the individual losses follow a ( , )Pa    distribution, then: 

 

1 1

( )

1 1

1

u

x u u
F x

u

u x u

u

u
u x

 



 





 
 




 
 







                            
         

           
 
  

     
  

This is the CDF of the ( , )Pa u    distribution.  So the distribution of the threshold exceedances is 

( , )Pa u   .    

16.5 Comparing the two density functions and taking the limit as x  , we have: 

  
 

1

1

( )
lim lim

( )

lim

gamma x x

x xexp

x

f x
x e e

f x

C x

   




  
 









 

where C  is a constant. 

When 1  : 

 
( )

( )
gamma

exp

f x

f x
   as  x    

Hence the ( , )Gamma   distribution has the heavier tail. 
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16.6 (i) Hazard rate for the Weibull distribution 

The hazard rate for the ( , )W c   distribution is: 

1

1

( )
( )

1 ( )

cx

cx

f x
h x

F x

c x e

e

c x













 












 

(ii) Comment on behaviour 

If 1  , then this hazard rate is an increasing function of x , which corresponds to a light tail. 

If 0 1  , then the hazard rate is a decreasing function of x , which corresponds to a heavy tail. 

16.7 (i) Show the integral expression 

Using the substitution, 
1
23u y , we have: 

  
2

3
u

y    
 

    

and   
2
9

dy
u

du
   [1] 

Hence the integral becomes: 

 
1
2

1
2

3

3

2
9

y u

x
x

e dy ue du
 

    [1] 

The integrand now resembles, but is not quite, that of the (2,1)Gamma  distribution. 

We can transform the integrand into that of the (2,1)Gamma  distribution by adjusting the 

constants inside and outside the integral: 

 
 

 

1
2

1
2

2
3

2

3

22 1
9 21

y u

x
x

e dy ue du
 

  
     

    [1] 

Now (2) 1! 1    and the integral is the probability that a (2,1)Gamma  random variable takes a 

value greater than 
1
23x .  So: 

 
1

12
23 2

3
9

y

x

e dy P U x


    
     where (2,1)U Gamma  [1] 
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Using the relationship between the gamma and chi-squared distributions (given on page 12 of the 

Tables),  we see that that 2
42U  .  Hence: 

 
1

1 12
2 23 2

4
2 2

2 6 6
9 9

y

x

e dy P U x P x


          
      [1] 

(ii) Mean residual life 

The mean residual life for the 
1

3,
2

Weibull  
 
 

 distribution is: 

 

 

1
2

1
2

1
2

1
2

3

3

2
4

3

1 ( )
( )

1 ( )

2
6

9

x

y
x

x

x

F y dy
e x

F x

e dy

e

P x

e





 












  
 





  [2] 

(iii) Nature of the mean residual life function 

When 1x  , we have 
   22 249 9

3 3

6 1 0.8009
( ) 0.8887

P
e x

e e


 

  
   . [½] 

When 4x  , we have 
   22 249 9

6 6

12 1 0.9826
( ) 1.5599

P
e x

e e


 

  
   . [½] 

When 9x  , we have 
   22 249 9

9 9

18 1 0.9988
( ) 2.1608

P
e x

e e


 

  
   . [½] 

The mean residual life is an increasing function of x , suggesting that this distribution has a heavy 
tail.     [½] 
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End of Part 4 

What next?   

1. Briefly review the key areas of Part 4 and/or re-read the summaries at the end of 
Chapters 13 to 16. 

2. Ensure you have attempted some of the Practice Questions at the end of each chapter in 
Part 4.  If you don’t have time to do them all, you could save the remainder for use as part 
of your revision. 

3. Attempt Assignment X4. 
 

 

 

 

Time to consider …  
 … ‘revision and rehearsal’ products 

Revision Notes – Each booklet covers one main theme of the course and includes 
integrated questions testing Core Reading, relevant past exam questions and other useful 
revision aids.  One student said: 

‘Revision books are the most useful ActEd resource.’ 

ASET – This contains past exam papers with detailed solutions and explanations, plus lots of 
comments about exam technique.  One student said: 

‘ASET is the single most useful tool ActEd produces.  The answers do go 
into far more detail than necessary for the exams, but this is a good 
source of learning and I am sure it has helped me gain extra marks in 
the exam.’ 

You can find lots more information, including samples, on our website at www.ActEd.co.uk. 

Buy online at www.ActEd.co.uk/estore 
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All study material produced by ActEd is copyright and is sold 
for the exclusive use of the purchaser.  The copyright is 

owned by Institute and Faculty Education Limited, a 
subsidiary of the Institute and Faculty of Actuaries. 

 

Unless prior authority is granted by ActEd, you may not hire 
out, lend, give out, sell, store or transmit electronically or 

photocopy any part of the study material. 

 

You must take care of your study material to ensure that it 
is not used or copied by anybody else. 

 

Legal action will be taken if these terms are infringed.  In 
addition, we may seek to take disciplinary action through 

the profession or through your employer. 

 

These conditions remain in force after you have finished 
using the course. 
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Copulas 

 

Syllabus objectives 

1.3 Introduction to copulas 

 1.3.1 Describe how a copula can be characterised as a multivariate distribution 
function which is a function of the marginal distribution functions of its 
variates, and explain how this allows the marginal distributions to be 
investigated separately from the dependency between them. 

1.3.2 Explain the meaning of the terms dependence or concordance, upper and 
lower tail dependence; and state in general terms how tail dependence can 
be used to help select a copula suitable for modelling particular types 
of risk. 

1.3.3 Describe the form and characteristics of the Gaussian copula and the 
Archimedean family of copulas. 
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0 Introduction 

Insurance and investment companies are often interested in being able to compute the joint 
probability of events occurring, for example the joint probability of losses on different classes of 
business or on investments, or the joint probability of default on investments.  One way of 
calculating a joint probability is to use a joint PDF (or probability function in the case of discrete 
random variables) and then to integrate (or sum) this to find the probability. 

There are a number of drawbacks to this approach.  First of all, we would need to specify fully the 
joint distribution.  This is not usually easy to determine unless, for example, all the underlying 
individual distributions are normal.  Even if we can specify the joint distribution, it is not typically 
clear how the joint PDF (or probability function) relates to the individual PDFs (or probability 
functions) and what the nature of the association is between them. 

An alternative way of calculating a joint probability is to use a copula.  A copula is a function that 
takes as inputs marginal CDFs and outputs a joint CDF. 

For example, suppose an insurer wants to work out the joint probability that annual losses on its 

household portfolio, HX , will be less than or equal to £5m and that annual losses on its motor 

portfolio, MX , will be less than or equal to £3m.  For simplicity of calculation, we assume that the 

two portfolios give rise to losses independently. 

Measuring in £m and using the assumption of independence, we calculate the probability as: 

     5, 3 5 3H M H MP X X P X P X       

This calculation involves a copula function.  We have taken the marginal CDFs as inputs: 

   5 5
HX HF P X   and    3 3

MX MF P X   

and outputted a joint CDF: 

   , 5,3 5, 3
H MX X H MF P X X    

The copula function that we’ve used here is called the independence (or product) copula and can 
be expressed as follows: 

        ,
H M H MX H X M X H X MC F x F x F x F x      or as  ,C u v uv   

where  
HX Hu F x  and  

MX Mv F x  

Of course, it is not always the case that the relationship between the random variables is one of 
independence.  However, there are many distinct copula functions, each of which expresses 
different types and levels of association between the variables.   

In Sections 1 to 3 of this chapter we develop ideas leading to the definition of copula.  In 
Sections 4 to 6 we look at different types of copula functions.  In Sections 7 and 8 we introduce 
some practical applications of copulas. 
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1 Marginal and joint distributions 

1.1 Joint distribution and density functions 

The meaning of jointly distributed random variables, marginal distributions and conditional 
distributions was described in Subject CS1. 

Recall from Subject CS1 that for two variables, the joint (cumulative) distribution function 
(CDF) is: 

     , , ( , )X YF x y P X x Y y
 

This can be extended from the bivariate case to the multivariate case in d  dimensions: 

 
     

1 2, ,..., 1 2 1 1 2 2, ,..., ( , , , )
dX X X d d dF x x x P X x X x X x

 

In the context of joint distribution functions, the individual distribution of each of the 
variables in isolation is known as its marginal distribution.   

In the bivariate case, where random variables are continuous, we can derive the joint CDF by 
integrating the joint PDF, as follows: 

 , ,( , ) ,X Y X Y
s x t y

F x y f s t ds dt
 

    

1.2 Marginal distribution and density functions 

To compute the marginal PDF from a joint PDF, we ‘integrate out’ the other variable: 

,( ) ( , )X X Y
y

f x f x y dy    

To compute a marginal CDF, we integrate the marginal PDF as follows: 

 ( )X X
s x

F x f s ds


   

The formulae above can be generalised from 2-dimensions (bivariate or joint case) to higher 
dimensions (multivariate case). 

1.3 Standard joint distribution and density functions 

Example (‘off the shelf’) multivariate statistical distributions are: 

 the multivariate normal distribution, where the marginal distributions are all normal 

 the multivariate Student’s t  distribution, where the marginal distributions are all 
t  distributions. 

The question below acts as a refresher on joint and marginal CDFs and PDFs and how they relate 
to each other. 
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Question 

The joint PDF for two continuous random variables X  and Y  is: 

    1
, 20

, 4X Yf x y x y  ,  0 2x  , 0 2y   

(i) Derive a formula for the joint CDF,  , ,X YF x y .  

(ii) Derive formulae for the marginal PDFs,  Xf x  and  Yf y , and comment on whether X

and Y are independent.  

(iii) Derive formulae for the marginal CDFs,  XF x  and  YF y .  

Solution 

(i) Joint CDF 

The joint CDF is obtained by integrating the joint PDF with respect to both variables: 
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(ii) Marginal PDFs 

The marginal PDFs are obtained by ‘integrating out’ the other variable in the joint PDF: 

             
2 2 2

21 1 1 1
, 20 20 20 1000 0

, 4 2 2 8 4X X Y
y y

f x f x y dy x y dy xy y x x
 

              

 

For X  and Y  to be independent, we must have: 

, ( , ) ( ) ( )X Y X Yf x y f x f y   

In this case, the product of the marginal PDFs in (ii) is not equal to the joint PDF in (i).  We 
therefore deduce that X  and Y  are not independent. 

(iii) Marginal CDFs 

The marginal CDFs are obtained by integrating the marginal PDFs: 

          2 21 1 1 1 1 1
10 10 2 10 2 200

0 0

4 4 4 8
x x x

X XF x f s ds s ds s s x x x x              

         2 21 1 1 1
10 10 10 100

0 0

1 4 2 2 1 2
y y y

Y YF y f t dt t dt t t y y y y               

 
In the above question we have shown that the two random variables are not independent.  
However, the nature of the association is only implicit in the formulae for the joint PDF and joint 
CDF.  We can’t immediately see the nature and extent of their association just by looking at the 
formula for the joint CDF. 

Later in this chapter we will see how copula functions explicitly describe the full nature and extent 
of the association between random variables.  However, before we do that let’s look at some 
simpler statistical measures of association. 

 

  

           
2 2 2

21 1 1 1 1
, 20 20 2 20 1000 0

, 4 4 2 8 1 4Y X Y
x x

f y f x y dx x y dx x xy y y
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2 Association, concordance, correlation and tail dependence 

2.1 Introduction to terminology 

Variables are said to be associated if there is some form of statistical relationship between them – 
whether causal or not.  To facilitate comparisons, measures of association can be constructed.   

Coefficients of association are generally designed so that their values vary between −1 and +1. 
Their absolute values increase with the strength of the relationship.  They take a value of +1 
(or −1) when there is perfect positive (or negative) association. 

Any one particular type of coefficient of association measures a particular form of association.  
For example, Pearson’s correlation coefficient measures the degree to which there is a linear 
relationship between the variables. 

Concordance is another particular form of association.  Broadly speaking, two random variables 
are concordant if small values of one are likely to be associated with small values of the other, 
and vice versa.   

Spearman’s rho and Kendall’s tau (discussed in Subject CS1) are two examples of measures of 
concordance. 

Note that a positive association between two variables does not necessarily imply that one 
is dependent on the other.  For example, both might be dependent on a third (perhaps 
unobserved) variable, with neither being directly dependent on the other.  A common pitfall 
for journalists is to forget that ‘correlation does not imply causation’. 

2.2 Pearson’s linear correlation coefficient 

We have previously met the linear correlation coefficient (also known as Pearson’s  ), 

which measures how strongly the values of two variables are related. 

Pearson’s rho is defined as: 

 ,
cov( , )

var( )var( )
X Y

X Y

X Y
   

Question 

Pearson’s rho takes values between –1 and +1.  Outline what it means when: 

(a) , 1X Y     

(b) , 1X Y     

(c) , 0X Y  .  
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Solution 

(a) When Pearson’s rho is equal to +1, the random variables X  and Y  are perfectly positively 
correlated.  This means that there is a perfectly increasing linear relationship between the 
values that the two random variables take. 

(b) When Pearson’s rho is equal to –1, the random variables X  and Y  are perfectly 
negatively correlated.  This means that there is a perfectly decreasing linear relationship 
between the values that the two random variables take. 

(c) When Pearson’s rho is equal to 0, the random variables X  and Y  are uncorrelated.  This 
means that there is no linear relationship between the values that the two random 
variables take. 

 
Since Pearson’s rho is a measure of linear association between variables, it remains unchanged 
under a linear transformation of the variables, ie Pearson’s rho for the random variables aX b  
and cY d  has the same value as Pearson’s rho for X  and Y .  

However, if we apply a non-linear transformation to the random variables, it is not necessarily the 
case that the value of Pearson’s rho will stay the same.  For example, if we calculate Pearson’s rho 

for the random variables Xe  and Ye , this will not necessarily give us the same value as  Pearson’s 
rho for X  and Y .  In many respects this is counter-intuitive: we have applied a monotonically 
increasing function to the random variables and hence we might expect the degree of association 
to stay the same. 

Desirable properties of a measure of concordance / association 

A good measure of the concordance (or association) between two variables should have a 
number of properties.  These include invariance, which requires that the measure of 
concordance does not change if we apply the same monotone function to the value of each 
variable.  Pearson’s   does not have this property. 

2.3 Rank correlation coefficients 

Two commonly used measures of concordance that are more robust than Pearson’s   and 

are invariant are Spearman’s   (often called the rank correlation) and Kendall’s  . 

Measures of rank correlation look at the association between the position (or rank) of 
observations in a data series when they are arranged in order.  For example, recall from Subject 
CS1, that Spearman’s  S   can be calculated as: 

 2
2

1

6
1

( 1)

T

S i
i

d
T T




 

  

where: 

 T  is the number of (pairs of) observations 

 id  is the difference in rank for the i th observation (pair). 
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Properties of rank correlation coefficients 

Spearman’s rho and Kendall’s tau measure the degree of concordance between the rank (or 
position) rather than between the actual observations.  This means that, even if the value of an 
observation changes, as long as its relative ranking stays the same, then the measure of 
concordance will remain the same.  For example, we could apply an exponential transformation 
to the observations and both Spearman’s rho and Kendall’s tau would be unchanged. 

2.4 Tail dependence 

The correlation measures described above each try to ‘summarise’ the nature and extent of the 
association between variables into a single statistic.  Two key shortcomings of such statistics are: 

 information is lost in the summarisation process 

 they capture the interdependency through the whole distribution, and this may be of less 
interest than the interdependency in the tails of the distribution. 

It is often the case in insurance and investment applications that large losses tend to occur 
together.  For example a hurricane could result in large losses on several different property 
insurance policies sold by the same company or a stock market crash could lead to large 
losses on a number of investments in the same investment portfolio. 

So the relationships between the variables at the extremes of the distributions, ie in the 
upper and lower tails, are of particular importance.  These can be measured using the 
coefficients of upper and lower tail dependence. 

Coefficient of upper tail dependence 

We can define the coefficient of upper tail dependence as: 

 

 


  1 1

1
lim ( ) ( )U X Y

u
P X F u Y F u

 

This coefficient is a probability, so it takes a value between 0 and 1.   

The coefficient of upper tail dependence indicates whether high values of one random variable,
,X  tend to be linked with high values of another random variable Y .  

It considers the probability of the random variable X  taking a value in the upper tail of its 
distribution (eg a tail with a probability mass of 5% 0.95u  ), given that the random variable Y  
takes a value in the same sized upper tail of its distribution.   

Specifically, the coefficient of upper tail dependence is the limiting value of this probability as 

1u  , ie as we move further into the upper tail (from below). 
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Coefficient of lower tail dependence 

The coefficient of lower tail dependence is defined as: 

  

 


  1 1

0
lim ( ) ( )L X Y

u
P X F u Y F u  

Again this coefficient is a probability, so takes a value between 0 and 1.   

The coefficient of lower tail dependence indicates whether low values of one random variable, X , 
tend to be linked with low values of another random variable Y .  

It considers the probability of the random variable X  taking a value in the lower tail of its 
distribution (eg a tail with a probability mass of 5% 0.05u  ), given that the random variable Y  
takes a value in the same sized lower tail of its distribution.   

Specifically, the coefficient of lower tail dependence is the limiting value of this probability as 

0u  , ie as we move further into the lower tail (from above). 
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3 Copulas 

3.1 Expressing the association between variables explicitly 

The joint distribution combines the information from the marginal distributions and the way 
in which the variables depend on each another.  However, it expresses this dependence 
implicitly.  We cannot immediately see the nature of the interdependence simply by looking 
at the formula for the joint distribution function. 

Copulas provide an alternative approach that expresses the interdependence between the 
variables explicitly.  They allow us to deconstruct the joint distribution of a set of variables 
into components (the marginal distributions plus a copula) that can be adjusted 
individually. 

3.2 Definition of a copula 

A copula is a function that expresses a multivariate cumulative distribution function in 
terms of the individual marginal cumulative distributions. 

It is important to remember that a copula is a function.  It takes marginal probabilities of random 
variables as inputs, and outputs a corresponding joint probability. 

Definition of a copula 

For a bivariate distribution, the copula is a function XYC  defined by: 

       ,, , ,XY X Y X YC F x F y P X x Y y F x y        

This is often written in the more compact form: 

    ,, ,X YC u v F x y   where  Xu F x  and  Yv F y  

This definition can be extended to the multivariate case where we have: 

   
1 21 2 , , , 1 2, , , , , ,

dd X X X dC u u u F x x x     where  ii X iu F x  

Note that the arguments 1 2, , , du u u  and the output value of the copula function are 

restricted to the range  0,1 , as they correspond to probabilities. 

3.3 Three properties of copulas 

Copulas must also satisfy three technical properties to ensure that they correctly capture 
the properties we would expect of a joint distribution in all circumstances. 

Although not included in the Core Reading, we outline these additional three properties below: 

1. A copula is an increasing function of its inputs: 

 *
1 1,..., ,..., ,..., ,...,i d i dC u u u C u u u     for *

i iu u  and 1,...,i d   
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 This makes sense from a probabilistic perspective because, if *
i iu u , then 

        * * 1 * 1  for corresponding   and 
i ii i i i i X i i X iP X x P X x x F u x F u      , and hence: 

 *
1 1 1 1( ,..., ,..., ) ( ,..., ,..., )i i d d i i d dP X x X x X x P X x X x X x        

2. If all the marginal CDFs are equal to 1 except for one of them, then the copula function is 
equal to the value of that one marginal CDF: 

 1, ,1, ,1, ,1i iC u u   for 1,2, ,i d   and  0,1iu   

This makes sense because  1 1k k ku P X x     (ie a certainty), for  1
kk X kx F u , and 

the only uncertainty in the above joint probability is the marginal probability with respect 
to the i th variable. 

3. A copula function always returns a valid probability: 

   1 2, , , 0,1dC u u u   

3.4 Sklar’s theorem 

Sklar demonstrated in 1959 that the dependence structure of a set of random variables can 
be captured using copulas.  The theorem is as follows: 

Sklar’s theorem 

Let F  be a joint (cumulative) distribution function with marginal cumulative distribution 

functions 1, , dF F .  Then there exists a copula, C , such that for all  1, , ,dx x    : 

       1 1 1, , , ,d d dF x x C F x F x     

In the case of variables that have a continuous distribution, the copula is unique. 

Sklar’s theorem tells us that if we have a joint CDF and marginal CDFs, then these can be linked by 
a copula function, ie a copula function exists. 

The converse also holds: 

Converse of Sklar’s theorem 

If C  is a copula and 1, , dF F  are univariate cumulative distribution functions, then the 

function F defined above is a joint cumulative distribution function with marginal 
cumulative distribution functions 1, , dF F . 
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Question 

The joint probability density function for two continuous random variables X  and Y  is: 

    1
, 20

, 4X Yf x y x y  ,  0 2x  , 0 2y   

(i) Derive formulae for the inverse cumulative distribution functions  1( )XF u  and 1( )YF v . 

(ii) Hence derive a formula for the copula function ( , ) ( , )XYC u v F x y .  

Solution 

(i) Inverse CDFs 

In the solution to the question at the end of Section 1.3, we showed that: 

          2 21 1 1 1 1 1
10 10 2 10 2 200

0 0

4 4 4 8
x x x

X XF x f s ds s ds s s x x x x              

         2 21 1 1 1
10 10 10 100

0 0

1 4 2 2 1 2
y y y

Y YF y f t dt t dt t t y y y y               

To find the inverse CDFs, we need to invert these CDFs by making x  and y  the subject of the 

equations, which in this case are quadratic equations. 

We have: 

 1
20

( ) ( 8) Xu F x x x    

  2 8 20 0x x u    

  
28 8 4(1)( 20 ) 8 64 80

4 16 20
2(1) 2

u u
x u

      
       

Only the positive root will result in values of x  in the range 0 2x  .  So:  

1( ) 4 16 20x F u u      

Similarly: 

 1
10

( ) (1 2 )Yv F y y y    

   1 1
4

( ) 1 1 80y F v v      
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(ii) Copula function 

The copula function, which is defined on the range 0 , 1u v  , is then obtained by writing the 

joint CDF in terms of u  and v : 

  

   

1
40

1
160

[ , ] ( , )

80

4 16 20 1 1 80 24 16 20 20 1 80

XYC u v F x y

xy x y

u v u v



 

           

 

 

3.5 Expressions of tail dependence and the survival copula 

Lower tail dependence 

Recall that the coefficient of lower tail dependence is defined as: 

 
 1 1

0
lim ( ) ( )L X Y

u
P X F u Y F u



 


  

 

The coefficient of lower tail dependence measures the limit of this probability as the lower tail 
becomes smaller and smaller, as u  tends to 0 from above.  We can write: 

 
0

limL
u

P X x Y y


     

where x  and y  are the lower tail percentage points of the distributions of the random variables 

X  and Y  respectively: 

    P X x P Y y u      

Using the definition of conditional probabilities, the equation for the coefficient of lower tail 
dependence becomes: 

 
 0

,
limL

u

P X x Y y

P Y y




 



 

The expression in the numerator of this fraction is a joint (cumulative) distribution function, ie it is 

the copula function  ,C u u .  The expression in the denominator is the probability that Y  takes a 

value less than or equal to y , which we know is u .  This leads to the following useful formula: 

Coefficient of lower tail dependence in terms of the copula function 

 
 




0

,
limL

u

C u u
u

  

ie the coefficient of lower tail dependence can be calculated directly from the copula 
function. 
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The coefficient of lower tail dependence can take values between 0 (no dependence) and 1 
(full dependence). 

The survival copula 

To define the upper tail dependence, we need to look at the opposite end of the marginal 
distributions.  Associated with each copula function is a survival copula function (indicated 
with a bar), which is defined by: 

        , , ,X YF x y P X x Y y C F x F y        

where    1X XF x F x   and    1Y YF y F y  . 

By the principle of inclusion / exclusion, we have: 

        and/or ,P X x Y y P X x P Y y P X x Y y          

ie      1 ( , ) ,P X x Y y P X x P Y y P X x Y y            

         , 1 ,P X x Y y P X x P Y y P X x Y y           

So the survival copula is related to the original copula function by: 

    1 ,1 1 ,C u v u v C u v       

Coefficient of upper tail dependence in terms of the survival copula function 

We can then define the coefficient of upper tail dependence as:  

   1 1

1 0

,
lim ( ) ( ) limU X Y

u u

C u u
P X F u Y F u

u


 

 

 
     

Let’s look more closely at how the above result is derived. 

The coefficient of upper tail dependence measures the limit of this probability as the upper tail 
becomes smaller and smaller, as u  tends to 100% from below. 

We have: 

 
1

limU
u

P X x Y y


     

where x  and y  correspond to upper tail percentage points of the distributions of random 

variables X  and Y  respectively: 

    P X x P Y y u      

and:  

    1P X x P Y y u      
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Using the definition of conditional probabilities, the equation for the coefficient of upper tail 
dependence becomes: 

 
 1

,
limU

u

P X x Y y

P Y y




 



 

The expression in the numerator of this fraction can be worked out using the principle of 
inclusion / exclusion result in the Core Reading above: 

       

 

 

, 1 ,

1 ,

1 2 ,

P X x Y y P X x P Y y P X x Y y

u u C u u

u C u u

         

   

  

 

The expression in the denominator is the probability that Y  takes a value greater than y , which 

we know is 1 u .  So we have the following formula: 

Coefficient of upper tail dependence in terms of the copula function   

 
1

1 2 ,
lim

1U
u

u C u u

u




 



 

ie the coefficient of upper tail dependence can be calculated directly from the copula 
function. 

Alternatively, we can express this using the survival copula function as: 

   
1 0

1 ,1 ,
lim lim

1U
u u

C u u C u u

u u


  

 
 


 

3.6 Types of copula function 

There are three main families of copula that we will go on to consider in the subsequent sections 
of this chapter: 

(i) fundamental copulas 

(ii) explicit copulas 

(iii) implicit copulas.  
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4 Fundamental copulas 

Fundamental copulas represent the three basic (or fundamental) dependencies that a set of 
variables can display, namely: 

 independence 

 perfect positive interdependence, and  

 perfect negative interdependence.   

These copulas are referred to as the: 

 independence (or product) copula 

 co-monotonic (or minimum) copula 

 counter-monotonic (or maximum) copula. 

Collectively these three copulas are referred to as fundamental copulas.  They are specific 
cases of a more general family of copulas called Fréchet-Höffding copulas. 

In the bivariate case, the co-monotonic and counter-monotonic copulas represent the extremes 
of the possible levels of association between variables.  They are therefore the upper and lower 
boundaries for all copulas – known as the Fréchet-Höffding bounds.  The co-monotonic copula is 
the upper bound copula and the counter-monotonic copula is the lower bound copula. 

4.1 Independence (or product) copula 

One example of a bivariate copula is the product copula [ , ]C u v uv .  Here we have: 

          , , ,X Y X Y X YF x y C F x F y F x F y     

or:      ,P X x Y y P X x P Y y      

This captures the property of independence of the two variables X  and Y , and so is also 
called the independence (or product) copula. 

We looked at an example involving the independence (or product) copula in the introductory 
section of this chapter. 

Question 

Derive the coefficients of upper and lower tail dependence for the independence (or product) 
copula. 

Solution 

The independence (or product) copula is expressed as: 

 ,C u v uv   
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The coefficient of lower tail dependence is given by: 

 
0

2

0

0

,
lim

lim

lim

0

L
u

u

u

C u u

u

u
u

u






















 

The coefficient of upper tail dependence is given by: 

 

 

 

1

2

1

2

1

1

1 2 ,
lim

1

1 2
lim

1

1
lim

1

lim 1

0

U
u

u

u

u

u C u u

u

u u
u

u

u

u


















 




 









 



 

 

4.2 Co-monotonic (or minimum) copula 

This copula is used where random variable demonstrate perfect positive interdependence.  The 
co-monotonic copula is defined in the bivariate case as: 

    , min ,C u v u v
 

Here we have: 

         , min ,X Y X YC F x F y F x F y     

or:       , min ,P X x Y y P X x P Y y      

To help us understand why the co-monotonic copula is the minimum of the two marginal CDFs, 
let’s consider an example where two random variables X  and Y display perfect positive 
interdependence. 
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Question 

A statistician believes that there is a perfect positive interdependency between the Consumer 
Price Index (CPI) inflation rate, X (per annum), and the Retail Price Index (RPI) inflation rate, Y
(per annum), and that the relationship can be modelled by the equation: 

 0.01Y X      

Show that       , min ,P X x Y y P X x P Y y     . 

Solution 

We have: 

   

 

, , 0.01

, 0.01

P X x Y y P X x X y

P X x X y

     

   
 

Now, for X  to be less than or equal to both x  and 0.01y  , it must be less than or equal to the 

smallest of these.  So: 

    
    
    
    

, min , 0.01

min , 0.01

min , 0.01 0.01

min ,

P X x Y y P X x y

P X x P Y y

P X x P Y y

P X x P Y y

    

   

    

  

   

The second line uses the fact that   min , , ,...P X a b c  is just the smallest of the probabilities 

     , , ,...P X a P X b P X c    ie        min , , ,...P X a P X b P X c   . 

 

4.3 Counter-monotonic (or maximum) copula 

The co-monotonic copula captures the relationship between two variables whose values are 
perfectly positively interdependent on each other, while the counter-monotonic copula 
captures the corresponding inverse relationship. 

The counter-monotonic copula is defined in the bivariate case as: 

     , max 1, 0C u v u v  

Here we have: 

        , max 1, 0X Y X YC F x F y F x F y       

or:        , max 1, 0P X x Y y P X x P Y y        
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Question 

Let X  and Y  be two random variables that are perfectly negatively related as follows: 

 Y X    

Show that      , 1P X x Y y P X x P Y y       . 

Solution 

We have: 

   

 

 

   

   

   

   

   

, ,

,

1

1

P X x Y y P X x X y

P X x X y

P y X x

P X x P X y

P X x P X y

P X x P Y y

P X x P Y y

P X x P Y y

     

   

   

    

    

   

      

    

 

 

4.4 The multivariate case 

The independence and co-monotonic copulas can be extended in the obvious way to the 
multivariate case.  However, the counter-monotonic copula cannot.  This is because it is not 
possible to have three or more variables where each pair has a direct inverse relationship. 

In the multivariate case, we can extend the independence and co-monotonic copulas to d  
dimensions as follows: 

       
1 11 1,..., ...

d dind X X d X X dC F x F x F x F x       

        1 1min 1 1,..., min ,...,
d dX X d X X dC F x F x F x F x     

However, it is impossible to have three or more variables, eg 1X , 2X  and 3X , each of which 

always move in the opposite direction to all of the others.  This is why the counter-monotonicity 
copula is only defined in two dimensions. 
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4.5 Graphical representation of copulas 

Bivariate copulas can be represented graphically in various ways: 

 scatterplots 

 3D (perspective) representations, and corresponding contour plots.   

Scatterplots 

The relationships implied by a copula can be illustrated using a scatterplot of simulated 
values of u  and v .   

Here we are recognising U  and V  as random variables, uniformly distributed on  0,1 , and 

illustrating the dependence structure between these two variables.  

The diagrams below highlight the differences between the independence, co-monotonic and 
counter-monotonic copulas. 

Scatterplot – Product (Independence) copula 

 

This scatterplot of simulations illustrates the independence of the two variables.  

Each simulation (dot in the above diagram) has been created by: 

 first simulating a particular value for U  as a random number between 0 and 1 

 then, independently, simulating the value for V  as a random number between 0 and 1, 
because there is no association (dependence) between the two variables.   

The variation in density of the dots in the above diagram is due to the random nature of the 
simulations, and the finite size of the sample.  As the number of simulations increases the density 
will be become ever more uniform. 
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In this case, if we know the marginal distributions of X and Y , and observe X x , then we know 

that ( ) ( )XP X x F x u   .  However, knowing this value of u  tells us nothing about the value of v   

as there is no relationship between u and v . 

Scatterplot – Co-monotonic copula 

 

This scatterplot of simulations illustrates a perfect positive interdependence between the two 
variables.   

Each simulation (dot in the above diagram) has been created by: 

 first simulating a particular value for U  as a random number between 0 and 1 

 the value then taken by V  is dictated by u v .   

As before, that the variation in density of the dots on the diagonal is due to the random nature of 
the simulations, and the finite size of the sample. 

Since 1( )Xx F u  and 1( )Yy F u , for all 0 1u  , the diagram reinforces the fact that if X and Y  

are perfectly positively interdependent then: 

 when X  takes a value at a particular percentile of its distribution, Y  also takes a value at 
the same percentile of its distribution 

 when X  takes a ‘high’ (‘low’) value in its possible range, Y  also takes a ‘high’ (‘low’) value 
in its possible range. 
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Scatterplot – Counter-monotonic copula 

 

This scatterplot of simulations illustrates a perfect negative interdependence between the two 
variables.  Under such a relationship, given U u  we can deduce that 1V v u   . 

The diagram reinforces the fact that if X and Y  are perfectly negatively interdependent, when X  
takes a ‘high’ (‘low’) value in its possible range, Y  takes a ‘low’ (‘high’) value in its possible range. 

These scatterplots are important, since, if a corresponding scatterplot based upon the underlying 
data shows features of independence, co-monotonicity or counter-monotonicity, it helps us to 
decide which copula function to fit to the data and, subsequently, use in our modelling. 

3D representations and contour diagrams 

The relationships described by copula functions, illustrated by the scatterplots (above), can also 

be represented in 3 dimensions: u , v  and  ,C u v .   

For example, the following two diagrams illustrate the co-monotonic copula.  The first 
diagram shows the value of the copula plotted vertically in three dimensions.  The second 
diagram shows contour lines of constant value of the copula function. 
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In general, we can interpret such a 3D-diagram as showing: 

    , ,z C u v P X x Y y     

where  u P X x   and  v P Y y  .  Note that [0,0] 0C   and [1,1] 1.C    This is because the 

copula takes the form of a cumulative distribution function.   

 

This second diagram is a two-dimensional representation of the first diagram.  It is generally 
referred to as a contour diagram, as the (contour) lines indicate points of equal height in the 3D 
surface shown in the first diagram.  (Think of taking a bird’s eye view of the first diagram – looking 
down upon it from above.) 

Question 

By considering the scatterplot for the co-monotonic copula that was shown earlier, and 

recognising that    , ,C u v P U u V v   , explain why the second diagram (shown above) 

represents the co-monotonic copula. 
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Solution 

We can estimate  ,P U u V v   by looking at the number of simulations where U u  and V v  

as a percentage of the total number of simulations.  For example, in the simulation used to 
produce the scatterplot for the co-monotonic copula: 

 Consider the condition 0.5U   and 0.5V  , as indicated by the shaded square in the 
diagram below.  About 50% of the simulations are where 0.5U   and 0.5V  , ie the 

sample estimate of  0.5, 0.5P U V   is about 0.5.   

 The same (number of) simulations meet the condition 0.7U   and 0.5V   (indicated by 
the dashed-line rectangle in the diagram below). 

 

This is why (0.5,0.5) and (0.7,0.5) both lie on the same (0.5) contour line in the diagram below: 

 

 
Similar perspective and contour diagrams (to those above) can be created for the other two 
fundamental copulas.  All three sets of diagrams are shown on the next page for ease of 
comparison. 
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(i) independence (or product) copula: 

 

(ii) co-monotonic (or minimum) copula 

 

(ii) counter-monotonic (or maximum) copula: 
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5 Explicit copulas (including Archimedean copulas) 

Explicit copulas have simple closed-form expressions.  Below are three examples of commonly 
used explicit copulas.   

As with statistical distributions such as the Poisson distribution or normal distribution, 
there are also a number of bespoke copulas that arise naturally in specific contexts.  
Examples of these are: 

 the Gumbel copula 

 the Clayton copula 

 the Frank copula. 

In these examples,   is a parameter whose value can be specified.  We will see later that 
this can be used to adjust the strength of the dependence between the variables. 

5.1 Gumbel copula 

The Gumbel copula is defined in the bivariate case as: 

             
  

1
, exp ln lnC u v u v

 
 

Note that the Gumbel copula is often referred to as the Gumbel-Hougaard copula. 

The Gumbel copula describes an interdependence structure in which there is upper tail 
dependence (the level of which is determined by the parameter  ), but there is no lower tail 
dependence. 

A scatterplot of simulated values from the Gumbel copula with parameter value 5   is as 
follows: 
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Question 

(i) Derive the coefficient of upper tail dependence for the Gumbel copula. 

(ii) Comment on how the value of the parameter   affects the degree of upper tail 
dependence in the case of the Gumbel copula. 

Solution 

(i) Tail dependence of the Gumbel copula 

For the Gumbel copula setting u v  gives: 

   

 

  
  
 1/

1

1

1/

1

1

2

2

, exp ( ln ) ( ln )

exp 2( ln )

exp 2 ( ln )

exp 2 ln )

exp ln

C u u u u

u

u

u

u

u





 







 
     

 

 
   

 

  







 

The coefficient of upper tail dependence is given by: 

  12

1 1

1 2 , 1 2
lim lim

1 1U
u u

u C u u u u
u u




  

   
 

 
 

In the limit this fraction has the form 
0
0

, which is undefined.  However, we can use L’Hôpital’s 

rule, ( ) ( )
lim lim

( ) ( )x a x a

f x f x
g x g x 





, to find the value of the limit: 

1 112 2 1
1

1 1

1 2 2 2
lim lim 2 2

1 1U
u u

u u u
u

 


 



 

   
   

 
  

(ii) Comment 

As   increases, 1/2   reduces and hence 12 2   increases.  So increasing the value of the 
parameter   increases the degree of upper tail dependence of the Gumbel copula. 
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5.2 Clayton copula 

The Clayton copula is defined in the bivariate case as: 

    1
, 1C u v u v

       

The Clayton copula describes an interdependence structure in which there is lower tail 
dependence (the level of which is determined by the parameter  ), but there is no upper tail 
dependence. 

A scatterplot of simulated values from the Clayton copula with parameter value 5   is as 
follows: 

 

From the diagram: 

 We might anticipate that there may be a degree of lower tail dependence because the 
simulations in a ‘thin rectangle’ at the bottom of the diagram lie mostly in the ‘small 
square at the left-hand end’ (ie if V v , for small values of v , then it is likely that U v ). 

 

 We might anticipate that there may be a lack of upper tail dependence because the 
simulations in a ‘thin rectangle’ at the top of the diagram do not lie mostly in the ‘small 
square at the right-hand end’ (ie if V v , for large values of v , then we are not confident 
that U v ). 
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5.3 Frank copula  

The Frank copula is defined in the bivariate case as: 

 
   

 
1 11

, ln 1
1

u ve e
C u v

e

 



 



       
 

 

The Frank copula describes an interdependence structure in which there is no upper or lower tail 
dependence.   

A scatterplot of simulated values from the Frank copula with parameter value 5   is as follows: 

 

The lack of tail dependency is indicated in the scatterplot in that, for example, if V takes a value 
very close to 0 or 1, then we are uncertain whether or not U  will also take a value similarly close 
to 0 or 1. 

5.4 Archimedean copulas 

A number of copulas can be specified by a special form of generator function that 
automatically captures the properties required for a copula.  These are called Archimedean 
copulas. 

Archimedean copulas are described by reference to a generator function.  In the bivariate case, 
they take the form: 

        1,C u v u v     

where  x  is the generator function, and  1   is the pseudo-inverse function (explained 

below). 

Archimedean copulas are a subset of explicit copulas.  The Gumbel, Clayton and Frank copulas are 
all examples of Archimedean copulas.   
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For example, consider the Gumbel copula: 

      1, exp ln lnC u v u v
        

  
 

We can see that the Gumbel copula is an example of an Archimedean copula where the generator 

function is    lnx x     and the inverse generator function is    11 expx x     . 

Before we go any further with Archimedean copulas, we need to introduce some maths relating 
to pseudo-inverse functions. 

Pseudo-inverse functions 

In order to define Archimedean copulas, we need to extend the familiar idea of an inverse 

function (eg the inverse of 2( )f x x  is 1( )f x x  ) to ensure that the inverse function is 

defined for all possible arguments.  This is done by defining the pseudo-inverse function 
[ 1]( )x   of a function ( )x  as: 

 
1

[ 1] ( )   if  0 (0)
( )

0   if  (0)

x x
x

x

 







   
   

 

where 1( )x   denotes the ordinary inverse function obtained by inverting the equation 

( )x y  to express y  in terms of x . 

The pseudo-inverse function gives us a means of determining the inverse where the function   

outputs values on a finite rather than infinite range. 

If  0   , the pseudo-inverse is always equal to the ‘ordinary’ inverse and the generator 

function is called a strict generator function. 

General definition of an Archimedean copula 

The definition of Archimedean copulas can be extended to more than 2 dimensions. 

Copulas in the Archimedean family are of the form: 

    1
1

1

,...,
d

d i
i

C u u u 



 
     
 
  

In order to be valid, the generator function    : 0,1 0,    must be a continuous, strictly 

decreasing, convex function with  1 0  . 
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Although this may all seem a little theoretical and complicated, the idea behind Archimedean 
copulas is, in fact, very intuitive.  Remember that a copula function takes as inputs marginal CDFs 
and outputs a joint CDF.  Using the generator function and its inverse, we are: 

 taking probabilities between 0 and 1 (the 'iu s  or marginal CDFs) 

 converting these to numbers greater than 0 using the generator function    

 summing the results  

 converting the result back to a probability (ie the joint CDF) using the inverse 

function 1  . 

Note that the definition of the pseudo-inverse function ensures that, whatever the sum 

1

( )
d

i
i

u

 , the value of the Archimedean copula will always be a valid probability. 

In the bivariate case, we have: 

         1,C u v u v    

We now look at how the Gumbel, Clayton and Frank copulas can be derived using the generator 
function approach. 

Gumbel copula 

For example, the Gumbel copula can be defined by the generator function: 

    lnt t    where    1   

which we can use to deduce an explicit formula for the copula function. 

In this case    


   
0

0 lim ln
t

t  , so the pseudo-inverse function equals the normal 

inverse function.   

The graph of the Gumbel generator function where 5   is illustrated below: 

 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 32  CS2-17: Copulas 

© IFE: 2019 Examinations The Actuarial Education Company 

We can see from this graph of the Gumbel generator function that it looks valid, ie it is a 

continuous, strictly decreasing, convex function,    : 0,1 0,   ,  with  1 0  .   

The inverse generator function can be found by inverting the relationship    lnx y   to 

obtain  1expy x   , so that           1 1 1expx x x   .  We then have: 

            
       

 

11, exp ( ln ) ( ln )C u v u v u v
     

Question 

Confirm algebraically that the Gumbel generator function,    lnt t    ,  is valid. 

Solution 

The generator function is    lnt t    . 

 When 0t  ,    
0

0 lim ln
t

t 


   . 

 When 1t  ,    1 ln1 0    . 

 In the range 0 1t  , lnt  takes increasingly negative values, so that lnt  takes 

decreasing positive values, and hence so does    lnt t    . 

Hence the generator function,    lnt t    , for the Gumbel copula is valid.  

 

Clayton copula 

The Clayton copula is defined by the generator: 

     
1

1t t 


  where     1   

Frank copula 

The Frank copula is defined by the generator: 

 
1

( ) ln
1

tet
e








 
     

  where       

Independence (or product) copula 

The independence (or product) copula is also Archimedean.  Its generator is ( ) lnt t   . 
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Question 

Show that the generator function   lnt t    generates the independence (or product) copula. 

Solution 

The inverse function is found by rearranging the equation lnx t   to make t  the subject of the 
formula: 

   lnx t t           1 expt x x     

We substitute in the generator and inverse generator functions giving: 

 

    
 

1[ , ] ln ln

exp ln

C u v u v

uv

uv

    

    



 

The generator function is valid because: 

    
0

0 lim ln
t

t


    . 

  1 ln1 0    . 

 In the range 0 1t  , lnt  takes increasing values, so that lnt  takes decreasing values. 
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6 Implicit copulas 

The final group of copulas that we consider are called implicit copulas.  These copulas are based 
on (or implied by) well-known multivariate distributions, but no simple closed-form expression 
exists for them.  We look at:  

 the Gaussian copula (based on the multivariate normal distribution)  

 the Student’s t  copula (based on the multivariate Student’s t  distribution). 

6.1 Gaussian copula 

The bivariate Gaussian copula is defined by: 

      
1 1, ( ), ( )C u v u v    

where   is the distribution function of the standard normal distribution and   is the 

distribution function of a bivariate normal distribution with correlation  . 

Applying this Gaussian copula to normal marginal distributions will result in a bivariate 
normal distribution with correlation  . 

An example scatterplot for the Gaussian copula, with a correlation parameter of 0.85   is: 

 

In this example ( 0.85  ): 

 if 1u  , then it is extremely unlikely that we observe 0v   

 if 0u  , then it is extremely unlikely that we observe 1.v   
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The independence, co-monotonic and counter-monotonic copulas are special cases of the 
Gaussian copula where 0  , 1    and 1   , respectively.  

Unless the correlation parameter is equal to 1, ie unless the two random variables are perfectly 
positively interdependent, there is no tail dependence (upper or lower) exhibited by the Gaussian 
copula. 

The bivariate Gaussian copula can be extended to the multivariate case incorporating the 
d d  correlation matrix of the individual random variables.  So this is the unique copula 
that reproduces a joint normal distribution with a specified correlation matrix from the 
individual marginal distributions.  Because it reproduces the joint distribution in this way, it 
is sometimes called an implicit copula. 

The formula defining the bivariate Gaussian copula is mathematically equivalent to the 
following integral form: 

      
   

 

 
     

   
 
1 1

2 2
22

1 1
, exp 2

2 12 1

u u

C u v s t st dsdt
 

 

 

This can be simplified further to: 

 
   

  


1 1

0 2

( ) ( )
,

1

u v tC u v dt



 
   

6.2 Student’s t copula 

The Student’s t  copula is defined by: 

       
1 1

,, ( ), ( )C u v t t u t v     

where t  is the distribution function of a random variable with a Student’s t  distribution 

with   degrees of freedom and ,t   is the distribution function of a bivariate Student’s t  

distribution with correlation  . 

An example scatterplot for the Student’s t  copula, with a correlation coefficient of 0.85   and 

1  , is shown below. 
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There some simulations in the upper-left and lower-right corners of this scatterplot, which was 
not the case in the example scatterplot for the Gaussian copula that we saw earlier (and which 
was based on the same correlation parameter). 

The Student’s t  copula allows the dependencies between the variables to be adjusted more 
finely than the corresponding Gaussian copula. 

One of the disadvantages of the Gaussian copula, is that it has just a single parameter,  .  The 

Student’s t  copula has an additional parameter,  , the number of degrees of freedom, which 

can be used to vary the strength of the association between the two variables, ie the degree of 
tail dependence.  The smaller the value of  , the greater the level of tail dependence.  

In the same way that the standard normal distribution is a limiting case of the Student’s t
distribution (as the number of degrees of freedom tends to infinity), the Gaussian copula is 
the limiting case of the Student’s t copula.   

Specifically, as the number of degrees of freedom tends to infinity,   , the Student’s t  

copula tends approaches the Gaussian copula. 
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7 Choosing and fitting a suitable copula function 

7.1 Choosing a suitable copula function 

If we want to create a mathematical model to represent real-world phenomena then we might 
look at past data and: 

 select and parameterise marginal distributions for each of the relevant variables, and  

 describe and quantify the form and extent of the associations between the variables. 

Examination of the form and levels of association between the variables of interest allows 
us to select a suitable candidate copula from the list of established copulas or to develop a 
new bespoke copula. 

Different copulas result in different levels of tail dependence. 

For example: 

 the Frank copula and the Gaussian copula have zero dependence in both tails, while 
the Student’s t  copula has equal positive dependence in both tails. 

 the Gumbel copula has zero lower tail dependence but upper tail dependence of 

 12 2  .  The Clayton copula, on the other hand, has zero upper tail dependence but 

lower tail dependence of 12  . 

As we would expect, variables related by the independence (product) copula have a 
concordance of 0, whereas variables related by the co-monotonic (minimum) or counter-
monotonic (maximum) copulas have a concordance of +1 and –1 respectively. 

We can summarise the upper and lower tail dependence results in the table below: 

Copula name L  U  

Independence 0 

Co-monotonic 1 

Counter-monotonic 0 

Gumbel 0 1/2 2   

Clayton 
1/2  if 0

0        if 0

 


 


 0 

Frank 0 

Gaussian 
0 if 1

1 if 1






 

Student’s t  

0 if , increasing as  decreases

0 if  and 

 for all  when 
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So the Gumbel copula, with an appropriate value for the parameter  , might be a suitable 
copula to use when modelling large general insurance claims resulting from a common 
underlying cause. 

Question 

State an appropriate copula to use if the data exhibit the following features: 

(a) independence 

(b) high upper tail dependence, but no lower tail dependence 

(c) a high degree of positive interdependence throughout 

(d) high lower tail dependence, but no upper tail dependence 

(e) a high degree of negative interdependence throughout 

(f) no upper or lower tail dependence 

(g) both upper and lower tail dependence. 

Solution 

(a) the independence (or product) copula 

(b) the Gumbel copula 

(c) the co-monotonic copula (perfect positive interdependence), or Frank copula (with a high 
positive parameter to give a strong positive association throughout) 

(d) the Clayton copula 

(e) the counter-monotonic copula, (perfect negative interdependence), or Frank copula (with 
a high negative parameter to give a strong negative association throughout) 

(f) the Frank copula, Gaussian copula, or independence copula 

(g) the Student’s t  copula  

 

7.2 Fitting a copula  

This short section is beyond the syllabus of Subject CS2. 

We have seen above how the form and level of association between the variables (including the 
degree of lower and upper tail dependence) can help us choose a particular copula.  The final step 
is how to parameterise that chosen copula.  For example, if we have chosen to use the Gumbel 
copula in our model, we then have to choose a suitable value of the parameter  . 
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For Archimedean copulas, Kendall’s tau is a function of the parameters of the copula.  Therefore, 
we can fit Gumbel, Clayton and Frank copulas using a method of moments approach.  We would 
calculate Kendall’s tau for the observations and equate this to the formula for Kendall’s tau for 
the copula, solving to obtain the fitted value of  .  

For example, for the Gumbel copula, Kendall’s tau is given by the formula: 

 
1

1


    

If the observed value of Kendall’s tau is 0.75, then using the method of moments gives: 

1 1
1 0.75 0.25

ˆ ˆ

ˆ 4

 



   

 

  

For the Clayton copula, Kendall’s tau is given by the formula: 

 
2







 

If the observed value of Kendall’s tau is 0.75, then using the method of moments gives: 

 

ˆ
ˆ ˆ0.75 0.75 1.5

ˆ 2

ˆ0.25 1.5

ˆ 6

  






   


 

 

  

A similar method can be used for the Frank copula, although the formula for Kendall’s tau is more 
complicated. 

It is also possible to use the method of maximum likelihood estimation to fit the copula 
parameters. 
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8 Calculating probabilities using copulas 

Recall that a copula: 

 is a function 

 takes marginal probabilities of random variables as inputs, and outputs a corresponding 
joint probability 

 for a bivariate distribution is defined by: 

       ,, , ,XY X Y X YC F x F y P X x Y y F x y        

which is often written in the more compact form: 

     ,, ,X YC u v F x y   where  Xu F x  and  Yv F y  

Question 

Let X  a person’s height measured in cm, and Y  weight measured in kg.  Heights and weights 
are each assumed to be normally distributed, and: 

  180 0.81594P X     and  70 0.69146P Y    

(i) Calculate the joint probability that a person’s height is less than or equal to 180cm and 
that their weight is less than or equal to 70kg using: 

(a) the independence (or product) copula 

(b) the Gaussian copula with 0   . 

The following table is required for (i)(a).  It shows an excerpt of values from the bivariate standard 

normal cumulative distribution function:  0 ,x y .   

 

(ii) Compare the two results in (i). 

X
Ф(x,y) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.2500 0.2699 0.2896 0.3090 0.3277 0.3457 0.3629 0.3790 0.3941 0.4080 0.4207
0.1 0.2699 0.2914 0.3127 0.3336 0.3538 0.3733 0.3918 0.4092 0.4255 0.4405 0.4542
0.2 0.2896 0.3127 0.3355 0.3579 0.3797 0.4005 0.4204 0.4391 0.4565 0.4726 0.4874
0.3 0.3090 0.3336 0.3579 0.3818 0.4050 0.4273 0.4484 0.4684 0.4870 0.5042 0.5199
0.4 0.3277 0.3538 0.3797 0.4050 0.4296 0.4532 0.4757 0.4968 0.5166 0.5348 0.5514

Y 0.5 0.3457 0.3733 0.4005 0.4273 0.4532 0.4781 0.5018 0.5242 0.5450 0.5642 0.5818
0.6 0.3629 0.3918 0.4204 0.4484 0.4757 0.5018 0.5267 0.5501 0.5720 0.5922 0.6106
0.7 0.3790 0.4092 0.4391 0.4684 0.4968 0.5242 0.5501 0.5746 0.5974 0.6185 0.6378
0.8 0.3941 0.4255 0.4565 0.4870 0.5166 0.5450 0.5720 0.5974 0.6212 0.6431 0.6631
0.9 0.4080 0.4405 0.4726 0.5042 0.5348 0.5642 0.5922 0.6185 0.6431 0.6658 0.6865
1 0.4207 0.4542 0.4874 0.5199 0.5514 0.5818 0.6106 0.6378 0.6631 0.6865 0.7079
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Solution 

We have  180 0.81594u P X     and  70 0.69146v P Y   . 

(i)(a) Independence (or product) copula 

The independence (or product) copula is given by: 

 ,C u v uv  

The joint probability that a person’s height is less than or equal to 180cm and their weight is less 
than or equal to 70kg is given by the independence (or product) copula as: 

 180, 70 0.81594 0.69146 0.5642P X Y      

(i)(b) Gaussian copula with perfect positive correlation   

The Gaussian copula is given by: 

  1 1, ( ), ( )C u v u v
      

 

The joint probability that a person’s height is less than or equal to 180cm and their weight is less 
than or equal to 70kg is given by the Gaussian copula with 0   as: 

  1 1180, 70 (0.81594), (0.69146)P X Y 
        

 

From page 160 of the Tables, we have: 

1(0.81594) 0.90    

and 1(0.69146) 0.50   

Therefore: 

   180, 70 0.90,0.50P X Y      

Using the excerpt provided in the question for the bivariate standard normal CDF: 

   180, 70 0.90,0.50 0.5642P X Y       

(ii) Compare the results 

The results of both calculations are the same.  This is because, for the multivariate Gaussian 
distribution, a correlation coefficient of 0 implies independence.  
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Chapter 17 Summary 

Association and concordance 

Variables are said to be associated if there is some form of statistical relationship between 
them, whether causal or not.   

Coefficients of association are generally designed so that their values vary between −1 
and +1.  Their absolute values increase with the strength of the relationship.  They take a 
value of +1 (or −1) when there is perfect positive (or negative) association.  A positive 
association between two variables does not necessarily imply that one is dependent on the 
other.   

Pearson’s correlation coefficient measures the degree to which there is a linear relationship 
between the variables. 

Concordance is another particular form of association.  Broadly speaking, two random 
variables are concordant if small values of one are likely to be associated with small values of 
the other, and vice versa.   

Spearman’s rho and Kendall’s tau are two examples of measures of concordance. 

Definition of a copula and properties  

A copula function takes as its inputs the marginal cumulative distribution functions, and 
outputs a joint cumulative distribution function.  A copula in d-dimensions is expressed as: 

    
1 21 2 , , , 1 2, , , , , ,

dd X X X dC u u u F x x x    where  
ii X iu F x . 

Copulas provide a way of deconstructing the joint distribution of a set of variables into 
components (the marginal distributions plus a copula).  This means that we can see the 
nature of the interdependence between the variables.  

A copula is determined by the relative order (ranking) of the observations rather than by the 
exact shape of the marginal distribution. 

A copula has three properties: 

1. It must be an increasing function of its inputs. 

2. If the values of all but one of the marginal CDFs are equal to 1, then the copula is 
equal to the value of the remaining marginal CDF.  

3. The copula must always return a valid probability. 
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Sklar’s theorem 

Sklar’s theorem says that if F  is a joint CDF and 1 ,..., dF F  are marginal CDFs, then there exists 

a copula C , such that for all  1 , , ,dx x    : 

      1 1 1, , , ,d d dF x x C F x F x      

Furthermore if the marginal distributions are continuous, then the copula is unique. 

Fundamental copulas 

Fundamental copulas represent the three basic (or fundamental) dependencies that a set of 
variables can display, namely independence, perfect positive interdependence, and perfect 
negative interdependence.  The copulas are: 

Independence (or product) copula 

The independence (or product) copula is defined in the bivariate case as: 

  ,C u v uv  

Co-monotonic (or minimum copula) 

The co-monotonic copula is defined in the bivariate case as: 

    , min ,C u v u v  

Counter-monotonic (or maximum copula) 

The counter-monotonic copula is defined in the bivariate case as: 

   , max 1,0C u v u v    

The minimum and maximum copulas form the upper and lower bounds for all copulas, called 
the Fréchet-Höffding bounds.   

Explicit copulas 

Explicit copulas have simple closed-form expressions.  An important subclass is that of 
Archimedean copulas.  Archimedean copulas take the form: 

        1,C u v u v     

where  t  is a generator function and  1   is a pseudo-inverse generator function.  

Three examples of Archimedean copulas are: the Gumbel, Clayton and Frank copulas. 
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Gumbel copula 

The Gumbel copula is defined in the bivariate case as: 

       1, exp ln lnC u v u v
        

  
  

The generator function is    lnt t     where 1   .  

Clayton copula 

The Clayton copula is defined in the bivariate case as: 

     1
, 1C u v u v

        

The generator function is  1( ) 1t t   


 where 1     . 

Frank copula 

The Frank copula is defined in the bivariate case as: 

 
  

 
1 11

, ln 1
1

u ve e
C u v

e

 



 



       
 

  

The generator function is 
1

( ) ln
1

te
t

e








 
     

 where   .  

Implicit copulas 

Implicit copulas are based on well-known multivariate distributions, but no simple 
closed-form expression exists for them.  Examples are the Gaussian copula and the Student’s 
t-copula. 

Gaussian copula 

The Gaussian copula is defined in the bivariate case as: 

  1 1, ( ), ( )C u v u v
       

where   is the distribution function of the standard normal distribution and   is the 

distribution function of a bivariate standard normal distribution with correlation  . 
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Combining marginal normal random variables using the Gaussian copula results in the 
multivariate normal distribution. 

The independence, co-monotonic and counter-monotonic copulas are special cases of the 
Gaussian copula where 0  , 1    and 1    respectively.  

Student’s t copula 

The Student’s t  copula defined by: 

   1 1
,, ( ), ( )C u v t t u t v   

    
 

where t  is the distribution function of a random variable with a Student’s t  distribution 

with   degrees of freedom and ,t   is the distribution function of a bivariate Student’s t

distribution with correlation  . 

The Student’s t  copula allows for more flexibility than the normal copula since it involves an 
extra parameter, namely the number of degrees of freedom,  . 

The Gaussian copula is the limiting case of the Student’s t  copula as the number of degrees 
of freedom tends to infinity. 

Tail dependence of copula functions 

Tail dependence looks at the relationship between two random variables at the extremes of 
the distributions, ie in the upper and lower tails.  Tail dependence can be measured using the 
coefficients of lower and upper tail dependence, which can be calculated directly from the 
copula function. 

The coefficient of lower tail dependence is defined as: 

   1 1

0 0

,
lim ( ) ( ) limL X Y

u u

C u u
P X F u Y F u

u


 

 

 
     

The coefficient of upper tail dependence is defined as: 

   1 1

1 1

1 2 ,
lim ( ) ( ) lim

1U X Y
u u

u C u u
P X F u Y F u

u


 

 

 

 
   


 

or as: 

   
1 0

1 ,1 ,
lim lim

1U
u u

C u u C u u

u u


  

 
 


 

where C  is the survival copula, defined as: 

     1 ,1 1 ,C u v u v C u v       

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-17: Copulas Page 47 

The Actuarial Education Company © IFE: 2019 Examinations 

 
 
  

For the copulas discussed in this chapter, the table below summarises the coefficients of 
lower and upper tail dependency. 

Copula name L  U  

Independence 0 

Co-monotonic 1 

Counter-monotonic 0 

Gumbel 0 1/2 2   

Clayton 1/2  if 0

0        if 0

 


 


 0 

Frank 0 

Gaussian 0 if 1

1 if 1






 

Student’s t 0 if , increasing as  decreases

0 if  and 

 for all  when 

 
 

 

  
 

 

 

 
The degree of concordance and the level of tail dependencies exhibited by a particular set of 
data helps to indicate which copula(s) might be appropriate to consider using. 
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The practice questions start on the next page so that you can 
keep the chapter summaries together for revision purposes. 
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Chapter 17 Practice Questions 

17.1 List, in words, the three technical properties which a copula function must satisfy to ensure that it 
correctly captures the properties expected of a joint distribution function. 

17.2 An investor purchases three 5-year bonds from different companies within the same industry 
sector.  The probability that an individual bond defaults within the first year is 10%.   

(i) Using a Gumbel copula with parameter 2  , calculate the probability that all three 
bonds default within the first year.  [3] 

(ii) Discuss the suitability of the Gumbel copula in this situation. [3] 
    [Total 6] 

17.3 For the Clayton copula: 

(i) Determine whether the generator function  1
( ) 1t t 


   is valid. [3] 

(ii) Determine the inverse generator function. [1] 

(iii) Derive the Clayton copula function in the bivariate case. [3] 
    [Total 7] 

17.4 For the Frank copula: 

(i) Determine whether the generator function 
1

( ) ln
1

te
t

e








 
     

 is valid. [3] 

(ii) Determine the inverse generator function. [1] 

(iii) Derive the Frank copula function. [3] 
    [Total 7] 

17.5 (i) Derive the coefficient of lower and upper tail dependence for the Clayton copula in the 
case where the parameter 0  . [4] 

(ii) Comment on how the value of the parameter   affects the degree of lower tail 
dependence in the case of the Clayton copula. [1] 

    [Total 5] 

17.6 Derive the coefficient of lower tail dependence for the Gumbel copula in the case where the 
parameter 0  .  [4] 

Exam style 

Exam style 

Exam style 

Exam style 

Exam style 
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17.7 Let X  and Y  be two random variables representing the future lifetimes of two 40-year old 
individuals.  The two lives are married. 

You are given that: 

  25 0.17831P X     and  25 0.11086P Y    

(i) Calculate the joint probability that both lives will die by the age of 65 using: 

(a) the Gumbel copula with 5    

(b) the Clayton copula with 5   

(c) the Frank copula with 5  . [6] 

(ii) Comment on the results as well as on which copula you think is most appropriate to use 
for modelling joint life expectancy. [3] 

     [Total 9] 

17.8 You are considering whether there is a link between heights and weights, and have gathered 
some pairs of data: 

(172 , 68 ), (182 , 70 ), (158 , 75 ), (150 , 60 ), (174 , 65 )cm kg cm kg cm kg cm kg cm kg   

Calculate Spearman’s rho for this dataset. 

  

Exam style 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-17: Copulas Page 51 

The Actuarial Education Company © IFE: 2019 Examinations 

Chapter 17 Solutions 

17.1 Three technical properties a copula function must satisfy are: 

1. A copula is an increasing function of its inputs. 

2. If all the marginal CDFs are equal to 1 except for one of the marginal CDFs then the copula 
function is equal to the value of that one marginal CDF. 

3.  A copula function always returns a valid probability.  

17.2 (i) Calculation of probability all three bonds default within the next year. 

Let iT  be the time until default of bond i  where 1,2,3i  .  We want to calculate the joint 

probability: 

    1 2 3 1 2 31, 1, 1 , ,P T T T C u u u      

where  1 0.1i iu P T    for 1,2,3i  .  [1] 

Using the Gumbel copula with parameter 2  , we have: 

 

   

      

  

1 2 3 1 2 3

1 22 2 2
1 2 3

1 22

1, 1, 1 , ,

exp ln ln ln

exp 3 ln0.1

0.0185  or 1.85%

P T T T C u u u

u u u

   

 
       

 

 
   

 

  [2] 

(ii) Suitability of the Gumbel copula 

The Gumbel copula exhibits (non-zero) upper-tail dependence, the degree of which can be varied 
by adjusting the single parameter.  However, it exhibits no lower tail dependence.    [1]    

Hence, the Gumbel copula is appropriate if we believe that the three investments are likely to 
behave similarly as the term approaches five years but not at early durations. [½] 

This is unlikely to be the case though.  If one bond defaults early on, then it may be indicative of 
problems in the industry sector or the economy and so the other investments may also be likely 
to default early on.  [½] 

If we believe the performance of investments issued by companies within the industry are much 
more closely associated (eg subject to the same systemic and operational risk factors), then a 
copula that exhibits both lower and upper tail dependence, such as the Student’s t  copula, may 
be more appropriate.  [1] 
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17.3 (i) Is the Clayton generator function valid? 

    
0 0

1 1 1
0 lim 1 lim 1

t t
t

t



 


 

       
 

 [1] 

    1
1 1 1 0


    [1] 

 In the range 0 1t  , t  takes increasing values (starting at 1), so that t   takes 

decreasing values, and hence so does    1
1t t 


  . [1] 

(ii) Inverse generator function 

The inverse function is found by rearranging the equation  1
1x t 


  : 

    1
1x t t 


            11 1t x x       [1] 

(iii) Derive the Clayton copula function 

 

   

   

   

 

1

1

1

1

1 1
[ , ] 1 1

1 1
1 1 1

1 1 1

1

C u v u v

u v

u v

u v

 

 

 

  


 


 

  


 

 

 

      

          

       

    [3] 

17.4 (i) Is the Frank generator function valid? 

  
0

1
0 lim ln

1

t

t

e

e








  
         

 [1] 

   1
1 ln 0

1

e

e








 
     

 [1] 

 In the range 0 1t  , 1

1

te

e











 takes increasing values, so that 

1
ln

1

te

e









 
   

 takes 

increasing values, and   1
ln

1

te
t

e








 
     

 takes decreasing values. [1] 
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(ii) Inverse generator function 

The inverse function is found by rearranging the equation 
1

ln
1

te
x

e









 
     

: 

   1
ln

1

te
x t

e








 
      

        1 1
ln 1 1 xt x e e


         

 [1] 

(iii) Derive the Frank copula function 

 

 

1

1

1 1
[ , ] ln ln

1 1

1 1
ln

1 1

1 1 1
ln 1 1

1 1

u v

u v

u v

e e
C u v

e e

e e

e e

e e
e

e e

 

 

 

 

 


 







 


 

 


 

 


 

                                 

                        

     
                


  

 
1 11

ln 1
1

u ve e

e

 



 



  
     

 [3] 

17.5 (i)(a) Coefficients of lower and upper tail dependence – Clayton copula 

The coefficient of lower tail dependence is defined as: 

 
 

0

,
limL

u

C u u

u



   [½] 

Substituting in for the Clayton copula formula: 

 

 

 

   

 

1

0

1

0

1 1

0

1 1/

0

1
lim

2 1
lim

lim 2 1

lim 2 2

L
u

u

u

u

u u

u

u

u

u u

u

 



  

 










 







 



 



 
  

  
 
 

 
 

  
 
 

 
  

 

 
   

 
 [1½] 
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The coefficient of upper tail dependence is given by: 

 
 

1

1 2 ,
lim

1U
u

u C u u

u




 



 [½]  

From the calculation of the coefficient of lower tail dependence above, we have:  

     1
, 2 1C u u u

     

Therefore: 

 
  1

1

1 2 2 1
lim

1U
u

u u

u










  



 [½] 

In the limit this fraction has the form 
0
0

, which is undefined.  We can use L’Hôpital’s rule, 

( ) ( )
lim lim

( ) ( )x a x a

f x f x
g x g x 





, to find the value of the limit: 

 

 

   

   

1

1

1

1

1 1

1

1 1

1

1 2 2 1
lim

1

1
2 2 1 2

lim
1

2 2 1 2
lim 0

1

U
u

u

u

u u

u

u u

u u







 

 
















   



   



  




   




  
 


 [1] 

(ii) Comment 

As   increases, 1
  increases and hence 1/2   increases.  So the higher the value of the 

parameter  , the higher the degree of upper tail dependence. [1] 
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17.6 Lower tail dependence of the Gumbel copula 

The Gumbel copula is expressed as: 

    1, exp ( ln ) ( ln )C u v u v
  

     
 

  [1] 

The coefficient of lower tail dependence is given by: 

 

 

 

  

  

1
1 1

0

1

0

1

0

1

0

2
2

0 0

,
lim

exp ( ln ) ( ln )

lim

exp 2 ( ln )
lim

exp 2 ln )
lim

lim lim 0

L
u

u

u

u

u u

C u u

u

u u

u

u

u

u

u

u
u

u




 
















 









 



  
     
  

 
 
  

   
  

 
 

 
 

  
 
 

 
   
 
   [3] 

17.7 Calculating probabilities using explicit copulas 

We have  25 0.17831u P X     and  25 0.11086v P Y   . 

(i)(a) Gumbel copula 

The joint probability that both lives die by age 65 is given by the Gumbel copula with 5   as: 

   

 

 

1

1 55 5

25, 25 ,

exp ( ln ) ( ln )

exp ( ln0.17831) ( ln0.11086)

0.0986

P X Y C u v

u v
 

  

 
     

 

 
     

 

  [2] 
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(i)(b) Clayton copula 

The joint probability that both lives die by age 65 is given by the Clayton copula with 5   as: 

   

 

 

1

1 55 5

25, 25 ,

1

0.17831 0.11086 1

0.1089

P X Y C u v

u v
   

 

  

  

  

  [2] 

(i)(c) Frank copula 

The joint probability that both lives die by age 65 is given by the Frank copula with 5   as: 

   

  
 

  
 

5 0.17831 5 0.11086

5

25, 25 ,

1 11
ln 1

1

1 11
ln 1

5 1

0.0583

u v

P X Y C u v

e e

e

e e

e

 



 



   



  

       
 

       
 

  [2] 

(ii) Comment 

The Clayton copula gives the highest probability of both lives dying within 25 years.  This is 
because the Clayton copula exhibits lower tail dependence.  This means that if one life does not 
survive for long (ie dies early), there is a high probability that the other life will not survive for 
long (ie will also die early). [1] 

The Gumbel copula gives the lowest probability of both lives dying within 25 years.  This is 
because the Gumbel copula exhibits upper tail dependence.  This means that if one life survives 
for a long time, there is a high probability that the other life will also survive for a long time. [1] 

Studies also suggest that if one member of a married couple dies, this can precipitate the death of 
the other member (‘broken heart syndrome’).  On this basis, we might choose to use a copula 
function where there is a degree of positive interdependence throughout, eg the co-monotonic 
(or minimum) copula.    [1] 

Although we used the same parameter 5   in each of the three copula functions, the effect of 
this parameter on the calculation will vary depending on the copula, and so the results are not 
directly comparable. 
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17.8 Spearman’s rho 

Height Rank Weight Rank id  2
id  

150cm 1 60kg 1 0 0 

158cm 2 75kg 5 -3 9 

172cm 3 68kg 3 0 0 

174cm 4 65kg 2 2 4 

182cm 5 70kg 4 1 1 

 

 2
2 2

1

6 6
1 1 14 0.3

( 1) 5(5 1)

T

S i
i

d
T T
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Reinsurance 

 

Syllabus objectives 

1.1 Loss distributions, with and without risk sharing 

1.1.2 Explain the concepts of excesses (deductibles), and retention limits. 

1.1.3 Describe the operation of simple forms of proportional and excess of loss 
reinsurance. 

1.1.4 Derive the distribution and corresponding moments of the claim amounts 
paid by the insurer and the reinsurer in the presence of excesses 
(deductibles) and reinsurance. 

1.1.5 Estimate the parameters of a failure time or loss distribution when the data 
is complete, or when it is incomplete, using maximum likelihood and the 
method of moments. 
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0 Introduction 

The claims on an insurance company must be met in full, but, to protect itself from large 
claims, the company itself may take out an insurance policy; such a policy is called a 
reinsurance policy.  For the purposes of this chapter, it will be assumed that the 
reinsurance contract is one of two very simple types: individual excess of loss reinsurance 
or proportional reinsurance. 

0.1 Proportional reinsurance 

Under a proportional reinsurance arrangement, the direct writer (ie the original insurance company) 
and the reinsurer share the cost of all claims for each risk.  For example, for a particular building 
insured against fire, the direct writer might retain 75% of the premium and will be liable to pay 75% 
of all claims, large or small.  The direct writer must pay a premium to effect this reinsurance.  The 
direct writer is sometimes referred to as the direct insurer or even just the insurer. 

Proportional reinsurance operates in two forms: 

1. With quota share reinsurance, the proportions are the same for all risks. 

2. With surplus reinsurance, the proportions can vary from one risk to the next. 

In this course we will focus on quota share reinsurance. 

0.2 Non-proportional reinsurance 

Under a non-proportional reinsurance arrangement, the direct writer pays a fixed premium to the 
reinsurer.  The reinsurer will only be required to make payments where part of the claim amount 
falls in a particular reinsurance layer (eg between £1m and £5m).  The layer will be defined by a 
lower limit, the retention limit (eg £1m), and an upper limit (eg £5m or infinity if the cover is 
unlimited).  Usually, most claims are paid in full by the direct writer. 

We will mention two forms of non-proportional reinsurance here: 

1. With individual excess of loss (XOL) reinsurance, the reinsurer will be required to make a 
payment when the claim amount for any individual claim exceeds a specified excess point or 
retention.  For example, the reinsurer might agree to pay the excess when any claim from a 
motor policy exceeds £50,000, but with an upper limit of £2 million. 

2. With stop loss reinsurance, the reinsurer will be required to make payments if the total 
claim amount for a specified group of policies exceeds a specified amount (which may be 
expressed as a percentage of the gross premium).  We will look at this in Chapter 20. 

The diagram below shows how much the direct writer and the reinsurer would pay when there are 
claims for £30,000, £55,000 and £15,000:  

(a)  under a 25% quota share arrangement, and  

(b)  under an individual XOL arrangement with a reinsurance layer of £30,000 in excess of 
£20,000. 
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The parts of each claim paid by the reinsurer are shown in black.   

25% Quota Share     XOL  (£30k in excess of £20k) 
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1 Reinsurance arrangements 

The actual amount that the direct insurer ends up paying after allowing for payments under the 
reinsurance arrangements is called the net claim amount.  The actual premium that the direct writer 
gets to keep after making any payments for reinsurance is the insurer’s net premium income.  The 
original amounts without adjustment for reinsurance are referred to as the gross claim amount and 
the insurer’s gross premium income. 

In this chapter we will use the following notation. 

Notation 

X  is the gross claim amount random variable 

Y  is the net claim amount, ie the amount of the claim paid by the insurer in respect of a single 
claim (after receiving the reinsurance recovery) 

Z  is the amount paid by the reinsurer in respect of a single claim. 

For a given reinsurance arrangement, we can express the random variables Y  and Z  in terms 
of X . 

For example, suppose that a reinsurer has agreed to make the following payments in respect of 
individual claims incurred by a direct insurer: 

 nothing, if the claim is less than £5,000 

 the full amount reduced by £5,000, if the claim is between £5,000 and £10,000 

 half the full amount, if the claim is between £10,000 and £20,000 

 £10,000, if the claim exceeds £20,000. 

Then: 

 

0 if £5,000

5,000 if £5,000 £10,000

/ 2 if £10,000 £20,000

10,000 if £20,000

X

X X
Z

X X

X


      
 

 

and: 

 

if £5,000

5,000 if £5,000 £10,000

/ 2 if £10,000 £20,000

10,000 if £20,000

X X

X
Y

X X

X X


     
  

  

Note that Y Z X  . 
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We are now in a position to consider the statistical calculations relating to reinsurance 
arrangements. 

1.1 Excess of loss reinsurance  

In excess of loss reinsurance, the insurer will pay any claim in full up to an amount M , the 
retention level; any amount above M  will be borne by the reinsurer. 

The excess of loss reinsurance arrangement can be written in the following way: if the claim 
is for amount X , then the insurer will pay Y  where: 

 
 

 

if 

if 

Y X X M

Y M X M
  

The reinsurer pays the amount Z X Y  . 

Question 

Write down an expression for Y  if only a layer between M  and 2M  is reinsured. 

Solution 

if

if 2

if 2

X X M

Y M M X M

X M X M


  
    

 
The insurer’s liability is affected in two obvious ways by reinsurance: 

(i) the mean amount paid is reduced; 

(ii) the variance of the amount paid is reduced. 

Both these conclusions are simple consequences of the fact that excess of loss 
reinsurance puts an upper limit on large claims. 

The mean amounts paid by the insurer and the reinsurer under excess of loss reinsurance 
can now be obtained.  Observe that the mean amount paid by the insurer without 
reinsurance is: 

 
0

( ) ( )E X x f x dx


   (18.1) 

where ( )f x  is the PDF of the claim amount X .  With a retention level of M  the mean 

amount paid by the insurer becomes: 

 
0

( ) ( ) ( )
M

E Y xf x dx M P X M    (18.2) 
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This is because: 

 
0 0

( ) ( ) ( ) ( ) ( )
M M

M M

E Y x f x dx M f x dx x f x dx M f x dx
 

        

and:   

( ) ( )
M

f x dx P X M


    

We can calculate 2( )E Y  in a similar way: 

  2 2 2 2 2

0 0

( ) ( ) ( ) ( )
M M

M

E Y x f x dx M f x dx x f x dx M P X M


        

Then  22var( ) ( ) ( )Y E Y E Y  . 

More generally, the moment generating function of Y , the amount paid by the insurer, is: 

0
( ) ( ) ( ) ( )

MtY t x t M
YM t E e e f x dx e P X M     

Here we are using the formula for the expected value of a function of a continuous random 
variable: 

 ( ( )) ( ) ( )
x

E h X h x f x dx    

with: 

 
if 

( )
if 

tX

tM

e X M
h X

e X M

  


 

Question 

Suppose that claim amounts are uniformly distributed over the interval (0,500) .  The insurer 

effects individual excess of loss reinsurance with a retention limit of 375.   

Calculate the expected amounts paid by the insurer and the reinsurer in respect of a single claim. 

Solution 

Since (0,500)X U , the expected gross claim amount is: 

 
500

( ) 250
2

E X     
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The expected amount paid by the insurer is: 

 

 

375

0

375

0

3752

0

( ) ( ) 375 ( 375)

375 1 (375)
500

375
375 1

1,000 500

140.625 93.75

234.375

E Y x f x dx P X

x
dx F

x

  

  

           

 







  

Also, since Y Z X  : 

 ( ) ( ) ( ) 250 234.375 15.625E Z E X E Y       

 
Under excess of loss reinsurance, the reinsurer will pay Z  where: 

 
0 if  

if  

X M
Z

X M X M


   

 

The mean amount paid by the reinsurer is: 

  ( ) ( )
M

E Z x M f x dx


   (18.3) 

Similarly, we can calculate 2( )E Z  using: 

 2 2( ) ( ) ( )
M

E Z x M f x dx


   

Then  22var( ) ( ) ( )Z E Z E Z  . 

More generally, the moment generating function of Z  is: 

 

0 ( )
0

( )
0

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

tZ
Z

M t t x M
M

M t x M
M

t x M
M

M t E e

e f x dx e f x dx

f x dx e f x dx

P X M e f x dx
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We can use R to simulate gross claim amounts and hence the amounts paid by the insurer and 
reinsurer for any given retention limit. 

Suppose claims (in £’s) have an exponential distribution with parameter  0.0005 .  The R 
code for simulating 10,000 claims, x, is given by: 

 x <- rexp(10000,rate=0.0005) 

We can then obtain the claims paid by the insurer, y, and the reinsurer, z with retention M 
using: 

 y <- pmin(x,M) 
 z <- pmax(0,x-M) 

We can then obtain their means and variances using the R functions mean and var.   

We can use these vectors to estimate probabilities.  For example, to estimate the probability 
that the insurer pays less than £1,000 we would use: 

 length(y[y<1000])/length(y) 

Similarly we could estimate the claim size for a given percentile.  For example, to estimate 
the claim size corresponding to the 90th percentile of the insurer’s claims we would use: 

 quantile(y,0.9) 

1.2 The reinsurer’s conditional claims distribution 

Now consider reinsurance (once again) from the point of view of the reinsurer.  The reinsurer 

may have a record only of claims that are greater than M .  If a claim is for less than M  the 
reinsurer may not even know a claim has occurred.  The reinsurer thus has the problem of 
estimating the underlying claims distribution when only those claims greater than M  are 
observed.  The statistical terminology is to say that the reinsurer observes claims from a 
truncated distribution. 

In this case the values observed by the reinsurer relate to a conditional distribution, since the 
numbers are conditional on the original claim amount exceeding the retention limit. 

Let W  be the random variable with this truncated distribution.  Then: 

 |W X M X M    

This can also be expressed as follows: 

 | 0W Z Z    

Suppose that the underlying claim amounts have PDF ( )f x  and CDF ( )F x .  Suppose that 

the reinsurer is only informed of claims greater than the retention M and has a record of 
 w x M .  What is the PDF ( )g w  of the amount, w , paid by the reinsurer?   
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The argument goes as follows: 

 

( ) ( | )

( and )

( )

( )

( )

( )
    

1 ( )

( ) ( )
      

1 ( )

w M

M

P W w P X w M X M

P X w M X M
P X M

P M X w M
P X M

f x dx
F M

F w M F M
F M



    

  




  







 






 

This derivation also uses the result:  

( ) ( ) ( ) ( )
b

a
P a X b f x dx F b F a      

Differentiating with respect to w , the PDF of the reinsurer’s claims is: 

 
( )

( )
1 ( )

f w Mg w
F M





, 0w   (18.4) 

This is just the original PDF evaluated at the gross amount w M , divided by the probability that 
the claim exceeds M .   

The PDF of W  may be denoted by ( )Wf w  rather than ( )g w .  With this notation, the result can be 

stated as follows: 

PDF of the reinsurer’s conditional claim amount random variable 

If |W X M X M   , then: 

 
( ) ( )

( )
1 ( ) ( )
X X

W
X

f w M f w M
f w

F M P X M
 

 
 

  

 

Question 

Using the notation above, determine the distribution of W  if: 

(a) ( )X Exp    

(b) ( , )X Pa   
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Solution 

(a) Exponential 

If ( )X Exp  , then ( ) x
Xf x e    and ( ) 1 x

XF x e   .  So: 

 
( )( )

( ) , 0
1 ( )

w M
wX

W M
X

ef w M
f w e w

F M e





 

 





   


 

This is the PDF of ( )Exp  .  So ( )W Exp  , the same as the original claims distribution.  This 

illustrates the memoryless property of the exponential distribution. 

(b) Pareto 

If ( , )X Pa  , then 
1

( )
( )

Xf x
x






 


 and ( ) 1XF x
x




     
.  So: 

 
1

1
( ) ( )

( ) , 0
( ) ( )

W
w M M

f w w
M M w

  

  
   

  




  

  
  

 

This is the PDF of ( , )Pa M    .  So ( , )W Pa M   . 

 
We can now calculate the expected value of W .  Using the PDF of |W X M X M   , we have: 

 0

0

( ) ( ) ( )
( ) ( )

( ) ( )
1 ( ) 1 ( ) ( ) ( 0)

X X
M

W
X X

w f w M dw x M f x dx
E Z E Z

E W w f w dw
F M F M P X M P Z

 

  

    
   

 
   

So the reinsurer’s expected claim payment on a claim in which it is involved is just the reinsurer’s 
expected claim payment (on all claims), ( )E Z , divided by the probability that the claim involves 

the reinsurer. 

If z  is the vector of the reinsurer’s claims: 

 z <- pmax(0,x-M) 

Then we can obtain the truncated distribution, w , using: 

 w <- z[z>0] 

We can then calculate moments, probabilities and quantiles as before. 
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1.3 Proportional reinsurance 

In proportional reinsurance the insurer pays a fixed proportion of the claim, whatever the 
size of the claim.  Using the same notation as above, the proportional reinsurance 
arrangement can be written as follows: if the claim is for an amount X  then the company 
will pay Y  where: 

 Y X  0 1   

The parameter   is known as the retained proportion or retention level; note that the term 
retention level is used in both excess of loss and proportional reinsurance though it means 
different things. 

Since Y Z X  , we must have (1 )Z X  .  The mean and variance of Y  and Z  are calculated 

as follows: 

 ( ) ( )E Y E X    ( ) (1 ) ( )E Z E X    

 2var( ) var( )Y X   2var( ) (1 ) var( )Z X    

Question 

Claims from a particular portfolio have a generalised Pareto distribution with parameters 6  , 
200   and 4k  .  A proportional reinsurance arrangement is in force with a retained 

proportion of 80%.   

Calculate the mean and variance of the amount paid by the insurer and the reinsurer in respect of 
a single claim. 

Solution 

Using X  to represent the individual claim amount random variable and the formulae for the 
mean and variance of a three-parameter Pareto random variable (from page 15 of the Tables), we 
have: 

 
4 200 800

( ) 160
1 6 1 5

k
E X





   

 
   

and:   

2 2

2 2
( 1) 4(4 6 1) 200 1,440,000

var( ) 14,400
100( 1) ( 2) (6 1) (6 2)

k k
X

 
 

    
   

   
 

The amount paid by the insurer is 0.8Y X .  So: 

 ( ) 0.8 160 128E Y      

and:  

2var( ) 0.8 14,400 9,216Y     
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The amount paid by the reinsurer is 0.2Z X .  So: 

 ( ) 0.2 160 32E Z      

and:  

2var( ) 0.2 14,400 576Z     

 
As the amount paid by the insurer on a claim X  is Y X  and the amount paid by the 

reinsurer is  1Z X  , the distribution of both of these amounts can be found by a 

simple change of variable. 

Question 

Claims from a particular portfolio have an exponential distribution with mean 1,000.  The insurer 
takes out proportional reinsurance with a retained proportion of 0.9.   

Determine the distribution of the insurer’s net claim amount random variable. 

Solution 

We know that X  is exponential with mean 1,000, so the exponential parameter is 
1

1,000
.   

From page 11 of the Tables, the MGF of X  is: 

 1( ) (1 1,000 )XM t t    ,    
1

1,000
t   

Since 0.9Y X , the MGF of Y  is: 

 0.9 1 1( ) ( ) ( ) (0.9 ) (1 1,000 0.9 ) (1 900 )tY tX
Y xM t E e E e M t t t          ,  

1
900

t    

This is the MGF of the exponential distribution with mean 900.  By the uniqueness property of 
MGFs, it follows that the distribution of the insurer’s net claim amount random variable is 
exponential with mean 900. 

 

The payments of the insurer, y , and the reinsurer, z , with retained proportion a  would be: 

 y <- a*x 
 z <- (1-a)*x 

We can then calculate moments, probabilities and quantiles as before. 
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2 Normal and lognormal distributions 

There are useful integral formulae that simplify reinsurance calculations when working with normal 
and lognormal distributions. 

2.1 Normal distribution 

Truncated mean of the normal distribution 

If 2( , )X N   , then: 

( ) [ ( ) ( )] [ ( ) ( )]
U

X
L

x f x dx U L U L            

where: 

L
L



   

U
U



   

( )z  is the PDF of the standard normal distribution 

( )z  is the CDF of the standard normal distribution. 

This result is given on page 18 of the Tables.  It is proved as follows.   

Using the formula for ( )Xf x  and the substitution 
x

z





  : 

2

21
2

2 21 1
2 2

1
21

( )
2

1
( )

2

1 1

2 2

xU U

X
L L

U
z

L

U U
z z

L L

x f x dx x e dx

z e dz

e dz z e dz




 

 


 
 

   
 






 
 

 



 

 

 



 

 

Now, since 
21

2
1

2

z
e




 is the PDF of (0,1)N : 

  
21

2
1

(0,1)
2

U
z

L

e dz P L N U
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So: 

 

 

   

21
2

21
2

1
( ) (0,1)

2

1
(0,1)

2

( ) ( ) ( ) ( )

U U
z

X
L L

U
z

L

x f x dx P L N U z e dz

P L N U e

U L U L

U L U L

 


 


   

      
   











    

       
 

       

                           
          

 

  

When L    or U  , these formulae can be simplified because: 

 ( ) ( ) 0     , ( ) 0, ( ) 1       

Question 

Claims from a particular portfolio are normally distributed with mean 800 and standard deviation 
100.  An individual excess of loss arrangement with retention limit is 860 is in place. 

Calculate the insurer’s mean claim payment net of reinsurance. 

Solution 

The insurer’s mean claim payment is: 

 
860

0

( ) ( ) 860 ( 860)XE Y x f x dx P X     

where 2(800,100 )X N . 

Using the formula for the truncated mean of a normal random variable: 

 

   

860

0

860 800 0 800
( ) 800

100 100

860 800 0 800
100

100 100

800 (0.6) ( 8) 100 (0.6) ( 8)

Xx f x dx

 

 

               

              

      



  

From pages 160 and 161 of the Tables: 

 
(0.6) 0.72575

( 8) 1 (8) 0
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Also, using the formula for the PDF of the standard normal distribution from page 10 of the 
Tables: 

 

2

2

½ 0.6

½ ( 8)

1
(0.6) 0.33322

2

1
( 8) 0

2

e

e







 

  

 

  

  

So: 

    
860

0

( ) 800 0.72575 0 100 0.33322 0 547.278Xx f x dx       

The second term in the expression for ( )E Y  is: 

  

 

860 800
860 ( 860) 860 1

100

860 1 (0.6)

860 1 0.72575

235.855

P X
        

 

 



 

Hence: 

 ( ) 547.278 235.855 783.13E Y      

 

2.2 Lognormal distribution 

Truncated moments of the lognormal distribution 

If 2log ( , )X N   , then: 

  
2 2½( ) ( ) ( )

U
k k k

X k k
L

x f x dx e U L     

where:  

ln
k

L
L k

 



   

ln
k

U
U k

 



   

( )z is the CDF of the standard normal distribution. 
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This result is also given on page 18 of the Tables.  It is proved as follows.   

Using the formula for the PDF of the lognormal distribution from page 14 of the Tables, we have: 

 

21 ln
21 1

( )
2

xU U
k k

X
L L

x f x dx x e dx
x




 

   
    

Making the substitution 
ln x

t k
 




   gives: 

2
2

2 2 2 2 2

2 2 2

2 2

1
( )( ) 2

½ ½

½ ½

½

1
( )

2

1

2

1

2

[ ( ) ( )]

k

k

k

k

k

k

UU t kk t kk
X

L L

U
k k t k t k t k

L

U
k k t

L

k k
k k

x f x dx e e dt

e e dt

e e dt

e U L

  

    

 

 







  

    

 









  

 





 

When 0L   or U  , these formulae can be simplified using the facts that: 

 ( ) 0   , (0) ½  , ( ) 1    

By setting 1k   in the truncated moments formula, we can calculate the insurer’s expected claim 
payment under excess of loss reinsurance when the original claims follow a lognormal distribution. 

Question 

An insurer is considering taking out one of the following reinsurance treaties: 

Treaty 1:  Proportional reinsurance with a retained proportion of 0.75 

Treaty 2:  Individual excess of loss cover with a retention limit of £25,000 

The claims distribution is lognormal with parameters 8.5   and 2 0.64  . 

Calculate the insurer’s expected net claim payments in the following cases: 

(a)  without either treaty 

(b)  with Treaty 1 only   

(c)  with Treaty 2 only. 
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Solution 

(a) No reinsurance 

Without either treaty, the insurer pays the full amount of each loss.  So: 

2½ 8.5 ½ 0.64( ) ( ) £6,768E Y E X e e        

(b) Treaty 1 

Under Treaty 1, the insurer pays 75% of each loss.  So 0.75Y X and: 

( ) 0.75 ( ) 0.75 6,768 £5,076E Y E X     

(c) Treaty 2 

Under Treaty 2, the insurer pays the first £25,000 of each loss.  So: 

if 25,000

25,000 if 25,000

X X
Y

X


  

  

and: 

25,000

0

( ) ( ) 25,000 ( 25,000)XE Y x f x dx P X    

Using the truncated moments formula with 1k   gives: 

  
2

25,000
½

1 1
0

( ) ( ) ( )Xx f x dx e U L      

where: 

 1
ln ln25,000 8.5

0.64 1.23329
0.64

U
U

 

 

      

 

1( ) (1 0.329) (1.23) 0.329 (1.24)

0.671 0.89065 0.329 0.89251

0.89126

U     

   



  

and: 

 1
ln

( ) 0
L

L
 


      

 
  since lnL   as 0L    
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So: 

 
25,000

8.5 ½ 0.64

0

( ) 0.89126 6,032.30Xx f x dx e      

The second term in the expression for ( )E Y  is: 

 

 

ln25,000 8.5
25,000 ( 25,000) 25,000 1

0.64

25,000 1 (2.03329)

P X
  

    
  

 

 

Interpolating gives: 

 

(2.03329) (1 0.329) (2.03) 0.329 (2.04)

0.671 0.97882 0.329 0.97932

0.97898

     

   



  

So: 

 ( ) 6,032.30 25,000 (1 0.97898) £6,558E Y        

 
Setting 2k   in the truncated moments formula, we can calculate the second non-central moment 
of the insurer’s claim payment.  We now extend the previous question to calculate the standard 
deviation of the insurer’s net claim amount. 

Question 

An insurer is considering taking out one of the following reinsurance treaties: 

Treaty 1:  Proportional reinsurance with a retained proportion of 0.75 

Treaty 2:  Individual excess of loss cover with a retention limit of £25,000 

The claims distribution is lognormal with parameters 8.5   and 2 0.64  . 

Calculate the standard deviation of the insurer’s net claim payments in the following cases: 

(a)  without either treaty 

(b)  with Treaty 1 only   

(c)  with Treaty 2 only. 
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Solution 

(a) No reinsurance 

Without either treaty, the variance is: 

2 22 2(8.5) 0.64 0.64var( ) var( ) ( 1) ( 1) 41,067,256.6Y X e e e e          

So the standard deviation is £6,408. 

(b) Treaty 1 

Under Treaty 1: 

2var( ) 0.75 var( )Y X  

So the standard deviation is 0.75 6,408 £4,806  .  

(c) Treaty 2 

Under Treaty 2: 

2 2 2

0

( ) ( ) ( )
M

X X
M

E Y x f x dx M f x dx


    

Using the truncated moments formula with 2k   gives: 

  
2

25,000
2 2 2

2 2
0

( ) ( ) ( )Xx f x dx e U L      

where: 

 2
ln ln25,000 8.5

2 2 0.64 0.43329
0.64

U
U

 

 

      

 

2( ) (1 0.329) (0.43) 0.329 (0.44)

0.671 0.66640 0.329 0.67003

0.66759

U     

   



  

and: 

 2
ln

( ) 2 0
L

L
 


      

 
  since lnL    as 0L    
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So: 

 
25,000

2 2 8.5 2 0.64

0

( ) 0.66759 57,998,646Xx f x dx e       

 2 2( ) 57,998,646 25,000 (1 0.97898) 71,130,942E Y        

 2 2var( ) 71,130,942 6,558 5,304Y      

and the standard deviation is £5,304.  (The calculations are very sensitive to rounding, so we have 
used Excel to obtain accurate values.) 

Our calculations have shown that reinsurance reduces both the mean and variance of the 
insurer’s claim payments, as expected. 
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3 Inflation 

The examples we have considered so far have assumed that claim distributions don’t change over 
time (or at least that we are looking at a sufficiently short time period for us to be able to make 
this assumption). 

In practice claims are likely to increase because of inflation, at least in the longer term.  A claim 
distribution that is suitable for modelling claim amounts in one year may well not be suitable a 
year or two later.  We need to adjust our claim distributions to allow for inflation. 

In this section we will look at how claims inflation affects reinsurance arrangements.  It is easy to 
deal with claims inflation in the proportional reinsurance situation. 

Question 

Claims from a portfolio of policies are believed to follow an ( )Exp   distribution.  A proportional 

reinsurance arrangement with a retained proportion   is in force.   

(i) Give an expression for the insurer’s expected claim payment.  

(ii)  Next year, claim amounts are expected to increase by an inflationary factor of k .  Derive 
an expression for the insurer’s expected claim payment next year. 

Solution 

(i) Expected claim payment this year 

We know that ( )X Exp   and Y X .  So: 

 ( ) ( ) ( )E Y E X E X
 


    

(ii) Expected claim payment next year 

Next year, the gross claim amount random variable is kX  and the insurer’s net claim payment is 
kX .  So the insurer’s expected claim payment is: 

 ( ) ( )
k

E kX kE X
 


    

 
With excess of loss reinsurance, inflation can cause a problem.  Suppose that the claims X
are inflated by a factor of k  but the retention M  remains fixed.  What effect does this have 
on the arrangement? 

The amount claimed is kX , and the amount paid by the insurer, Y , is: 

 Y kX  if kX M  

 Y M   if kX M  
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In other words: 

 
if 

if 

M
k
M
k

kX X
Y

M X

  


 

The mean amount paid by the insurer is: 

 
/

0
( ) ( ) ( / )

M k
E Y kx f x dx M P X M k    (18.5) 

For example, if ( )X Exp  , then: 

 
/

0

( ) ( / )
M k

xE Y kx e dx M P X M k      

Integrating by parts: 

 

//

0
0

/
/ /

0

( ) ( / )
M kM kx x

M k
M k x M k

E Y kx e ke dx MP X M k

Me ke dx Me

 

  

 

  

      

   





  

The first and last terms in the line above cancel to give: 

  
/ /

/

00

( ) 1
M k M k

x x M kk k
E Y ke dx e e  

 
            

One important general point that can be made is that the new mean claim amount paid by 
the insurer is not k  times the mean claim amount paid by the insurer without inflation. 

The insurer’s mean claim amount will inflate by less than k .  We can see this by considering 
different sizes of claim.  From the insurer’s point of view, the amount it has to pay out on small 
claims (those that are nowhere near the retention limit) will increase by k .  However, the amount 
paid on claims that were already above the limit will not increase at all (and the amount paid on 
claims that didn’t reach the limit before but now do will increase, but by less than k ).   

The reinsurer’s mean claim amount will increase by a factor of more than k  to compensate. 

A similar approach can also be taken in situations where the retention limit is linked to 
some index of inflation. 

Of course if the retention limit increases by a factor of k  as well, both mean claim amounts (for 
the insurer and reinsurer) will increase by the same factor. 

When examining the details of a reinsurance arrangement in real life it is very important to check 
whether the retention limits are fixed or are linked to an agreed inflation index.  There are special 
published indices specifically for use in connection with general insurance claims. 
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The payments of the insurer, y , and the reinsurer, z , with retention M  and inflation factor 

k  would be: 

 y <- pmin(k*x,M) 
 z <- pmax(0,k*x-M) 

We can then calculate moments, probabilities and quantiles as before. 
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4 Estimation 

Consider the problem of estimation in the presence of excess of loss reinsurance.  Suppose 
that the claims record shows only the net claims paid by the insurer.  A typical claims 
record might be: 

 1 2 3 4 5, , , , , , , ...x x M x M x x  (18.6) 

and an estimate of the underlying gross claims distribution is required. 

As before, we wish to estimate the parameters for the distribution we have assumed for the 
claims. 

The method of moments is not available since even the mean claim amount cannot be 
computed.  On the other hand, it may be possible to use the method of percentiles without 
alteration; this would happen if the retention level M  is high and only the higher sample 
percentiles were affected by the (few) reinsurance claims. 

The statistical terminology for a sample of the form (18.6) is censored.  In general, a 
censored sample occurs when some values are recorded exactly and the remaining values 
are known only to exceed a particular value, here the retention level M . 

Maximum likelihood can be applied to censored samples.  The likelihood function is made 
up of two parts.  If the values of 1 2, , ... , nx x x  are recorded exactly these contribute a factor 

of: 

1
1

( ) ( ; )
n

ii
L f x 


    

If a further m  claims are referred to the reinsurer, then the insurer records a payment of M   
for each of these claims.  These censored values then contribute a factor:  


 2

1
( ) ( )

m

j
L P X M      ie  ( )

mP X M  

The complete likelihood function is: 

 
1

( ) ( ; ) 1 ( ; )
n m

ii
L f x F M  


     

where (.; )F   is the CDF of the claims distribution. 

The reason for multiplying is that the likelihood reflects the probability of getting the n  claims 
with known values and m  claims exceeding M .  Also, we are assuming that the claims are 
independent. 

In R, we can define the censored log-likelihood function and use the function nlm on the 
negative value of this as before. 
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Question 

Claims from a portfolio are believed to follow an ( )Exp   distribution.  The insurer has effected 

individual excess of loss reinsurance with a retention limit of 1,000.   

The insurer observes a random sample of 100 claims, and finds that the average amount of the 90 
claims that do not exceed 1,000 is 82.9.  There are 10 claims that do exceed the retention limit.   

Calculate the maximum likelihood estimate of the parameter  . 

Solution 

Here ( )X Exp   and 1,000( 1,000)P X e   .  So the likelihood function is: 

 901 2 (10,000 )1,000 10 90( ) ... ( ) ixx x xL e e e e e              

Taking logs: 

  ln 90ln (10,000 )iL x     

Differentiating with respect to  : 

 
90

ln (10,000 )iL x

 

    

This is equal to 0 when: 

 
90 90

0.005154
10,000 10,000 (90 82.9)ix

   
  

 

Differentiating again: 

 
2

2 2
90

lnL

 

    

This is negative when 0.005154  .  (In fact it is always negative.)  So we have a maximum 

turning point and hence ˆ 0.005154  . 
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5 Policy excess 

Insurance policies with an excess are common in motor insurance and many other kinds of 
property and accident insurance.  Under this kind of policy, the insured agrees to carry the 
full burden of the loss up to a limit, L , called the excess.  If the loss is an amount X , 
greater than L , then the policyholder will claim only X L .  If Y  is the amount actually paid 
by the insurer, then: 

 
 

  

0 if 

if 

Y X L

Y X L X L
  

Clearly, the premium due on any policy with an excess will be less than that on a policy 
without an excess. 

This assumes that some of the saving is actually passed on to the policyholder.  A policy excess 
may also be referred to as a deductible. 

The position of the insurer for a policy with an excess is exactly the same as that of the 
reinsurer under excess of loss reinsurance.  The position of the policyholder as far as 
losses are concerned is exactly the same as that of an insurer with an excess of loss 
reinsurance contract. 

In practice, expenses form a significant part of the insurance cost.  So the presence of an excess 
might not affect the premium as much as might be expected.  A premium calculated ignoring 
expenses is called a ‘risk premium’. 

Question 

An insurer believes that claims from a particular type of policy follow a Pareto distribution with 
parameters 2   and 900  .  The insurer wishes to introduce a policy excess so that 20% of 
losses result in no claim to the insurer.   

Calculate the size of the excess. 

Solution 

Let L  be the size of the excess.  The insurer wants to set L  so that ( ) 0.2P X L  .  Using the given 

loss distribution, we have: 

 
2900

( ) 1
900

P X L
L

      
  

So we require: 

 
2900

1 0.2
900 L
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Rearranging: 

 

2900
0.8

900

900
0.8

900

900
900

0.8

900
900 106.23

0.8

L

L

L

L
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The chapter summary starts on the next page so that you can 
keep all the chapter summaries together for revision purposes. 
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Chapter 18 Summary 

Reinsurance 

Reinsurance is insurance for insurance companies.  By using reinsurance, the insurer seeks to 
protect itself from large claims.  The mean amount paid by the insurer is reduced, and the 
variance of the amount paid by the insurer is reduced.   

Reinsurance may be proportional or non-proportional (ie excess of loss). 

We use the following notation: 

X  is the gross claim amount random variable 

Y  is the net claim amount, ie the amount of the claim paid by the insurer 

Z  is the amount paid by the reinsurer 

Proportional reinsurance 

Under proportional reinsurance, the insurer and the reinsurer split the claim in pre-defined 
proportions.  For a claim amount X , the amount paid by the insurer is Y X  and the 
amount paid by the reinsurer is (1 )Z X   where   is known as the retained proportion or 

retention level, 0 1  .   

 ( ) ( )E Y E X     ( ) (1 ) ( )E Z E X    

 2var( ) var( )Y X    2var( ) (1 ) var( )Z X    

Non-proportional reinsurance (individual excess of loss) 

Under individual excess of loss, the insurer will pay any claim in full up to an amount M , the 
retention level.  Any amount above M  will be met by the reinsurer.   

 
if

if

X X M
Y

M X M


  

    
0 if

if

X M
Z

X M X M


   

 

  
0

( ) ( ) ( )
M

X X
M

E Y x f x dx M f x dx


      ( ) ( ) ( )X
M

E Z x M f x dx


    

 2 2 2

0

( ) ( ) ( )
M

X X
M

E Y x f x dx M f x dx


      2 2( ) ( ) ( )X
M

E Z x M f x dx
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Reinsurer’s conditional claims distribution 

It may be the case that the reinsurer is only informed of claims greater than the retention 
level M .  In this case, the reinsurer observes claims from a truncated (or conditional) 
distribution.     Let W  be the random variable associated with this distribution, then: 

 | 0 |W Z Z X M X M      

 
( ) ( )

( )
( ) ( 0)

X X
W

f w M f w M
f w

P X M P Z
 

 
 

 

 ( )
( )

( 0)
E Z

E W
P Z




 

Excesses  

When a policy excess applies, the policyholder pays for the first part of each loss up to an 
excess level L .  Any amount greater than L  will be met by the insurer.  The positions of the 
policyholder and the insurer as far as losses are concerned are the same as those of the 
insurer and the reinsurer respectively under individual excess of loss reinsurance.  When a 
policy excess applies, the insurer’s conditional distribution takes the same form as that of 
the reinsurer’s conditional distribution above. 

Inflation and individual excess of loss reinsurance 

 If claims are inflated by a factor of k  but the retention level remains fixed at M  then the 
amount paid by the insurer is: 

 
if 

if 

M
k
M
k

kX X
Y

M X

  


 

The amount paid by the reinsurer is: 

 
0 if 

if 

M
k
M
k

X
Z

kX M X

  
 

 

Estimation of parameters from a censored sample 

The likelihood function of a vector of parameters  , based on a sample of n  exact 

observations and m  censored observations known to exceed M  is: 

  
1

( ) ( ) ( )
n

m
X i

i

L f x P X M


 
  
  
  

assuming that the observations are realisations of n m  IID random variables. 
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Chapter 18 Practice Questions 

18.1 An insurer insures a risk for which individual claim sizes (in £000s) have mean 500 and standard 
deviation 250.  The insurer arranges excess of loss reinsurance for this risk with a retention limit 
of £1,000,000. 

Calculate the proportion of claims from this risk for which the insurer expects to receive a 
payment from the reinsurer if the loss distribution is: 

(a) gamma 

(b) lognormal.   

18.2 Claims arising from a particular portfolio have a Pareto distribution with parameters 6   and 
200  .  The insurer effects individual excess of loss reinsurance with a retention limit of 80.   

(i) Calculate the insurer’s expected claim amount before and after reinsurance. 

(ii) Calculate the mean amount paid by the reinsurer on claims in which it is involved. 

18.3 A sample of a reinsurer’s payments made under a proportional reinsurance arrangement consists of 
the following values, in units of thousands of pounds: 

4.6, 6.8, 22.9, 1.4, 3.8, 10.2, 19.4, 32.1 

If the original claim amounts have a ( , )Gamma  distribution, and the retained proportion is 

80%, determine the distribution of the reinsurer’s claim payments.  Hence estimate the 
parameters   and   using the method of moments. 

18.4 If 2log (7.5,0.85 )X N , calculate: 

(a) 
5,000

1,000

( )f x dx    

(b) 
1,000

0

( )x f x dx   

(c)  2

5,000

( )x f x dx


  

18.5 Claims from a portfolio are believed to have a Pareto distribution with parameters   and  .  In 
Year 0, 6   and 1,000  .  An excess of loss reinsurance arrangement is in force, with a 
retention limit of 500.  Inflation is a constant 10% pa. 

(i) Determine the distribution of the gross claim amounts in Years 1 and 2. 

(ii) Calculate the reinsurer’s mean claim payment on all claims in Years 0, 1 and 2. 
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18.6 Claim amounts from a portfolio follow a Weibull distribution with PDF: 

2
( ) 2 , 0cxf x cxe x     

An individual excess of loss reinsurance arrangement with retention limit 3M   is in force.  A 
sample of the reinsurer’s non-zero payment amounts gives the following values: 

10n    8.7iw   2 92.3iw   

where the units are millions of pounds.  Calculate the maximum likelihood estimate of c . 

18.7 (i) A random variable X  has the lognormal distribution with density function ( )f x  and 

parameters   and  .  Show that for 0a  : 

  
22 log

( ) = exp 1
2

a

a
x f x dx

 


                  
  

 where   is the cumulative distribution function of the standard normal distribution.  [4] 

(ii) Claims under a particular class of insurance follow a lognormal distribution with mean 
9.070 and standard deviation of 10.132 (figures in £000s).  In any one year 20% of policies 
are expected to give rise to a claim. 

 An insurance company has 200 policies on its books and wishes to take out individual 
excess of loss reinsurance to cover all the policies in the portfolio.  The reinsurer has 
quoted premiums for two levels of reinsurance as follows (figures in £000s): 

Retention limit Premium 

25 50 

30 40 

 
 (a) Calculate the probability, under each reinsurance arrangement, that a claim 

arising will involve the reinsurer. 

 (b) By investigating the average amount of each claim ceded to the reinsurer, 
calculate which of the retention levels gives the best value for money for the 
insurer (ignoring the insurer’s attitude to risk). 

 (c) The following year, assuming all other things equal, the insurer believes that 
inflation will increase the mean and standard deviation of the claims in its 
portfolio by 8%.  If the reinsurer charges the same premiums as before, determine 
which of the retention levels will give best value for money next year. [18] 

    [Total 22] 
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18.8 (i) Loss amounts from a particular type of insurance have a Pareto distribution with 
parameters   and  .  If the company applies a policy excess, E, derive the distribution 
function of claim amounts paid by the insurer. [3] 

(ii) Assuming that 4   and 15  , calculate the mean claim amount paid by the insurer: 

 (a) with no policy excess ( 0E  ), 

 (b) with an excess of 10 ( 10E  ). [2] 

(iii) Using your answers to (ii), comment on the effect of introducing a policy excess.   [2] 
    [Total 7] 

18.9 Losses from a group of travel insurance policies are assumed to follow a Pareto distribution with 
parameters 4.5   and 3,000  . 

Next year losses are expected to increase by 3%, and the insurer has decided to introduce a policy 
excess of 100 per claim. 

Calculate the probability that a loss next year is borne entirely by the policyholder. [2] 

 

 

  

Exam style 

Exam style 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 18 Solutions 

18.1 (a) Gamma distribution 

Let X  denote the loss random variable and suppose that   ( , )X Gamma .  Then: 

    
 
 

2
2

( ) 500 and var( ) 250E X X  

Solving these equations simultaneously gives: 

   4 and 0.008   

The reinsurer will make a payment if the claim size exceeds £1m.  Since we are working in £000s, 
we have to calculate: 

 ( 1,000)P X   

To do this, we can use the relationship between the gamma and chi-squared distributions: 

      2
2( , ) 2X Gamma X   

So: 

          2
8( 1,000) (2 2,000 ) ( 16) 1 0.9576 0.0424P X P X P   

(b) Lognormal distribution 

If    2log ( , )X N , then: 

          2 2 2½ 2 2( ) 500 and var( ) ( 1) 250E X e X e e  

Squaring the first equation and substituting this into the second gives: 

 
2 2

2
2

250
1 0.25 ln1.25 0.22314

500
e         

Then, from the equation for ( )E X  we have: 

 2ln500 ½ 6.1030      

and: 

 

ln1,000 6.103036
( 1,000) ( 1.70354)

0.2231436

1 0.95576 0.04424

P X P Z P Z
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18.2 (i) Insurer’s expected claim payments 

Let X  denote the gross claim amount random variable.  Then (6,200)X Pa  and: 

 
200

( ) 40
6 1

E X  


  

ie the mean claim amount before reinsurance is 40. 

The insurer’s net claim amount is: 

 
if 80

80 if 80

X X
Y

X


  

  

So: 

 
80 6

7
0

6(200)
( ) 80 ( 80)

(200 )
E Y x dx P X

x
  

  

The integral can be evaluated by substitution.  Let 200u x  .  Then: 

 

80 2806 6

7 7
0 200

280
6 6 7

200

2805 6
6

200

5 6 5 6
6

6(200) 6(200)
( 200)

(200 )

6(200) ( 200 )

200
6(200)

5 6

280 200 280 200 200 200
6(200)

5 6 5 6

21.9378

x dx u du
x u

u u du

u u

 

 

   

 


 

 
  

   

     
                 



 



 

Alternatively, we could integrate by parts. 

Also: 

 
6200

( 80) 1 (80) 0.1328
200 80

P X F        
  

So the mean claim amount after reinsurance is: 

 ( ) 21.9378 80 0.1328 32.5626E Y       
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(ii) Mean amount paid by the reinsurer on claims in which it is involved 

The mean amount paid by the reinsurer on all claims (including those where the reinsurer makes 
no payment) is: 

 ( ) ( ) ( ) 40 32.5626 7.4374E Z E X E Y       

and the mean amount paid by the reinsurer on claims in which it is involved is: 

 
( ) 7.4374

56
( 80) 0.1328

E Z
P X

 


  

Alternatively, we could say that W , the reinsurer’s conditional claim payment random variable 

has a (6,280)Pa  distribution.  The mean of this distribution is 
280

56
6 1




. 

18.3 Let X  be the gross claim amount random variable and Z  be the reinsurer’s claim payment.  Then 
( , )X Gamma   and 0.2Z X .  The moment generating function of Z  is: 

 0.2 0.2
( ) ( ) ( ) (0.2 ) 1 1

5
tZ tX

Z X
t t

M t E e E e M t
 

 

 
            
   

 ,   5t    

This is the MGF of the ( ,5 )Gamma   distribution.  By the uniqueness property of MGFs, it 

follows that ( ,5 )Z Gamma   . So: 

 ( )
5

E Z



  and      
2 2

var( )
(5 ) 25

Z
 
 

    

The sample mean and n -denominator variance are: 

 
101.2

12.65
8 8

iz
z     

and: 

 
2

2 2 22,119.02
12.65 104.855

8 8
iz

s z      

The method of moments estimates of   and   are the solutions of the equations: 

 12.65
5


  and      

2
104.855

25




  

Solving these gives ˆ 1.526   and ˆ 0.02413  . 
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18.4 (a) Using the truncated moments formula with 0k  : 

5,000

1,000

ln5,000 7.5 ln1,000 7.5
( )

0.85 0.85

(1.19670) ( 0.69676)

0.88429 0.24298

0.6413

f x dx
        

   

  

 





 

This is (1,000 5,000)P X  . 

(b) Using the formula with 1k  : 

2
1,000

7.5 ½ 0.85

0

7.86125

ln1,000 7.5
( ) 0.85 ( )

0.85

[ ( 1.54676) 0]

2,594.76 0.06096

158.2

x f x dx e

e

          
  

   

 





 

(c) Using the formula with 2k  : 

22 2(7.5) 2 0.85

5,000

16.445

ln5,000 7.5
( ) ( ) 2(0.85)

0.85

[1 ( 0.50330)]

13,866,688(1 0.30738)

9.604m

x f x dx e

e


          

  

  

 





 

18.5 (i) Distribution of insurer’s claim payments before reinsurance 

Let jX  be the gross claim amount random variable in Year j .  Then 0 (6, 1000)X Pa  and 

1 01.1X X .  The Pareto distribution does not have a moment generating function, but we can 

determine the distribution of 1X  by considering its CDF.  For 0x  : 

    1 0

6

1 0 0 1.1 1.1
1.1

1,000
( ) ( ) (1.1 ) 1

1,000
x x

X X x
F x P X x P X x P X F

 
         
  

  

Multiplying the numerator and the denominator of the bracketed fraction by 1.1, we see that: 

 
1

6
1,100

( ) 1
1,100XF x

x
     

 ,   0x    

This is the CDF of the (6,1100)Pa  distribution.  So 1 (6,1100)X Pa . 
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Inflation has no effect on the first parameter, but the second parameter has increased by 10%. 

Similarly, 2 (6,1210)X Pa . 

(ii) Reinsurer’s expected claim payments 

Let jZ  be the reinsurer’s claim payment random variable in Year j .  Then: 

 
0

6

0 7
500 500

6(1,000)
( ) ( 500) ( ) ( 500)

1,000 )
XE Z x f x dx x dx

x

 
   

    

Substituting 500t x  , we see that: 

 
6

0 7
0

6(1,000)
( )

1,500 )
E Z t dt

t




   

We can rewrite this as follows: 

 
6 6

0 7
0

1,000 6(1,500)
( )

1,500 1,500 )
E Z t dt

t

   
     

The integrand is of the form ( )Tt f t , where (6,1500)T Pa .  So: 

 
6 6

0
1,000 1,000 1,500

( ) ( ) 26.337
1,500 1,500 5

E Z E T
         
   

  

The only change from Year 0 to Year 1 is in the   parameter.  So, using the same approach: 

 
66 6 6

1 7 7 7
500 0 0

6(1,100) 6(1,100) 1,100 6(1,600)
( ) ( 500)

1,6001,100 ) 1,600 ) 1,600 )
E Z x dx t dt t dt

x t t

        
           

The final integral is the mean of the (6,1600)Pa  distribution.  So: 

 
6

1
1,100 1,600

( ) 33.790
1,600 5

E Z
    
 

  

Similarly: 

 

66 6 6

2 7 7 7
500 0 0

6

6(1,210) 6(1,210) 1,210 6(1,710)
( ) ( 500)

1,7101,210 ) 1,710 ) 1,710 )

1,210 1,710
42.930

1,710 5

E Z x dx t dt t dt
x t t

        
      

    
 

  
  

The percentage increase from Year 0 to Year 1 is 28.3%, and the percentage increase from Year 1 to 
Year 2 is 27.1%.  These figures are more than 10% as expected. 
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18.6 Since we are given information about claim payments made by the reinsurer, we need to consider 
the reinsurer’s conditional claim amount random variable.  This has PDF: 

 
( )

( )
1 ( )
f w M

g w
F M





 

The gross claim amount random variable has a Weibull distribution with parameters c  and 2.  So: 

 
2

2

2

( )
( 6 )2 ( )

( ) 2 ( 3)
c w M

c w w

cM

c w M e
g w c w e

e

 
 




    

So the likelihood function based on a random sample of n  payments made by the reinsurer is: 

 2

11

( ) 2 ( 3)exp ( 6 )
n n

n n
i i i

ii

L c c w c w w


 
     

 
  

Taking logs: 

 2

1 1
ln ln2 ln ln( 3) ( 6 )

n n

i i i
i i

L n n c w c w w
 

        

Differentiating with respect to c : 

 2

1
ln ( 6 )

n

i i
i

n
L w w

c c

 

    

This is 0 when: 

 
2

1
( 6 )

n

i i
i

n
c

w w





 

Differentiating again: 

 
2

2 2
ln

n
L

c c




   

This is negative, so we have a maximum. 

Substituting in the given numerical values, we find that: 

 
10ˆ 0.0692

92.3 6 8.7
c  
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18.7 (i) Proof 

We want to simplify the integral: 

 

2log
½1

2

x

a

x e dx
x




 

    
   

Making the substitution 
log x

u
 




  , the integral becomes: 

 
2 2½( )

log

1

2
u u

a

e e du   

 



 


   




  [1] 

Multiplying out the brackets in the exponent and simplifying, we have: 

 
2 2½ ½

log

1

2
u

a

e e du 

 





 




  [1] 

This integrand is the PDF of the standard normal distribution and the integral is:  

log
(0,1)

a
P N

 

   

 
   [1] 

So we have: 

 
2½ log

( ) 1
a

a
x f x dx e   




       

  
  [1] 

This is the required result. 

(ii)(a) Probability 

We first need the parameter values for the lognormal distribution.  Using the formulae for the 
mean and variance of the lognormal distribution from page 14 of the Tables we have the 
following equations: 

 
2 2 2½ 2 29.070 and ( 1) 10.132e e e         

Solving these simultaneous equations (by squaring the first equation and then substituting into 
the second equation), we obtain the values: 

 2 0.80999 and 1.79998    [2] 
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The probability that a claim involves the reinsurer is the probability that it exceeds the retention 
limit.  So if X  represents the amount of a claim, we have, for the first reinsurance arrangement: 

 

   2 2( 25) log ( , ) 25 ( , ) log25

log25 log25
(0,1) 1

P X P N P N

P N

   

 
 

    

          
   

 [1] 

Substituting in the values for   and 2 , we get: 

 ( 25) 1 (1.57656) 0.05745P X      [1] 

So the probability that a claim will involve the reinsurer if the first arrangement is in force is 
5.745%. 

Using exactly the same argument for the second arrangement, we get: 

 
log30

( 30) 1 1 (1.77914) 0.03761P X



       

 
 [1] 

So the probability that a claim will involve the reinsurer if the second arrangement is in force is 
3.761%. 

(ii)(b) Better arrangement 

Consider the first arrangement.  The amount ceded to the reinsurer (ie the amount paid by the 
reinsurer on a claim) is: 

 
0 if 25

25 if 25

X
Z

X X


   

 

So: 

 
25 25 25

( ) ( 25) ( ) ( ) 25 ( )E Z x f x dx x f x dx f x dx
  

       [1] 

where ( )f x  is the PDF of the original lognormal distribution. 

We can calculate the first of these integrals by using the result from the first part of the question: 

 

 

2 2
½

25

log25
( ) 1

9.070 1 (0.67657)

9.070 0.24934

2.2615

x f x dx e   





   
       

 

 





 [1] 
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The second integral is just the probability that we worked out in part (ii)(a).  So: 

 ( ) 2.2615 25 0.05745 0.8253E Z      [1] 

Working in exactly the same way for the second arrangement (where Z  is now the amount paid 
by the reinsurer in excess of 30), we have: 

 

 ( ) 9.070 1 (0.87915) 30 0.03761

9.070 0.18966 30 0.03761

0.5919

E Z    

   

  [1] 

So the expected amount paid out by the reinsurer per £1 of premium is (under the first 
arrangement): 

 
200 0.2 0.8253

£0.660
50

 
  [1] 

Under the second arrangement, it is: 

 
200 0.2 0.5919

£0.592
40

 
  [1] 

So, other things being equal, the first arrangement looks better value. 

(ii)(c) Better arrangement under new circumstances 

The new mean and standard deviation are now 9.7956 and 10.94256 respectively.  So we can 
calculate the new parameter values: 

 
2 2 2½ 2 29.7956 and ( 1) 10.94256e e e          

Solving these exactly as we did before, we find that 1.87694   and 2  is unchanged at 

0.80999.   [2] 

So the value for ( )E Z  is now (under the first arrangement): 

 

   

log25 1.87694 0.80999
( ) 9.7956 1

0.80999

log25 1.87694
25 1

0.80999

9.7956 1 (0.59106) 25 1 (1.49105)

9.7956 0.27724 25 0.06797

1.0164

E Z
   

   
  

  
    

  

   

   

  [2] 
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Under the second arrangement: 

 

   

log 30 1.87694 0.80999
( ) 9.7956 1

0.80999

log 30 1.87694
30 1

0.80999

9.7956 1 (0.79364) 30 1 (1.69363)

9.7956 0.21370 30 0.04517

0.73830

E Z
   

   
  

  
    

  

   

   

  [2] 

So working exactly as before, the payment per £1 of premium under the first arrangement is now: 

 
200 0.2 1.0164

£0.813
50

 
  

In the second arrangement the corresponding figure is: 

 
200 0.2 0.73830

£0.738
40

 
  

So the first arrangement is still better value for the insurer. [1] 

18.8 (i) Distribution function 

Let X  denote the amount of the loss and Y denote the amount paid by the insurer in respect of 
the loss.  With a policy excess of E  in force, we have: 

 |Y X E X E    

The CDF of Y  is given by: 

 

( ) ( ) ( | )

(  and )
( )

(  and )
( )

( )
( )

( ) ( )
1 ( )

Y

X X

X

F y P Y y P X E y X E

P X E y X E
P X E

P X y E X E
P X E

P E X y E
P X E

F y E F E
F E

     

  




  




  




 



  [2] 
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Since ( , )X Pa  : 

 

1 1

( )

1 1

1 , 0

Y

y E E
F y

E

E y E

E

E
y

y E

 









 
 




 
 







                        
         

           
 
  

 
     

  [1] 

So ( , )Y Pa E   . 

(ii) Mean values 

The mean of the ( , )Pa E    distribution is 
1
E





. 

If 0E   then 
15

( ) 5
3

E Y   .   [1] 

If 10E   then 
25 1

( ) 8
3 3

E Y   . [1] 

(iii) Effect of introducing a policy excess 

Introducing a policy excess of E  increases the mean claim amount paid by the insurer by 
1

E
 

.  

This is because small losses are met in full by the policyholder.  [2] 

It may still be advantageous to the insurer to introduce a policy excess, since although the average 
claim payment will increase, fewer claim payments will be made. 

18.9 Let X  be the loss amount random variable for this year, and let X  be the loss amount random 
variable for next year.  Then: 

 (4.5,3000)X Pa     and    1.03X X    

The probability that a loss next year is borne entirely by the policyholder is: 

 

4.5

100
1.03 100

1.03

3,000
( 100) ( ) 1 0.13353

3,000
P X P X

 
       
  

  [2] 
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Risk models 1 

 

 

Syllabus objectives 

1.2 Compound distributions and their application in risk modelling  

1.2.1 Construct models appropriate for short-term insurance contracts in terms of 
the numbers of claims and the amounts of individual claims. 

1.2.2 Describe the major simplifying assumptions underlying the models in 1.2.1. 

1.2.3 Define a compound Poisson distribution and show that the sum of 
independent random variables each having a compound Poisson 
distribution also has a compound Poisson distribution. 

1.2.4 Derive the mean, variance and coefficient of skewness for compound 
binomial, compound Poisson and compound negative binomial random 
variables. 
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0 Introduction 

In the first section of this chapter, we describe the main features of general insurance policies.  
There is no mathematics in this section, and you should be able to read it through fairly quickly in 
order to obtain a good overview of the different types of product available. 

In the remaining sections of the chapter we introduce the idea of a compound distribution.  We will 
define and use the compound Poisson, compound geometric, compound negative binomial and 
compound binomial distributions. 

We will also start to look at two models, the individual risk model and the collective risk model, 
which are used to describe aggregate claims, ie the total claims that arise during a period from a 
group of policies. 

In the simplest case of a life assurance benefit (often referred to as ‘long-term business’), each 
policy can result in at most one claim and claims will be for amounts specified in advance (ie the 
sum assured).  The benefit level may be the same for all policies or it may vary between policies. 

In general insurance (often referred to as ‘short-term business’), policies can give rise to more than 
one claim and the amounts will not usually be known in advance. 

In this chapter we look at the theory of risk models.  In the next chapter we explain how to adapt 
these models when reinsurance is in place. 
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1 General features of a product 

1.1 Insurable interest 

Generally, for a risk to be insurable: 

 the policyholder must have an interest in the risk being insured, to distinguish 
between insurance and a wager 

 a risk must be of a financial and reasonably quantifiable nature. 

1.2 Insurable risk 

Ideally risk events also need to meet the following criteria if they are to be insurable:  

 Individual risk events should be independent of each other.   

In practice we won’t often get strict independence but a low correlation is desirable. 

 The probability of the event should be relatively small.  In other words, an event that 
is nearly certain to occur is not conducive to insurance.   

For example, a house would not be insured if it stood on the edge of a crumbling cliff. 

 Large numbers of potentially similar risks should be pooled in order to reduce the 
variance and hence achieve more certainty.   

The similar risks should still be independent. 

 There should be an ultimate limit on the liability undertaken by the insurer.   

This would help the risk event meet the above criteria that it must be of a reasonably 
quantifiable nature. 

 Moral hazards should be eliminated as far as possible because these are difficult to 
quantify, result in selection against the insurer and lead to unfairness in treatment 
between one policyholder and another.   

Moral hazards occur when a person takes more risks because another party bears the cost 
of those risks. 

However, the desire for income means that an insurer or reinsurer will usually be found to 
provide cover when these ideal criteria are not met. 

Other characteristics that most general insurance products share are: 

 Cover is normally for a fixed period, most commonly one year, after which it has to 
be renegotiated.  There is normally no obligation on the insurer or insured to 
continue the arrangement thereafter although in most cases a need for continuing 
cover may be assumed to exist. 

 Claims are not of fixed amounts, and the amount of loss as well as the fact needs to 
be proved before a claim can be settled. 

 A claim occurring does not bring the policy to an end. 
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 Claims may occur at any time during the policy period.  Although there is normally a 
contractual obligation on the policyholder to report a claim to the insurer as quickly 
as possible, notification may take some time if the loss is not evident immediately.  
Settlement of the claim may take a long time if protracted legal proceedings are 
needed or if it is not straightforward to determine the extent of the loss.  However, 
from the moment of the event giving rise to the claim the ultimate settlement amount 
is a liability of the insurer.  Estimating the amounts of money that need to be 
reserved to settle these liabilities is one of the most important areas of actuarial 
involvement in general insurance. 

Classes of insurance in which claims tend to take a long time to settle are known as 
long-tail.  Those which tend to take a short time to settle are known as short-tail, although 
the dividing line between the two categories is not always distinct. 
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2 Models for short-term insurance contracts 

2.1 The basic model 

Many forms of non-life insurance can be regarded as short-term contracts, for example 
motor insurance.  Some forms of life insurance also fall into this category, for example 
group life and one-year term assurance policies. 

A short-term insurance contract can be defined as having the following attributes: 

 The policy lasts for a fixed, and relatively short, period of time, typically one year. 

 The insurance company receives from the policyholder(s) a premium. 

 In return, the insurer pays claims that arise during the term of the policy. 

At the end of the policy’s term the policyholder may or may not renew the policy.  If it is 
renewed, the premium payable by the policyholder may or may not be the same as in the 
previous period. 

The insurer may choose to pass part of the premium to a reinsurer.  In return, the reinsurer 
will reimburse the insurer for part of the cost of the claims during the policy’s term 
according to some agreed formula. 

An important feature of a short-term insurance contract is that the premium is set at a level 
to cover claims arising during the (short) term of the policy only.  This contrasts with life 
assurance policies where mortality rates increasing with age mean that the (level) annual 
premium in the early years would be more than sufficient to cover the expected claims in 
the early years.  The excess amount would then be accumulated as a reserve to be used in 
the later years when the premium on its own would be insufficient to meet the expected cost 
of claims. 

Now to be more specific, a short-term insurance contract covering a risk will be considered.  
A risk includes either a single policy or a specified group of policies.  For ease of 
terminology the term of the contract is assumed to be one year, but it could equally well be 
any other short period, for example six months.  The random variable S  denotes the 
aggregate claims paid by the insurer in the year in respect of this risk.  Models will be 
constructed for this random variable S .  In Section 3 collective risk models will be studied.  
Later, in the next chapter, the idea of a collective risk model is extended to an individual risk 
model. 

We will see shortly what these terms mean. 

A first step in the construction of a collective risk model is to write S  in terms of the 

number of claims arising in the year, denoted by the random variable N , and the amount of 
each individual claim.  Let the random variable iX  denote the amount of the i th claim.  

Then: 

 
1

N

i
i

S X


   (19.1) 

where the summation is taken to be zero if N  is zero.   

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 6  CS2-19: Risk models 1 

© IFE: 2019 Examinations The Actuarial Education Company 

This decomposition of S  allows consideration of claim numbers and claim amounts 
separately.  A practical advantage of this is that the factors affecting claim numbers and 
claim amounts may well be different.  Take motor insurance as an example.  A prolonged 
spell of bad weather may have a significant effect on claim numbers but little or no effect on 
the distribution of individual claim amounts.  On the other hand, inflation may have a 
significant effect on the cost of repairing cars, and hence on the distribution of individual 
claim amounts, but little or no effect on claim numbers. 

This approach is referred to as a collective risk model because it is considering the claims arising 
from a group of policies taken as a whole, rather than by considering the claims arising from each 
individual policy. 

The random variable S  is the sum of a random number of random quantities, and is said to have a 
compound distribution. 

Because compound distributions arise commonly in general insurance examples, the random 
variable N  is often referred to as the ‘number of claims’ and the distribution of the random 
variables 1 2, ,X X   is referred to as the ‘individual claim size distribution’, even where the 

compound distribution arises in another context. 

To define a compound distribution, we need to know: 

 the distribution of N (which is a discrete distribution) and 

 the distribution of the iX ’s (which may be any distribution). 

If the distribution of the iX ’s is continuous, then S  will have a mixed distribution, ie partly discrete 

and partly continuous.  This is because of the possibility that 0N  . 

The problems that will be studied are the derivation of the moments and distribution of S  in 

terms of the moments and distributions of N  and the iX ’s.  Both will be studied with and 

without simple forms of reinsurance.  The corresponding problems for the reinsurer will 
also be studied, ie the derivation of the moments and distribution of the aggregate claims 
paid in the year in respect of this risk by the reinsurer. 

2.2 Discussion of the simplifications in the basic model 

The model for short-term insurance described in the previous subsection contains a 
number of simplifications as compared to a real insurance operation.  The first of these is 
that it is usually assumed that the moments, and sometimes the distributions, of N  and the 

iX ’s are known with certainty.  In practice these would probably be estimated from some 

relevant data. 

For example, we might assume that claim amounts have a (500,4)Gamma  distribution. 

In practice it may not be possible to make such simple assumptions.  For example: 

 There may not be an appropriate theoretical distribution that models the distribution of 
claim amounts actually paid sufficiently well. 

 Even if the shape of the distribution is satisfactory, appropriate parameter values may 
change over time, even in the short term. 
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 There may not be sufficient homogeneity in the portfolio.  For example, different policies 
may produce claim amounts that have different sizes.  This leads to the idea of a mixture 
distribution.   

Another simplification is to assume, at least implicitly, that claims are settled more or less 
as soon as the incident causing the claim occurs, so that, for example, the insurer’s profit is 
known at the end of the year.  In practice, there will be at least a short delay in the 
settlement of claims and in some cases the delay can amount to many years.  This will be 
especially true when the extent of the loss is difficult to determine, for example if it is to be 
decided in a court of law. 

Delays will often lead to higher payments being made, owing to inflationary factors.  (The relevant 
inflation rate may well be very different from that normally used to measure inflation.) 

The model does not in general include any mention of expenses.  The premium is assumed 
to pay the claims and include a loading for profit.  In practice, the premium paid by the 
policyholder(s) will also include a loading for expenses.  It is possible to include expenses 
in the model in a very simple way. 

The simplest way to allow for expenses would be to use a claim size distribution that was 
artificially inflated to allow for some sort of claim expense amount (eg adding an extra 20%), 
although this might not give the right ‘shape’.  Alternatively we might express the random 
variable X  as the sum of two other random variables, one to represent the actual claim amount 
and the other to represent the corresponding claim expense. 

An important element in models for long-term insurance is a rate of interest since, as 
explained above, excess premium income would be invested to build up reserves.  Interest 
is a relatively less important, but still important, feature of short-term insurance.  It is 
possible to include interest in models for short-term insurance but it is more usual to ignore 
it, at least in elementary models. 

We will ignore interest in the models used in this chapter. 

There are a number of additional elements included when setting the premium to be 
charged to policyholders, including the policyholders’ previous claims record and these are 
covered in Subject CP1 – Actuarial Practice.  The allowance for policyholders’ claim 
experience could be based on claim frequency or total claim amounts.  This is beyond the 
scope of this subject. 

In fact, we have already looked at models that make allowance for policyholders’ claims 
experience in Chapter 2. 

2.3 Notation and assumptions 

Throughout this chapter the following two important assumptions will be made: 

 the random variables 1{ }N
i iX   are independent and identically distributed 

 the random variable N  is independent of 1{ }N
i iX  . 
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In words these assumptions mean that: 

1. the number of claims is not affected by the amount of individual claims 

2. the amount of a given individual claim is not affected by the amount of any other 
individual claim 

3. the distribution of the amounts of individual claims does not change over the (short) 
term of the policy. 

Point 1 follows from the second of the two assumptions above.  Points 2 and 3 follow from the 
first. 

Throughout this chapter it will be assumed that all claims are for non-negative amounts, so 
that  ( ) 0iP X x  for  0x  .  Many of the formulae in this chapter will be derived using the 

moment generating functions (from now on abbreviated to MGFs) of S , N  and iX .  These 

MGFs will be denoted ( )SM t , ( )NM t  and ( )XM t , respectively, and will be assumed to exist 

for some positive values of the dummy variable t .  The existence of the MGF of a 
non-negative random variable for positive values of t  cannot generally be taken for 
granted; for example the MGFs of the Pareto and of the lognormal distributions do not exist 
for any positive value of t .  However, all the formulae derived in this chapter with the help 
of MGFs can be derived, although less easily, without assuming the MGFs exist for positive 
values of t . 

One method would be to use characteristic functions, ( )itXE e , which don’t have the same 

convergence problems as MGFs.  However the Core Reading does not cover these.   

( )G x  and ( )F x  shall denote the distribution functions of S  and iX , respectively, so that: 

( ) ( ) G x P S x  and ( ) ( ) iF x P X x  

For convenience it will often be assumed that the density of ( )F x  exists and it will be 

denoted ( )f x .  In cases where this density does not exist, so that iX  has a discrete or a 

mixed continuous/discrete distribution, expressions such as: 

0
( )x f x dx


  

should be interpreted appropriately.  The meaning should always be clear from the context. 

The k th moment, (  1,2,3...k ) of iX  about zero will be denoted km . 

Using this notation: 

 1( )iE X m     and    2
2 1var( )iX m m    
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3 The collective risk model 

3.1 The collective risk model 

Recall from Section 2.1 that S  is represented as the sum of N  random variables iX , where 

iX   denotes the amount of the i th claim.  Thus: 

    1 2 NS X X X   

and  0S  if  0N . 

S  is said to have a compound distribution. 

Note that it is the number of claims, N , from the risk as a collective (as opposed to 
counting the number of claims from individual policies) that is being considered and this 
gives the name ‘collective risk model’.  Within this framework, expressions in general terms 
for the distribution function, mean, variance and MGF of S  can be developed. 

3.2 Distribution functions and convolutions 

An expression for ( )G x , the distribution function of S , can be derived by considering the 

event { }S x  .  Note that if this event occurs, then one, and only one, of the following 

events must occur: 

  {  and 0}S x N   (ie no claims) 

or  {  and 1}S x N  (ie one claim of amount  x ) 

or  {  and 2}S x N  (ie two claims which total  x ) 

     

or  {  and }S x N r  (ie r claims which total  x ) 

     

and so on.  These events are mutually exclusive and exhaustive. 

Thus: 

  
0

{ } {  and }
n

S x S x N n



     

and hence: 

 
0

0

( ) (  and )

( ) ( | )

n

n

P S x P S x N n

P N n P S x N n
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Question 

A group of policies can give rise to at most two claims in a year.  The probability function for the 
number of claims is as follows: 

Number of claims, n   0 1 2 

( )P N n   0.6 0.3 0.1 

 
Each claim is either for an amount of 1 or an amount of 2, with equal probability.  Claim amounts 
are independent of one another and are independent of the number of claims. 

Determine the distribution function of the aggregate annual claim amount, S . 

Solution 

S  can take the values 0, 1, 2, 3 or 4.   

S  will only equal 0 if 0N   and this has probability 0.6.  So: 

 ( 0) ( 0) ( 0) 0.6P S P S P N        

S  will equal 1 if there is one claim for amount 1.  So: 

 

( 1) ( 1, 1)

( 1) ( 1) by independence

0.3 0.5

0.15

P S P N X

P N P X

   

  

 



  

and: 

 ( 1) ( 0) ( 1) 0.6 0.15 0.75P S P S P S           

The other values of the CDF can be calculated in a similar way and are given below: 

 

2

2

( 2) ( 1) ( 2) 0.75 0.3 0.5 0.1 0.5 0.925

( 3) ( 2) ( 3) 0.925 0.1 2 0.5 0.975

( 4) ( 3) ( 4) 1

P S P S P S

P S P S P S

P S P S P S

          

         

     

 

 
The distribution of a sum of independent random variables can be found using convolutions. 

If Z X Y  , where X  and Y  are independent random variables with PDFs (or PFs) ( )Xf x  and 

( ),Yf y  then ( )Zf z , the PDF (or PF) of Z , is called the convolution of X  and Y . 

This is written mathematically as *Z X Yf f f . 
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A formula for a convolution can be found by summing over all possible values of x  and y  that give 

a particular value z . 

Finding a convolution 

 ( ) ( ) ( )Z X Y
x

f z f x f z x    for discrete random variables 

  ( ) ( )Z X Yf z f x f z x dx    for continuous random variables 

‘Sum or integrate over all values of x  that could lead to a total of z .’ 

Similar formulae can be used to find the distribution function of a sum.   

( ) ( ) ( )Z X Y
x

F z f x F z x    or ( ) ( )X Y
x

F x f z x  

  ( ) ( )Z X YF z f x F z x dx   or   ( ) ( )Z X YF z F x f z x dx   

Question 

Suppose that  ( )N Poisson  ,  ( )M Poisson  , and N  and M  are independent.   

Use a convolution approach to derive the probability function of N M . 

Solution 

Let  V N M .  Then, for  0,1,2,...v : 

 



  



 




 




 

    







 
  

 

 









0

0

( )

0

( )

0

( )

( ) ( ) ( )

! ( )!

!
! !( )!

!

( )
!

v

n

n v nv

n

v
n v n

n

v
n v n

n

v

P V v P N n P M v n

e e
n v n

e v
v n v n

ve
nv

e
v

 

 

 

 

 

 

 

 

 

This is the probability function of the ( )Poisson    distribution.  So   ( )N M Poisson   . 

 
This result can also be proved using MGFs. 
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We can now consider the distribution function for a compound distribution. 

For convolutions of distribution functions, suppose that 1{ }n
i iX  are independent and 

identically distributed (IID) random variables with common distribution function ( )F x . 

Then the distribution function of 



1

n
i

i
X  is denoted by * ( )nF x , so that: 

     *
1 2( ) ( )n

nF x P X X X x   

Now note that if N n , then S  is the sum of a fixed number n , of random variables,

1{ } ,n
i iX   and hence: 

   *( | ) ( )nP S x N n F x    

where * ( )nF x  is the n-fold convolution of the distribution ( )F x . 

In other words, 3*( )F x  would be the convolution ( )* ( )* ( )F x F x F x  etc. 

(Note that  1* ( )F x  is just ( )F x  and, for convenience, 0*( )F x  is defined to equal 1 for all 

non-negative values of x .  Otherwise 0* ( ) 0F x .)  Thus: 

  *

0

( ) ( ) ( ) ( )n

n
G x P S x P N n F x




       (19.2) 

Formula (19.2) is a general expression for the distribution function of S .  Neither the 

distribution of N  nor of iX  has been specified. 

Note that when iX  is distributed on the positive integers it is easy to calculate ( )P S x  for 

1,2,3,...x   since: 

 
* *

1

( ) ( ) ( 1)

( ) ( ) ( 1)n n

n

P S x G x G x

P N n F x F x




   

     
  

ie    *

1

( ) ( ) n
x

n
P S x P N n f




     (19.3) 

where * *( ) ( 1)n nn*
x F x F xf     is the probability function of 

1

n

i
i

X

 .   

This is just saying that *

1

( )
n

n
x i

i

f P X x


  .   

As in the case when iX  is a continuous random variable, ( 0) ( 0)P S P N   . 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-19: Risk models 1 Page 13 

The Actuarial Education Company © IFE: 2019 Examinations 

When the number of claims is large, and the claim amount distribution is not too skewed, we can 
approximate the distribution of S  by a normal distribution with mean ( )E S  and variance var( )S .  

We explain how to calculate moments of S  in the next section. 

3.3 Moments of compound distributions 

To calculate the moments of S , conditional expectation results are used, conditioning on 

the number of claims, N .  To find [ ]E S , apply the identity: 

 [ ] [ [ | ]]E S E E S N  

Here we are using the conditional expectation formula, which is given on page 16 of the Tables. 

Now 


   1
1

[ | ] [ ]
n

i
i

E S N n E X nm .  Hence: 

  1[ | ]E S N Nm  

and: 

  1 1[ ] [ ] [ ]E S E Nm E N m   (19.4) 

This can also be written as follows: 

 ( ) ( ) ( )E S E N E X   

where ( ) ( )iE X E X , 1,2,...,i N . 

Formula (19.4) has a very natural interpretation.  It says that the expected aggregate claim 
amount is the product of the expected number of claims and the expected individual claim 
amount. 

This formula is also given on page 16 of the Tables. 

Question 

If X  has a Pareto distribution with parameters 400   and 3  , and N  has a (50)Poisson  

distribution, calculate the expected value of S . 

Solution 

The expected value is: 

400
( ) ( ) ( ) 50 10,000

3 1
E S E N E X   
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Variance 

To find an expression for var[ ]S ,  apply the identity: 

  var[ ] [var[ | ]] var[ [ | ]]S E S N E S N   

Here we are using the conditional variance formula, which is given on page 16 of the Tables.   

Since 1( | )E S N Nm , we have: 

   1var[ ] [var[ | ]] var[ ]S E S N Nm   

var[ | ]S N  can be found by using the fact that individual claim amounts are independent. 

Now: 

2
2 1

1 1

var[ | ] var var[ ] ( )
n n

i i
i i

S N n X X n m m
 

 
     

  
    

and so   2
2 1var[ | ] ( )S N N m m .  Hence: 

2
2 1 1var[ ] [ ( )] var[ ]S E N m m Nm    

ie:     2 2
2 1 1var[ ] [ ]( ) var[ ]S E N m m N m    (19.5) 

Alternatively, writing this solely in terms of means and variances: 

 2var( ) ( )var( ) var( )[ ( )]S E N X N E X   

where var( ) var( )iX X , 1,2,...,i N . 

This formula can also be found on page 16 of the Tables.  We will use it to determine the 
variances of the various compound distributions in the next few sections. 

Unlike the expression for [ ]E S , formula (19.5) does not have a natural interpretation.  The 

variance of S  is expressed in terms of the mean and variance of both N  and iX . 

However, this formula shows that the variability of the overall aggregate claim distribution is a 
function of both the variability in the number of claims and the variability in the claim amounts. 

Moment generating function 

The MGF of S  is also found using conditional expectation.  By definition, 

( ) [exp( )]SM t E tS , so: 

  ( ) [exp( ) | ]SM t E E tS N  (19.6) 

Again, we are conditioning on the number of claims, exactly as we did before. 
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Now 1 2[exp( )| ] [exp( )]nE tS N n E tX tX tX     , and as 1{ }n
i iX   are independent random 

variables: 

   1 2
1

[exp( )] [exp( )]
n

n i
i

E tX tX tX E tX


      

Also, since 1{ }n
i iX   are identically distributed, they have common MGF, ( )XM t , so that: 

1 1

[exp( )] ( ) [ ( ) ]
n n

n
i X X

i i
E tX M t M t

 
    

Hence: 

 [exp( ) | ] [ ( )]NXE tS N M t  (19.7) 

These conditional expectations are random variables because they are functions of N .   

Hence, inserting (19.7) in (19.6): 

   ( ) [ ( ) ] [exp( log ( ))] (log ( ))N
S X X N XM t E M t E N M t M M t   (19.8) 

We can see this last step by observing that [exp( log ( ))]XE N M t  is of the same form as ( )NtE e  but 

with t  replaced by log ( )XM t .  So it is the MGF of N  evaluated at log ( )XM t . 

Again, this is given on page 16 of the Tables. 

Thus, the MGF of S  is expressed in terms of the MGFs of N  and of iX .  As with the 

previous results, the distributions of neither N  nor of iX  have been specified. 

A summary of the results for the mean, variance and MGF of S  is given below. 

Mean, variance and MGF of S 

 ( ) ( ) ( )E S E N E X  

 2var( ) ( )var( ) var( )[ ( )]S E N X N E X   

  ( ) log ( )S N XM t M M t   

There is one special case that is of some interest.  This is when all claims are for the same 
fixed amount. 

Example 

Consider a portfolio of one-year term assurances each with the same sum assured.  
Suppose that the amount of a claim is B  with probability one (assuming that a claim occurs at 

all), ie ( ) 1iP X B   so that 1m B  and 2
2m B . 
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B  is a constant here, not a random variable.  So the expected value of an individual claim amount 
is B  and its variance is 0. 

Then S  is distributed on 0, ,2 ,...B B .  In fact, S BN  so: 

 ( ) ( )P S Bx P N x     

Formulae (19.4) and (19.5) give the mean and variance of S , but as S BN  it is easier to 

note that [ ] [ ]E S E N B  and 2var[ ] var[ ]S N B . 

The next three sections consider compound distributions using various models for the 
number of claims, N . 

3.4 The compound Poisson distribution 

First consider aggregate claims when N   has a Poisson distribution with mean   denoted 

( )N Poi  .  S  then has a compound Poisson distribution with parameter  , and ( )F x  is 

the CDF of the individual claim amount random variable. 

S  is sometimes referred to as a compound Poisson random variable. 

The results required for this distribution for N  are: 

[ ] var[ ]E N N    

( ) exp ( 1)t
NM t e     

Note that these results are given in the Tables.   

These results can be combined with those of Section 3.1 as follows. 

From (19.4): 

  ( ) ( ) ( ) ( )E S E N E X E X   

ie: 

 1[ ]E S m  (19.9) 

From (19.5): 

     2 2 2var( ) ( )var( ) var( )[ ( )] var( ) [ ( )] ( )S E N X N E X X E X E X     

ie: 

 2var[ ]S m  (19.10) 

and from (19.8): 

 ( ) exp ( ( ) 1)S XM t M t     (19.11) 
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The results for the mean and variance have a very simple form.  Note that the variance of S  

is expressed in terms of the second moment of iX  about zero (and not in terms of the 

variance of iX ). 

Note also that the formula for the skewness of S  has a simple form when S  is a compound 
Poisson random variable: 

 3[ ]skew S m   (19.12) 

ie: 

  3( ) ( )skew S E X   

The easiest way to show that the third central moment of S  is 3m  is to use the cumulant 

generating function: 

 ( ) log ( )S SC t M t  

To determine the skewness, we differentiate it three times with respect to t  and set 0t  , 
ie: 

3
3

1 3
0

[( ) ] log ( )S
t

dE S m M t
dt




    

In other words: 

 ( ) (0)Sskew S C   

Recall also that: 

 




( ) (0)

var( ) (0)

S

S

E S C

S C
  

Since  ( ) exp ( ( ) 1)S XM t M t  , it follows that: 

 log ( ) ( ) 1S XM t M t   

So: 

3 3

33 3
0

log ( ) ( ) 1S X
t

d dM t M t m
dt dt

 


 
   

  
 

ie 3
1 3[( ) ]E S m m    

This is because 3(0) ( )XM E X   for any random variable. 
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The coefficient of skewness of S  is given by: 

 
3/2

( )

[var( )]

skew S

S
  

Hence the coefficient of skewness 3/2
3 2/ ( )m m  . 

This result shows that the distribution of S  is positively skewed, since 3m  is the third 

moment about zero of iX  and hence is greater than zero because iX  is a non-negative 

valued random variable.  Note that the distribution of S  is positively skewed even if the 

distribution of iX  is negatively skewed.  The coefficient of skewness of S  is 

3/2
3 2/ ( )m m  , and hence goes to 0 as    .  Thus for large values of  , the distribution 

of S   is almost symmetric. 

Mean, variance and skewness of a compound Poisson random variable 

If  ( )N Poisson  , then S  is a compound Poisson random variable and: 

 

 

 

 

1

2
2

3
3

( ) ( )

var( ) ( )

( ) ( )

E S E X m

S E X m

skew S E X m

 

 

 

 

These results are all given on page 16 of the Tables. 

Sums of independent compound Poisson random variables 

A very useful property of the compound Poisson distribution is that the sum of independent 
compound Poisson random variables is itself a compound Poisson random variable.  A 
formal statement of this property is as follows. 

Let 1 2, ,..., nS S S  be independent random variables.  Suppose that each iS  has a compound 

Poisson distribution with parameter i , and that the CDF of the individual claim amount 

random variable for each iS  is ( )iF x . 

Define 1 2 nA S S S     .  Then A   has a compound Poisson distribution with parameter 

 , and ( )F x  is the CDF of the individual claim amount random variable for A , where: 

1

n

i
i




      and   
1

1
( ) ( )

n

i i
i

F x F x



   

Recall that   is the capital form of the Greek letter  . 

This is a very important result. 
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To prove the result, first note that ( )F x  is a weighted average of distribution functions and 

that these weights are all positive and sum to one.  This means that ( )F x  is a distribution 

function and this distribution has MGF: 

 


 
0

( ) ( )txM t e f x dx   

where ( ) ( )f x F x  is the PDF of the individual claim amount random variable for A . 

So: 

0
1

1
( ) exp( ) ( )

n
i i

i
M t tx f x dx






   

where ( )if x  is the density of ( )iF x .  Hence: 

 
0

1 1

1 1
( ) exp{ } ( ) ( )

n n

i i i i
i i

M t tx f x dx M t 


 
 
    (19.13) 

where ( )iM t  is the MGF for the distribution with CDF ( )iF x . 

Let ( )AM t  denote the MGF of A .  Then: 

 1 2( ) [exp( )] [exp( )]A nM t E tA E tS tS tS      

By independence of 1{ }n
i iS  : 

1

( ) (exp( ))
n

A i
i

M t E tS


   

As iS   is a compound Poisson random variable, its MGF is of the form given by formula 

(19.11), so: 

 [exp( )] exp ( ( ) 1)i i iE tS M t   

Thus: 

 
1 1

( ) exp{ ( ( ) 1)} exp ( ( ) 1)
n n

A i i i i
i i

M t M t M t 
 

      
  

   

ie:    

 ( ) exp{ ( ( ) 1)}AM t M t    (19.14) 

where:  

1

n
i

i



    and 

1

1
( ) ( )

n
i i

i
M t M t
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By the one-to-one relationship between distributions and MGFs, formula (19.14) shows that 
A  has a compound Poisson distribution with Poisson parameter  .  By (19.13), the 
individual claim amount distribution has CDF F(x). 

Question 

The distributions of aggregate claims from two risks, denoted by 1S  and 2S , are as follows:  

 1S  has a compound Poisson distribution with parameter 100 and distribution function 

1( ) 1 exp( / )F x x    , 0x  . 

 2S  has a compound Poisson distribution with parameter 200 and distribution function 

   2( ) 1 exp( / ), 0F x x x .   

Assuming that 1S  and 2S  are independent, determine the distribution of 1 2S S . 

Solution 

Let 1 2S S S  .  Then S  has a compound Poisson distribution with parameters 300   and ( )F x , 

where: 

 1 2 1 2
1 23 3 3 3

( ) ( ) ( ) 1 exp( / ) exp( / )F x F x F x x x         

 
We can use R to simulate values from a compound Poisson distribution. 

The R code to simulate 10,000 values from a compound Poisson distribution with parameter 
1,000 and a gamma claims distribution with 750   and 0.25   is: 

set.seed(123) 
n <- rpois(10000,1000) 
s <- numeric(10000) 
for(i in 1:10000) 
{x <- rgamma(n[i],shape=750,rate=0.25) 
s[i] <- sum(x)} 

We can obtain a mean of 2,997,651, a standard deviation of 93,719.71 and a coefficient of 
skewness of 0.02655921 as follows: 

mean(s) 
sd(s) 
skewness<-sum((s-mean(s))^3)/length(s) 
coeff.of.skew<-skewness/var(s)^(3/2) 

We can estimate P(S>3,000,000) to be 0.4881 as follows: 

 length(s[s>3000000])/length(s) 

Finally we could estimate the 90th percentile to be 3,115,719 as follows:: 

 quantile(s,0.9) 
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We can plot a histogram of the compound distribution using the hist function and an 
empirical density function using density in the plot function.  We can then superimpose a 
normal or other distribution to see if they provide a good approximation. 

However, a better way to check the fit with a normal distribution is to use the qqnorm 
function: 

 qqnorm(<simulated values>) 

or the qqplot function to compare the sample data to simulated values from a fitted model 
distribution:   

 qqplot(<simulated theoretical values>,  
<simulated compound distribution values>) 

Note we have used set.seed(123) so you can obtain the same values as this example. 

 

3.5 The compound binomial distribution 

Under certain circumstances, the binomial distribution is a natural choice for N .  For 
example, under a group life insurance policy covering n  lives, the distribution of the 
number of deaths in a year is binomial if it is assumed that each insured life is subject to the 
same mortality rate, and that lives are independent with respect to mortality. 

The notation ( , )N Bin n p  is used to denote the binomial distribution for N .  The key 

results for this distribution are: 

 

[ ]

var[ ] (1 )

( ) ( 1 )t n
N

E N np

N np p

M t pe p



 

  

  

Note that these results are given in the Tables.   

However, the notation for the MGF is slightly different.   

When N  has a binomial distribution, S  has a compound binomial distribution.  One 

important point about choosing the binomial distribution for N  is that there is an upper 
limit, n , to the number of claims. 

Expressions for the mean, variance and MGF of S  are now found in terms of n , p , 1m , 2m  

and ( )XM t  when ( , )N Bin n p . 

There is no need to memorise the formulae in this section. However, it is important to be able to 
derive them. 

Formula (19.4) gives the mean: 

 ( ) ( ) ( )E S E N E X   

 1[ ]E S npm   (19.15) 
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Formula (19.5) gives the variance: 

   2var( ) ( )var( ) var( )[ ( )]S E N X N E X   

 
2 2

2 1 1

2 2
2 1

var[ ] ( ) (1 )S np m m np p m

npm np m

    

 
 (19.16) 

Lastly, formula (19.8) gives the MGF: 

  ( ) log ( )S N XM t M M t  

( ) ( ( ) 1 )nS XM t pM t p     

We can also find expressions for the skewness and the coefficient of skewness. 

The third central moment is found from the cumulant generating function: 

 ( ) ln ( )S SC t M t   

In the next few steps, liberal use is made of the chain rule   dy dy du
dx du dx

 and the product rule for 

differentiation   ( )d du dv
dx dx dx

uv v u .  The third derivative of the cumulant generating function is: 

 
3 3

3 3

2
1

2

22
1 2

2

3
1

3

2

log ( ) log ( )     where 1

( ) ( ( ) )

( ) ( ( ) ) ( ) ( ( ) )

( ) ( ( ) )

3

S X

X X

X X X X

X X

d dM t n pM t q q p
dt dt

d dnp M t pM t q
dtdt

d d dnp M t pM t q n p M t pM t q
dt dtdt

dnp M t pM t q
dt

np



 



   

     
  

                

 
   

 


2

2
2

3
3

( ) ( ( ) ) ( )

2 ( ) ( ( ) )

X X X

X X

d dM t pM t q M t
dtdt

dn p M t pM t q
dt





          

   
 

 

Setting t = 0 gives: 

 ( )skew S  3 2 3 3
1 3 2 1 1[( ) ] 3 2E S npm npm np m m np m     (19.17) 

The coefficient of skewness is then given by: 


3/2

( )

[var( )]

skew S

S
 

2 3 3
3 2 1 1

2 2 3/2
2 1

3 2

( )

npm np m m np m
npm np m
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It can be deduced from formula (5.17) that it is possible for the compound binomial 
distribution to be negatively skewed.  The simplest illustration of this fact is when all claims 
are of (a fixed) amount B .  Then S BN  and: 

 3 3 3( [ ]) ( [ ])E S E S B E N E N           

ie: 

  3( ) ( )skew S B skew N   

So the coefficient of skewness of S  is a multiple of that for N . 

In fact:   

 
  

3

3/2 2 3/2
( ) ( )

( ) ( )
[var( )] [ var( )]

skew S B skew N
coeff of skew S coeff of skew N

S B N   

If 0.5p  , then the binomial distribution for N  is negatively skewed. 

So the coefficient of skewness of S  will also be negative in this case. 

Question 

Determine an expression for the MGF of the aggregate claim amount random variable if the number 
of claims has a (100, 0.01)Bin  distribution and individual claim sizes have a (10, 0.2)Gamma  

distribution.   

Solution 

Since  (100, 0.01)N Bin  and  (10, 0.2)X Gamma , we have: 

100( ) (0.99 0.01 )t
NM t e   and  


     

 

10
10( ) 1 (1 5 )

0.2X
t

M t t  

So: 

 





   

 

    

100log ( )

100

10010

( ) [log ( )]

0.99 0.01

0.99 0.01 ( )

0.99 0.01(1 5 )

X

S N X

M t

X

M t M M t

e

M t

t
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3.6 The compound negative binomial distribution 

The final choice of distribution for N  is the negative binomial distribution, which has 
probability function: 

1
( ) k nk n

P N n p q
n

  
   

 
  for 0,1,2,n   

This is the Type 2 negative binomial distribution.  See page 9 of the Tables. 

The Type 1 negative binomial distribution has probability function: 

  
    

1
( )

1
k n kn

P N n p q
k

   for   , 1, 2, ...n k k k   

It is not likely to be appropriate here, unless there is a specific reason why the number of claims 
must be at least k . 

The parameters of the distribution are k  ( 0 ) and p , where 1p q   and 0 1p  .  This 

distribution is denoted by ( , )NB k p .  When ( , )N NB k p : 

 
2

[ ]

var[ ]

( ) (1 )k t k
N

kqE N
p

kqN
p

M t p qe 





 

  

The special case 1k    leads to the geometric distribution.  Once again, note that these 
results are given in the Tables.   

The negative binomial distribution is an alternative to the Poisson distribution for N . 

This is because the negative binomial distribution can take any non-negative integer value, unlike 
the binomial distribution which has an upper limit.   

One advantage that the negative binomial distribution has over the Poisson distribution is 
that its variance exceeds its mean.  These two quantities are equal for the Poisson 
distribution.  Thus, the negative binomial distribution may give a better fit to a data set 
which has a sample variance in excess of the sample mean.  This is often the case in 
practice.  In the next chapter a situation leading to the negative binomial distribution for N  
is discussed.  When N  has a negative binomial distribution, S  has a compound negative 
binomial distribution. 
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Expressions for the mean, variance and MGF of S  when ( , )N NB k p  come immediately 

from formulae (19.4), (19.5) and (19.8): 

 ( ) ( ) ( )E S E N E X  1[ ]
kqE S m
p

  

 2var( ) ( )var( ) var( )[ ( )]S E N X N E X   2 2
2 1 12

var[ ] ( )
kq kqS m m m
p p

    

Multiplying out the brackets and regrouping the terms, we see that: 

 

    

  


 


 

 

2 2 2 2
2 1 1 2 1 12 2

2 2
2 1 12 2

2
2 12

2
2 12

2
2

2 12

( )

(1 )

kq kq kq kq kq
m m m m m m

p p pp p

kq kpq kq
m m m

p p p

kq kq kpq
m m

p p

kq kq p
m m

p p

kq kq
m m

p p

 

So: 

 
2

2
2 12

var[ ]
kq kqS m m
p p

    

and: 

   ( ) log ( )S N XM t M M t ( )
(1 ( ))

k
S k

X

pM t
qM t




 

As before, the third central moment of S  can be found from the cumulant generating 
function of S , as follows: 

 

 log ( ) log log 1 ( )

( )
1 ( )

S X

X
X

d dM t k p k qM t
dt dt

kq d M t
qM t dt
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Then: 

22 2
2

2 2 2
1

log ( ) ( ) ( )
1 ( )(1 ( ))

S X X
XX

d d kq dM t kq M t M t
dt qM tdt qM t dt

            
 

and: 

 

3 2
2

3 2 2

1
log ( ) 3 ( ) ( )

(1 ( ))
S X X

X

d d dM t kq M t M t
dtdt dt qM t

             

   

33 3

3 3

2
( ) ( )

1 ( )(1 ( ))
X X

XX

kq d kq dM t M t
dt qM tqM t dt

             

Setting 0t   in the third derivative gives: 

 ( )skew S 
2 3 3

3 31 2 1
2 3

3 2
[( [ ]) ]

kqmkq m m kq mE S E S
pp p

     (19.18) 

The parameters k  and p  are positive, as are the moments of X .  It therefore follows from 

formula (19.18) that the compound negative binomial distribution is positively skewed.  The 

coefficient of skewness can be found from 3 3/2(( ( )) ) / (var( ))E S E S S . 

Question 

The distribution of the number of claims from a motor portfolio is negative binomial with 
parameters 4,000k   and 0.9p  .  The claim size distribution is Pareto with parameters 5   

and 1,200  .  Calculate the mean and standard deviation of the aggregate claim distribution. 

Solution 

The first two moments of the Pareto distribution are: 

 

   



     

  

1

2 2
2 2 2

2 12 2

1,200
( ) 300

1 4

5 1,200
( ) 300 240,000

( 1) ( 2) 4 3

m E X

m E X m





 

 

So, using the formulae for the mean and variance of a compound negative binomial distribution: 

 


    

 
      

1

2 2
2 2

2 12 2

4,000 0.1
( ) 300 133,333

0.9

4,000 0.1 4,000 0.1
var( ) 240,000 300 111,111,111

0.9 0.9

kq
E S m

p

kq kq
S m m

p p

 

So the standard deviation is 10,541. 
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4 Appendix 

There is some repetition in the Core Reading in Section 3.3.  To improve the flow of the chapter, 
we have removed the repeated section from the main part of the text and placed it below. 

Let 1 2 NS X X X     (and 0S   if 0N   ) where the iX ’s are independent, identically 

distributed (as a variable X ) and are also independent of N .  S  is said to have a 
compound distribution. 

Illustration:  N  is the number of claims which arise in a portfolio of business and iX   is the 

amount of the i th claim.  S  is the total claim amount. 

The mean and variance of S  are easily found: 

          1 1( | ) ( | ) ( ) ( )N nE S N n E X X N n E X X nE X   

Similarly: 

 var( | ) var( )S N n n X    

Therefore:   

    ( ) ( | )] ( ) ( ) ( )E S E E S N E NE X E N E X     

ie: 

 S N X     

and: 

 

   

   

 2

var( ) var( | ) var ( | )

var( ) var ( )

( )var( ) var( ) ( )

S E S N E S N

E N X NE X

E N X N E X

 

 

 

    

ie: 

 2 2 2 2
S N X N X        

The MGF of S  is given by: 

  ( ) ( ) |tS tS
SM t E e E E e N     

  

and: 

 

 

 

   

       

     

 





1 2

1 2

( | ) exp ( ) |

exp ( )

exp( ) ( )

tS
N

n

n
i X

E e N n E t X X X N n

E t X X X

E tX M t
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Therefore: 

      ( ) ( ) exp log ( ) log ( )
N

S X X N XM t E M t E N M t M M t        
  

Compound Poisson distribution 

An important illustration is provided by the compound Poisson distribution, which is the 

case in which ( )N Poisson  .  In this case 2
N N    . 

Properties: 

  2 2

( ) ( )

var( ) var( ) ( ) ( )

( ) exp ( 1)t
N

E S E X

S X E X E X

M t e



  





  

   

  

so: 

  ( ) exp ( ) 1S XM t M t      

from which the mean and variance can be obtained and the results above verified. 
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Chapter 19 Summary 

Insurable risks 

For a risk to be insurable the policyholder should have an interest in the risk being insured to 
distinguish between insurance and a wager, and it should be of a financial and reasonably 
quantifiable nature.  Ideally, risk events should: 

 be independent 

 have low probability of occurring 

 be pooled with similar risks 

 have an ultimate liability 

 avoid moral hazards. 

Characteristics of general insurance products 

Most general insurance contracts share the following characteristics: 

 Cover is normally for a fixed period, typically a year, after which it needs to be 
renegotiated. 

 There is usually no obligation to continue cover although in most cases a need for 
continuing cover may be assumed to exist. 

 Claims are not of fixed amounts. 

 The existence of a claim and its amount have to be proved before a claim can be 
settled. 

 A claim occurring does not bring the policy to an end. 

 Claims that take a long time to settle are known as long-tailed and those that take a 
short time to settle are known as short-tailed. 

Features of short-term insurance contracts 

A short-term insurance contract can be defined as having the following attributes: 

 The policy lasts for a fixed, and relatively short time period, typically one year. 

 The insurance company receives a premium from the policyholder. 

 In return the insurer pays claims that arise during the term of the policy. 

 At the end of the policy term, the policyholder may or may not renew the policy.  If it 
is renewed, the premium may or may not be the same as in the previous period. 

 The insurer may pass part of the premium to a reinsurer, who, in return, will 
reimburse the insurer for part of the claims cost.
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Collective risk model 

Aggregate claim amounts may be modelled using a compound distribution.  The aggregate 
claim amount S  is the sum of a random number of IID random variables: 

 1 2 NS X X X     

where S  is taken to be zero if 0N  .  We assume that the random variable N  is independent 
of the random variables iX  so that the distributions of the claim numbers and the individual 

claim amounts can be analysed separately.  The distribution of S  is said to be a compound 
distribution. 

Other simplifying assumptions include: 

 The moments (and sometimes the distributions) of N  and iX  are known. 

 Claims are settled more or less as soon as the claims occur. 

 Expenses and investment returns are ignored. 

Specific types of compound distributions include the compound Poisson, compound binomial, 
compound negative binomial, and compound geometric.  Formulae for the MGF and the 
moments of a compound random variable are given on page 16 of the Tables. 

Convolutions 

If Z X Y  , and X and Y are independent, then:  

 ( ) ( ) ( )
x

P Z z P X x P Y z x      if X  and Y  are discrete 

 ( ) ( ) ( ) ( )Z X Y X Yf z f f z f x f z x dx



     if X  and Y  are continuous 

Sums of independent compound Poisson random variables 

Let 1 2, ,..., nS S S  be a set of independent random variables where iS  has a compound Poisson 

distribution with parameter i  and ( )iF x  is the CDF of the individual claim amount random 

variable for iS .  Then 1 nA S S    is compound Poisson with parameter i  .  The 

CDF of the individual claim amount random variable for A   is: 

1
( ) ( )i iF x F x

  

The MGF of the individual claim amounts for A  is: 

1
( ) ( )i iM t M t

   

where ( )iM t  is the MGF of the individual claim amounts for iS . 
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Chapter 19 Practice Questions 

19.1 (i) State the two conditions that must hold for a risk to be insurable.  

(ii) List five other risk criteria that would be considered desirable by a general insurer.   

19.2 A group of policies can give rise to at most 2 claims.  The probabilities of 0, 1 or 2 claims are ½, ¼ 
and ¼ respectively.  Claim amounts are IID (0,10)U  random variables.  Let S  denote the 

aggregate claim amount random variable.   

Sketch the frequency distribution of S . 

19.3 The random variable S  has a compound Poisson distribution with Poisson parameter 4.  The 
individual claim amounts are either 1, with probability 0.3, or 3, with probability 0.7.   

Calculate the probability that  4S .  

19.4 A compound random variable    1 2 NS X X X  has claim number distribution: 

    2( ) 9( 1)4 nP N n n  ,    0,1,2,n  

The individual claim size random variable, X , is exponentially distributed with mean 2.   

Calculate ( )E S  and var( )S . 

19.5 Write down a formula for the MGF of a compound Poisson distribution with individual claim size 
distribution ( , )Gamma    and Poisson parameter  . 

19.6 1S  and 2S  are independent random variables each with a compound Poisson distribution.  The 

distribution of iS , 1,2i , has Poisson parameter i  and individual claim amount distribution 

( )iF x .   

Which one of the following statements about the distribution of 1 2S S  is correct? 

A 1 2S S  has a compound Poisson distribution with Poisson parameter 1 2   and individual 

claim amount distribution 1 2( ) ( )F x F x . 

B 1 2S S  has a compound Poisson distribution with Poisson parameter 1 2( )   and 

individual claim amount distribution  1 2( ) ( ) 2F x F x . 

C 1 2S S  has a compound Poisson distribution with Poisson parameter 1 2( )   and 

individual claim amount distribution     1 1 2 2 1 2( ) ( )F x F x    . 

D 1 2S S  does not have a compound Poisson distribution.  
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19.7 Claims on a group of policies of a certain type arise as a Poisson process with parameter 1 .  

Claims on a second, independent, group of policies arise as a Poisson process with parameter 2 .  

The aggregate claim amounts on the respective groups are denoted 1S  and 2S  . 

Using moment generating functions (or otherwise), show that S  (the sum of 1S  and 2S ) also has 

a compound Poisson distribution and hence derive the Poisson parameter for S . [4] 

19.8 The aggregate claim amount from a portfolio has a compound negative binomial distribution. 

(i) Show that if   1 NS X X , then: 

   ( ) log ( )S N XM t M M t  [3] 

(ii) If N  has Type 2 negative binomial distribution with  2k  and  0.9p , and X  has a 

gamma distribution with  10  and  0.1 , determine an expression for ( )SM t . [2] 

(iii) (a) Calculate the mean and variance of S .   

 (b) Using a suitable approximation, estimate the aggregate amount which will be 
exceeded with probability 0.1%. [4] 

(iv) The insurer in fact has 100 identical independent portfolios of this type.  Let: 

    1 100T S S  

 (a) Determine the moment generating function for T . 

 (b) Using a normal approximation, estimate the total aggregate claim amount from 
the whole business which will be exceeded with probability 0.1%.   

 (c) Comment on your answers to parts (iii)(b) and (iv)(b). [4] 
    [Total 13] 

 

 

 

  

Exam style 

Exam style 
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Chapter 19 Solutions 

19.1 (i) Criteria for an insurable risk 

The two conditions are: 

 The policyholder must have an interest in the risk being insured.  

 The risk must be of a financial and reasonably quantifiable nature.  

(ii) Other desirable features of a risk 

Other desirable features are: 

 Individual risks should be independent of one another.  

 The probability that the insured event will occur should be small.    

 Large numbers of similar risks should be pooled in order to reduce the variance and achieve 
greater certainty.  

 The insurer’s liability should be limited.  

 Moral hazards should be eliminated as far as possible since these are difficult to quantify, 
result in selection against the insurer and lead to unfairness in the treatment of some 
policyholders.  

19.2 If 0N  , ie there are no claims, then 0S  .  So there is a point mass (or a ‘blob’ of probability) at 
0S  . 

If 1N  , ie there is exactly one claim, then S  has a (0,10)U  distribution.  This will happen with 

probability ¼. 

If 2N  , ie there are exactly 2 claims, then  1 2S X X  where 1X  and 2X  are independent random 

variables with PDFs: 

   


1 2

0.1         if 0 10
( ) ( )

0            otherwise
X X

x
f x f x  

The PDF of S is: 




    1 2 1

10

0
( ) ( ) ( ) 0.1 ( )S X X Xf s f s x f x dx f s x dx  

The integrand is 0.1 if   0 10s x  and 0 otherwise.  So for 0 10s  : 

 0( ) 0.1 0.1 0.01
s

Sf s dx s  

and for 10 20s  : 

 


  
10

10
( ) 0.1 0.1 0.2 0.01S s

f s dx s  
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So for 2N  , S  has a symmetrical triangular shaped distribution on the interval (0, 20). 

A graph of the distribution is shown below: 

1
40

1
20

1
2

s

f(s)

10 20

 
This graph is the combination of a blob at zero, a uniform distribution on (0,10) and a triangular 
distribution on (0,20). 

19.3 We need to consider how we could get an aggregate claim amount of 4.  This could happen in two 
ways: 

(a) 2 claims, one for 1 and one for 3 

(b) 4 claims, all for an amount of 1.  

The probability of this happening is: 

 
        

     

1 2 1 2

1 2 3 4

( 4) ( 2) ( 1) ( 3) ( 2) ( 3) ( 1)

( 4) ( 1) ( 1) ( 1) ( 1)

P S P N P X P X P N P X P X

P N P X P X P X P X
 

Since the iX ’s are identical, this simplifies to: 

 

 

       

     



4

4 2 4 4
4

( 4) 2 ( 2) ( 1) ( 3) ( 4)[ ( 1)]

4 4
2 0.3 0.7 0.3

2! 4!

0.06312

P S P N P X P X P N P X

e e

   

19.4 The probability function of N  can be written as: 

    
     

 
2 21

( ) 9( 1)4 (3 / 4) (1 / 4)n nn
P N n n

n
 

We can see from this formula that N  has a Type 2 negative binomial distribution with parameters 
 2k  and  3 / 4p .   
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Hence: 

 


  
2 1 / 4

( ) 2 / 3
3 / 4

kq
E N

p
  

and:  


  
2 2

2 1 / 4
var( ) 8 / 9

(3 / 4)

kq
N

p
  

The individual claim amounts have an exponential distribution with  ½ .  So the mean and 
variance of the individual claims are: 

    
2

1 1
( ) 2 and var( ) 4E X X

 
  

Hence: 

    
2 4

( ) ( ) ( ) 2
3 3

E S E N E X   

and:       2 22 8 56
var( ) ( ) var( ) var( )[ ( )] 4 2

3 9 9
S E N X N E X   

19.5 Since  ( )N Poisson  : 

 ( ) exp[ ( 1)]u
NM u e   

So: 

              
log ( )( ) [log ( )] exp 1 exp ( ) 1XM t

S N X XM t M M t e M t   

Since  ( , )X Gamma   : 

 


 
  
 

( ) 1X
t

M t



  

So: 

 
             

( ) exp 1 1S
t

M t





 

19.6 Option C is correct. 

1 2S S  has a compound Poisson distribution with Poisson parameter 1 2( )   and individual 

claim amount distribution     1 1 2 2 1 2( ) ( )F x F x    . 
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19.7 Let iN  denote the number of claims on policies of type i  and let iX  denote the claim amount 

random variable for policies of type i , for  1, 2i . Then: 

       ( ) ln ( ) exp ( ) 1
i i i iS N X i XM t M M t M t  

By independence: 

               1 2 1 2 1 2
1 2

( ) ( ) ( )t S S tS tS tS tStS
S S SM t E e E e E e e E e E e M t M t  [1] 

Hence: 

 

     
  

 

  

   

 

1 2

1 2

1 2

1 2 1 2

( ) exp ( ) 1 exp ( ) 1

exp ( ) ( )

exp ( ( ) 1)

S X X

X X

W

M t M t M t

M t M t

M t

 

   

  [1] 

where: 

  1 2     [1] 

and: 

 





1 21 2

1 2

( ) ( )
( )

X X
W

M t M t
M t

 
 

 [1] 

Hence S  is a compound Poisson random variable with Poisson parameter  1 2   . 

19.8 (i) MGF of S 

The MGF of S  is: 

     ( ) ( ) ( | )tS tS
SM t E e E E e N  

using the standard result for conditional means from page 16 of the Tables.   

Looking at the inner expression, we have: 

      1 1( )( | ) ( ) ( )n nt X X tX tXtSE e N n E e E e E e  [1] 

Now each of these terms is just the MGF of the random variable X .   
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So: 

   ( | ) ( ) ntS
XE e N n M t   

and hence: 

 ( | ) [ ( )]tS N
XE e N M t   [1] 

So: 

           
log ( )( ) ( ) log ( )XN N M t

S X N XM t E M t E e M M t  [1] 

(ii) Compound negative binomial distribution 

We first need the individual MGFs.  Using results from the Tables, we have: 

 


     
 

10
10( ) 1 (1 10 )

0.1X
t

M t t  [½] 

and: 
 

  
 

2
0.9

( )
1 0.1

N t
M t

e
 [½] 

Combining these, using the result from part (i): 

   

 
      

2

10
0.9

( ) log ( )
1 0.1(1 10 )

S N XM t M M t
t

 [1] 

(iii)(a) Mean and variance of S 

We could differentiate this expression to find the mean and variance of S .  However, it is much 
easier to use the standard compound distribution formulae: 

 ( ) ( ) ( )E S E X E N   

and:   2var( ) ( ) var( ) var( ) ( )S E X N X E N  

Using the results from the Tables for the individual distributions: 

   
10

( ) 100
0.1

E X



   
2 2

10
var( ) 1,000

0.1
X




 [1] 

 


  
2 0.1

( ) 0.22222
0.9

kq
E N

p

 


  
2 2

2 0.1
var( ) 0.24691

0.9

kq
N

p
 [1] 
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Using the formulae above: 

  ( ) ( ) ( ) 22.222E S E X E N  

and:         2 2var( ) ( ) var( ) var( ) ( ) 100 0.24691 1,000 0.22222 2,691.358S E X N X E N  [1] 

(iii)(b) Aggregate amount 

We now assume that S  has an approximate normal distribution with this mean and variance.  So, 
standardising in the usual way, we have: 

  
 

      
 

( )
0.001 (0,1) 0.001

var( )

k E S
P S k P N

S
 

Using the percentage points of the standard normal distribution, we find that: 

 


    
( )

3.0902 22.222 3.0902 2,691.358 182.54
var( )

k E S
k

S
 [1] 

(iv)(a) MGF of T 

The MGF of T  is: 

 

 1 100 1001 100( )

200

10

( ) ( ) [ ] ( ) ( ) ( )

0.9

1 0.1(1 10 )

t S S tStStT
T SM t E e E e E e E e M t

t

 



   

 
     

 

 [1] 

The mean and variance of T  are 100 times the corresponding results for S , ie: 

  ( ) 100 ( ) 2,222E T E S  

and:  var( ) 100 var( ) 269,135.8T S  [1] 

(iv)(b) Total aggregate amount 

So the corresponding figure for the aggregate amount exceeded with probability 0.001 is: 

  2,222 3.0902 269,135.8 3,825.37  [1] 

(iv)(c) Comment 

This is substantially less than one hundred times the corresponding answer to part (iii)(b).  The 
Central Limit Theorem tells us that as the number of portfolios increases, bad experience in some 
of the portfolios will be offset by better experience in others, leading to a situation where the 
overall variation is relatively smaller.  Pooling of similar risks reduces the overall variance.  We can 
see this happening here. [1] 
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Risk models 2 

 

 

  

Syllabus objectives 

1.2 Compound distributions and their application in risk modelling  

1.2.1 Construct models appropriate for short-term insurance contracts in terms of 
the numbers of claims and the amounts of individual claims. 

1.2.2 Describe the major simplifying assumptions underlying the models in 1.2.1. 

 1.2.4 Derive the mean, variance and coefficient of skewness for compound 
binomial, compound Poisson and compound negative binomial random 
variables. 

1.2.5 Repeat 1.2.4 for both the insurer and the reinsurer after the operation of 
simple forms of proportional and excess of loss reinsurance. 
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0 Introduction 

In this chapter we will look at some of the practical applications of risk models.  We start by 
looking at how the models can be adapted for situations involving reinsurance.  A section on the 
individual risk model is followed by some more complex examples of the use of risk models in 
practice.   
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1 Aggregate claim distributions under proportional and individual 
excess of loss reinsurance 

In Chapter 19, we introduced the notation S  to denote the aggregate claim amount random 
variable, ie: 

    1 2 NS X X X   

where N  denotes the number of claims and iX  denotes the amount of the i th claim. 

Here we extend this concept to consider the situation when reinsurance is in force.  We will use 
the following notation:  

 iY   is the amount paid by the insurer in respect of the i th claim 

 iZ  is the amount paid by the reinsurer in respect of the i th claim 

    1 2I NS Y Y Y  is the aggregate claim amount paid by the insurer 

    1 2R NS Z Z Z  is the aggregate claim amount paid by the reinsurer. 

The formulae that we derived for the mean, variance and MGF of S  can be adapted to cover the 
reinsurance situation by replacing X  by Y  or Z , as appropriate.  For example: 

 



 



2

( ) ( ) ( )

var( ) ( )var( ) var( )[ ( )]

( ) (log ( ))
I

I

I

S N Y

E S E N E Y

S E N Y N E Y

M t M M t

  

1.1 Proportional reinsurance 

The distribution of the number of claims involving the reinsurer is the same as the 
distribution of the number of claims involving the insurer, as each pays a defined 
proportion of every claim.   

For a retention level   ( 0 1  ), the i th individual claim amount for the insurer is iX  

and for the reinsurer is (1 ) iX .   

In other words: 

 


 (1 )

i i

i i

Y X

Z X




  

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 4  CS2-20: Risk models 2 

© IFE: 2019 Examinations The Actuarial Education Company 

So: 

 

   

   

   









1 2

1 2

1 2( )

I N

N

N

S Y Y Y

X X X

X X X

S

  





 

and: 

 

   

      

    

 







1 2

1 2

1 2

(1 ) (1 ) (1 )

(1 )( )

(1 )

R N

N

N

S Z Z Z

X X X

X X X

S

  





  

ie the aggregate claims amounts are  S  and (1 )S  respectively. 

Question 

(i) Show that under a proportional reinsurance arrangement where the direct writer retains a 
proportion  , the MGF of the net individual claim amount Y  paid by the direct insurer is 

( )XM t .   

(ii) Hence give a formula for ( )
ISM t  when the number of claims follows a Poisson distribution 

with mean 25 and individual claim amounts are exponentially distributed with mean 1,000. 

Solution 

(i) MGF of Y 

Under this arrangement, Y X .  So: 

    ( )( ) ( ) ( ) [ ] ( )tY t X t X
Y XM t E e E e E e M t    

(ii) MGF of insurer’s aggregate claim amount 

Since  (25)N Poisson : 

  25( 1)( )
te

NM t e   

and the MGF of IS  is: 

    25(exp(log ( )) 1) 25( ( ) 1)( ) (log ( )) Y Y
I

M t M t
S N YM t M M t e e   
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In addition, since X  is exponentially distributed with mean 1,000 (ie with parameter 1
1,000

): 

   1( ) (1 1,000 )XM t t   

and hence: 

    1( ) ( ) (1 1,000 )Y XM t M t t    

So the MGF of IS  is: 

 
   

125 (1 1,000 ) 1
( )

I

t
SM t e


 

 

1.2 Individual excess of loss reinsurance 

The amount that an insurer pays on the i th claim under individual excess of loss 
reinsurance with retention level M  is min{ , }i iY X M . 

Equivalently: 

 


  

if  

if  

X X M
Y

M X M
 

The amount that the reinsurer pays is max{0, }i iZ X M  . 

We can also write this as: 

 


   

0 if  

if  

X M
Z

X M X M
 

As previously stated, the insurer’s aggregate claims net of reinsurance can be represented 
as: 

 1 2I NS Y Y Y     

and the reinsurer’s aggregate claims as: 

 1 2R NS Z Z Z     (20.1) 

If, for example, ~ ( )N Poi  , IS  has a compound Poisson distribution with Poisson 

parameter  , and the i th individual claim amount is iY  .  Similarly, RS  has a compound 

Poisson distribution with Poisson parameter  , and the i th individual claim amount is iZ  . 
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Hence, for this compound Poisson distribution with reinsurance, we have: 

 







2

3

( ) ( )

var( ) ( )

( ) ( )

I

I

I

E S E Y

S E Y

skew S E Y







 

Similar formulae can be obtained for RS  by replacing Y  with Z . 

Note, however that if ( ) 0F M  , as will usually be the case, then iZ  may take the value 0.   

Here, ( )F x  denotes the distribution function of the original claim amount random variable, X .  

So: 

 ( ) ( )F M P X M    

If this is greater than 0, then there is a non-zero probability that the reinsurer will not be involved 
in a claim. 

In other words, 0 is counted as a possible claim amount for the reinsurer.  From a practical 
point of view, this definition of RS  is rather artificial.  The insurer will know the observed 

value of N , but the reinsurer will probably know only the number of claims above the 
retention level M , since the insurer may notify the reinsurer only of claims above the 
retention level. 

Example 

The annual aggregate claim amount from a risk has a compound Poisson distribution with 
Poisson parameter 10.  Individual claim amounts are uniformly distributed on (0,2000) .  The 

insurer of this risk has effected excess of loss reinsurance with retention level 1,600.   

Calculate the mean, variance and coefficient of skewness of both the insurer’s and 
reinsurer’s aggregate claims under this reinsurance arrangement. 

Solution 

Let IS  and RS  be as above.  To find [ ]iE S  calculate [ ]iE Y .  Now: 

0

( ) ( ) ( )
M

i iE Y x f x dx M P X M    

where ( ) 0.0005f x   is the U(0,2000) density function and M = 1,600.   

This gives: 

2

0

0.0005
[ ] 0.2 960

2

M

i
xE Y M
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So: 

[ ] 10 [ ] 9,600I iE S E Y    

To find var[ ]IS , we must calculate 2[ ]iE Y : 

2 2 2

0

3
2

0

[ ] ( ) ( )

0.0005
0.2

3

1,194,666.7

M

i i

M

E Y x f x dx M P X M

x M

  

 
  
  





 

So: 

2var[ ] 10 [ ] 11,946,667I iS E Y    

To find the coefficient of skewness of the insurer’s claims, we must calculate 3[ ]iE Y : 

3 3 3

0

4
3

0

[ ] ( ) ( )

0.0005
0.2

4

1,638,400,000

M

i i

M

E Y x f x dx M P X M

x M

  

 
  
  





 

So: 

 3 3( ) 10 [ ] 16,384,000,000I I iE S E S E Y     
 

and the coefficient of skewness of IS  is: 

 
3/2

16,384,000,000
0.397

11,946,667
   

To find [ ]RE S , note that the expected annual aggregate claim amount from the risk is 

[ ] [ ] 10 1,000 10,000E S E X    .  Then: 

 [ ] 10,000 [ ] 400R IE S E S     
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To find var[ ]RS , calculate 2[ ]iE Z  from: 





 

  

 
  
  







2,000
2 2

2,000
2

0

2,0003

0

[ ] ( ) ( )

0.0005    where  

0.0005

3

10,666.7

i
M

M

M

E Z x M f x dx

y dy y x M

y

 

So: 

 2var[ ] 10 [ ] 106,667R iS E Z    

To find the coefficient of skewness of the reinsurer’s claims, we need to calculate 3[ ]iE Z : 

2,000
3 3

2,000
3

0

[ ] ( ) ( )

0.0005    where  

3,200,000

i
M

M

E Z x M f x dx

y dy y x M


 

  





  

So: 

 3 3( ) 10 [ ] 32,000,000R R iE S E S E Z     
 

and the coefficient of skewness of RS  is:  

 
3/2

32,000,000
0.92

106,667
   

Question 

Calculate the variance of S , the aggregate claim amount before reinsurance for the example 
above and explain why: 

  var( ) var( ) var( )I RS S S    
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Solution 

We have 2var( ) 10 ( )S E X , where: 

 
2000 2

2

0

4,000,000
( )

2000 3
x

E X dx   

So var( ) 13,333,333S  . 

This is not equal to 11,946,667 106,667  because IS  and RS  are not independent.   

 

To simulate the collective risk model with individual reinsurance we can combine the R 
code from Chapters 15, 18 and 19. 

For example, to simulate 10,000 values for a reinsurer where claims have a compound 
Poisson distribution with parameter 1,000 and a gamma claims distribution with 750   
and 0.25   under individual excess of loss with retention 2,500 we would use: 

set.seed(123) 
M <-2500 
n <- rpois(10000,1000) 
sR <- numeric(10000) 
for(i in 1:10000) 
{x <- rgamma(n[i],shape=750,rate=0.25) 
z <- pmax(0,x-M) 
sR[i] <- sum(z)} 

 
We can now find moments, the coefficient of skewness, probabilities and quantiles as 
before. 

Earlier we mentioned that using 1R NS Z Z    is a bit artificial.  We now look at an alternative 

way of modelling the reinsurer’s compound claim amount distribution. 

The reinsurer’s aggregate claims can also be represented by: 

 1 2R NRS W W W      (20.2) 

where the random variable NR  denotes the actual number of (non-zero) payments made by 
the reinsurer. 

Here: 

   |i i iW X M X M  

For example, suppose that the risk above gave rise to the following eight claim amounts in a 
particular year: 

 403    1,490    1,948    443    1,866    1,704    1,221    823 

The retention limit is 1,600. 
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Then in formula (20.1) the observed value of N  is 8, and the third, fifth and sixth claims 
require payments from the reinsurer of 348, 266 and 104 respectively.  The reinsurer makes 
a ‘payment’ of 0 on the other five claims. 

In formula (20.2), the observed value of NR  is 3 and the observed values of 1W , 2W  and 

3W  are 348, 266 and 104 respectively.  Note that the observed value of RS  is the same 

(ie 718) under each definition. 

iW  has density function: 

 
( )

( )
1 ( )

f x Mg w
F M





 ,   0w    

We saw this result in Section 1.2 of Chapter 18.  It can also be written as: 

 




( )

( )
1 ( )
X

W
X

f w M
f w

F M
  

To specify the distribution for RS  as given in formula (20.2) the distribution of NR  is 

needed. 

In some contexts it may be obvious what this distribution is, but here is a general method for 
establishing the distribution. 

This is found as follows.  Define: 

 1 2 NNR I I I      

where N  denotes the number of claims from the risk (as usual).  jI  is an indicator random 

variable which takes the value 1 if the reinsurer makes a (non-zero) payment on the j th 

claim, and takes the value 0 otherwise.  Thus NR  gives the number of payments made by 
the reinsurer.   

From its definition, we see that NR  is a compound random variable.  However, instead of being 
the sum of individual claims amounts, NR  is a sum of indicator random variables. 

Since jI  takes the value 1 only if jX M : 

 ( 1) ( )j jP I P X M     , say 

and: 

 ( 0) 1jP I     

In other words, jI  has a (1, )Binomial   distribution.   

Further, jI  has MGF: 

( ) 1t
IM t e     

The formula for the MGF of a binomial distribution is given on page 6 of the Tables. 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-20: Risk models 2 Page 11 

The Actuarial Education Company © IFE: 2019 Examinations 

By formula (19.8) in Chapter 19 (the formula for the MGF of a compound random variable), NR  
has MGF: 

MNR(t) = MN (log MI (t)) 

Question 

If N  has a ( )Poisson   distribution and ( ) ½P X M  , show that NR  has a (½ )Poisson   

distribution. 

Solution 

Here  ½ , so: 

  ( ) ½ ½t
IM t e  

and:   

     ( ) [log ( )] exp [ ( ) 1] exp (½ ½) exp ½ ( 1)t t
NR N I IM t M M t M t e e          

This is the MGF of the (½ )Poisson   distribution.   By the uniqueness property of MGFs, it follows 

that  (½ )NR Poisson   . 

 
We now continue the above Core Reading example where the annual aggregate claim amount 
from a risk has a compound Poisson distribution with Poisson parameter 10,  individual claim 
amounts are uniformly distributed on (0,2000) , and the insurer of this risk has effected excess of 

loss reinsurance with retention level 1,600. 

Example 

Continuing the above example and using formula (20.2) as the model for RS , it can be seen 

that RS  has a compound Poisson distribution with Poisson parameter 0.2 10 2  .   

Individual claims, iW , have density function: 

 
( ) 0.0005

( ) 0.0025
1 ( ) 0.2

f w Mg w
F M


  


, for 0 400w    

ie iW  is uniformly distributed on (0,400).   

Using the formulae for the moments of a continuous uniform distribution from page 13 of the 
Tables, we have: 

[ ] 200iE W  , 2[ ] 53,333.33iE W   and 3[ ] 16,000,000iE W    

giving the same results as before. 
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If we multiply these figures by 2 (the Poisson parameter of RS ), we get ( ) 400RE S  , 

var( ) 106,667RS   and skew( ) 32,000,000RS  , which agree with the answers obtained 

previously. 

Thus, there are two ways to specify and evaluate the distribution of RS . 

1.3 Aggregate excess of loss reinsurance 

Under an aggregate excess of loss arrangement with retention limit M , the insurer pays all the 
claims if the total claim amount is less than or equal to the retention limit.  The maximum 
payment made by the insurer is M .  So the insurer’s aggregate claim payment is: 


  

if 

if I
S S M

S
M S M

 

The reinsurer’s aggregate claim payment is: 


   

0 if 

if R
S M

S
S M S M

 

Calculations involving aggregate excess of loss reinsurance are done using a first principles 
approach. 

Question 

The annual number of claims from a small group of policies has a Poisson distribution with a mean 
of 2.  Individual claim amounts have the following distribution: 

Amount 200 400 

Probability 0.7 0.3 

 
Individual claim amounts are independent of each other and are also independent of the number 
of claims.  The insurer has purchased aggregate excess of loss reinsurance with a retention limit 
of 600.   

Calculate the probability that the reinsurer is involved in paying the claims that arise in the next 
policy year. 

Solution 

The reinsurer will be involved if the total claim amount is more than 600.  Since the total claim 
amount must be a multiple of 200, the probability is: 

 ( 600) 1 ( 0) ( 200) ( 400) ( 600)P S P S P S P S P S           
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The total claim amount will be 0 only if there are no claims.  So: 

 
2 0

22
( 0) ( 0)

0!
e

P S P N e


      

Using the assumption that individual claim amounts are independent of the number of claims, we 
have: 

 
2 1

2
1 1

2
( 200) ( 1, 200) ( 1) ( 200) 0.7 1.4

1!
e

P S P N X P N P X e


           

 

1 2 1

2 2 2 1
2

2

( 400) ( 2, 200, 200) ( 1, 400)

2 2
0.7 0.3

2! 1!

1.58

P S P N X X P N X

e e

e

 



       

   



 

and: 

 

1 2 3

1 2 1 2

2 3 2 2
3

2

( 600) ( 3, 200, 200, 200)

( 2, 200, 400) ( 2, 400, 200)

2 2
0.7 2 0.7 0.3

3! 2!

1.29733

P S P N X X X

P N X X P N X X

e e

e

 



     

       

     



 

So: 

 2( 600) 1 (1 1.4 1.58 1.29733) 0.28579P S e        

 

We can also simulate the collective risk model with aggregate reinsurance.  For example to 
simulate 10,000 values for a reinsurer where claims have a compound Poisson distribution 
with parameter 1,000 and a gamma claims distribution with 750   and 0.25   under 
aggregate excess of loss with retention 3,000,000 we would take our S  from Section 3.4 of 
Chapter 19 and then use:  

sR <- pmax(0,s-3000000) 
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2 The individual risk model 

Under this model a portfolio consisting of a fixed number of risks is considered.  It will be 
assumed that: 

 these risks are independent 

 claim amounts from these risks are not (necessarily) identically distributed random 
variables 

 the number of risks does not change over the period of insurance cover. 

As before, aggregate claims from this portfolio are denoted by S .  So: 

 1 2 nS Y Y Y      

where jY  denotes the claim amount under the j th risk and n  denotes the number of risks.  

It is possible that some risks will not give rise to claims.  Thus, some of the observed values 

of 1{ }n
j jY   may be 0. 

In fact in most forms of insurance most policies would not give rise to any claims during a given 
year. 

This approach is referred to as an individual risk model because it is considering the claims arising 
from each individual policy. 

For each risk, the following assumptions are made: 

 the number of claims from the j th risk, jN , is either 0 or 1 (20.3) 

 the probability of a claim from the j th risk is jq . (20.4) 

If a claim occurs under the j th risk, the claim amount is denoted by the random variable 

jX .  Let F xj ( ) ,  j  and  j
2  denote the distribution function, mean and variance of jX  

respectively. 

Assumption (20.3) is very restrictive.  It means that a maximum of one claim from each risk 
is allowed for in the model.  This includes risks such as one-year term assurance (since a 
policyholder can only die once), but excludes many types of general insurance policy.  For 
example, there is no restriction on the number of claims that could be made in a policy year 
under household contents insurance. 

There are three important differences between this model and the collective risk model: 

(1) The number of risks in the portfolio has been specified.  In the collective risk model, 
there was no need to specify this number, nor to assume that it remained fixed over 
the period of insurance cover (not even when it was assumed that ~ ( , )N Bin n q ). 

On the other hand we could argue that there was an implicit assumption of a constant number of 
risks in the very fact that we were using a binomial distribution to model the number of claims. 

(2) The number of claims from each individual risk has been restricted.  There was no 
such restriction in the collective risk model. 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-20: Risk models 2 Page 15 

The Actuarial Education Company © IFE: 2019 Examinations 

(3) It is assumed that individual risks are independent.  In the collective risk model it 
was individual claim amounts that were independent. 

The contrast here is between the occurrence of claims and the size of claims. 

Assumptions (20.3) and (20.4) say that ~ (1, )j jN Bin q  .  Thus, the distribution of jY  is 

compound binomial, with individual claim amount random variable jX .  From formulae 

(19.15) and (19.16) in Chapter 19 (for the mean and variance of a compound random variable) it 
follows immediately that: 

 [ ]j j jE Y q   (20.5) 

 2 2var[ ] (1 )j j j j j jY q q q      (20.6) 

S  is the sum of n  independent compound binomial random variables.  The distribution of 
S  can be stated only when the compound binomial variables are identically distributed, as 
well as independent.  It is possible, but complicated, to compute the distribution function of 
S  under certain conditions.   

However, it is easy to find the mean and variance of S : 

   

 
   
  
  

1 1 1

[ ] [ ]
n n n

j j j j
j j j

E S E Y E Y q 

 (20.7) 

The assumption that individual risks are independent is needed to write: 

 2 2

1 1 1

var [ ] var var[ ] ( (1 ) )
n n n

j j j j j j j
j j j

S Y Y q q q 
  

 
     
  
    (20.8) 

In the special case when 1{ }n
j jY   is a sequence of identically distributed, as well as 

independent, random variables, then for each policy the values of jq ,  j  and  j
2  are 

identical, say q ,   and 2 .  Since ( )jF x  is independent of j , we can refer to it simply as 

( )F x .  Hence, S  is compound binomial, with binomial parameters n  and q , and individual 

claims have distribution function ( )F x .  In this special case, it reduces to the collective risk 

model, and it can be seen from (20.7) and (20.8) that: 

 [ ]E S nq  

 2 2var [ ] (1 )S nq nq q     

which correspond to (19.15) and (19.16) respectively in Chapter 19. 

Question 

The probability of a claim arising on any given policy in a portfolio of 1,000 one-year term 
assurance policies is 0.004.  Claim amounts have a (5, 0.002)Gamma  distribution.  Calculate the 

mean and variance of the aggregate claim amount. 
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Solution 

We have: 

 
5

2,500
0.002j     and: 2

2
5

1,250,000
0.002

j    

So the mean and variance of the aggregate claim amount are: 

 ( ) 1,000 0.004 2,500 10,000E S nq      

and: 

 

2 2

2

2

var( ) (1 )

1,000 0.004 1,250,000 0.004 0.996 2,500

(£5,468)

S nq nq q   

       

  

 
We can use R to simulate the total claim amount payable under the individual risk model. 

Suppose we have n  life policies, with the probabilities of death for each policy contained in 
the vector q and simulated claim amounts for each policy contained in the vector claim.  
Then: 

 S <- q*claim 

We can now find moments, the coefficient of skewness, probabilities and quantiles as 
before, and also apply reinsurance if appropriate. 
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3 Parameter variability / uncertainty 

This section forms part of the Core Reading, but does not address any specific syllabus objectives.  
However, the material here provides useful practice in applying the models we have studied. 

3.1 Introduction 

So far risk models have been studied assuming that the parameters, that is the moments 
and in some cases even the distributions, of the number of claims and of the amount of 
individual claims are known with certainty.  In general, these parameters would not be 
known but would have to be estimated from appropriate sets of data.  In this section it will 
be seen how the models introduced earlier can be extended to allow for parameter 
uncertainty / variability.  This will be done by looking at a series of examples.  Most, but not 
all, of these examples will consider uncertainty in the claim number distribution since this, 
rather than the individual claim amount distribution, has received more attention in the 
actuarial literature.  All the examples will be based on claim numbers having a Poisson 
distribution. 

3.2 Variability in a heterogeneous portfolio 

Consider a portfolio consisting of n  independent policies.  The aggregate claims from the  
i th policy are denoted by the random variable iS , where iS  has a compound Poisson 

distribution with parameters i , and the CDF of the individual claim amounts distribution is 

( )F x .  Notice that, for simplicity, the CDF of the distribution of individual claim amounts, 

( )F x , is assumed to be identical for all the policies.   

In this example the CDF of individual claim amounts, ie ( )F x , is assumed to be known but 

the values of the Poisson parameters, ie the i s, are not known.  In this subsection the i s 

are assumed to be (sample values of) independent random variables with the same (known) 

distribution.  In other words 1{ }n
i i  is treated as a set of independent and identically 

distributed random variables with a known distribution.  This means that if a policy is 
chosen at random from the portfolio it is assumed that the Poisson parameter for the policy 
is not known but that probability statements can be made about it.  For example, ‘there is a 
50% chance that its Poisson parameter lies between 3 and 5’.  It is important to understand 
that the Poisson parameter for a policy chosen from the portfolio is a fixed number; the 
problem is that this number is not known. 

Example 

Suppose that the Poisson parameters of policies in a portfolio are not known but are equally 
likely to be 0.1 or 0.3. 

(i) Find the mean and variance (in terms of 1m  and 2m ) of the aggregate claims from a 

policy chosen at random from the portfolio. 

(ii) Find the mean and variance (in terms of 1m , 2m  and n ) of the aggregate claims 

from the whole portfolio. 
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It may be helpful to think of this as a model of part of a motor insurance portfolio.  The 
policies in the whole portfolio have been subdivided according to their values for rating 
factors such as ‘age of driver’, ‘type of car’ and even ‘past claims experience’.  The policies 
in the part of the portfolio being considered have identical values for these rating factors.  
However, there are some factors, such as ‘driving ability’, that cannot easily be measured 
and so they cannot be taken explicitly into account.  It is supposed that some of the 
policyholders in this part of the portfolio are ‘good’ drivers and the remainder are ‘bad’ 
drivers.  The individual claim amount distribution is the same for all drivers but ‘good’ 
drivers make fewer claims (0.1 pa on average) than ‘bad’ drivers (0.3 pa on average).  It is 
assumed that it is known, possibly from national data, that a policyholder in this part of the 
portfolio is equally likely to be a ‘good’ driver or a ‘bad’ driver but that it cannot be known 
whether a particular policyholder is a ‘good’ driver or a ‘bad’ driver. 

Solution 

Let i ,  1, 2, ...,i n  be the Poisson parameter of the i th policy in the portfolio.  
1{ }i i  is 

regarded as a set of independent and identically distributed random variables, each with the 
following distribution: 

  ( 0.1) 0.5iP   

  ( 0.3) 0.5iP   

From this: 

 [ ] 0.2iE   

 var [ ] 0.01i  

(i) The moments of iS  can be calculated by conditioning on the value of i .  Since 

|i iS   has a straightforward compound Poisson distribution, formulae (19.8) and 

(19.9) in Chapter 19 can be used to write: 

    1 1[ ] [ [ | ] ] [ ] 0.2i i i iE S E E S E m m   

  

 

 

 

2 1

2
2 1

var [ ] [ var [ | ] ] var [ [ | ] ]

[ ] var[ ]

0.2 0.01

i i i i i

i i

S E S E S

E m m

m m

 

   

(ii) The random variables 1{ }n
i iS  are independent and identically distributed, each with 

the distribution of iS  given in part (i).  Hence, the result in (i) above can be used to 

write: 

  


 
  

  
 1

1

[ ] 0.2
n

i i
i

E S n E S n m  

  


 
   

  
 2

2 1
1

var var [ ] 0.2 0.01
n

i i
i

S n S n m n m  
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Example 

Suppose the Poisson parameters for individual policies are drawn from a gamma 
distribution with parameters   and  .  Find the distribution of the number of claims from a 
policy chosen at random from the portfolio. 

Solution 

Let iN  denote the number of claims from the i th policy in the portfolio and let i  be its 

Poisson parameter.  Then iN  has a Poisson distribution with parameter i  but the problem 

is that (by assumption) the value of i  is not known.  What is known is the distribution from 

which i  has been chosen.   

The problem can be summarised as follows: 

Given that: 

 | ~ ( )i i iN Poisson   and ~ ( , )i Gamma    

find the marginal distribution of iN . 

The marginal distribution of iN  is its unconditional distribution.  In this example, iN  can only take 

whole number values, so it is a discrete random variable.  To determine its marginal distribution, 
we need to derive a formula for the unconditional probability ( )iP N x .   

This problem can be solved by removing the conditioning in the usual way. 

Recall that if X  and Y  are discrete random variables, then the unconditional probability ( )P X x  
is given by: 

 ( ) ( , ) ( | ) ( )
y y

P X x P X x Y y P X x Y y P Y y          

In this example X  is being replaced by iN  and Y  is being replaced by i .  Since i  is a 

continuous random variable, we turn the sum into an integral and formula becomes: 

   ( ) ( | ) ( )

i

i i i i iP N x P N x f d


     

For  0,1, 2, ...x  : 

 

 

  

   

  





1
0

1
0

( ) exp{ } exp{ }
! ( )

exp{ ( 1)}
( ) !

x
i

x

P N x d
x

d
x
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Evaluate the integral by comparing the integrand with a gamma density. 

We can make the integrand look like the PDF of the ( , 1)Gamma x     distribution by inserting 

a factor of 
( 1)

( )

x

x





 

 inside the integral.  We need to compensate for doing this by inserting a 

factor of 
( )

( 1)x
x




 
 


 outside the integral.  This gives: 

 

    





  
 

  

 
  
 



 

1 ( 1)
0

0

( ) ( 1)
( )

( ) ! ( )( 1)

( )
( ) where ( , 1)

( ) ! ( 1)

x
x

i x

x

x
P N x e d

x x

x
f d Gamma x

x

 
  







    
 

      
 

  

The integral in the line above is 1 (as we are integrating a PDF over all possible values of the 
random variable).   

So: 

 


 


( )
( )

( ) ! ( 1)
i x

xP N x
x




 
 




 

which shows that the marginal distribution of iN  is negative binomial with parameters   

and 
1




. 

3.3 Variability in a homogeneous portfolio 

Now a different example is considered.  Suppose, as before, there is a portfolio of n  
policies.  The aggregate claims from a single policy have a compound Poisson distribution 
with parameters  , and the CDF of the individual claim amounts random variable is ( )F x .  

The Poisson parameters are the same for all policies in the portfolio.  If the value of   were 
known, the aggregate claims from different policies would be independent of each other.  It 
is assumed that the value of   is not known, possibly because it changes from year to year, 
but that there is some indication of the probability that   will be in any given range of 
values.  As in the previous example, it is assumed for simplicity that there is no uncertainty 
about the moments or distribution of the individual claim amounts, ie about ( )F x .  The 

uncertainty about the value of   can be modelled by regarding   as a random variable 
(with a known distribution). 

Example 

Suppose that the Poisson parameter,  , will be equal to 0.1 or to 0.3 with equal probability. 

(i) Calculate the mean and variance (in terms of 1m  and 2m ) of the aggregate claims 

from a policy chosen at random from the portfolio. 

(ii) Calculate the mean and variance (in terms of 1m , 2m  and n ) of the aggregate 

claims from the whole portfolio. 
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Solution 

Using the same notation as before let iS  denote the aggregate claims from the i th policy in 

the portfolio.  The situation can be summarised as follows: 

The random variables  1{ }n
i iS   are independent and identically distributed, each with a 

compound Poisson distribution with parameters   and ( )F x .  The random variable   has 

the following distribution: 

  ( 0.1) 0.5P   

  ( 0.3) 0.5P   

(i) Conditioning on the value of  : 

    1 1[ ] [ ( | ) ] [ ] 0.2i iE S E E S E m m   

  
   

 

2 1

2
2 1

var [ ] [ var( | ) ] var [ ( | ) ] [ ] var [ ]

0.2 0.01

i i iS E S E S E m m

m m

   
  

(ii) 


 
  

  
 1 1

1

[ ] 0.2
n

i
i

E S n E S n m  

 (since 1{ }n
i iS  are identically distributed) 

 

  

        
                          

 

 

  
1 1 1

2 1

2 2
2 1

var var var

[ ] var [ ]

0.2 0.01

n n n
i i i

i i i
S E S E S

E n m n m

n m n m

 

 

 

Note that 1 | , , |nS S   are independent but 1 , , nS S  are not unconditionally independent 

(since they all depend on the value of  ), so 
1 1

var( ) var( )
n n

i i
i i

S S
 

  . 

It is useful to compare the answers to the above example with those to the first example in 
the Section 3.2.  The values of the mean are in all cases the same, as are the variances when 
a single policy is considered (part (i)).  The difference occurs when variances for more than 
one policy are considered (part (ii)), in which case the second example gives the greater 
variance.  It is important to understand the differences (and the similarities) between the two 
examples.  A practical situation where the second example could be appropriate would be a 
portfolio of policies insuring buildings in a certain area.  The number of claims could 
depend on, among other factors, the weather during the year; an unusually high number of 
storms resulting in a high expected number of claims (ie a high value of  ) and vice versa 
for all the policies together. 
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3.4 Variability in claim numbers and claim amounts and parameter uncertainty 

This section contains two more examples.  The first is a rather complicated example 
involving uncertainty over claim amounts as well as claim numbers. 

Example 

An insurance company models windstorm claims under household insurance policies using 
the following assumptions. 

The number of storms arising each year, K , is assumed to have a Poisson distribution with 
parameter  . 

The number of claims arising from the i th storm, iN ,  1, 2, ...,i K , is assumed to have a 

Poisson distribution with parameter i . 

The parameters i ,  1, 2, ...,i K , are assumed to be independent and identically 

distributed random variables, with ( )iE n   and 2
1var( )i s  . 

The amount of the j th claim arising from the i th storm, ijX ,  1, 2, ..., ij N , has a lognormal 

distribution with parameters i  and 2 , where 2  is assumed to be known.  The mean 

claim amounts, 2exp( / 2)i i     are assumed to be independent and identically 

distributed random variables with mean p  and variance 2
2s . 

It is also assumed that i  and i  are independent. 

(i) Show that [ ]ijE X p  and 2 2 2 2
2var [ ] exp{ } ( )ijX p s p   . 

(ii) Let iS  denote aggregate claims outgo from the i-th storm, so that | { , }i i iS    is a 

compound Poisson random variable.  Show that:  

[ ]iE S np   

and: 

  2 2 2 2 2 2 2
2 1var [ ] ( ) ( exp{ })iS p s n s n n p      

(iii) Find expressions for the mean and variance of the annual aggregate claims outgo 
from all storms. 

Solution 

(i)   [ ] [ ( | ) ] [ ]ij ij i iE X E E X E p   

 

 

  

   

  

2 2

2 2 2 2
2 2

2 2 2 2
2

var [ ] [ var ( | ) ] var [ ( | ) ]

[ (exp{ } 1) ] var ( )

( ) (exp{ } 1)

( ) exp{ }

ij ij i ij i

i i

X E X E X

E

p s s

p s p
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(ii) [ ] [ ( | , ) ] [ ]i i i i i iE S E E S E np        since i  and i  are independent. 

 Now, since | { , }i i iS    has a compound Poisson distribution: 

   2 2 2var [ | , ] [ | ] ( exp{ })i i i i ij i i iS E X        

 and so: 

  2 2 2
2[ var ( | , ) ] ( )exp{ }i i iE S n p s      

 Also: 

  

2 2 2 2

2 2 2 2 2 2
1 2

var [ ( | , ) ] var [ ] [ ]

( )( )

i i i i i i iE S E n p

n s p s n p

        

   
 

 Putting these last two results together: 

  2 2 2 2 2 2 2 2 2
1 2 2var [ ] ( )( ) ( )exp{ }iS n s p s n p n p s        

(iii) Let R  be a random variable denoting the annual aggregate claims outgo from all 
storms.  Then R  can be written: 

  
1

K

i
i

R S


   

where K  has a Poisson distribution and the random variables iS   are IID 
(independent and identically distributed). 

 Hence, R  has a compound Poisson distribution and so: 

  [ ] ( )iE R E S n p     

  

2 2

2 2 2 2 2
2 1

var [ ] ( ) (var[ ] [ ] )

( )( exp{ })

i i iR E S S E S

p s n s n

 

 

  

   
 

Example 

Each year an insurance company issues a number of household contents insurance 
policies, for each of which the annual premium is £80.  The aggregate annual claims from a 
single policy have a compound Poisson distribution; the Poisson parameter is 0.4 and 
individual claim amounts have a gamma distribution with parameters   and  .  The 
expense involved in settling a claim is a random variable uniformly distributed between £50 
and £ b  (>£50).  The amount of the expense is independent of the amount of the associated 
claim.  The random variable S  represents the total aggregate claims and expenses in one 
year from this portfolio.  It may be assumed that S  has approximately a normal distribution. 
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(i) Suppose that: 

  1  ; 0.01  ; 100b   

Show that the company must sell at least 884 policies in a year to be at least 99% 
sure that the premium income will exceed the claims and expenses outgo. 

(ii) Now suppose that the values of  ,   and b  are not known with certainty but could 
be anywhere in the following ranges: 

  0.95 1.05  ; 0.009 0.011  ; 90 110b   

By considering what, for the insurance company, would be the worst possible 
combination of values for  ,   and b , calculate the number of policies the 
company must sell to be at least 99% sure that the premium income will exceed the 
claims and expenses outgo. 

Solution 

Let iX  be the amount of the i th claim and iY   be the amount of the associated expense.  

Let N  be the total number of claims from the portfolio and let n  be the number of policies 
in the portfolio.  Then N  has a Poisson distribution with parameter 0.4n and S  can be 
written: 

1

( )
N

i i
i

S X Y


   

where 1{ }i i iX Y 
  is a sequence of independent and identically distributed random 

variables, independent of N .  From this it can be seen that S  has a compound Poisson 

distribution with i iX Y  representing the ‘amount of the i th individual claim’.  Standard 

results can now be used to write down the following formulae for the moments of S : 

 [ ] 0.4 [ ]i iE S n E X Y   

 2 2 2var [ ] 0.4 [ ( ) ] 0.4 ( [ ] 2 [ ] [ ] )i i i i i iS n E X Y n E X E X Y E Y      

In terms of  ,   and b  , the moments of iX  and iY  are as follows: 

 [ ] /iE X       [ ] ( 50) / 2iE Y b  

 2 2[ ] ( 1) /iE X        2 2[ ] ( 50 2,500) / 3iE Y b b  

 [ ] [ ] [ ]i i i iE X Y E X E Y  

where the final relationship follows from the independence of iX  and iY . 
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(i) Now put: 

  1  ; 0.01  ; 100b   

 into these formulae to show that: 

  [ ] 70E S n  and  2var[ ] 127.80S n   

Hence, S  has approximately a normal distribution with mean 70n  and standard 

deviation 127.80 n .  The premium income is 80n  and the smallest value of n  is 
required such that: 

  ( 80 ) 0.99P S n   

 Standardising S  in the usual way for a normal distribution, this becomes: 

  
70 80 70

0.99
127.80 127.80

S n n nP
n n

  
  

 
 

The upper 99% point of a standard normal distribution is 2.326 and so the condition 
for n  is: 

  
80 70

2.326
127.80

n n
n


  

 which gives: 

  883.7n     

(or 884n   to the next higher integer). 

(ii) For the insurance company, the worst possible combination of values for  ,   and 
b  is the combination which gives the highest possible values for E[S] and var[S].  
To see this, let   and   denote the mean and the standard deviation of aggregate 

claims and expenses from a single policy.  Both   and   will be functions of  , 
and b  and: 

  [ ]E S n  and  2var [ ]S n  

Following the same steps as in part (i), the condition for n  is: 

  
(80 ) n


  2.326 

 which becomes: 

    2[2.326 / (80 )]n    

Hence, the highest value of n  results from the highest values for   and   

(provided the highest value for   is less than 80).  Now note that: 

   0.4 [ ]i iE X Y      and       2 20.4 [ ( ) ]i iE X Y  
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From the formulae for the moments of iX  and iY  given above,   and   are 

maximised when   and b  are as large as possible and   is as small as possible, 
ie when: 

   1.05 ;    0.009 ;    110b   

 This combination of values gives: 

   78.67   and   144.14  

so that n  must be at least 63,546 for the insurance company to be at least 99% sure 
that premium income will exceed claims and expenses outgo. 
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Chapter 20 Summary 

Collective risk model with reinsurance 

In the collective risk model, individual claims can be subject to a reinsurance agreement, either 
proportional or excess of loss. 

Under the collective risk model, the aggregate claim amount S  is given by: 

 1 2 NS X X X     

where iX  is the amount of the i th claim and N  is the total number of claims.   

If reinsurance is in place, the insurer’s aggregate claims net of reinsurance can be represented 
as: 

 1 2I NS Y Y Y     

where iY  is the amount of the i th claim paid by the insurer and N  is defined as above.  IS  is a 

compound random variable and: 

( ) ( ) ( )IE S E N E Y     

2var( ) ( )var( ) var( )[ ( )]IS E N Y N E Y   

( ) [ln ( )]
IS N YM t M M t  

The reinsurer’s aggregate claims can be represented as: 

 1 2R NS Z Z Z     

where iZ  is the amount of the i th claim paid by the reinsurer and N  is defined as above.  RS  

is a compound random variable and: 

( ) ( ) ( )RE S E N E Z     

2var( ) ( )var( ) var( )[ ( )]RS E N Z N E Z   

( ) [ln ( )]
RS N ZM t M M t  

Under individual excess of loss reinsurance, some of the claims may fall below the retention 
level M .  If this is the case, then some of the iZ  will be zero.  An alternative way of expressing 

the reinsurer’s aggregate claims is as:   

   1 2R NRS W W W   

where | 0i i iW Z Z   and NR  is the number of non-zero claims, ie the number of claims in 

which the reinsurer is involved.   
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Under an aggregate excess of loss arrangement with retention limit M , the maximum 
payment made by the insurer is M .  The insurer’s aggregate claim payment is: 


  

if 

if I
S S M

S
M S M

 

The reinsurer’s aggregate claim payment is: 


   

0 if 

if R
S M

S
S M S M

 

Individual risk model 

The individual risk model considers the payments made under each risk (eg policy) separately.   
The model assumes that: 

 the number of risks is fixed 

 the risks are independent 

 claim amounts from these risks are not necessarily IID 

 jN , the number of claims from the j th risk is either 0 or 1. 

For a portfolio containing n  risks, the aggregate claim amount is given by: 

 1 2 nS Y Y Y     

where jY  denotes the aggregate claims from risk j .  Since each jY  is the sum of a random 

number (0 or 1) of random claim amounts, each jY  has a compound binomial distribution.  

Suppose that jq  is the probability of a claim from the j th risk.  If a claim arises from the j th 

risk, suppose that the claim amount random variable is jX .  Then: 

1
( )

n

j j
j

E S q 


     

2 2

1
var( ) (1 )

n

j j j j j
j

S q q q 


      

 
1

( ) (1 )
j

n

S j X j
j

M t q M t q


      

where ( )j jE X   and 2 var( )j jX  . 

If, for a group of n  risks, the probability of a claim is fixed and the claim amounts are IID 
random variables, then the individual risk model is equivalent to a collective risk model where 
S  has a compound binomial distribution with  ( , )N Bin n q . 
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Chapter 20 Practice Questions 

20.1 The annual aggregate claims from a risk have a compound Poisson distribution with 
parameter 250.  Individual claim amounts have a Pareto distribution with parameters  4  and 
 900 .  The insurer effects proportional reinsurance with a retained proportion of 75%.   

Calculate the variances of the total amounts paid by the insurer and by the reinsurer.  

20.2 The aggregate claims from a risk have a compound Poisson distribution with parameter  .  

Individual claim amounts (in £) have a Pareto distribution with parameters 3   and 1,000  .   

The insurer of this risk calculates the premium using a premium loading factor of 0.2 (ie it charges 
20% in excess of the risk premium).   

The insurer is considering effecting individual excess of loss reinsurance with retention limit £1,000.  
The reinsurance premium would be calculated using a premium loading factor of 0.3.   

The insurer’s profit is defined to be the premium charged by the insurer less the reinsurance 
premium and less the claims paid by the insurer, net of reinsurance. 

(i) Show that the insurer’s expected profit before reinsurance is 100 . 

(ii) Calculate the insurer’s expected profit after effecting the reinsurance, and hence find the 
percentage reduction in the insurer’s expected profit. 

(iii) Calculate the percentage reduction in the standard deviation of the insurer’s profit as a 
result of effecting the reinsurance. 

20.3 Aggregate annual claims from a portfolio of general insurance policies have a compound Poisson 
distribution with Poisson parameter 20.  Individual claim amounts have a uniform distribution 
over the interval (0,200) .  Excess of loss reinsurance is arranged so that the expected amount paid 
by the insurer on any claim is 50.   

Calculate the variance of the aggregate annual claims paid by the insurer.  

20.4 A portfolio of policies consists of one-year term assurances on 100 lives aged exactly 30 and 200 
lives aged exactly 40.  The probability of a claim during the year on any one of the lives is 0.0004 
for the 30 year olds and 0.001 for the 40 year olds.   

If the sum assured on a life aged x  is uniformly distributed between 1,000( 10)x   and 
1,000( 10)x  , calculate the variance of the aggregate claims from this portfolio during the year 

(assuming that policies are independent with regard to claims).  
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20.5 The number of claims from a given portfolio has a Poisson distribution with a mean of 1.5 per 
month.  Individual claim amounts have the following distribution: 

Amount 200 300 

Probability 0.65 0.35 

 
An aggregate reinsurance contract has been arranged so that the insurer pays no more than 400 
per month in total. 

Assuming that the individual claim amounts are independent of each other and are also 
independent of the number of claims, calculate the expected aggregate monthly claim amounts 
for the insurer and the reinsurer. 

20.6 A portfolio consists of 500 independent risks.  For the i th risk, with probability 1 iq  there are no 

claims in one year, and with probability iq  there is exactly one claim ( 0 1iq  ).  For all risks, if 

there is a claim, it has mean  , variance 2  and moment generating function ( )M t .  Let T  be 

the total amount claimed on the whole portfolio in one year. 

(i) Determine the mean and variance of T . [4] 

The amount claimed in one year on risk i  is approximated by a compound Poisson random 

variable with Poisson parameter iq  and claims with the same mean  , the same variance 2 , 

and the same moment generating function ( )M t  as above.  Let T  denote the total amount 
claimed on the whole portfolio in one year in this approximate model. 

(ii) Determine the mean and variance of T , and compare your answers to those in part (i).  
    [4] 

Assume that 0.02iq   for all i , and if a claim occurs, it is of size   with probability one. 

(iii) Derive the moment generating function of T , and show that T  has a compound binomial 
distribution.  [2] 

(iv) Determine the moment generating function of the approximating T , and show that T  
has a compound Poisson distribution. [2] 

    [Total 12] 
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20.7 A company is analysing the number of accidents that occur each year on the factory floor.  It 
believes that the number of accidents per year N  has a geometric distribution with parameter 
0.8, so that: 

 ( ) 0.8 0.2 , 0,1,2,...nP N n n     

For each accident, the number of employees injured is Y , where 1Y X  , and X  is believed to 
have a Poisson distribution with parameter 2.2. 

The company has taken out an insurance policy, which provides a benefit of £1,000 to each 
injured employee, up to a maximum of three employees per accident, irrespective of the level of 
injury.  There is no limit on the number of accidents that may be claimed for in a year. 

(i) Show that ( ) 0.634E S   and var( ) 2.125S  , where S  is the total number of employees 

claiming benefit in a year under this policy. [7] 

(ii) Hence find the mean and variance of the aggregate amount paid out under this policy in a 
year.   [1] 

    [Total 8] 

20.8 An insurance company offers accident insurance for employees.  A total of 650 policies have been 
issued split between two categories of employees.  The first category contains 400 policies, and 
claims occur on each policy according to a Poisson process at a rate of one claim per 20 years, on 
average.  In this category all claim amounts are £3,000.  In the second category, claims occur on 
each policy according to a Poisson process at a rate of one claim per 10 years, on average.  In this 
category, the claim amount is either £2,000 or £3,000 with probabilities 0.4 and 0.6, respectively.  
All policies are assumed to be independent.  Let S  denote the aggregate annual claims from the 
portfolio. 

(i) Calculate the mean, variance and coefficient of skewness of S .  [4] 

(ii) Using the normal distribution as an approximation to the distribution of S , calculate Y  
such that the probability of S  exceeding Y  is 10%. [3] 

(iii) The insurance company decides to effect reinsurance cover with aggregate retention 
£100,000, so that the insurance company then pays out no more than this amount in 
claims each year.  In the year following the inception of this reinsurance, the numbers of 
policies in each of the two groups remains the same but, because of changes in the 
employment conditions of which the company was unaware, the probability of a claim in 
group 2 falls to zero.  Using the normal distribution as an approximation to the 
distribution of S , calculate the probability of a claim being made on the reinsurance 
treaty.   [3] 

    [Total 10] 

 
 

  

Exam style 

Exam style 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 32  CS2-20: Risk models 2 

© IFE: 2019 Examinations The Actuarial Education Company 

 

 

 

 

 

 

 

 

The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 20 Solutions 

20.1 The mean and variance of the gross claim amounts are: 

   


900
( ) 300

1 3
E X




  

 


  
   

2 2

2 2
900

var( ) 180,000
1) ( 2) 3 2

X


 
  

So the mean and variance of the net claims for the direct insurer and the reinsurer are: 

   ( ) 0.75 300 225E Y  

   2var( ) 0.75 180,000 101,250Y   

   ( ) 0.25 300 75E Z  

   2var( ) 0.25 180,000 11,250Z   

Using the formula for the variance of a compound Poisson random variable, the variances of the 
aggregate claim payments made by the insurer and the reinsurer are: 

        
2 2 2var( ) [ ] var( ) [ ( )] 250[101,250 225 ] 37,968,750IS E Y Y E Y    

        
2 2 2var( ) [ ] var( ) [ ( )] 250[11,250 75 ] 4,218,750RS E Z Z E Z    

20.2  (i) Expected profit before reinsurance 

We have: 

 ( ) 500
1

E X



 


  

So the expected aggregate claim amount is: 

 ( ) 500E S   

The insurer’s premium income is: 

     1.2 ( ) 1.2 500 600E S    

So the expected profit before reinsurance is: 

600 500 100     
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(ii) Expected profit after reinsurance 

The reinsurance premium is given by 1.3 ( )RE S , where: 

 ( ) ( ) ( ) ( )RE S E Z E N E Z   

Now: 

3

4
1,000

3 1,000
( ) ( 1,000)

(1,000 )
E Z x dx

x

 
 


  

Setting 1,000u x  : 

 
33 3

4 4
0 0

3 1,000 1,000 3 2,000
( )

2,000(2,000 ) (2,000 )
E Z u du u du

u u

      
  

   

Recognising this integral as the mean of the (3, 2000)Pareto  distribution, we see that: 

       

31 2,000
( ) 125

2 3 1
E Z  

and: 

 ( ) 125RE S   

So the reinsurance premium is 1.3 125 162.5   . 

Alternatively we could evaluate this integral using the substitution 1000t x   or using integration 
by parts. 

The insurer’s expected aggregate claim payment is: 

     ( ) ( ) ( ) 500 125 375I RE S E S E S      

So the insurer’s expected profit after reinsurance is: 

  600 162.5 375 62.5     

This is the insurer’s premium income, minus the premium paid by the insurer to the reinsurer, 
minus the insurer’s expected aggregate claim payment. 

The percentage reduction in the expected profit (which was 100  without reinsurance) is 37.5%. 

(iii) Percentage reduction in standard deviation 

In the absence of reinsurance, the insurer’s profit is equal to its premium income minus the 
aggregate claim amount.  Since the premium income is a fixed amount and only the cost of claims 
is random, the variance of the profit is: 

  2var( ) ( )S E X  
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We have: 

 ( ) 500
1

E X



 


 and 

2

2
var( ) 750,000

( 1) ( 2)
X


 

 
 

 

So: 

     2 2 2( ) var( ) [ ( )] 750,000 500 1,000,000E X X E X   

and:  

var( ) 1,000,000S   

Hence the standard deviation of the profit is 1,000  . 

With reinsurance, the insurer’s profit is equal to premiums charged less the reinsurance premium 
less the net claims paid.  Since the premiums are fixed amounts, the variance of the insurer’s 
profit is: 

  2var( ) ( )IS E Y   

where: 

 

1,000 3 3
2 2 2

4 4
0 1,000

1,000 2
3 5

4 4
0 1,000

3 1,000 3 1,000
( ) 1,000

(1,000 ) (1,000 )

1
3 1,000 3 1,000

(1,000 ) (1,000 )

E Y x dx dx
x x

x
dx dx

x x





 
 

 

   
 

 

 

 

The second integral is:  

  
  

   


3

4 3
1,000 1,000

1 (1,000 ) 1
3(1,000 ) 3 2,000

x
dx

x
   

For the first integral, we can set 1,000u x   to give: 

 
  

        
 

2,0001,000 2,0002 2

4 4 2 3
1,0000 1,000

( 1,000) 1 1,000 1,000,000 1
24,000(1,000 ) 3

x u
dx du

ux u u u
 

Alternatively, we could integrate by parts (twice). 

So: 

3 5
2

3
3 1,000 3 1,000

( ) 250,000
24,000 3 2,000

E Y
 

  


  and  var( ) 250,000IS   

Hence the standard deviation of the insurer’s profit is now 500  , which is a reduction of 50%. 
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The standard deviation is reduced by a greater percentage than the mean.  This is very often the 
case for excess of loss reinsurance. 

20.3 We have  (0,200)X U  and: 

 
     
    

if 0 if 

if if 

X X M X M
Y Z

M X M X M X M
 

The expected amount paid by the insurer on any claim is: 

    
200

0

1 1
( ) 50

200 200

M

M

E Y x dx M dx   

Solving this: 

 
          

2002

0

50
400 200

M

M

x Mx
 

    
2 2

50
400 200
M M

M   

    2 400 20,000 0M M  

 
      

  


2( 400) ( 400) 4 1 20,000
58.579  or 341.42

2 1
M   

Since claims are a maximum of 200, M  must be 58.579. 

The variance of the aggregate annual claims paid by the insurer is: 

  2 2var( ) ( ) 20 ( )S E Y E Y  

where: 

 

   
      

      

  

  



 

3

200200 3 2
2 2 2

0 0

3 3
2

3
2

1 1
( )

200 200 600 200

600 200

58.579
58.579

600 200

2,761

58.57

.

9

42

MM

M M

x M x
E Y x dx M dx

M M
M

  

Hence: 

   var( ) 20 2,761.42 55,228S    

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2-20: Risk models 2 Page 37 

The Actuarial Education Company © IFE: 2019 Examinations 

20.4 For each age group, the individual claim amounts have a uniform distribution.  So the mean and 
variance of the individual claim distributions are: 

 1
2

( ) ( ) 1,000E X b a x        

and: 
220,00021

12 12
var( ) ( )X b a     

Using the individual risk model, the variance of the aggregate claim amount is: 

 

 
2

2

2 2

1

20,000 2
12

20,000 2
12

var( ) (1 )

100 (0.0004) (0.0004)(0.9996) 30,000

200 (0.001) (0.001)(0.999) 40,000

37.32m 326.35m 363.67m

n

i i i i i
i

S q q q 


  

      

      

  



  

Alternatively, we could model the aggregate claim amount from each group as a compound 
binomial random variable.  For example, (100,0.0004)N Bin  for the 100 lives aged exactly 30.  
We could then use the formula for var( )S  from the collective risk model.   

20.5 Under this reinsurance arrangement, we have: 

 
if 400

400 if 400I
S S

S
S


  

  
0 if 400

400 if 400R
S

S
S S


   

 

where S  is the total monthly claim amount. 

Since individual claim amounts must be either 200 or 300, the possible values of IS  are 0, 200, 

300, and 400 and: 

 ( ) 0 ( 0) 200 ( 200) 300 ( 300) 400 ( 400)I I I I IE S P S P S P S P S             

The insurer’s aggregate claim amount is 0 if there are no claims.  So: 

 
1.5 0

1.51.5
( 0) ( 0)

0!I
e

P S P N e



      

The insurer’s aggregate claim amount is 200 if there is one claim and the amount of the claim 
is 200.  So: 

 1( 200) ( 1, 200)IP S P N X     

Since N  and 1X  are independent, we have: 

 
1.5 1

1.5
1

1.5
( 200) ( 1) ( 200) 0.65 0.975

1!I
e

P S P N P X e
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Similarly: 

 
1.5 1

1.5
1

1.5
( 300) ( 1, 300) 0.35 0.525

1!I
e

P S P N X e



        

Finally, the insurer’s aggregate claim amount is 400 if the total claim amount is 400 or more.  This 
probability can be calculated by subtraction as follows: 

 1.5 1.5 1.5

1.5

( 400) 1 ( 0) ( 200) ( 300)

1 0.975 0.525

1 2.5

I I I IP S P S P S P S

e e e

e

  



       

   

 

 

So: 

 1.5 1.5 1.5 1.5( ) 0 200 0.975 300 0.525 400(1 2.5 ) 255.52IE S e e e e             

We can now calculate ( )RE S  using the result: 

 ( ) ( ) ( )R IE S E S E S   

We have: 

  ( ) ( ) 1.5 200 0.65 300 0.35 1.5 235 352.50E S E X         

Hence: 

 ( ) 352.50 255.52 96.98RE S     

20.6 This is part of Subject 106, April 2003, Question 9. 

(i) Mean and variance of T 

Let 1 2 500T Y Y Y    , where iY  is the total claim on the i th policy.  Then: 

 1 2 500[ ] [ ] [ ] [ ]E T E Y E Y E Y     

 1 2 500var[ ] var[ ] var[ ] var[ ]T Y Y Y     

Since [ ]i iE Y q   and 2 2var[ ] (1 )i i i iY q q q    , we have: 

 
500

1
[ ] i

i
E T q


    [2] 

 
500 500

2 2

1 1
var[ ] (1 )i i i

i i
T q q q 

 
     [2] 

since the risks are independent. 
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(ii) Mean and variance of T   

Let C  be the amount claimed in one year on a single risk.  Then, according to the approximation: 

 1 2 NC X X X     

where  ( )iN Poi q , [ ]E X   and 2var[ ]X  .   

Also: 

 1 2 500T C C C      

where iC  is the total amount claimed on the i th risk. 

Using the formulae for the mean and variance of compound Poisson random variable: 

 [ ]i iE C q  2 2var[ ] ( )i iC q     [2] 

Since T  is the sum of claims for the whole portfolio, we have: 

 
500

1
[ ] i

i
E T q


   

500
2 2

1
var[ ] ( ) i

i
T q 


    [2] 

The mean is the same but the variance is larger than that obtained in part (i). 

(iii) MGF 

By definition we have: 

 1 2 500
1 2 500

( )( ) [ ] [ ] ( ) ( ) ( )t Y Y YtT
T Y Y YM t E e E e M t M t M t       [½] 

From the information given in the question, iY  is either 0 with probability 0.98 or   with 

probability 0.02.  We can therefore work out the moment generating function of iY : 

 0( ) [ ] 0.98 0.02 0.98 0.02tY t t t
YM t E e e e e         [½] 

Substituting this into the expression for the moment generating function for T , we get: 

 500( ) (0.98 0.02 )t
TM t e    [½] 

This is of the form of the moment generating function for a compound binomial distribution with 
parameters 500 and 0.02, and claim size distribution that is constant. [½] 

(iv) Compound Poisson 

By definition we have: 

 1 2 500
1 2 500

( )( ) [ ] [ ] ( ) ( ) ( )t C C CtT
C C CTM t E e E e M t M t M t    
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From the information given in the question, since iC  has a compound Poisson distribution it has 

moment generating function: 

    ( ) exp ( ( ) 1) exp 0.02( ( ) 1)
iC i X XM t q M t M t     [½] 

The random variable X  takes the value   with probability 1, so: 

 ( ) t
XM t e    

and: 

( ) exp 0.02( 1)
i

t
CM t e      [½] 

Substituting this into the expression for the moment generating function for T , we get: 

 

( ) exp 0.02( 1) exp 0.02( 1) exp 0.02( 1)

exp 10( 1)

t t t
T

t

M t e e e

e

  



             

   

 

 [½] 

This is of the form of the moment generating function for a compound Poisson distribution with 
parameter 10, and claim size distribution that is constant. [½] 

20.7 (i) Total number of claimants 

The aggregate amount paid out by the company is 1,000S , where: 

 1 NS Z Z    is the total number of employees claiming benefit in a year 

 
3

3 3

Y Y
Z

Y


  

  

1Y X    

and:  

(2.2)X Poisson  

Now: 

 2.2( 1) ( 0)P Y P X e     [½] 

 2.2( 2) ( 1) 2.2P Y P X e     [½] 

 2.2 2.2 2.2( 3) 1 2.2 1 3.2P Y e e e         [½] 
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So: 

  2.2 2.2 2.2 2.2

( ) 1 ( 1) 2 ( 2) 3 ( 3)

4.4 3 1 3.2 3 4.2 2.53463

E Z P Y P Y P Y

e e e e   

     

        [1] 

and: 

  

2 2 2 2

2.2 2.2 2.2 2.2

( ) 1 ( 1) 2 ( 2) 3 ( 3)

8.8 9 1 3.2 9 19 6.89474

E Z P Y P Y P Y

e e e e   

     

        [1] 

Hence the variance of Z  is: 

    22 2var( ) ( ) 6.89474 2.53463 0.47041Z E Z E Z      [½] 

To find ( )E N  and var( )N , we use the fact that N  has a Type 2 negative binomial distribution with 

parameters 0.8p  , 0.2q   and 1k  .  Using the formulae for the moments given on page 9 the 

Tables, we have: 

 
0.2

( ) 0.25
0.8

kq
E N

p
    [½] 

and: 
2 2

0.2
var( ) 0.3125

0.8

kq
N

p
    [½] 

Alternatively, we could derive the moment generating function of N , and then use MGF formulae 
to derive the mean and variance of N . 

The mean and variance of S  are: 

 ( ) ( ) ( ) 2.53463 0.25 0.63366E S E Z E N     [1] 

and:  

 2 2var( ) ( ) var( ) var( ) ( ) 2.53463 0.3125 0.47041 0.25 2.12521S E Z N Z E N        [1] 

(ii) Mean and variance of the aggregate amount 

So the mean and variance of 1,000S  are: 

 (1,000 ) 1,000 ( ) 634E S E S   [½] 

and:  

2var(1,000 ) 1,000 var( ) 2,125,000S S   [½] 
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Alternatively, we could define 1 2 NS Z Z Z    , where: 

 


  

1,000 if 3

3,000 if 3

Y Y
Z

Y
 

This would give us the aggregate claim amount directly. 

20.8 (i) Mean, variance and coefficient of skewness 

We have   1
1 20

(400 ) (20)N Poisson Poisson , 1 £3,000X ,   1
2 10

(250 ) (25)N Poisson Poisson  

and: 

 


 


2
£2,000 with probability 0.4

£3,000 with probability 0.6
X  

Working in £000s, we find that: 

 

   

     
     

    

    

    

2

2 2 2
2

3 3 3
2

( ) 2 0.4 3 0.6 2.6

2 0.4 3 0.6 7

2 0.4 3 0.6 19.4

E X

E X

E X  [1] 

Let iS  denote the annual aggregate claims from category i .  Using the assumption that the 

policies are independent and the result that, for a compound Poisson random variable T , the k th 

central moment of T  is given by ( )kE X , we obtain: 

        1 2( ) ( ) ( ) (20 3) (25 2.6) 125 £125,000E S E S E S  [1] 

 

   

 

 

   





1 2

2 2
1 1 2 2

2

var( ) var( ) var( )

( ) ( ) 

20 9 25 7

355

£ 355,000,000

S S S

E X E X 

 [1] 

 

   

1 2

3 3
1 1 2 2

3 9

skew( ) skew( ) skew( )

( ) ( )

20 27 25 19.4

1,025

£ (1,025 10 )

S S S

E X E X 
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So the coefficient of skewness is: 

 
 3/2 3/2

skew( ) 1,025
0.15324

355var( )

S

S
   [1] 

(ii) Calculate Y using a normal approximation 

Assuming that  (125, 355)S N , we have: 

 

125
( ) 0.1 (0,1) 0.1

355

125
1.2816 from page 162 

355

149.147

Y
P S Y P N

Y
Tables

Y

 
     

 


 

 

 

So S  exceeds £149,000 with a probability of approximately 0.1. [3] 

(iii) Probability that reinsurer is involved 

The expected value and variance of S  are now the same as those of 1S .  Working in £000s and 

assuming that  (60, 180)S N , we obtain: 

   100 60
( 100) 0,1 1 (2.98) 1 0.9986 0.0014

180
P S P N

 
        

 
 [3] 
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Machine learning 

 

Syllabus objectives 

5.1 Explain and apply elementary principles of machine learning. 

 5.1.1 Explain the main branches of machine learning and describe examples of 
the types of problems typically addressed by machine learning. 

 5.1.2 Explain and apply high-level concepts relevant to learning from data. 

 5.1.3 Describe and give examples of key supervised and unsupervised machine 
learning techniques, explaining the difference between regression and 
classification and between generative and discriminative models. 

 5.1.4 Explain in detail and use appropriate software to apply machine learning 
techniques (eg penalised regression and decision trees) to simple problems. 

 5.1.5 Demonstrate an understanding of the perspective of statisticians, data 
scientists, and other quantitative researchers from non-actuarial 
backgrounds. 
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0 Introduction 

The aim of this chapter is to provide an insight into the topic of machine learning.  Machine 
learning is a vast topic and this chapter will only provide a high-level introduction.  
Specifically, the chapter has the following aims: 

 To provide a high-level knowledge of the various branches of machine learning and 
examples of their applications, both within general industry and within the specific 
sectors that actuarial work involves.  The level of knowledge targeted is such as will 
allow you to identify whether any branch of machine learning would be useful in 
addressing any problem you face. 

 To provide you with sufficient background information that you can participate in 
high-level conversations related to projects involving machine learning analyses 
and their results. 

 To describe some of the most common machine learning techniques. 

 To discuss the relationship between machine learning and other branches of data 
science and statistical analysis, so that you are able to communicate effectively with 
other quantitative researchers, and to understand the similarities and differences 
between machine learning and other approaches. 

There are many resources available to students to gain an insight into the key elements of 
machine learning.  One excellent resource is a series of lectures given at Caltech by Yaser 
Abu-Mostafa which is freely available online at https://work.caltech.edu/telecourse.html. 

Another is A. Chalk and C. McMurtrie ‘A practical introduction to Machine Learning 
concepts for actuaries’, Casualty Actuarial Society E-forum, Spring 2016. 
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1 What is machine learning? 

Machine learning describes a set of methods by which computer algorithms are developed 
and applied to data to generate information.  This information can consist simply of hidden 
patterns in the data, but often the information is applied to solve a specific problem.  

Machine learning methods have become popular in recent years with the advent of 
increasing quantities of data and the concomitant rapid increase in computing power. 

When describing the new age of ‘big data’ researchers often talk about the three V’s: volume, 
velocity and variety.  There are now very large volumes of data in use, which computers can 
process very rapidly (velocity) and the data can take many different forms (variety). 

In order for machine learning to be useful in tackling a problem we need the following to 
apply: 

 A pattern should exist.  If there is no pattern, there is no information to be had, and 
machine learning will not help (indeed, it might be counterproductive by 
‘discovering’ patterns that do not exist). 

 The pattern cannot be practically pinned down mathematically by classical methods.  
If it could be pinned down, we could proceed to describe it mathematically. 

 We have data relevant to the pattern. 

Examples of problems which are commonly solved in this way include: 

 targeting of advertising at consumers using web sites 

 location of stock within supermarkets to maximise turnover 

 forecasting of election results 

 prediction of which borrowers are most likely to default on a loan. 

Question 

Give some other examples where machine learning is used: 

(a) in everyday life 

(b) in an actuarial / insurance / financial context. 
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Solution 

(a) Other everyday examples include: 

 using an internet search engine such as Google to find relevant web pages 

 using a spam filter to identify and remove unwanted emails 

 using face recognition to identify known criminals on CCTV footage 

 identifying criminals using fingerprints or DNA 

 recommending items to purchase on online shopping sites 

 matching job applicants to available positions 

 suggesting suitable matches on a dating app 

 finding relevant historical records on family tree websites 

 classifying people in your photos automatically by name 

 recognising voice commands, eg in apps such as Siri, Cortana and Alexa 

 converting handwriting to text 

 translating text from one language to another. 

(b) Other examples in an actuarial / insurance / financial context include: 

 classifying the risk for motor insurance policyholders using in-car monitoring 
devices 

 identifying marker genes that are associated with particular medical conditions 

 identifying insurance claims that might be fraudulent 

 identifying fraudulent benefit claims 

 identifying fraudulent tax declarations. 
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2 An overview of machine learning 

The diagram below (due to Yaser Abu-Mostafa) provides an overview of the machine 
learning process. 

  Target function 

1 2( , ,...)y f x x  

  

   
↓ 

  

  Data 









11 21 1

12 22 2

1 2

( , , , )

( , , , )

( , , , )N N N

x x y

x x y

x x y

 

  

   
↓ 

  

Hypotheses 









1 1 2

2 1 2

1 2

( , , )

( , , )

( , , )M

y h x x

y h x x

y h x x







 
→ 

Learning algorithm 

→ 

Hypothesis 

1 2( , , )y g x x  

 
First, there is some target function f , which maps a set of variables, or features, that we can 
measure, onto some output y .  (What we term ‘variables’ or ‘covariates’ in statistical 

modelling, machine learning terms ‘features’). 

We will assume that we have identified J  features that we consider relevant. 

Let the variables, or features, be  1 2, , , , ,j Jx x x x . 

Then we have: 

 1 2( , , , )Jy f x x x  

The target function is unknown and it is this which we are trying to approximate.  The target 
function might, for example, map life insurance data such as smoking behaviour, lifestyle 
factors and parental survival to life expectancy. 

Second, we have data on y  and 1 2, , , Jx x x  for a sample of N  individuals. 
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We use the data to develop a hypothesis which relates the data to the output.  Let the 
hypothesis be:  

 1 2( , , , )Jy g x x x  

The idea is that 1 2( , , )g x x  should be close to the unknown function 1 2( , , )f x x .  

The way the hypothesis 1 2( , , )y g x x  is chosen is by trying out a large number, say M , 

of hypotheses 1 1 2( , , )y h x x , 2 1 2( , , )y h x x , ..., 1 2( , , )My h x x  on the data and 

using a learning algorithm to choose among them.  The hypotheses are usually drawn from 
a hypothesis set, which has a general form. 

So, for example, in classical linear modelling the hypothesis set might be the set of linear 
relationships:  

 




10 11 1 12 2 1 1

20 21 1 22 2 2 2

0 1 1 2 2

0 1 1 2 2

... ...

... ...

... ...

... ...

j j J J

j j J J

m m m mj j mJ J

M M M Mj j MJ J

y w w x w x w x w x

y w w x w x w x w x

y w w x w x w x w x

y w w x w x w x w x

      

      

      

      

  

where the mjw  are weights to be applied to the features.  There are M  hypotheses, each 

with a different set of weights. 

Linear regression (which is covered in Subject CS1) can be viewed within this framework.  
The weights are equivalent to regression coefficients and the final hypothesis 

1 2( , , )y g x x  is the set of weights which ‘best fits’ the data according to some criterion, 

such as minimising the squared distance between the values of y  predicted by the model 

and the values of y  observed in reality.  Of course, the linear regression problem is 

typically solved in ‘one step’, whereas many machine learning problems are solved 
iteratively, or in many steps. 
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3 Concepts in machine learning 

An important difference between machine learning and many statistical applications is that 
the goal of machine learning is to find an algorithm that can predict the outcome y  in 

previously unseen cases. 

In the example studied by Chalk and McMurtrie, the task was to predict the cause codes of 
aviation accidents from the words in brief narratives of the accidents. 

This refers to a case study in the paper mentioned in the Introduction. 

The cause codes in their example were ‘aircraft’, ‘personnel issues’, ‘environmental issues’ 
and ‘organisational issues’.  The idea of classifying insurance claims in this way has wide 
actuarial applications – for example, in the construction of different pricing models for 
different types of claim.  But if an insurer uses such cause codes, a change in the IT system 
or in the staff that handle claims could result in claims not being coded or being coded 
inaccurately. 

This is because the existing claims team will have established a ‘rule book’ with conventions that 
tell them which is the best code to record the accidents under when the cause is not clear-cut. 

Doctors face a similar problem when recording the cause of death on a patient’s death certificate.  
If an elderly patient dies during an operation to treat a cancer they were suffering from, this could 
be recorded as ‘old age’, ‘cancer’ or ‘complications during surgery’. 

It would be useful to develop a way of using narrative descriptions of claims to add cause 
codes to those for which codes are not available, so that continuity of coding could be 
maintained.  We might do this by creating an algorithm which uses the claims narratives 
from data that were cause-coded to work out the cause codes that were given, and then 
apply this algorithm to claims that were not cause-coded. 

Question 

Suppose that we wish to use a similar system to identify cause codes for motor claims based on 
the descriptions policyholders write on their claim forms.   

(i) List some cause codes that we might wish the system to identify. 

(ii) List some keywords that the final algorithm might search for in the inputs. 

Solution 

(i) The cause codes would probably include the familiar third party damage, fire and theft, as 
well as others such as own vehicle damage and personal injury. 

(ii) There would be a large number of relevant keywords in the policyholders’ descriptions, 
eg ‘crashed’, ‘hit’, ‘stolen’, ‘ran over’, ‘brakes’, ‘suddenly’, ‘tree’, ‘dog’, ‘ice’ and 
‘exploded’. 
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Some of these keywords map in an obvious way to a cause (eg ‘stolen’ to ‘theft’) but others 
(eg ‘suddenly’) are much more open-ended. 

 
A key element of this scenario is that we are going to apply the results of the exercise to 
data that were not used to develop the algorithm.  This means that we are interested in the 

performance of the algorithm not just in the sample of N  cases in our data, but ‘out of 
sample’. 

‘Out of sample’ refers to new data outside our original sample. 

This is not always the case in statistical modelling (where we are often content with the 
model which ‘fits’ our data best).   

For example, when we are graduating a set of crude mortality rates, we usually restrict our results 
to the same range of ages for which we have data. 

3.1 The loss function 

One way to evaluate a hypothesis is to calculate the predictions it makes and to penalise 
each incorrect prediction by some loss.  For example, if the prediction involves the 
classification of something into categories, we could say that each incorrectly classified 
case incurs a loss of one.  We then choose the hypothesis 1 2( , , )y g x x  by minimising 

the loss function. 

In this example the loss function we’re using to penalise errors is the zero-one loss function, 
which assumes that all errors are equally bad.  (The zero-one loss function is covered in the 
Bayesian statistics chapter in Subject CS1.) 

It can be shown that for some common algorithms (such as logistic regression) maximising 
the likelihood is equivalent to minimising the loss function. 

3.2 Model evaluation 

When we fit statistical models to data, we have a range of criteria to allow us to choose the 
‘best’ model from among a set of models (as we saw in Subject CS1). 

For example, we saw that the parameters of a model can be estimated using the method of 
maximum likelihood or the method of moments, and that we can test the goodness of fit of a 
model using a chi-square test. 

But evaluating a predictive model involves more than this.  Even the ‘best’ model may not 
be a very good predictive model.  And even if it is good, it might take a very long time to find 
the correct parameters, or it might be very difficult to interpret (and explain to clients).   

Model evaluation therefore involves more than just applying some statistical criteria of ‘fit’.  
We illustrate some possible measures using a model designed for classification.   

Accuracy.  This is the proportion of predictions that the model gets right.  Usually we 
compare this proportion with the proportion predicted by a naïve classifier (eg a classifier 
that puts every case into the same category). 
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Precision and recall.  Consider a diagnostic test for a medical condition.  The patients who 
take the test either have the condition or they do not.  The test will classify (predict) patients 
as having the condition or not according to whether the outcome of the test fulfils certain 
criteria.    

An example of a naïve classifier in this situation is one that automatically says that the patient 
does not have the condition.  This classifier has no ability to distinguish correctly between 
patients with and without the condition. 

We now consider the possible outcomes of the model. 

There are four possibilities, shown in the table below.  This table is known as a confusion 
matrix. 

The terminology is based on the idea that the matrix of possible outcomes quantifies the extent 
to which the test ‘confuses’ patients who do / do not have the condition. 

  Test result classified / predicts patient as 
having condition 

  YES NO 

Patient actually 
has condition 

YES True positive (TP) False negative (FN) 

NO False positive (FP) True negative (TN) 

 

Question 

A country is introducing a new screening programme for early identification of people with a 
particular type of cancer.   

(i) Explain what ‘false positive’ and ‘false negative’ results would be in this context. 

(ii) Discuss the impact of false positives and false negatives from the point of view of a 
patient. 

(iii) State an additional concern regarding false negatives if this had been a test for an 
infectious disease. 

Solution 

(i) A false positive is a patient that the test flags as having the disease, but in fact does not. 

 A false negative is a patient that the test indicates as not having the disease, when in fact 
they do have it. 

(ii) A false positive outcome is undesirable because the patient may be caused unnecessary 
worry or required to undergo further tests or treatment before it is established that they 
do not actually have the disease. 

A false negative outcome is also undesirable because the patient may not now be 
identified early enough to receive effective treatment for the disease. 
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(iii) With an infectious disease, there is the additional concern that false negative patients 
may unknowingly spread the disease to other people. 

 
There are several useful measures we can calculate from the confusion matrix to gauge the 
effectiveness of the test.   

Precision is the percentage of cases classified as positive that are, in fact, positive.  Using 
the abbreviations in the table this is: 

 
TP

Precision
TP FP




 

Ideally we would like to have 0FP  , which would result in a precision of 1, ie 100%.   

Recall is the percentage of positives that we managed to identify (correctly): 

 
TP

Recall
TP FN




 

This measure is also called the sensitivity.  If 0FN  , ie if the test has not missed anyone who has 
the condition, it will equal 100%.   

These can be combined in a single measure known as the 1F  score: 

 1
2 Precision Recall

 score
Precision Recall

F  



 

The ‘F’ here arose historically and doesn’t actually stand for anything.  The ‘1’ subscript just 
identifies this measure out of several similar measures that have also been proposed and could be 
used instead.   

Question 

(i) Derive and simplify a formula for the harmonic mean of the precision and the recall. 

Hint: The harmonic mean of a set of values is the reciprocal of the arithmetic mean of their 
reciprocals.  

(ii) Comment on the answer in (i). 

Solution 

(i) Using the hint given, we can see that the harmonic mean H  of the precision and the recall 
can be found from the equation: 

  
1 1 1 1

2 Precision RecallH
   
 

 

 So: 
1 1 Recall Precision

2 Precision RecallH
    

  1
2 Precision Recall

Recall Precision
H F
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(ii) 1F  is the harmonic mean of the precision and the recall.  This is different from the more 

familiar arithmetic mean, but it also gives an average value of the two measures taken 
together and results in a value in the same range, ie 0 to 1. 

 
Another measure is the false positive rate. 

There is a trade-off between the recall (the true positive rate) and the false positive rate (the 
percentage of cases which are not positives, but which are classified as such).  The false 
positive rate is:  

 
FP

False positive rate
TN FP




 

This is not the same as 1 – the true positive (ie the recall) rate. 

Receiver operating characteristic curve. The trade-off between recall and the false positive 
rate can be illustrated using a receiver operating characteristic (ROC) curve.  An example is 
shown below, taken from Alan Chalk and Conan McMurtrie ‘A practical introduction to 
Machine Learning concepts for actuaries’ Casualty Actuarial Society E-forum, Spring 2016. 

 

This figure compares the ROC curves for a logistic regression model fitted to the cause 
codes for aircraft accidents with a naïve model based on random guesswork.  The area 
under the ROC provides another single-figure measure of the efficacy of the model.  The 
further away from the diagonal is the ROC, the greater the area under the curve and the 
better the model is at correctly classifying the cases. 

This type of graph is most useful when the test involves a threshold of some kind.  For example, a 
medical test may involve measuring the concentration of a particular chemical in the patient’s 
blood and labelling the patient as positive if this exceeds a particular level.  We can then calculate 
the false positive rate (defined above) and the true positive rate (ie the recall rate) for different 
levels of the threshold and plot these on a graph. 

Points near the top left of the graph correspond to a good test where the true positive rate is high 
and the false positive rate is low.  The diagonal line corresponds to a neutral ‘zero-sum’ test 
where there is a simple trade-off with any improvement in the true positive rate being matched 
by an equal deterioration in the false positive rate.  The area of the triangle below the diagonal is 
0.5 and the area of the whole rectangle is 1 (the maximum possible score for the ROC). 
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Question 

Two different tests have been applied to a sample of 100 individuals to identify whether or not a 
particular feature is present.  These resulted in the following confusion matrices: 

(a) Test 1 

PREDICTED 
ACTUAL 

YES NO TOTAL 

  YES TP = 76 FN = 4 80 

  NO FP = 4 TN = 16 20 

TOTAL 80 20 100 

 
(b) Test 2 

PREDICTED 
ACTUAL 

YES NO TOTAL 

  YES TP = 5 FN = 5 10 

  NO FP = 15 TN = 75 90 

TOTAL 20 80 100 

 

Calculate the precision, recall, 1F  score and false positive rate for each matrix and comment on 

the answers. 

Solution 

(a) 
TP 76

Precision 95%
TP FP 76 4

  
 

,  
TP 76

Recall 95%
TP FN 76 4

  
 

 

 
   

  
 1

2 Precision Recall 2 95% 95%
score 95%

Precision Recall 95% 95%
F  

FP 4
False positive rate 20%

TN FP 16 4
  

 
 

(b) 
TP 5

Precision 25%
TP FP 5 15

  
 

,  
TP 5

Recall 50%
TP FN 5 5

  
 

 

 1
2 Precision Recall 2 25% 50%

score 33%
Precision Recall 25% 50%

F
   

  
 

 

FP 15
False positive rate 17%

TN FP 75 15
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The precision values show that Test 1 is much more effective at correctly identifying individuals 
who do have the feature. 

The recall values also show that Test 1 is much better at identifying individuals who do have the 
feature. 

The 1F  scores show that the overall performance of Test 1 is much better than Test 2. 

The false positive rates are quite low for both tests, indicating that only a small proportion of 
individuals who do not have the feature are incorrectly flagged as having it. 

 

3.3 Generalisation error and model validation 

The methods described in the previous section allow the assessment of model performance 
on existing data.  But how can we assess the likely predictive performance of the model?  
Can we be sure that we can use machine learning to test numerous hypotheses and 
eventually pick one which will generalise acceptably to new data?  The answer is that we 
can in theory (see Lectures 4-6 of Yaser Abu-Mostafa’s course for a demonstration and 
proof of this).  Specifically, we can show that if the in-sample error is ( )inE g  and the 

out-of-sample error is ( )outE g , then:  

  
21

8
in out( ) ( ) 4 ( )

NP E g E g H N e        

where: 

 N  is the sample size 

   is some specified tolerance 

 ( )H N  is a polynomial in N  which depends on the hypothesis set. 

This equation, called the Vapnik-Chervonenkis inequality, shows that, for large enough N , 
it will always be possible to use learning to choose a hypothesis g  which will make the 

tolerance as small as we like. 

In this inequality, ( )inE g  and ( )outE g  are some suitable measure of the error in the results, eg the 

average difference between the predicted and true values, or the proportion of records that are 
classified incorrectly.  In a good model the difference between these two quantities will be small. 

For large values of N  the exponential factor 
21

8 N
e


 on the RHS of the inequality will dominate 

the polynomial ( )H N .  So the RHS provides an upper bound that tends to zero as we increase the 

sample size N .  This means that we can make the probability of an error of a given size as small as 
we like by using a big enough sample size for the training set. 

This may be true in theory, but how do we test the performance of our model out-of-
sample?   
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3.4 Train-validation-test 

The conventional approach in machine learning is to divide the data into two.  One part of 
the data (usually the majority) is used to train the algorithm to choose the ‘best’ hypothesis 
from among the M  competing ones.  The other is used to test the chosen hypothesis g  on 

data that the algorithm has not seen before. 

In practice, the ‘training’ data is often split into a part used to estimate the parameters of the 
model, and a part used to validate the model. 

This approach is often called the train-validation-test approach.  It involves three data sets: 

 a training data set: the sample of data used to fit the model 

 a validation data set: the sample of data used to provide an unbiased evaluation of 
model fit on the training dataset while tuning model hyper-parameters (see below)   

 a test data set: the sample of data used to provide an unbiased evaluation of the 
final model fit on the training data set. 

3.5 Parameters and hyper-parameters 

In statistical analysis, we often fit models to data, for example regression models such as: 

     0 1 1 ...i i J Ji iy x x      where  2(0, )i Normal    

Here the  ’s and 2  are the parameters of the model.  Most supervised machine learning 

algorithms involve models with similar parameters.  The ‘best’ values for these parameters 
are estimated from the data. 

We will explain the difference between supervised and unsupervised learning when we look at 
the different branches of machine learning in Section 4. 

Parameters are required by the model when making predictions.  They define the skill of the 
model when applied to your problem and they are estimated or learned from the data.  They 
form an integral part of the learned model. 

We can say that the parameters of a model are variables internal to the model whose values are 
estimated from the data and are used to calculate predictions using the model. 

Question 

The number of road accidents each day is to be modelled using a linear model based on the 
average number of cars on the road each day.  Identify the parameters in this model and describe 
the role they play. 

Solution 

If we let x  denote the average number of cars on the road on a given day and y  denote the 

number of road accidents the same day, then a linear model would take the form: 

 y x      
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In this equation,   is an error term with mean 0, and   and   are the parameters.  The values 

of   and   would be estimated from the data in the usual way, ie ˆ
xy xxs s   and ˆˆ y x    

(see page 24 of the Tables).  The model incorporating these estimated values of the parameters 
would then be used to estimate values of y  in the future, based on the value of x  on that day, 

using the formula ˆˆ ˆy x   . 

 
Machine learning algorithms, both supervised and unsupervised, however, also have 
higher-level attributes which must also be estimated or (in some sense) optimised.  These 
might include:  

 the number of covariates J  to include in a regression model 

 the number of categories in a classification exercise 

 the rate at which the model should learn from the data. 

We can speed up the learning process by allowing the machine to make quite big changes at each 
stage, based on the data it has just processed.  However, this may result in the final model 
‘overshooting’ the optimal solution or overfitting the model to the particular training set used. 

A slower rate of learning will be more likely to come up with a good solution, but this will take 
longer to achieve. 

These attributes are caller hyper-parameters.  They cannot be estimated from the data – 
indeed they must often be defined before an algorithm can be implemented.  
Hyper-parameters are external to the model and their values cannot be estimated from the 
data.  They are typically specified by the practitioner and may be set using heuristic 
guidelines.  Nevertheless, they are critical to the predictive success of a model. 

Hyper-parameters are variables external to the model whose values are set in advance by the 
user.  They are chosen based on the user’s knowledge and experience in order to produce a 
model that works well. 

‘Heuristic’ means that there are no hard and fast rules for these.  They are determined using 
rough guidelines and past experience of what works well, combined with experimentation. 
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Question 

Give some other examples of hyper-parameters from other models that may be relevant to 
actuaries. 

Solution 

Life insurance 

If we are calculating premiums for life insurance policies, we need to decide exactly how to define 
smoker categories such as Non-smoker, Light smoker and Heavy smoker, eg a person who smokes 
more than 20 cigarettes in an average day may be classed as a heavy smoker. 

Graduation 

If we are graduating mortality data using a Gompertz-Makeham formula 1 2( ) exp[ ( )]x p t p t   , 

where 
1

1
0

( )
r

k
k

k

p t a t



   and 

1

2
0

( )
s

k
k

k

p t b t



   are polynomial functions (see page 32 of the Tables), 

we need to decide on the values to use for r  and s , which determine the order of the two 
polynomials.   

Time series 

If we are fitting a linear time series using an ARIMA model, we need to decide on the values of d , 
p  and q , which determine the number of levels of differencing to apply and the number of 

moving average and autoregressive terms to include. 

GLM 

If we are applying a generalised linear model, we need to decide on the form of the link function 
to use. 

Reinsurance 

If we are modelling large claims in general insurance, we need to specify the cut-off point for a 
claim to count as ‘large’. 

Motor insurance 

If we are using geographical area as a rating factor in motor insurance, we need to decide on how 
many areas to use and which locations these cover. 

Health 

If we are using a patient’s body mass index (BMI) as a predictor for the outcome of a medical 
procedure, we may need to specify the dividing lines between weight bands such as underweight 
(<20), normal (20–25), overweight (25–30) and obese (30+). 
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3.6 Validation and over-fitting 

In a normal linear regression model, as we include more variables, the proportion of the 
variance in the dependent variable that is explained cannot decrease.  A model with more 
variables will, in that sense, ‘fit’ the data better than one with fewer variables.  The same is 
true with machine learning models, but the number of parameters in machine learning 
models can be very large.   

There is a risk that, if the number of parameters / features is large, the estimates of the 
parameters in the model g  that is chosen will reflect idiosyncratic characteristics of the 

specific data set we have used to ‘train’ the model, rather than the underlying relationships 
between the output, y , and the features 1 2, , , Jx x x .  This is known as over-fitting and is 

one of the biggest dangers faced by machine learning.  Over-fitting leads to the 
identification of patterns that are not really there.  More precisely, it leads to the 
identification of patterns that are specific to the training data and do not generalise to other 
data sets. 

We saw this same issue when we considered the graduation of mortality rates by parametric 
formula in Chapter 11.  If we use a formula with too many parameters, the graduated rates will be 
undergraduated.  They will follow the crude rates too closely, reflecting a lot of the random 
‘noise’ present in the data, rather than just capturing the underlying pattern of the rates. 

On the other hand, if the number of parameters / features is small, we might miss important 
underlying relationships. 

We saw this issue too with graduation by parametric formula.  If we use a formula with too few 
parameters, the graduated rates will be overgraduated.  They will be smoothed too much and will 
not follow the underlying pattern of the rates closely enough, eg ‘smoothing over’ genuine 
features such as the teenage accident hump. 

So there is a trade-off here, between bias – the lack of fit of the model to the training data – 
and variance – the tendency for the estimated parameters to reflect the specific data we use 
for training the model. 

One way to assess how the predictive ability of the model changes as the number of 
parameters / features increases is to withhold a portion of the ‘training’ data and use it to 

validate models with different numbers of parameters / features J .  One approach is to 

divide the training data into, say, s  slices, and to ‘train’ the model s  times, using a 
different slice for validation each time.  This is called s-fold cross-validation. 

Cross-validation is a technique to evaluate predictive models by partitioning the original sample 
into a training set to train the model, and a test set to evaluate it.  In s -fold cross-validation, the 
original sample is randomly partitioned into s  equal size subsamples. 

One of the s  subsamples is retained as the validation data for testing the model.  The remaining 
1s   subsamples are used as training data. The cross-validation process is then repeated s  times 

(these are the ‘folds’), with each of the s  subsamples used exactly once as the validation data. 
The s  results from the folds can then be compared (or averaged to produce a single prediction). 

The advantage of this method is that all observations are used for both training and validation, 
and each observation is used for validation exactly once. 
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Typically, the error on the training data used to estimate the parameters decreases as J  

increases.  But the prediction error on the validation data often decreases as J  increases 

for small J , and reaches a minimum before increasing again as J  gets larger.  This 
suggests that models with a number of parameters / features close to the minimum might 
be most suitable and perform best out-of-sample. 

So we might be able to get a better fit by adding extra parameters, but this won’t necessarily 
make the predictions from the model any better when we apply it to new data. 

3.7 Regularisation 

How can we achieve a good balance between bias and variance?  Put another way, is there 
a method that can use all the features to choose the final hypothesis g , but will prevent it 

becoming too complex so that generalisation is poor?   There is, and it is called 
regularisation or penalisation.  This approach exacts a penalty for having too many 
parameters.  Recall that finding the ‘best’ values of the parameters, or feature weights, jw  

in a machine learning problem involves minimising a loss function.  Let the loss function be 
1 2* ( , , , )JL w w w .  Then the hypothesis g  will be chosen to be the hypothesis with a set of 

weights which minimises 1 2* ( , , , )JL w w w . 

The idea of regularisation, or penalisation, is to add to *L  a cost for model complexity.  

One possibility is to add a term equal to  2

1

J

j
j

w

  , so that we now minimise the expression: 

  2
1 2

1

* ( , , , )
J

J j
j

L w w w w


   

As noted earlier, since minimising the loss function is, in some models, equivalent to 
maximising the likelihood, minimising this expression is equivalent to maximising a 
penalised likelihood.   
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4 Branches of machine learning 

Machine learning techniques can be divided into several branches, which we can refer to as 
supervised learning, unsupervised learning, semi-supervised learning and reinforcement 
learning.  The difference between these lies not (as one might think) in the level of 
involvement of the human researcher in the development of the algorithm, or in the 
supervision of the machine.  Instead, it lies in the extent to which the machine is given an 
instruction as to the end-point (or target) of the analysis.   

The targets are sometimes referred to as labels. 

Supervised and unsupervised learning 

With supervised learning, the algorithm is given a set of specific targets to aim for. 

With unsupervised learning, the algorithm aims to produce a set of suitable labels (ie targets). 

With semi-supervised learning, the algorithm uses a combination of supervised and unsupervised 
methods. 

With reinforcement learning, the algorithm aims to improve its performance through trial and 
error, using a rewards (or penalties) approach.  

The diagram below shows the differences between the main branches of machine learning and 
the models we will consider here. 

 

MACHINE LEARNING

Targets known in 
advance. Aims to predict 

targets correctly.

SUPERVISED

LEARNING

Target is 
categorical

CLASSIFICATION 
PROBLEM

MODELS

Naive Bayes

Decision trees

Target is 
numerical

REGRESSION

PROBLEM

MODELS

Linear 
regression

Penalised GLM

Targets not specified in 
advance. Aims to identify 

distinct groups.

UNSUPERVISED

LEARNING

Creates a set 
of categories

CLUSTERING

PROBLEM

MODELS

k means

Mixed approach, eg
unsupervised followed 

by supervised.

SEMI-SUPERVISED

LEARNING

Uses feedback in the form 
of rewards to make 

improvements.

REINFORCEMENT

LEARNING
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Question 

(i) Give examples of problems that would come under the headings of classification, 
regression and clustering. 

(ii) Give examples of problems that could be solved using semi-supervised and reinforcement 
learning. 

Solution 

(i) Classification, regression and clustering 

An example of a classification problem is a spam filter that classifies emails into the two 
categories ‘Safe’ or ‘Suspicious’. 

An example of a regression problem is a health awareness app that predicts the user’s life 
expectancy. 

An example of a clustering problem is a system that groups together postcode areas that tend to 
have a similar experience of insurance claims. 

(ii) Semi-supervised and reinforcement learning 

An example of semi-supervised learning is a photo app that groups photos featuring people with a 
similar appearance and then allows the user to name the people in order to add their names 
automatically to new photos 

An example of reinforcement learning is a voice recognition app that adapts over time to the 
user’s voice. 

 

4.1 Supervised learning 

Supervised learning is associated with predictive models in which the output is specified.  
Here the machine is given a specific aim (eg to use the variables in the data to develop a 
model to predict whether a person will default on a loan), and the algorithm will try to 
converge on the parameters of the model which provide the ‘best’ prediction. 

Examples relevant to the actuarial profession might be: 

 the prediction of future lifetime at age x , xT , or survival probabilities from age x , 

( )xP T t  

 the prediction of the risk of claims being made on certain classes of insurance. 
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A distinction can be made between supervised learning that involves the prediction of a 
numerical value (such as future lifetime) and prediction of which category a case falls into 
(will a person default on a loan – yes or no?).  For predicting numerical values, regression 
models are the normal approach, whereas predicting which category a case falls into is 
essentially a classification problem, and different algorithms, such as decision trees, are 
used.  However, this distinction between regression and classification is somewhat fuzzy, 
as there are regression models, such as logistic regression or probit models, where the 
dependent variable is categorical.  (These are examples of generalised linear models, which 
were covered in Subject CS1.) 

Probit models (short for ‘probability unit’) produce outputs that can only take one of two values, 
eg Yes / No or 0 / 1. 

Logistic regression is based on the logistic function 
1

( )
1 x

f x
e




, shown in the graph below.  

This function converts an input value, which can be anywhere in the entire range x   , to 
an output value on a continuous scale between 0 and 1.  If we interpret the output value as a 
probability, we can convert it to a categorical output by saying that values exceeding a specified 
value p  (eg 0.5p  ) correspond to Yes, while smaller values correspond to No. 

 

This graph was plotted using the R code: 

logistic<-function(x)1/(1+exp(-x)) 
plot(logistic,xlim=c(-5,5),main="Logistic function", 
ylab="y = 1/(1+exp(-x))") 
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Question 

Give another example where classification is achieved by converting a numerical output into a 
categorical value. 

Solution 

A familiar example is where a student’s numerical score on an exam, eg 65%, is converted into an 
exam grade, eg Pass, Fail, etc. 

 
Within classification algorithms, a distinction can be made between models that generate 
classifications and those that discriminate between classes. 

For example, the first type of model would include an algorithm that identifies people in a user’s 
photo albums in a photo app, while the second type would include one that ‘tags’ a user’s 
‘friends’ in a social media app.  In the first case, the algorithm groups together faces that look 
similar without knowing in advance the names of the people or how many there will be, whereas 
in the second case, it just has to match the faces to a list of other users whose names are already 
known. 

Consider the case where we have a categorical output value y  and data (covariates), 

1 2, ,x x  .  The aim is to predict into which category of y  case i  will fall given the values of 

the covariates for case i , 1 2, ,i ix x  . 

For example, we might have a set of historical texts written by different authors ( y ) and we wish 

to identify the most likely author based on the frequency of certain words in the text ( 1 2, ,x x ). 

One approach is to model the joint probabilities 1 2( , , , )P x x y .  This generates a 

classification scheme.  It is then possible to evaluate the conditional probability of being in 
category y , given 1 2, ,x x   as: 

1 2
1 2

1 2

( , ,..., )
( | , ,...)

( , ,...)

P x x yP y x x
P x x

   

One problem with this approach is that the number of separate probabilities 1 2( , , , )P x x y  

to be computed increases exponentially with the number of covariates jx .  

For example, if we were considering ten words, which can each be recorded as frequent (=1) or 

infrequent (=0), we would already have 102 1,024  different combinations of the form 

  1 2 101, 0, , 1x x x . 

This, however, can be overcome by assuming that, given the classes y , the covariates jx  

 ( 1, , )j J  are independent. 

We would then only have to consider the ten different probabilities for 1 1x , 2 0x , …, 10 1x  

individually. 
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With this assumption, we have:  

 


 1 2
1

( , ,..., ) ( ) ( | )
J

j
j

P x x y P y P x y   

This is called the naïve Bayes classifier. 

An alternative method is to model the conditional probability 1 2( | , ,...)P y x x directly, and to 

find, say, a linear combination of the kx  that best discriminates between the categories 

of y .  This is the aim of a method known as discriminant analysis, which is effectively the 

same as logistic regression. 

Other supervised learning techniques described in machine learning textbooks include the 
perceptron, neural networks and support vector machines. 

Perceptrons and neural networks use interconnected layers of artificial neurons that can be 
activated or deactivated in a way that mimics the behaviour of the neurons in animal brains. 

A support vector machine is a classification algorithm that considers the input data values as a 
vector defining a point in space and tries to place hyperplanes in a way that segregates the points 
most effectively. 

4.2 Unsupervised learning 

Other machine learning techniques operate without a target for the algorithm to aim at.  We 
might, for example, set the machine the task of identifying clusters within the data. 

Given a set of covariates, the idea is that the machine should try to find groups of cases 
which are similar to one another but different from cases in other groups.  In the language 
we used in the exposed to risk chapter, we try to divide the data into homogeneous classes.  
However, we may not tell the machine in advance what the characteristics of each of these 
classes should be, or even how many such classes there should be.  We allow the machine 
to determine these given a set of rules which form part of the algorithm.  Machine learning 
where the output is not specified in advance is called unsupervised learning. 

Examples of unsupervised learning techniques include cluster analysis, and the use of 
association rules such as the apriori algorithm.   

The apriori algorithm is a machine learning technique that identifies combinations of data values 
that frequently occur together in a data set, eg where users of a music website will tend to 
download items by the same artist or items of the same genre.  It can be used by online retailers 
as the basis for the ‘Other customers also bought …’ recommendations or for promoting bundles 
of items that are frequently bought together. 

Apart from their use to divide data into homogeneous classes, unsupervised learning 
techniques are commonly used with very large data sets.  Example would be market basket 
analysis, which uses data generated from retail transactions to identify items which are 
commonly purchased together, and text analysis. 

For example, the predictive text feature on a mobile phone looks for combinations of words that 
are commonly used together so that it can auto-complete phrases such as ‘Have a happy …’ with 
the word ‘birthday’. 
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4.3 Semi-supervised learning 

It is possible to perform machine learning analysis by using a mixture of supervised and 
unsupervised learning.  For example, cluster analysis could be used to identify clusters.  
These clusters could then be labelled using a variable y , and a supervised classification 

algorithm such as naïve Bayes or logistic regression used to develop predictions of the 
class into which each case would fall.   

For example, a system that aims to identify pickpockets operating in a busy shopping street might 
first identify people who appear several times throughout the day with the same clothing.  These 
people’s faces could then be matched against a database of known offenders. 

This makes obvious sense if the clusters identified by the unsupervised learner make 
substantive sense for the problem at hand.  But even if your clusters do not make sense to 
you (a human), you will have constructed a machine called an autoencoder – which can 
considerably speed up any future modelling analysis. 

An autoencoder compresses the raw data by focusing on features that appear to be significant, 
eg it might identify the different types of object that appear in a photo, even though it doesn’t 
know what they actually are. 

4.4 Reinforcement learning 

In reinforcement learning the learner is not given a target output in the same way as with 
supervised learning.  The learner uses the input data to choose some output, and is then 
told how well it is doing, or how close the chosen output is to the desired output.  The 
learner can then use this information as well as the input data to choose another 
hypothesis.  

Example 

Imagine a world that can be modelled as a finite-state discrete-time stochastic process with 
state space S .  An agent in this world who is in state u  at time t  can take many possible 

actions, lA , and each of these actions will result in a probability that the agent is in state v  

at time 1t  . We can define two functions: 

 the state transition function,   1( | , )t t lP X v X u A , and   

 the observation, or output function ( | , )t lP Y X u A . 

An example to have in mind here would be a fund manager who is investing the assets of a 
pension fund.  Here state u  might be the value of the assets at the time ( t , 1t , etc) of an 

annual valuation, lA  might be a particular investment strategy that the manager could follow and 

Y  might be some measure of the fund’s solvency (which will be affected by unknown factors on 
the liability side). 

Some values of Y  are more desirable than others, and we want the agent to take the actions 
which will lead to desirable outcomes of Y .  How do we achieve this?  The agent does not 
know the future, and cannot necessarily see how the actions taken at time t  will enhance or 

reduce the probabilities of Y .   
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One possibility is to define a reward function ( | , )t t lE R X i A , in which the reward, tR  

depends on the probability that the action lA  will lead to desirable values of Y .  The agent 

then tries to maximise its overall rewards (discounted as appropriate).  Clearly, if the agent 
had full information about the model, we could treat this is a standard maximisation 
problem.  But the agent does not know this: all the agent knows is the rewards it received 
for particular actions at specific time points up to the present.  Reinforcement learning is 
the process by which the agent updates the probabilities of taking particular actions on the 
basis of past rewards received.  

This process is reminiscent of the idea of the actuarial control cycle where adjustments are made 
periodically based on feedback from past experience to ensure that a particular strategy remains 
on track. 

Another popular machine learning technique that involves reinforcement is genetic algorithms, 
which are based on the idea of selective breeding from biology.  These create successive 
generations of possible solutions.  Small random variations (‘mutations’) are introduced into each 
solution to create the next generation.  The solutions are then tested and the ones that perform 
best are selected to continue to the next generation.  After a few generations, a good solution 
may have been discovered amongst the surviving solutions. 
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5 Stages of analysis in machine learning 

In this section we will look at the stages involved in applying machine learning and discuss some 
of the issues these raise. 

Machine learning tasks can be broken down into a series of steps.   

5.1 Collecting data  

The data must be assembled in a form suitable for analysis using computers.  Several 
different tools are useful for achieving this: a spreadsheet may be used, or a database such 
as Microsoft Access.  

Data may come from a variety of sources, including sample surveys, population censuses, 
company administration systems, databases constructed for specific purposes (such as the 
Human Mortality Database, www.mortality.org).   

During the last 20 to 30 years the size of datasets available for analysis by actuaries and 
other researchers has increased enormously.  Datasets, such as those on purchasing 
behaviour collected by supermarkets, relate to millions of transactions. 

5.2 Types of data 

There are many different types of data we might need to deal with.  The table below illustrates 
the ‘traditional’ types of data that have been used by actuaries and statisticians.   

DATA TYPES 

NUMERICAL 

(ie numbers) 

CATEGORICAL 

(ie not numbers) 

DISCRETE CONTINUOUS ATTRIBUTE 

(DICHOTOMOUS)

NOMINAL ORDINAL 

↓ ↓ ↓ ↓ ↓ 

Age last birthday 

Number of children 

Number of claims 

Exact age 

Salary 

Claim amount 

Alive / Dead 

Male / Female 

Claim / No claim 

Pass / Fail 

Customer name 

Type of claim 

Occupation 

Marital status 

Country 

Colour of car 

Date of birth (DD/MM/YY) 

Month (Jan, Feb, Mar, …) 

Exam grade (A, B, C, …) 

Size (S, M, L, XL) 

Agree/Don’t 
know/Disagree 

 
Attribute (or dichotomous) data refers to variables whose values consist of just two categories. 

Ordinal variables take values that can be ordered in a natural way, whereas the values for nominal 
variables cannot. 
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Some variables can be classed in several ways, eg the number of claims could be treated as a 
continuous variable, rather than discrete, if the values were large.  We’ve seen this idea before 
when we used a normal approximation to a binomial or Poisson distribution in Subject CS1. 

Similarly, colour of car could be recorded as red, orange, yellow, etc (ie nominal data) or (if it 
came from a video image) it could be measured on the RGB scale (ie a vector of three discrete 
numerical values).  It’s also quite common to record attribute data as 1’s and 0’s (ie with discrete 
numerical values) to make it easier to count subsets and to calculate proportions and averages. 

Nowadays, however, there are many other types of data that don’t correspond to these familiar 
types.  For example, a motor insurer might be provided with a memory card containing footage of 
an accident recorded on a vehicle’s dash cam (dashboard camera).  This will typically be a very 
large file containing a mixture of video and audio information, as well as structural information 
(eg markers for the start and end of each frame of the video), header information (eg the date it 
was captured, the serial number of the camera and the software version) and other embedded 
information such as time markers for the footage and satellite coordinates. 

5.3 Exploring and preparing the data  

Some forms of ‘raw’ data or complex data structures first need to be converted to one of the 
types in the table.  For example, a Word .docx file, although actually just a long sequence of 1’s 
and 0’s, has a specific structure from which the page layouts, the fonts and the text itself would 
need to be extracted before we could analyse the content.  Similarly, we would need to prepare a 
raw audio or video file before we could use the data it contains for speech recognition or face 
recognition. 

This stage can be divided into several elements: 

 The data need to be prepared in such a way that a computer is able to access it and 
apply a range of algorithms.  If the data are already in a spreadsheet, this may be a 
simple matter of importing the data into whatever computer package is being used 
to develop the algorithms.  If the data are stored in complex file formats, it will be 
useful to convert the data to rectangular format, with one line per case and one 
column per variable.  It is also important here to recognise the nature of the 
variables being analysed: are they nominal, ordinal or continuous?   

 Cleaning the data, replacing missing values, and checking the data for obvious 
errors is an important stage of any analysis, including machine learning. 

 Exploratory data analysis (EDA).  In machine learning applications it is probably not 
a good idea to do extensive EDA, as the outcome might influence your choice of 
model and hypothesis set. 

Question 

Suggest how the raw data could be converted to a usable ‘rectangular’ format in each of the 
following cases: 

(a) identifying people in a photograph stored as an image file 

(b) identifying vehicles from CCTV video footage. 
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Solution 

(a) We could create a separate record for each identified face in the picture and then record 
columns with the coordinates (or relative positions) of key features such as the centres of 
the eyes or the corners of the mouth.  If the images are in colour, we could also include 
columns for eye colour, hair colour and complexion. 

(b) We could create a separate record for each vehicle with a group of columns for each 
character in the vehicle number plate to record distinctive features such as whether the 
character contains a vertical line and which corners contain white space.  If the video 
footage is in colour, we could also record the colour of the vehicle, which we could use as 
a check. 

These data processing tasks are themselves non-trivial and form an important part of the 
classification process.  What we have described here is just one possible approach. 

 

5.4 Feature scaling  

Some machine learning techniques will only work effectively if the variables are of similar 
scale.  We can see this by recalling that, in a linear regression model (which we covered in 
Subject CS1) the parameter, j , associated with covariate jx , measures the impact on y of 

a one-unit change in jx .  If jx  is measured in, say, metres, the value of j  will be 100 

times larger than it would be with the same data if jx  were measured in centimetres. 

In machine learning the weights jw  play the role of the  ’s in the linear regression model. 

Consider the expression in Section 3.7: 

 2
1 2

1

* ( , , , )
J

J j
j

L w w w w


   

The penalty imposed for model complexity is 2

1

J

j
j

w

  which clearly depends on the weights 

and hence on the scale at which the features are measured. 

The scaling of the variables is particularly important with nearest neighbour algorithms, which we 
will discuss later.  The relative distances between the points will be heavily dependent on the 
units of measurement.  To ensure that all the factors are taken into account, we would want the 
ranges of values for each variable to be comparable. 

Descriptive statistics such as frequency distributions, measures of central tendency and of 
dispersion might be useful here to establish an appropriate scale for each feature, as will 
cross tabulations of nominal or ordinal data, or correlation coefficients between continuous 
variables.  Pictorial representations, such as histograms and boxplots, are invaluable. 
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5.5 Splitting the table into the training, validation and training data sets  

We discussed the ‘train-validate-test’ approach in Section 3.4, which involves splitting the data 
into three parts. 

A typical split might be to use 60% of the data for training, 20% for validation and 20% for 
testing.  However it depends on the problem and not on the data.  A guide might be to select 
enough data for the validation data set and the testing data set so that the validation and 
testing processes can function, and to allocate the rest of the data to the training data set.  
In practice, this often leads to around a 60% / 20% / 20% split. 

5.6 Training a model on the data  

This involves choosing a suitable machine learning algorithm using a subset of the data. 
The algorithm will typically represent the data as a model and the model will have 
parameters which need to be estimated from the data.  This stage is analogous to the 
process of fitting a model to data as described in the chapters on regression and 
generalised linear models in Subject CS1.   

5.7 Validation and testing  

The model should then be validated using the 20% of the data set aside for this purpose.  
This should indicate, for example, whether we are at risk of over-fitting our data.  The 
results of the validation exercise may mean that further training is required.     

Once the model has been trained on a set of data, its performance should be evaluated.  
How this is done may depend on the purpose of the analysis.  If the aim is prediction, then 
one obvious approach is to test the model on a set of data different from the one used for 
development.  If the aim is to identify hidden patterns in the data, other measures of 
performance may be needed.   

5.8 Improving model performance  

We can measure the performance of the model by testing it on the 20% of the data we have 
reserved for this purpose.  The hope is that the performance of the final hypothesis g  on 

the ‘test’ data set is similar to that achieved by the same hypothesis on the training data set.  
This amounts to stating that the difference between the in-sample error and the out-of-
sample error in out( ) ( )E g E g  will be generally small, or that:  

 in out( ) ( )P E g E g Z      

where Z  is some threshold which may depend on the precise task to hand (the greater the 
value at risk, the smaller Z ). 

This is the same type of inequality that we saw in Section 3.3.  ‘Value at risk’ here just means the 
amount of money at stake, eg the cost of the damage that would be caused by a wrong decision.  
However, the idea is similar to the value at risk (VaR) from investment theory (covered in 
Subject CM2), where we aim to keep the probability of a large loss below a specified probability 
level. 
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If the performance of the model is not sufficient for the task at hand, it may be possible to 
improve its performance.  Sometimes the combination of several different algorithms 
applied to the same data set will produce a performance which is substantially better than 
any individual model.  In other cases, the use of more data might provide a boost to 
performance.  However, except when considering very simple combinations of models, care 
should be taken not to overfit the evaluation set. 

5.9 The reproducibility of research  

It is important that data analysis be reproducible.  This means that someone else can take 
the same data, analyse it in the same way, and obtain the same results.  In order that an 
analysis be reproducible the following criteria are necessary: 

 The data used should be fully described and available to other researchers. 

 Any modifications to the data (eg recoding or transformation of variables, or 
computation of new variables) should be clearly described, ideally with the 
computer code used.  In machine learning this is often called ‘features engineering’, 
whereby combinations of features are used to create something more meaningful. 

 The selection of the algorithm and the development of the model should be 
described, again with computer code being made available.  This should include the 
parameters of the model and how and why they were chosen. 

There is an inherent problem with reproducing stochastic models (which are studied in 
Subject CM1), in that those of necessity have a random element.  Of course, details of the 
random number generator seeds chosen, and the precise command and package used to 
generate any randomness, could be presented.  However, since stochastic models are 
typically run many times to produce a distribution of results, it normally suffices that the 
distribution of the results is reproducible. 

To ensure reproducibility in stochastic models in R, use the same numerical seed in the 
function set.seed(). 
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6 Applications: supervised learning 

In this section we describe some commonly-used supervised machine learning techniques.  
Some of these methods are direct extensions of methods covered elsewhere in the 
syllabus, notably the linear regression and generalised linear models in Subject CS1 and 
the proportional hazards models in Chapter 8 of this course. 

6.1 Penalised generalised linear models 

Suppose we have a set of data with J  covariates 1( , , )Jx x  and N  cases (the sample size).  
To fit a generalised linear model, we normally specify the link function and the parameters 
of the model, 0 , , J   (where 0  is the intercept) and maximise the likelihood 

 0 1( , , | , , )J JL x x  .  However, this might not work well in certain situations. 

For example, if there are many covariates, including all of them might make the model 
unstable (the estimators of the parameters 1, , J    will have large variances) because of 

correlations among the 1, , Jx x .  If we wish to use the model for prediction on new data, 

this is very undesirable.  We want to be able to trust that the estimated values of the 
parameters linking the covariates to the outcome variable are solidly grounded and unlikely 
to shift greatly when the model is applied to a new data set.  Another way of saying this is 
that we only want to include features which really do have a general effect on output. 

Question 

Give an example of this problem of correlations between covariates in an actuarial setting. 

Solution 

Suppose that two of the variables that a motor insurer uses to determine premiums for its 
policyholders are ‘postcode’ and ‘type of car’, and that the FX99 postcode area and Nano cars are 
usually considered to be low-risk and therefore cheap to insure.  However, last year there was a 
single policyholder in the FX99 area who drove a Nano car and this policyholder was involved in a 
freak accident that led to a claim that cost £1 million. 

Next year we would expect the insurer’s pricing model to increase premiums for any policyholder 
living in the FX99 area or driving a Nano car to reflect the past experience of these two categories.  
Any other policyholders who happened to live in the FX99 area and drive a Nano car would have 
their premiums increased on both counts. 

If the insurer also uses the different combinations of postcode and type of car in its pricing model 
(ie separate premiums are determined for each pairing of postcode and type of car), it would now 
charge a prohibitively high premium to any other policyholder who happened to live in the FX99 
area and drive a Nano car.  This is purely because the values of their covariates match those of the 
policyholder who made the large claim and the pricing model has put them in the same category 
as this policyholder and has ‘tarred them with the same brush’. 

 
So it is important for us to avoid over-parameterising our model. 
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One way to solve this is to choose a subset of the J  covariates to include in the model.  But 

how do we choose this?  We could look at all possible subsets of J  and use criteria such 
as the Akaike Information Criterion or the Bayesian Information Criterion.   

These both exact a penalty for additional parameters.  If the number of parameters is J  and 

the sample size in the data is N : 

 AIC deviance 2J   

 BIC deviance [log ( )]e N J   

The deviance here is a measure of the average error of the model’s outputs and measures the 
goodness of fit.  The extra terms reflect the number of parameters in the model.  If we aim to 
minimise the AIC or the BIC, this will allow us to find a good trade-off between the two objectives 
of obtaining a good fit to the data and minimising the number of parameters in the model. 

However as J  increases the number of possible subsets rises.  In many machine learning 

applications, J  is large, and the number of cases is also large, so that comparing all 
possible subsets is computationally infeasible.  

Penalised regression involves exacting a penalty for unrealistic or extreme values of the 
parameters, or just having too many parameters.  The penalty may be written 1( ,..., )JP   , 

so that we maximise: 

    0 1 1, | , , ( ,..., )log ,  e J JJL x x P     

By maximising this expression we are aiming for a trade-off where we try to maximise the 
log-likelihood but, at the same time, try to minimise the penalty applied (since this is subtracted). 

Two common examples of penalties are: 

 ridge regression, where 


  2
1

1

( ,..., )
J

J j
j

P    , 

 the LASSO (Least Absolute Shrinkage and Selection Operator), where 


 1

1

( ,..., )
J

J j
j

P    . 

The names are based on the geometrical interpretations of these measures, which you are not 
expected to know. 

These penalty functions assume that the distribution has been parameterised in such a way that 

we would expect the true values of the parameters 1 , ,  J  to be close to zero.  If this is not the 

case, we would subtract the target value from each   in the penalty functions shown above. 

The parameter   is called the regularisation parameter, and its choice is important.  Too 
small a value of   leads to over-fitting the data and the problems associated with using just 
the likelihood.  Too large a value of   means only gross effects of the covariates will be 
included in the final model, and we may miss many important effects of the covariates on 
the outcome. 

The parameter   is an example of a hyper-parameter. 
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Question 

A random sample 1 , , nx x  of n  values has been taken from a Poisson distribution with unknown 

mean  .  The value of   is to be estimated using the penalty function 2( 5)   . 

(i) Explain why this particular penalty function might have been chosen. 

(ii) Write down an expression for the penalised log-likelihood function. 

(iii) Show that ̂ , the estimated value of  , satisfies the equation: 

ˆ ˆ ˆ( ) 2 ( 5) 0n x       

(iv) Calculate the value of ̂  based on the sample of values 5.7, 5.4, 4.6, 5.0 and 4.9  when 

0.2  . 

(v) Use the equation in part (iii) to show algebraically what happens to the value of ̂ : 

(a) when   is equal to zero and 

(b) when   is very large. 

(vi) Comment on your answers in part (v). 

Solution 

In this question we have just one parameter (ie 1J  ), which is called   (corresponding to 1 ). 

(i) We might choose this penalty function if we believe the true value of   is close to 5, as 

the penalty when 5   would be zero. 

(ii) The likelihood function for the sample is: 

  
1

constant constant
!

i
i

xn
xn n nx

ii

e
L e e

x


   


 



      

So the log-likelihood is: 

  log log constantL n nx      

and the penalised log-likelihood is: 

        2(log )* log constant ( 5)L n nx     

(iii) To maximise this, we equate the derivative with respect to the parameter   to zero: 

  
(log )*

2 ( 5) 0
L nx

n  
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Multiplying by   and rearranging gives: 

  ( ) 2 ( 5) 0n x       

So ̂  satisfies the equation: 

   ˆ ˆ ˆ( ) 2 ( 5) 0n x    

(iv) For this sample, we have: 

  5n    and  
1 25.6

(5.7 5.4 4.6 5.0 4.9) 5.12
5 5

x         

 So with 0.2  , the equation in part (iii) becomes: 

  ˆ ˆ ˆ5( 5.12) 2(0.2) ( 5) 0       

This can be rearranged to give: 

  2ˆ ˆ0.4 3 25.6 0     

 Using the quadratic formula: 

  
23 3 4(0.4)( 25.6) 3 49.96ˆ 12.585  or  5.085

2(0.4) 0.8
      
     

 Since   must be positive, the required estimate is ˆ 5.085  . 

(v)(a) If 0  , the equation in part (iii) becomes: 

ˆ( ) 0n x     ˆ x   

(v)(b) If we divide the equation in part (iii) by  , we get: 

  
ˆ( ) ˆ ˆ2 ( 5) 0

n x  



    

 As   , this becomes: 

  ˆ ˆ2 ( 5) 0      ˆ 0    or  ˆ 5   

 Since the value of   must be strictly positive, the required estimate would be ˆ 5  . 

(vi) If we apply no penalty, as in part (v)(a), the method reduces to maximum likelihood 
estimation and we get the usual estimate for  , ie the sample mean of 5.12. 

 If we apply a high penalty to values that are not close to the target value of 5, as in part 
(v)(b), the method will produce a value close to 5, irrespective of the actual values in the 
sample. 

 As expected, the estimated value of 5.085 lies between these two values. 
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6.2 Naïve Bayes classification 

Recall from Subject CS1 that if 1 2, , ..., RB B B  constitute a partition of a sample space S  and 

( ) 0iP B   for  1,2, ,i R , then for any event A  in S  such that ( ) 0P A  : 

( | ) ( )
( | )

( )
r r

r
P A B P BP B A

P A
   for   1,2, ,r R  

where: 


 

1

( ) ( | ) ( )
R

i i
i

P A P A B P B  

This is Bayes’ Theorem, which allows us to ‘invert’ conditional probabilities, ie to work out the 

values of the probabilities ( | )rP B A  when we know the probabilities ( | )rP A B . 

Question 

Derive Bayes’ Theorem. 

Solution 

The proof uses the definition of conditional probabilities, 
( , )

( | )
( )

P X Y
P X Y

P Y
 , and the equivalent 

identity ( , ) ( | ) ( )P X Y P X Y P Y . 

Using the definition of conditional probabilities, the probability we want to find is: 

( , )
( | )

( )
r

r
P B A

P B A
P A

  

Using the identity above, the numerator on the right-hand side can be written as: 

 ( , ) ( | ) ( )r r rP B A P A B P B  

If we condition the denominator on the different possible values of rB , we can write it as: 

 1 1 2 2
1

( ) ( | ) ( ) ( | ) ( ) ( | ) ( ) ( | ) ( )
R

R R r r
r

P A P A B P B P A B P B P A B P B P A B P B


       

If we substitute these in, we then get Bayes’ formula:  

 

1

( | ) ( ) ( | ) ( )
( | )

( )
( | ) ( )

r r r r
r R

r r
r

P A B P B P A B P B
P B A

P A
P A B P B
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Naïve Bayes classification uses this formula to classify cases into mutually exclusive 
categories on some outcome y , on the basis of a set of covariates 1, , Jx x .  The events A  

are equivalent to the covariates taking some set of values, and the partition 1 2, , ..., RB B B  is 

the set of values that the outcome can take. 

Here 1B  corresponds to the vector of covariates 11 21 1( , , , ) Jx x x  for the first individual. 

Suppose the outcome is whether or not a person will survive for 10 years.  Let 1iy   

denote the outcome that person i  survives, and 0iy   denote the outcome that person i  

dies.  Then, if we have J  covariates, we can write: 

 
  1

1
1

( ,..., | 1) ( 1)
( 1| ,..., )

( ,..., )
i Ji i i

i i Ji
i Ji

P x x y P yP y x x
P x x

 

This is difficult to estimate because all possible combinations of the 1, , Jx x  need to be 

estimated, and all combinations are unlikely to be in your data set. 

This is a particular problem here because in practice many of the combinations of values will not 
be present in the sample, so the corresponding probabilities cannot be estimated.  For example, 
for a motor insurer that uses several rating factors (eg age of policyholder, occupation, make of 
car, age of car, postcode area), many of the subsets will be empty. 

The naïve Bayes algorithm assumes that the values of the ix  are independent, conditional 

on the value of iy .   

So we are assuming that: 

 11 21 1 11 21 1( , , , | 1) ( | 1) ( | 1) ( | 1)        J i i i J iP x x x y P x y P x y P x y  

Question 

Illustrate why this assumption might not be accurate for a motor insurer using the rating factors 
age of policyholder, occupation, make of car, age of car, postcode area. 

Solution 

As an example, 25% of policyholders may be under 25, 20% may drive high performance cars and 
40% may drive cars less than 3 years old. 

However, it is unlikely that 2% (ie 25% 20% 40%  ) of policyholders would be under 25 with high 
performance cars under 3 years old, as young drivers are unlikely to be able to afford such 
vehicles – or to be able to pay to insure them. 
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This allows the formula to be re-written: 

 1 2
1

1

( | 1) ( | 1) ( | 1) ( 1)
( 1| ,..., )

( ,..., )
i i i i Ji i i

i i Ji
i Ji

P x y P x y P x y P yP y x x
P x x

   
   

so that:  

 1
1

( 1| ,..., ) ( 1) ( | 1)
J

i i Ji i ji i
j

P y x x P y P x y


     

For a given set of values of 1 1,...,i Jx x , the denominator 1 1( ,..., )i JP x x  doesn’t change.  So we can 

treat this as a constant in the calculations and just look at the relative values – hence the 
proportional sign.  To find the actual values of the individual probabilities, we can just divide by 
the total, to produce a set of probabilities that add up to 1. 

Question 

A motor insurer has analysed a sample of 1,000 claims for three different geographical regions 
split by the size of claim (Small / Medium / Large).  It has then classified them according to 
whether they proved to be fraudulent or genuine claims.  The results are shown in the tables 
below: 

FRAUDULENT Region 1 Region 2 Region 3 Total 

Small 3 0 6 9 

Medium 10 5 20 35 

Large 3 1 2 6 

Total 16 6 28 50 

 

GENUINE Region 1 Region 2 Region 3 Total 

Small 57 38 70 165 

Medium 250 95 180 525 

Large 176 46 38 260 

Total 483 179 288 950 

 
(i) Give a formula that could be used to estimate the probability that a new claim from 

Region 3 for a Medium amount will prove to be fraudulent. 

(ii) Estimate the probability that each of the following types of new claim will be fraudulent: 

(a) a claim from Region 3 for a Medium amount 

(b) a claim from Region 1 for a Large amount 

(c) a claim from Region 2 for a Small amount. 
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Solution 

(i) Using Bayes’ Theorem (and obvious abbreviations for the events), we have: 

  
( , 3, ) ( 3, | ) ( )

( | 3, )
( 3, ) ( 3, | ) ( ) ( 3, | ) ( )

P F R M P R M F P F
P F R M

P R M P R M F P F P R M G P G
 


 

(ii)(a) From the tables above, we have: 

  
20

( 3, | ) 0.4
50

P R M F   ,  
180

( 3, | )
950

P R M G  , 

50
( ) 0.05

50 950
P F  


,  

950
( ) 0.95

50 950
P G  


  

 So: 
0.4 0.05

( | 3, ) 0.1
0.4 0.05 180 950 0.95

P F R M


 
  

 

 So the estimated probability that a claim from Region 3 for a Medium amount is 
fraudulent is 10%. 

 In fact, we can do this calculation directly from the table without introducing 
probabilities.  For Region 3 and Medium amounts there were 20 fraudulent claims and 
180 genuine claims.  So the estimated probability that a claim from Region 3 for a 

Medium amount is fraudulent is 
20

0.1
20 180




, ie 10%. 

(ii)(b) Similarly, the estimated probability that a claim from Region 1 for a Large amount is 

fraudulent is 
3

0.168
3 176




, ie 1.68%. 

(ii)(c) Since there were no fraudulent claims from Region 2 for a Small amount in the sample, 
the estimated probability that a claim from Region 2 for a Small amount is fraudulent is 0. 

 

6.3 Decision trees (classification and regression tree algorithm) 

Classification and regression trees (CART) is a term introduced by Leo Breiman to refer to 
decision tree algorithms that can be used for classification or regression in predictive 
modelling problems. 

Classically, this algorithm is referred to as ‘decision trees’ but on some platforms like R 
they are referred to by the more modern term CART.  

The CART algorithm provides a foundation for important algorithms like: 

 bagged decision trees 

 random forest 

 boosted decision trees. 
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We will not discuss these three types of decision trees in detail in this course, but we will provide 
a very brief insight into these approaches. 

In bagged decision trees, we create random sub-samples of our data with replacement,  
train a CART model on each sample, and (given new data) calculate the average prediction 
from each model. 

Random forests apply a method based on averaging a number of randomly generated decision 
trees. 

Boosting here refers to a method of repeatedly making small adjustments to improve the 
effectiveness of a model by reducing the residual error.  

The representation for the CART model is a binary tree.  

Each root node on a tree represents a single input variable x  and a split point on that 
variable (assuming the variable is numeric).  

The leaf nodes of the tree contain an output variable y  which is used to make a prediction.  

Given a dataset with two inputs of height in centimetres and weight in kilograms, the output 
of gender as male or female, below, is a crude example of a binary decision tree. 

        Height > 180cm 

 

     YES           NO 

          Weight > 80kg 

         Male 

                   YES  NO 

            

           Male      Female 

 

Example 

Given an input of [height = 60cm, weight = 65kg] the above tree would be traversed as 
follows: 

Node 1: Height > 180cm? No 

Node 2: Weight > 80kg? No 

Therefore, my result is: Female 
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Question 

(i) Comment on the usefulness of this tree when applied to an ActEd tutor whose height is 
175cm and whose weight is approximately 80kg. 

(ii) Explain the rationale behind it. 

Solution 

(i) Using this tree, this tutor would be on the cusp between Male and Female.  The 
prediction of the tutor’s gender would not be reliable, as it would depend on whether 
their weight was above or below 80kg on a particular day. 

(ii) The rationale is that tall people (Height > 180cm) tend to be male, so we can separate 
them out at the first stage.  Of the remaining people, males tend to be heavier than 
females, so we can split these at a level that is likely to a reasonable boundary between 
males and females (80kg, say). 

 We can represent this tree using the rectangle below. 

 

 
With the binary tree representation of the CART model described above, making predictions 
is relatively straightforward.  

Given a new input, the tree is traversed by evaluating the specific input at the root node of 
the tree.  

A learned binary tree is a partitioning of the input space. You can think of each input 
variable as a dimension on a p -dimension space. The decision tree splits this up into 

rectangles (when 2p   input variables) or hyper-rectangles with more inputs.  

In the model above we have 2p   dimensions, ie there are two input variables, Height and 

Weight. 
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New data is filtered through the tree and lands in one of the rectangles and the output value 
for that rectangle is the prediction made by the model. This gives an intuition for the type of 
decisions that a CART model can make, eg boxy decision boundaries. 

Question 

The graph below shows the heights and weights of a sample of 16 sportsmen, which were 
measured at the start of a competition.  Devise a binary decision tree that could be used to 
identify the most likely sport for other sportsmen who are competing, based only on their height 
and weight.  Explain the rationale behind your algorithm. 

 

Solution 

We can easily section off the basketball players, who tend to be tall, and the jockeys, who tend to 
be short. 

We can then section off the rugby players, who tend to be heavier, and the cyclists, who tend to 
be lighter. 

However, the tennis players and footballers are intermixed, so we can’t distinguish effectively 
between these two sports. 

This leads to the partitions shown in the graph below. 
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Here is one possible algorithm based on these partitions. 
 

 

This is not the only way to achieve the same result.  For example, we could instead start with the 
test ‘Weight < 70?’  This alternative version has the slight advantage that the maximum number 
of tests that might be required is now 3, rather than 4. 

 

YES

YES

YES

YES
WEIGHT < 70? CYCLIST

TENNIS
FOOTBALL

 NO

 NO

 NO

 NO

HEIGHT > 195?

HEIGHT < 160?

BASKETBALL

JOCKEY

WEIGHT > 90? RUGBY

YES YES

YES

WEIGHT < 70?

TENNIS
FOOTBALL

RUGBY

BASKETBALLHEIGHT < 160?JOCKEY

 NO

CYCLIST

 YES  NO

HEIGHT > 195?

 NO

WEIGHT > 90?

 NO
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Greedy splitting 

Creating a binary decision tree is a process of dividing up the input space.  A ‘greedy’ 
approach is used to divide the space, called recursive binary splitting. 

This is a numerical procedure where all the values are lined up and different split points are 
tried and tested using a cost function.  The split with the best cost (lowest cost because we 
minimize cost) is selected. 

All input variables and all possible split points are evaluated and chosen in a greedy 
manner (ie the very best split point is chosen each time). 

This is the approach we used in the previous example for sportsmen.  In this particular example, 
most of the split points were clear-cut.  However, to separate the tennis players and footballers, 
we would need to try different possible splits and then choose the one that minimises the 
number of incorrect classifications based on the training sample.  So we would be applying a 
zero-one cost function where the cost is 1 unit if the answer is wrong and 0 if it is right. 

The word ‘greedy’ here means that, at each stage, we just choose the split that appears to be the 
most effective at separating the remaining elements, without thinking ahead to the consequences 
this might have on the later splits.  So we just ‘bite off as much as we can’ at each stage. 

With just two variables, it is easy to visualise the best splits on a 2D graph.  However, in higher 
dimensions, this is not so easy and we will need to calculate the effectiveness of different possible 
splits. 

For regression problems, the cost function that is minimized to choose split points is the 
sum squared error across all training samples that fall within the rectangle: 


 2

1

ˆ( )
N

i i
i

y y  

where iy  is the output for the training sample and ˆiy  is the predicted output for the 

rectangle. 

For classification, the Gini index function is used, which provides an indication of how 
‘pure’ the leaf nodes are (ie how mixed the training data assigned to each node is): 

(1 )k k
k

G p p   

This formula gives the Gini index for one of the final nodes in the tree or for a rectangle in the 
diagram. 

Here kp  is the proportion of training instances with class k  in the rectangle of interest.  

A node that has all classes of the same type (perfect class purity) will have 0G  , whereas 
a node that has a 50-50 split of classes for a binary classification problem (worst purity) will 
have 0.5G  . 

The Gini index is a measure of inequality of a distribution that was introduced by the Italian 
statistician Corrado Gini.  It was originally used to measure inequality in the distribution of income 
levels within a population. 
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It is calculated as the probability that, if two items are selected at random (with replacement), 
they will be of different types (ie if the first item is of type k , the second item will not be of 
type k ).  So, if all the items are the same, the probability will be 0, whereas, if they are all 
different, it will be close to 1. 

For a binary classification problem, this can be re-written as: 

1 22G p p  

or  2 2
1 21G p p    

This follows since 1 2 1 p p , so that 2 2 2
1 2 1 2 1 2( ) 2 1    p p p p p p . 

The Gini index calculation for each node is weighted by the total number of instances in the 
parent node.  The Gini score for a chosen split point in a binary classification problem is 
therefore calculated as follows: 

   1 22 2 2 2
1,1 1,2 2,1 2,21 1

g gn n
G g g g g

n n
                

 

This formula gives the Gini index for the split point, ie it is a combined value that covers both of 
the nodes that meet at that point. 

Here: 

 1,1g  is the proportion of instances in group 1 for class 1, 1,2g  for group1 and class 2 

 2,1g  is the proportion of instances in group 2 for class 1, 2,2g  for group 2 and 

class 2 

 
1gn  and 

2gn  are the total number of instances in groups 1 and 2 

 n  is the total number of instances we are trying to group from the parent node. 

We can write the general formula for the Gini index for the whole tree as: 

 2

1

1
m

node
k

nodes k

n
G p

n 

 
   

 
   

where the sum is taken over all the nodes and noden  is the number of items at the node we are 

currently evaluating. 
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Question 

Calculate the Gini index for each of the final nodes in the decision tree for the sportsmen and 
hence calculate the overall Gini index for the tree.  Comment on your answer. 

Solution 

In this example the classes are the different sports. 

We need to consider each of the shaded nodes (which are the same for both of the trees given). 

For the node containing 3 tennis players and 3 footballers we have 1 2
3 1
6 2

p p   . 

So:      2 22 2 1 1 1
1 2 2 2 2

1 1G p p
         

 

Each of the other nodes is ‘pure’, with 1 1p  .  So these nodes have a Gini index of 0. 

The overall Gini index for the tree is obtained by weighting these values by the number of data 
points: 

 
1 6 10 3

0 0.1875
2 16 16 16

G        

This value is quite low, indicating that the tree is reasonably effective at classifying the sportsmen. 

 

Stopping criterion 

The recursive binary splitting procedure described above needs to know when to stop 
splitting as it works its way down the tree with the training data. 

The most common stopping procedure is to use a minimum count on the number of training 
instances (ie the data items in our sample) assigned to each leaf node.  If the count is less 
than some minimum then the split is not accepted and the node is taken as a final leaf node. 

So, for example, we could say that if we try to split a node and it would result in fewer than, say, 
5  data items in our sample on one of the new nodes, then we stop and leave the node as it is. 

The minimum number we choose here (ie 5) is another example of a hyper-parameter. 

The count of training members (ie the data items in our sample) is tuned to the dataset, eg 5 
or 10.  It defines how specific to the training data the tree will be.  Too specific (eg a count 
of 1) and the tree will overfit the training data and likely have poor performance on the test 
set. 
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If we keep splitting until there is just one item on each of the final leaves in the tree, we will end 
up adding decision tests that are very specific to the particular data in the training set.  For 
example, if there happened to be a female in the training data whose height was 183cm, we 
might include a test ‘Height = 183cm?’ to allocate her correctly.  This would give a perfect result 
for this particular training set, but would not work for other data sets.  So this would be an 
example of overfitting. 

Pruning the tree 

The stopping criterion is important as it strongly influences the performance of the tree.  
Pruning may be used after learning to further enhance the tree’s performance. 

The complexity of a decision tree is defined as the number of splits in the tree.  Simpler 
trees are preferred.  They are easy to understand (you can print them out and show them to 
subject matter experts), and they are less likely to overfit your data. 

The fastest and simplest pruning method is to work through each leaf node in the tree and 
evaluate the effect of removing it using a hold-out test set.  Leaf nodes are removed only if it 
results in a drop in the overall cost function on the entire test set.  You stop removing 
nodes when no further improvements can be made. 

The ‘hold-out test set’ just refers to another data set that wasn’t used in training the model. 

More sophisticated pruning methods can be used such as cost complexity pruning (also 
called ‘weakest link pruning’) where a learning parameter (alpha) is used to weigh whether 
nodes can be removed based on the size of the sub-tree. 
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7 Applications: unsupervised learning 

7.1 K-means clustering 

Suppose we have a set of data consisting of several variables (or features) measured for a 
group of individuals.  These might relate to demographic characteristics, such as age, 
occupation, gender.  Alternatively, they might relate to life insurance policies for which we 
have information such as sales channel, policy size, postcode, level of underwriting, etc. 

We might ask whether we can identify groups (clusters) of policies which have similar 
characteristics.  We may not know in advance what these clusters are likely to be, or even 
how many there are in our data. 

Here we would be particularly interested in how we could group policies by occupation or 
postcode, as it would not be obvious at the outset how to do this in a logical way so that ones 
with similar outcomes are grouped together. 

There are a range of clustering algorithms available, but many are based on the K -means 
algorithm.  This is an iterative algorithm which starts with an initial division of the data into 
K  clusters, and adjusts that division in a series of steps designed to increase the 
homogeneity within each cluster and to increase the heterogeneity between clusters.    

The K -means algorithm proceeds as follows.  Let us suppose we have data on J  variables. 

1. Choose a number of clusters, K , into which the data are to be divided.  This could 
 be done on the basis of prior knowledge of the problem.  Alternatively, the 
 algorithm could be run several times with different numbers of clusters to see 
 which produces the most satisfactory and interpretable result.  There are various 
 measures of within- and between-group heterogeneity, often based on within-
 groups sums of squares.  Comparing within-groups sums of squares for different 
 numbers of clusters might identify a value of K  beyond which no great increase in 
 within-group homogeneity is obtained. 

These measures are based on the same identity for partitioning the sum of squares into 
‘between groups’ and ‘within groups’ that forms the basis for the technique of analysis of 
variance (ANOVA), which is mentioned in the regression chapter in Subject CS1: 

    
      2 2 2

Within groupsTotal sum of squares Between groups

( ) ( ) ( )ij i ij iy y y y y y  

2. Identify (perhaps arbitrarily) cluster centres in the J -dimensional space occupied 
 by the data.  This initial location of the centres could be done on the basis of prior 
 knowledge of the problem to hand, or by random assignment of cases. 

3. Assign cases to the cluster centre which is nearest to them, using some measure of 
 distance.  One common measure is Euclidean distance: 

   


  2

1

dist( , ) ( )
J

j j
j

x k x k   
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Here jx  is the standardised value of covariate j  for case x , and jk  is the value of 

covariate j  at the centre of cluster k  ( 1, ,k K  ).  Note that it is often necessary to 

standardise the data before calculating any distance measure, for example by 
assuming a normal distribution using z-scores or by assuming a uniform 
distribution on ( , )a bx x , where ax  and bx  are the lowest and highest observed 

values of covariate x . 

This is because the measure of distance is based purely on the numerical values of the 
variables.  If some of the variables take large values because of the units of measurement 
that have been adopted, these variables will dominate the calculations and the other 
variables will effectively be ignored. 

4. Calculate the centroid of each cluster, using the mean values of the data points 
 assigned to that cluster.  This centroid becomes the new centre of each cluster. 

The centroid is just the centre of gravity of the data points when each has the same 
weight.  To calculate it, we find the average of each ‘coordinate’ in the data set. 

5. Re-assign cases to the nearest cluster centre using the new cluster centres. 

Iterate steps 4 and 5 until no re-assignment of cases takes place. 

Example 

The graph below shows the heights and weights of the same sample of 16 sportsmen from the 
previous example, but without showing the sports they were competing in.  We have rescaled the 
vertical axis so that the spacing is the same on each axis.  This ensures that the distances between 
the points appear correctly. 

 

We can use the k -means method with 3k   to try to identify any natural clusters in the data. 
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We start by allocating each of the data points to one of the 3 clusters at random.  We’ve used 
squares, circles and triangles to distinguish the three groups.  We then need to calculate the 
position of the centroid of each cluster by averaging the x  and y  coordinates of the data points 

within each cluster.  The centroids are indicated by the larger hollow shapes. 

 

Since the initial allocation was random, the three centroids are all quite close together at this 
stage. 

We now reallocate each data point to the cluster whose centroid it is nearest to and then 
recalculate the positions of the centroids of the new groups. 
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Again, we reallocate each data point to the cluster whose centre it is nearest to. 

 
We can see that there has been no change to the allocations from the previous diagram.  So the 
algorithm has now converged, with the points allocated to the three groups indicated by the 
different shapes. 

Comment 

If we compare this grouping with the actual sports, we can see that: 

 the jockeys and cyclists have all been allocated to Group 1 (squares) 

 the basketball players have all been allocated to Group 2 (circles) 

 the rugby players have all been allocated to Group 3 (triangles) 

 the footballers and tennis players have been spread amongst the three groups. 

So with 3k   the algorithm has correctly distinguished the sportsmen with more extreme 
characteristics (eg the very tall basketball players), but was not able to distinguish between the 
footballers and tennis players, who have quite similar characteristics. 
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We can try repeating the same steps with 6k   groups (since there were six sports).  We’ve used 
lighter coloured markers for the three extra groups. 
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There have been no changes, so the algorithm has converged at this stage. 
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We can see that: 

 the jockeys (corresponding to Group 4), cyclists (Group 5), basketball players (Group 2) 
and rugby players (Group 1) have now all been allocated correctly to separate groups 

 the footballers and tennis players have been allocated to Groups 3 and 6, but the split 
between the two sports is not correct. 

So with 6k   the algorithm has performed better, correctly distinguishing all the sportsmen apart 
from the footballers and tennis players who have quite similar characteristics. 

We could now use this final diagram to identify the most likely sport of another sportsman in the 
competition by checking which of the group centroids his weight and height are closest to. 

For example, for a sportsman with weight 65kg and height 185cm, this would be a cyclist. 

 
The table below shows the strengths and weaknesses of the K -means algorithm. 

Strengths Weaknesses 

Uses simple principles for identifying 
clusters which can be explained in 
non-statistical terms 

Less sophisticated than more recent 
clustering algorithms 

 

Highly flexible and can be adapted to 
address nearly all its shortcomings with 
simple adjustments 

Not guaranteed to find the optimal set of 
clusters because it incorporates a random 
element 

Fairly efficient and performs well 
Requires a reasonable guess as to how 
many clusters naturally exist in the data 

 
Source: B. Lantz, Machine Learning with R (Birmingham, Packt Publishing, 2013), p. 271 

The interpretation and evaluation of the results of K -means clustering can be somewhat 
subjective.  If the K -means exercise has been useful, the characteristics of the clusters will 
be interpretable within the context of the problem being studied, and will either confirm that 
the pre-existing opinion about the existence of homogeneous groups has an evidential base 
in the data, or provide new insights into the existence of groups that were not seen before.  
One objective criterion that can be examined is the size of each of the clusters.  If one 
cluster contains the vast majority of the cases, or there are clusters with only a few cases, 
this may indicate that meaningful groups do not exist. 

Another way to judge the effectiveness of the algorithm is to repeat the process several times 
with different random allocations at the start.  If similar groupings are obtained each time, it is 
likely that there is a valid basis underlying the clusters. 

R has several machine learning packages that will achieve K -means clustering.  One 
simple one is kmeans.  
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7.2 Principal components analysis 

This is covered in Subject CS1. 

Principal components analysis is a technique that identifies the dominant combinations of factors 
that are present in a dataset.  The number of such combinations can be chosen so that the model 
is sufficient to give reasonably accurate results, but not so large that it reflects a lot of the random 
noise contained in the data. 
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8 Perspectives of statisticians, data scientists and other 
quantitative researchers 

Machine learning involves the application to data of a range of methods aimed at using data 
to solve real-world problems.  However, many other quantitative researchers would claim to 
be doing the same thing.   

It is certainly true that practitioners from other backgrounds often do work that overlaps 
with machine learning.  Statisticians, for example, do data mining, data reduction using 
principal components analysis, and routinely estimate logistic regression models.  There 
are differences between the perspectives of many statisticians and that normally adopted 
by the users of machine learning techniques.   

8.1 Terminology 

Some of the challenges of communicating with other quantitative researchers are 
straightforward differences of terminology.  In machine learning we talk of ‘training’ a 
model, or ‘training’ hyper-parameters, whereas statisticians might talk of ‘fitting’ a model or 
‘choosing’ higher-level parameters.  These are really different words being used for the 
same activity.   

8.2 What is the aim of the analysis?   

Some of the differences in perspectives of different groups of researchers are related to the 
aims of their analyses.  This results in interest focusing on different aspects of the models. 

This may be illustrated using logistic regression, or discriminant analysis.  The logistic 
regression model may be written: 

 0 1 1
( 1)

log ...
( 0)

i
i J Ji

i

P y x x
P y

  
 

     
  

where y  is a binary variable dividing the data into two categories, coded 1 and 0, 1 , ,i Jix x  

are the values of the J  covariates for case i , and the  ’s are parameters to be estimated 

from the data.   

Statisticians will tend to be most interested in the values and significance of the  ’s, that is 

in the effect of the covariates on the probability that a case is in either group. They will often 
present these in tables of odds ratios, showing the effect of a difference in the value of a 

covariate on 
( 1)

( 0)
i

i

P y
P y




.  Often the purpose of their analyses is to test hypotheses about the 

effect of a covariate on the odds of iy  being 1. 

For example, in a clinical trial,  1iy  might denote recovery from an illness and  0iy  

denote death, 1x  might be a new drug treatment and 2 , , Jx x  might be controls.  The 

statistician’s interest is mainly in the size and significance of the parameter 1 , and 

especially whether or not 1  suggests that the new treatment leads to an increase in the 

odds of recovery.  How good the model is at predicting who will recover and who will die is 
less of an issue.   
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In machine learning applications, however, the actual values of the  ’s are less important 

than the success of the model in predicting who will recover and who will die, or at 
discriminating between the two groups (those who recover and those who die).  A useful 
model will be one that makes successful predictions of recovery / death when tested on new 
data.   

Other criteria for assessing the usefulness of models are explicability, and persuading 
regulators and other supervisory bodies that you have not introduced a classification or 
discrimination which is perceived as undesirable (for example one based on gender). 

In R, there are a wide range of packages which will perform machine learning techniques.  
This range changes over time.  See for example https://www.r-bloggers.com/what-are-the-
best-machine-learning-packages-in-r/ for an overview.  
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Chapter 21 Summary 

What is machine learning? 

Machine learning describes a set of methods by which computer algorithms are developed 
and applied to data to generate information. 

Examples can be found in many areas of everyday life, eg in targeting online advertising. 

Machine learning is increasingly being used in the areas of finance and insurance, eg for 
predicting which borrowers are most likely to default on a loan. 

In machine learning, we have a set of features 1 2, ,x x , each associated with a 

corresponding output y .  The aim is to find a hypothesis, ie a function 1 2( , , )g x x  that 

provides a good approximation to the unknown underlying function  1 2( , , )y f x x . 

Branches of machine learning 

Machine learning algorithms can be divided into:  

 supervised learning, where the algorithm is given a set of specific targets to aim for 

 unsupervised learning, where the algorithm aims to produce a set of suitable labels 

 semi-supervised learning, which involves a combination of supervised and 
unsupervised learning 

 reinforcement learning, where the algorithm aims to improve its performance 
through repeated use. 

Data types 

Traditional data analysis in actuarial and statistical applications involves variables of the 
following types: 

 numerical, which may be discrete or continuous 

 categorical (ie non-numerical), which may be attribute (dichotomous), nominal or 
ordinal. 

However, machine learning often involves data of much more complicated types, eg video 
footage, and the file sizes can be very large. 
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Concepts and terminology 

Loss function 

A key element of machine learning is that we need to apply the results to cases not seen in 
the data used to develop the algorithm.  One way to evaluate a hypothesis is to calculate the 
predictions it makes and to penalise each incorrect prediction by applying a loss function. 

Model evaluation 

There are various criteria we can use to determine the best model. 

Confusion matrices 

Classification models that result in Yes or No outputs can be assessed using a confusion 
matrix for the test set, which shows: 

 True Positives (TP) False Negatives (FN) 

 False Positives (FP) True Negatives (TN) 

We can use this to calculate: 

 


Precision
TP

TP FP
 


Recall (sensitivity)

TP
TP FN

 
 


1

2 Precision Recall
Precision Recall

F  

These all take values in the range 0% (worst) to 100% (best). 

A receiver operating characteristic (ROC) curve can be used to compare models.  This plots 
the true positive rate against the false positive rate. 

Generalisation error 

An upper bound can be determined for the magnitude of out-of-sample errors.  This shows 
that, with a large enough training set, the out-of-sample error can be made as small as 
desired. 

Train-validate-test 

A common approach is to split the available data into three parts: 

 a training data set (eg 60%) 

 a validation data set (eg 20%) 

 a test data set (eg 20%). 
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Parameters and hyper-parameters 

The parameters of a model are variables internal to the model whose values are estimated 
from the data and are used to calculate predictions using the model. 

Hyper-parameters are variables external to the model whose values are set in advance by 
the user and are chosen based on the user’s knowledge and experience to produce a model 
that works well. 

Validation and over-fitting 

Machine learning involves a trade-off between bias and variance. 

The model should have a sufficient number of parameters to produce accurate results, but 
not so many that it reflects specific features of the training set that we would not expect to 
be present in new data. 

One way of striking a balance between these two is to apply regularisation or penalisation.  
This involves working with a loss function of the form: 

 


  2
1 2

1

*( , , , )
J

J j
j

L w w w w  

Stages of analysis in machine learning 

Machine learning tasks can be broken down into the following stages:  

 collecting data 

 exploring and preparing the data 

 feature scaling (to ensure that the input variables have similar ranges of values) 

 splitting the data 

 training the model 

 validation and testing 

 improving model performance. 

There is a trade-off here between: 

 bias, ie the lack of fit of the model to the training data, and 

 variance, ie the tendency for the estimated parameters to reflect the specific data 
we use for training the model. 

It is also important for data analysis to be reproducible and well-documented. 
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Supervised learning techniques

Penalised generalised linear models 

Penalised regression is an adaptation of the method of maximum likelihood where a penalty 
is applied to constrain the estimated values of the parameters to improve their reliability for 
making predictions.  The method involves maximising the penalised likelihood: 

  0 11lo , | , , ( ,..., )g ,  Je J JL x x P       

If the model is parameterised so that the parameter values are expected to be close to zero, 

we could use 2

1

J

i
i



  (ridge) or 

1

J

i
i



  (LASSO) for the penalty function 1( ,..., )JP   . 

To select an appropriate number of parameters J  (with sample size N ), we can minimise: 

  AIC Deviance 2J   (Akaike information criterion) 

or   BIC Deviance logN J   (Bayesian information criterion) 

Naïve Bayes algorithm 

The naïve Bayes algorithm uses Bayes’ formula to classify items by determining the relative 

likelihood of each of the possible values for the covariates 1 ,...,i Jix x .  For example, if the 

observed outcome is 1iy  : 

 1
1

( 1| ,..., ) ( 1) ( | 1)
J

i i Ji i ji i
j

P y x x P y P x y


     

This method can only be used with categorical covariates and it assumes that the conditional 
probabilities are independent. 

Decision trees (CART analysis) 

Decision trees, also known as classification and regression techniques (CART), classify items 
by asking a series of questions that home in on the most likely classification.  It is important 
to avoid overfitting.  Overfitting can be avoided by applying a stopping criterion or by 
pruning the decision tree.  The simplest method of construction is to use greedy splitting. 
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Gini index for a decision tree 

The ‘purity’ of one of the final nodes in a decision tree can be assessed by calculating the 
Gini index: 

 2

1 1

(1 ) 1
m m

k k k
k k

G p p p
 

      

where kp  is the proportion of sample items of class k  present at that node.  This gives a 

value between 0 (‘pure’) and 1 (‘mixed’).  So we would aim to minimise this. 

The Gini index for a node where there is a split, or for the whole tree, is: 

 2

1

1
m

node
k

nodes k

n
G p

n 

 
   

 
   

where the sum is taken over all the nodes involved and noden  is the number of items at the 

node we are currently evaluating. 

Unsupervised learning techniques 

K-means clustering 

The k -means clustering algorithm involves modelling the data values as points in space.  
Starting from an initial cluster allocation (usually random), the method repeatedly finds the 
centroid of the data points that have been allocated to each cluster and then reallocates the 
points to the cluster whose centroid they are nearest to.  When this process reaches a stage 
where no further changes are made, the algorithm has converged to the solution. 

This method has the advantages that: 

 it uses a simple principle that can easily be explained 

 it is highly flexible and can easily be adapted to address any shortcomings 

 it is efficient and performs well. 

However, it also has the disadvantages that: 

 it is less sophisticated than more recent clustering algorithms 

 it is not guaranteed to find the optimal set of clusters (because of the random 
element) 

 it requires a reasonable guess as to how many clusters naturally exist in the data. 
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Perspectives 

Machine learning techniques are used by statisticians, data scientists and other quantitative 
researchers, as well as actuaries.  However, the different fields often have different aims and 
also use different terminology. 
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Chapter 21 Practice Questions 

This is a new topic on the actuarial exam syllabus, so as yet the number of past exam questions is 
limited. 

21.1 (i) Explain the distinction between supervised and unsupervised learning in the context of 
machine learning. 

(ii) State whether each of the following applications involves supervised or unsupervised 
learning or a mixture of the two, and suggest a suitable machine learning algorithm that 
could be used in each case: 

 (a) predicting a university graduate’s salary at age 40 based on the subject they 
studied, the grade they obtained in their degree and their sex 

 (b) grouping car insurance policyholders into different geographical areas that have 
similar experience 

 (c) recommending films for subscribers to watch on a subscription movie channel. 

(iii) Explain the following terms relating to machine learning: 

 (a) hyper-parameters 

 (b) CART 

 (c) greedy splitting 

 (d) clustering. 

21.2 A random sample 1 , , nx x  of values has been taken from a 2
0( , )N    distribution, where the 

value of 0  is known but the value of   is unknown.  However, it is believed that the value of   

is close to 100.  It has been suggested that   could be estimated using a penalised log-likelihood 

function. 

(i) Explain the rationale behind this method. 

(ii) Suggest why the penalty function 2( 100)    would be suitable to use in this case. 

(iii) Show that the estimate of   derived using this method with the penalty function in 

part (ii) is: 

  
2 2
0 0

ˆ 200 2
n n

x  
 

   
        
   

 

(iv) Comment on how the value of ̂  calculated using the formula in part (iii) is influenced by 

the value chosen for the regularisation parameter. 

(v) Explain why this method might be preferable in some circumstances to the basic method 
of maximum likelihood.  
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21.3 In a sample of size 100, 10% of individuals have a particular feature. 

(a) Draw up a confusion matrix for a test that can identify this feature perfectly. 

(b) Calculate four measures for the effectiveness of the test, based on the numbers in your 
matrix. 

21.4 A warehouse stores four types of single malt whisky in identical bottles in an underground 
storeroom, before they are labelled and distributed.  Recently the warehouse experienced a 
major flood in which the stock records were destroyed and the handwritten descriptions on some 
of the cases were washed off, so that they could no longer be identified. 

The warehouse manager has asked you to supervise the process of identifying the type of whisky 
each of these cases belongs to, so that they can be correctly labelled.  A professional whisky taster 
has provided a report based on a single bottle from each case, which he has classified based on 
three criteria: Smoky, Fruity, Colour (each on a scale of 1 to 3). 

The standard descriptions of the four types are shown in the table below.  These can be 
considered to have a probability of 80% of being correct, while any other description has a 
probability of 10%.  The warehouse manager has also indicated the proportions of each type she 
believes were in stock at the time of the flood. 

Case Smoky Fruity Colour Proportion in stock 

Mactavish 1 3 1 40% 

Western Isle 2 1 1 30% 

Glenragh 2 2 3 10% 

Dogavulin 3 2 2 20% 

 
(i) Show that, under the assumptions of the naïve Bayes model: 

  1 2 3 1 2 3( | , , ) ( ) ( | ) ( | ) ( | )P y A x x x P y A P x y A P x y A P x y A        

The taster has described the sample bottle from one of the cases as: 

 Smoky = 2, Fruity = 2, Colour = 2 

(ii) Use the formula from part (i) to estimate how likely this case is to be of each of the four 
types, and hence recommend how it should be labelled. 

(iii) State two advantages and one disadvantage of the naïve Bayes classification method as a 
machine learning technique. 
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21.5 A doctor is using k -means clustering with 5k   to classify her patients by height and weight.  
The raw data shows the patients’ statistics in m and kg, but she has converted the heights to cm.  
She used a method based on Euclidean distance, which converged after 3 iterations, giving the 
following results: 

Group 1 2 3 4 5 

Height (cm) 165 160 175 150 185 

Weight (kg) 55 65 80 90 100 

 
(i) Explain what the value of k  represents. 

(ii) Explain the reason for the doctor’s choice of units. 

(iii) Explain what convergence means in this context. 

(iv) Three new patients have the following data values: 

  Mr Blobby: (1.64m, 91kg) 

  Miss Twiggy: (1.87m, 54kg) 

  Mrs Average: (1.66m, 64kg) 

 By using a graph, or otherwise, identify the groups to which these patients should be 
allocated based on their heights and weights. 

(v) State whether the results in part (iv) would have differed if the clusters had been 

obtained using the absolute distance metric 
1

( , )
J

abs j j
j

D x k x k


   . 
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21.6 (i) (a) If 1 2 1mp p p    , prove the identity 2

1 1, 1

1
m m m

k j k
k j j i k

p p p
   

    . 

 (b) Explain how this identity can be used to calculate a measure of the effectiveness 
of a decision tree. 

A researcher is considering two possible decision trees to classify items of four different types 
labelled A, B, C and D.  A sample of 15 items classified using each of the trees gave the results 
shown below. 

            

(ii) (a) Calculate the Gini index for each tree. 

 (b) Comment on your answers to part (ii)(a). 

 

 

YES

YES

YES

TREE 1

 NO

BBB

 NO

TEST 2 BCCC

 NO

TEST 3 DDDD

TEST 1 AAAB
YES

YES

YES

TREE 2

TEST 4 BBBBD

 NO

TEST 5 AAAC

 NO

TEST 6 CC

 NO

BDDD
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21.7 It has been decided to repeat the k -means method for the sportsmen with 5k  , resulting in the 
following graph: 

  

(i) Explain why the value 5k   might have been chosen. 

(ii) Use this diagram to identify the most likely sports for three other sportsmen: 

  Thor (105kg, 200cm),  Mo (85kg, 195cm)  and  Claude (70kg, 165cm) 
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The solutions start on the next page so that you can 
separate the questions and solutions. 
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Chapter 21 Solutions 

21.1 (i) Supervised and unsupervised learning 

With supervised learning, the desired outcomes for the model are specified in advance and the 
algorithm aims to reproduce these as closely as possible. 

With unsupervised learning, the desired outcomes for the model are not specified in advance and 
the algorithm aims to assign labels or classify each example in a logical way. 

(ii) Applications 

(a) Here we would aim to reproduce the salaries for a sample of graduates as closely as 
possible based on the three variables.  So this would be supervised learning.  We could 
use a multiple regression model here. 

(b) Here we would hope that the algorithm can find suitable homogeneous groups that we 
don’t know in advance.  So this would be unsupervised learning.  We could use the 
k -means clustering algorithm here. 

(c) Here we would initially make recommendations based on past data from other 
subscribers but this would be fine-tuned over time based on whether the user accepted 
or rejected the recommendations.  So this would involve a mixture of supervised and 
unsupervised learning, or a reinforcement algorithm. 

(iii) Terminology 

(a) As well as the ‘internal’ parameters that a model estimates from the data and uses to 
calculate predictions, machine learning methods often also require hyper-parameters, 
which are external to the model and whose values are set in advance based on the user’s 
knowledge and experience in order to produce a model that works well.  An example 
would be the number of clusters to aim for with the k -means algorithm. 

(b) CART is an abbreviation for classification and regression techniques, which is another 
names for decision trees.  These classify items by asking a series of questions that home in 
on the most likely classification. 

(c) Greedy splitting is a method of constructing a decision tree.  At each stage, we just choose 
the split that appears to be the most effective at separating the remaining elements, 
without thinking ahead to the consequences this might have for the later splits. 

(d) Clustering refers to classifying data into a set of homogeneous groups or clusters, which 
can be done using methods such as the k -means algorithm. 
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21.2 (i) Rationale 

This method is based on the method of maximum likelihood where we choose the parameter 
values to maximise the log-likelihood of the data available.  This gives the parameter values that 
best explain the values in the data. 

However, we can also apply a penalty function, which is chosen to make the method more likely 
to produce parameter estimates close to a set of target values that we are expecting.  The penalty 
is subtracted from the log-likelihood and we maximise this adjusted function instead. 

(ii) Penalty function 

We expect the value of   to be close to 100.  The function 2( 100)    would be suitable to use 

here because it takes a large positive value if   is a long way from 100 (in either direction). 

(iii) Formula 

The likelihood function for the sample is: 

  
2

2
0 2

001 10

1 1 1
exp exp constant

22 2

n n
ni

i
i i

x
L x


 

  


 

                   
   

So the log-likelihood is: 

  20 2
10

1
log log constant

2

n

i
i

L n x 
 

      

and the penalised log-likelihood is: 

  2 2
0 2

10

1
(log )* log constant ( 100)

2

n

i
i

L n x   
 

        

To maximise this, we equate the derivative with respect to the parameter   to zero: 

  2 2
10 0

(log )* 2
2 ( 100) ( ) 2 ( 100) 0

2

n

i
i

L n
x x     

  


         

   

Rearranging this gives: 

 
2 2
0 0

2 200
n n

x  
 

 
    

 
 

So the estimate of   is: 

 
2 2
0 0

ˆ 200 2
n n

x  
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(iv) Influence of the regularisation parameter 

The regularity parameter   will be assigned a non-negative value.  (Otherwise, it would 
correspond to a reward rather than a penalty.) 

If   was set equal to zero, there would be no penalty and the method would reduce to maximum 
likelihood estimation.  As expected, the formula in part (iii) then gives the usual formula for the 
MLE of a normal distribution: 

 
2 2 2 2
0 0 0 0

ˆ 0 0
n n n n

x x x
   

   
          
   

 

If   is given a very high value, the penalty dominates the calculations and, in the limit, we have: 

 
2 2 2 2
0 0 0 0

200ˆ lim 200 2 lim 200 2 100
2

n n n n
x x

 
  

    

       
                     

       
 

So now the estimate is equal to the target value of 100. 

(v) Why this method might be preferable 

The basic (unpenalised) method of maximum likelihood can sometimes lead to unreliable results.  
The estimated values of the parameters can be very sensitive to the sample data and can vary 
wildly. 

This is most likely to happen when the sample size is small or the likelihood function is very flat so 
that changes in the parameter values make very little difference to the log-likelihood. 

Applying a penalty function encourages the method to produce parameter estimates that are 
close to the values that would be expected from prior expectations. 

21.3 (a) The confusion matrix looks like this: 

PREDICTED 
ACTUAL 

YES NO TOTAL 

YES TP = 10 FN = 0 10 

NO FP = 0 TN = 90 90 

TOTAL 10 90 100 

 
(b) The four measures are: 

 
TP 10

Precision 100%
TP FP 10 0

  
 

,  
TP 10

Recall 100%
TP FN 10 0

  
 

 

 
   

  
 1

2 Precision Recall 2 100% 100%
score 100%

Precision Recall 100% 100%
F  
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FP 0
False positive rate 0%

TN FP 90 0
  

 
 

21.4 (i) Formula for naïve Bayes method 

1 2 3
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

( , , , )
( | , , ) (definition of conditional probability)

( , , )

( , , | ) ( )
(definition of conditional probability in reverse)

( , , )

( | ) ( | ) ( | ) ( )

(

P y A x x x
P y A x x x

P x x x

P x x x y A P y A

P x x x

P x y A P x y A P x y A P y A

P


 

 


   


1 2 3

1 2 3

(independence assumption)
, , )

( ) ( | ) ( | ) ( | ) (ignore constant factor)

x x x

P y A P x y A P x y A P x y A     

 

(ii) Probabilities for each type 

Let y  denote the type and let 1 2 3, ,x x x  denote the three descriptions (Smoky, Fruity, Colour). 

We can then apply the result from part (i) to calculate the probability that this case is a Mactavish 
whisky ( )y M , given that it has been described as Smoky ( 2)S  , Fruity ( 2)F   and is medium 

Colour ( 2)C  : 

 
( | 2, 2, 2) ( ) ( 2| ) ( 2| ) ( 2| )

0.4 0.1 0.1 0.1 0.0004

P y M S F C P y M P S y M P F y M P C y M            

    
 

Similarly for the other three types: 

 
( | 2, 2, 2) ( ) ( 2| ) ( 2| ) ( 2| )

0.3 0.8 0.1 0.1 0.0024

P y W S F C P y W P S y W P F y W P C y W            

    
 

 
( | 2, 2, 2) ( ) ( 2| ) ( 2| ) ( 2| )

0.1 0.8 0.8 0.1 0.0064

P y G S F C P y G P S y G P F y G P C y G            

    
 

 
( | 2, 2, 2) ( ) ( 2| ) ( 2| ) ( 2| )

0.2 0.1 0.8 0.8 0.0128

P y D S F C P y D P S y D P F y D P C y D            

    
 

So the probabilities for each type are in the ratio: 

 64 1284 24
220 220 220 220

M: W : G :   4 : 24 : 64 :128 : : : 0.0182 : 0.1091 : 0.2909 : 0.5818D     

So the recommendation would be that this case is a Dogavulin whisky, as this has a far higher 
probability (58%) than the other three types. 
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(iii) Advantages and disadvantages 

Advantages of the naïve Bayes method include: 

 it is easy to apply 

 it requires very little data. 

The main disadvantage is that it assumes that the conditional probabilities are independent 
(which can be a poor approximation when the variables are correlated). 

21.5 (i) Meaning of k 

k  is a hyper-parameter specifying the number of clusters the algorithm should aim to produce – 
in this case, 5. 

(ii) Choice of units 

The weights in the original data provided were given in units of kilograms.  These cover a range of 
values of about 50kg. 

The heights in the original data provided were given in units of metres.  These cover a range of 
values of about 0.50m. 

So with units of (kg, m) the range for the weights is about 100 times greater, which would mean 
that the weights would totally dominate the calculations and the heights would effectively be 
ignored. 

However, when the doctor converts the heights to centimetres, the range of values is then about 
50cm, which is numerically very similar to the range for the weights.  This gives the two variables 
a similar weighting in the calculations. 

(iii) Convergence 

The algorithm involves repeatedly finding the centroid of the data points that have been allocated 
to each cluster and then reallocating the points to the cluster whose centroid they are nearest to.  
When this process reaches a stage where no further changes are made, the algorithm has 
converged to the solution. 
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(iv) Classification of new patients 

If we plot the patients and the centroids for the clusters on a graph, we can easily see which 
centroid each patient is nearest to, and hence classify these patients. 

 

If we do the calculations, we find that the shortest Euclidean distances iD  (for the centroids 

1,2, ,5i   ) are: 

 Mr Blobby: (1.64m, 91kg)  2 2
4 (164 150) (91 90) 14.04D       

 Miss Twiggy: (1.87m, 54kg)  2 2
1 (187 165) (54 55) 22.02D       

 Mrs Average: (1.66m, 64kg)  2 2
2 (166 160) (64 65) 6.08D       
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(v) Absolute distance 

The absolute distance measures the distance between points assuming that we can only move 
horizontally or vertically. 

Here we have two dimensions (the two variables Weight and Height), so 2J  .  With this metric 
the distance between the two points 1 2( , )x x  and 1 2( , )k k  is: 

 1 1 2 2x k x k    

With this metric, Mr Blobby’s distance from the centroid for cluster 4 is: 

 Mr Blobby: (1.64m, 91kg)  4 164 150 91 90 14 1 15D         

The diagram below shows the distance to each centroid for Mr Blobby. 
 

 

We can see that using absolute distances would give the same answers as Euclidean distance for 
all three of these patients. 

21.6 (i)(a) Prove the identity 

    2 2 2

1 1, 1 1 1 1 1

1 1
m m m m m m m

k j k k k k k k k
k j j i k k k k k

p p p p p p p p p
       

               

(i)(b) Measuring the effectiveness of a decision tree 

We can measure the effectiveness of a decision tree by examining the ‘purity’ of the groupings 
produced for a training data set. 
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This can be done by multiplying the proportion of items of type k  at each node by the 
proportions for each other type j k  and summing.  These values are then weighted by the 

number of items at that node to calculate an overall measure called the Gini index.  Using the 
identity above leads to the following formula: 

 2

1
1

m
node

k
nodes k

n
G p

n 

 
   

 
   

where the sum is taken over all the nodes and noden  is the number of items at the node we are 

currently evaluating. 

(ii)(a) Calculate the Gini index 

In Tree 1 the top final node contains AAAB, ie 3 A’s and 1 B.  So the proportions are 3
1 4

p   and 

1
2 4

p  .  So the Gini index for this node is: 

   2 23 31
4 4 8

1G     . 

The next node contains BCCC, ie 3 C’s and 1 B.  So it also has a Gini index of 3
8

. 

The other two final nodes are ‘pure’, as each contains a single label.  So they have a Gini index of 
0. 

To find the Gini index for the whole of Tree 1, we need to work out the weighted average of the 
Gini index at each of the final nodes weighted by the number of elements they contain, ie 4, 4, 4, 
and 3 (making a total of 15).  So this gives: 

4 3 4 3 4 3 1
0 0 0.2

15 8 15 8 15 15 5
G                        

       
 

Similarly, for Tree 2 the Gini index is: 

           2 2 2 2 2 223 34 1 1 1
5 5 4 4 4 4

5 4 2 4
1 1 1 1 1

15 15 15 15

5 8 4 3 4 3 23
0 0.307

15 25 15 8 15 8 75

G
                           

                  
     

 

(ii)(b) Comment 

The Gini index for Tree 1 is lower than for Tree 2.  So, using this criterion, Tree 1 would be 
preferred. 
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21.7 (i) Choice of value of k 

The graph with 6k   correctly identified the jockeys, cyclists, basketball players and rugby 
players into logical groups.  However, the footballers and tennis players’ characteristics are too 
similar for us to be able to distinguish them effectively using this approach.  So a sensible 
approach is to combine the footballers and tennis players into a single group and look for 5 logical 
clusters.  

(ii) Identify the sports 

In each case we allocate each sportsman to the group whose centroid he is closest to.  This gives: 

 Thor = Rugby,  Mo = Basketball,  Claude = Cyclist 
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End of Part 5 

What next?   

1. Briefly review the key areas of Part 5 and/or re-read the summaries at the end of 
Chapters 17 to 21. 

2. Ensure you have attempted some of the Practice Questions at the end of each chapter in 
Part 5.  If you don’t have time to do them all, you could save the remainder for use as part 
of your revision. 

3. Attempt Assignment X5. 
 

 

And finally ... 

Good luck! 

 

 

 

 

 

Time to consider …  
 … ‘rehearsal’ products 

Mock Exam and Marking – You can attempt the Mock Exam and get it marked.  Results of 
surveys have found that students who do a mock exam of some form have significantly 
higher pass rates.  Students have said: 

‘I find the mock a useful tool in completing my pre-exam study.  It helps 
me realise the areas I am weaker in and where I need to focus my 
study.’  

‘Overall the marking was extremely useful and gave detailed comments 
on where I was losing marks and how to improve on my answers and exam 
technique.  This is exactly what I was looking for – thank you!’ 

You can find lots more information on our website at www.ActEd.co.uk. 

Buy online at www.ActEd.co.uk/estore 
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Subject CS2: Assignment X1 

2019 Examinations 
 

Time allowed: 2¾ hours 

 

Instructions to the candidate 

1. Please: 

– attempt all of the questions, as far as possible under exam conditions  

– begin your answer to each question on a new page 

– leave at least 2cm margin on all borders  

– write in black ink using a medium-sized nib because we will be unable to mark 
illegible scripts 

– note that assignment marking is not included in the price of the course materials.  
Please purchase Series Marking or a Marking Voucher before submitting your script. 

– note that we only accept the current version of assignments for marking, ie you can 
only submit this assignment in the sessions leading to the 2019 exams. 

2. Please do not: 

– use headed paper 

– use highlighting in your script. 

 

At the end of the assignment 

If your script is being marked by ActEd, please follow  
the instructions on the reverse of this page. 

 

In addition to this paper, you should have available actuarial tables and an 
electronic calculator. 
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Submission for marking 

You should aim to submit this script for marking by the recommended submission date.  The 
recommended and deadline dates for submission of this assignment are listed on the summary page 
at the back of this pack and on our website at www.ActEd.co.uk. 

Scripts received after the deadline date will not be marked, unless you are using a Marking Voucher.  
It is your responsibility to ensure that scripts reach ActEd in good time.  If you are using Marking 
Vouchers, then please make sure that your script reaches us by the Marking Voucher deadline date 
to give us enough time to mark and return the script before the exam. 

When submitting your script, please: 

 complete the cover sheet, including the checklist 

 scan your script, cover sheet (and Marking Voucher if applicable) and save as a pdf 
document, then email it to: ActEdMarking@bpp.com 

 do not submit a photograph of your script  

 do not include the question paper in the scan. 

In addition, please note the following: 

 Please title the email to ensure that the subject and assignment are clear eg ‘CS2 Assignment 
X1 No. 12345’, inserting your ActEd Student Number for 12345. 

 The assignment should be scanned the right way up (so that it can be read normally without 
rotation) and as a single document.  We cannot accept individual files for each page.   

 Please set the resolution so that the script is legible and the resulting PDF is less than 4 MB 
in size.   

 Do not protect the PDF in any way (otherwise the marker cannot return the script to ActEd, 
which causes delays). 

 Please include the ‘feedback from marker’ sheet when scanning.  

 Before emailing to ActEd, please check that your scanned assignment includes all pages and 
conforms to the above. 
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Subject CS2: Assignment X1 
2019 Examinations 

Please complete the following information:  

Name: 

 

 

 

ActEd Student Number (see Note below): 

     
 

 

Number of following pages: _______ 

Please put a tick in this box if you have solutions 
and a cross if you do not: 

Please tick here if you are allowed extra time or 
other special conditions in the  
profession’s exams (if you wish to  
share this information): 
 
Time to do assignment 
(see Note below):        _____ hrs _____ mins 

Under exam conditions  
(delete as applicable):       yes / nearly / no 

Note:  If you take more than 2¾ hours, you should 
indicate how much you completed within this 
exam time so that the marker can provide useful 
feedback on your progress. 

Note: Your ActEd Student Number is printed on all 
personal correspondence from ActEd.  Quoting it will help 
us to process your scripts quickly.  If you do not know 
your ActEd Student Number, please email us at 
ActEd@bpp.com.   

Your ActEd Student Number is not the same as your 
IFoA Actuarial Reference Number or ARN. 

Score and grade for this assignment (to be completed by marker): 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q9 Total 

2
 

5
 

5
 

5
 

6
 

7
 

7
 

14
 

14
 

15
 

80
 =_____% 

Grade:     A    B    C    D    E  Marker’s initials: ________ 

Please tick the following checklist so that your script can be marked quickly. Have you: 

[      ]  Checked that you are using the latest version of the assignments, ie 2019 for the sessions leading 
to the 2019 exams?  

[      ]  Written your full name in the box above? 

[      ]  Completed your ActEd Student Number in the box above?  

[      ]  Recorded your attempt conditions?   

[      ]  Numbered all pages of your script (excluding this cover sheet)? 

[      ]  Written the total number of pages (excluding the cover sheet) in the space above? 

[      ]  Included your Marking Voucher or ordered Series X Marking?  

 

Please follow the instructions on the previous page when submitting your script for marking. 
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Feedback from marker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes on marker’s section 

The main objective of marking is to provide specific advice on how to improve your chances of 
success in the exam.  The most useful aspect of the marking is the comments the marker makes 
throughout the script, however you will also be given a percentage score and the band into which 
that score falls.  Each assignment tests only part of the course and hence does not give a complete 
indication of your likely overall success in the exam.  However it provides a good indicator of your 
understanding of the material tested and the progress you are making with your studies: 

A = Excellent progress      B = Good progress     C = Average progress   
D = Below average progress     E = Well below average progress 

 
Please note that you can provide feedback on the marking of this assignment at: 

www.ActEd.co.uk/marking 
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X1.1 Consider the following four stochastic processes: 

 counting process, time series, compound Poisson process, simple random walk 

Place each process in a separate cell of the following table, so that each cell correctly describes 
the state space and the time set of the process placed in it.   

 
 Time set 

  Discrete Continuous 

St
at

e 
Sp

ac
e 

 

Discrete 

 

  

 

Continuous 

 

  

    [2] 

X1.2 (i) Explain what it means for a Markov chain to be periodic with period d . [2] 

(ii) The diagrams below show three Markov chains, where arrows indicate a non-zero 
transition probability. 

Chain 1 State 1 State 2

 

Chain 2 State 1 State 2

 

Chain 3 

State 1 State 2

State 4State 3

   
 Explain whether each chain is periodic or aperiodic, giving the period where relevant.   [3] 
    [Total 5] 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 2 CS2: Assignment X1 Questions 

© IFE: 2019 Examinations The Actuarial Education Company 

X1.3 (i) Give a mathematical definition of the Markov property. [2] 

(ii) A stochastic process ( )X t  has independent increments.  Prove that it also has the Markov 
property.  [3] 

    [Total 5] 

X1.4 The weather in a particular city during the summer months is very variable.  A research team has 
recorded the weather each day during the first three weeks of July.  They use the notation S to 
denote a sunny day, C to denote a cloudy day, and R to denote a rainy day.  Their results are as 
follows: 

 Week 1: SSRCSCC 

 Week 2: SCRRCSS 

 Week 3: RCCSCCS 

One of the team suggests that the weather each day depends only on the weather for the 
previous day and decides to fit a Markov chain to the data. 

(i) Estimate the transition probabilities for the Markov chain. [3] 

(ii) The team plans to hold its summer barbecue on 23 July.  Estimate the probability that this 
will be a sunny day. [2] 

    [Total 5] 

X1.5 The time, in years, until a boiler breaks down is exponentially distributed with parameter  , 
where: 

 

1 if the boiler has not previously broken down
4
1 if the boiler has broken down once previously
2

1 if the boiler has broken down more than once previously






 




 

Once a boiler has broken down 10 times, it is scrapped.  If a boiler has broken down fewer than 10 
times, it is immediately repaired.   

(i) By solving a suitable differential equation or otherwise, calculate the probability that a 
new boiler will break down more than once in the next 5 years. [5] 

(ii) Calculate the expected lifetime of a new boiler. [1] 
    [Total 6] 
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X1.6 A life insurance company prices its long-term sickness policies using the following 
time-homogeneous Markov model: 

 

H: Healthy S: Sick

D: Dead 

 

 

 

For a group of policyholders over a 1-year period there are: 

 34 transitions from State H to State S 

 26 transitions from State S to State H 

 2 deaths from State H 

 7 deaths from State S. 

The total time spent in State H is 904 years and the total time spent in State S is 112 years.   

(i) Write down the likelihood function for these data values. [2] 

(ii) Show that the maximum likelihood estimate of   is 0.23214.  (You may assume that this 
gives a maximum.) [2] 

(iii) Construct an approximate 95% confidence interval for  . [3] 
    [Total 7] 

X1.7 Derive from first principles the Kolmogorov forward differential equation: 

 t x t x x tp p
t

 


 


  

Hence show that: 

 
0

exp
t

t x x sp ds 
 
  
 
 
   [7] 
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X1.8 A company assesses the credit-worthiness of various firms every quarter; the ratings are, in order 
of decreasing merit, A, B, C and D (default).  Historical data support the view that the credit rating 
of a typical firm evolves as a Markov chain with transition matrix: 

 

2 2

2 2

2 2

1 0

1 2

1 2
0 0 0 1

P

   

    

    

  
 
    
  
 
 

 

for some parameter . 

(i)  Draw the transition graph of the chain. [2] 

(ii)  Determine the range of values of   for which the matrix P  is a valid transition matrix. [4] 

(iii)  Explain whether the chain is irreducible and/or aperiodic.  [3] 

Company XYZ has a rating of B in Quarter 1. 

(iv) Assuming that 0.1  , calculate:  
 
 (a) the expected number of quarters for which the company will hold a B rating 

before the rating changes.  

 (b) the probability that the first rating change for Company XYZ is an upgrade. 
  [5] 

    [Total 14] 
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X1.9 A no-claims discount system operated by an insurer selling private medical insurance has four 
levels of discount: 

 Level 1: 0% discount 

 Level 2: 10% discount 

 Level 3: 20% discount 

 Level 4: 25% discount 

The insurer operates an accelerated discount scheme with the following rules: 

● New policyholders start on Level 1. 

● Following a year with one or more claims, move to the next lower level, or remain at Level 1. 

● Following a claim-free year: 

– move up one level, or remain at Level 4, if, in the year before the most recent 
year, there were one or more claims or no insurance was in force 

– move up two levels, or move to Level 4 or remain at Level 4 if, in the year before 
the most recent year, there were no claims. 

For any policyholder the probability of a claim-free year is 0.8. 

(i) A stochastic process ( )X t  is to be used to model the NCD system. ( )X t  will denote the 
policyholder’s discount Level (1, 2, 3 or 4) in year t .  Explain why ( )X t  does not possess 
the Markov property. [1] 

 
(ii) Explain how the number of states that ( )X t  can take can be increased to produce a new 

process ( )Y t  that is Markov. [2] 
 
(iii) Draw and label the transition graph for ( )Y t . [2] 
 
(iv) Write down the transition matrix of ( )Y t . [1] 
 
(v) Show that the conditions sufficient for ( )Y t  to have a unique stationary distribution that 

will be reached are satisfied. [3] 
 
(vi) Calculate the long-run probability that the policyholder is at discount level 2. [5] 
    [Total 14] 
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X1.10 Patients arriving at the Accident and Emergency department of a hospital (State A) wait for an 
average of one hour before being classified by a junior doctor as requiring in-patient treatment 
(State I), out-patient treatment (State O) or further investigation (State F).  Only one new arrival in 
ten is classified as an in-patient, five in ten as out-patients. 

If needed, further investigation takes an average of 3 hours, after which 50% of cases are 
discharged (State D), 25% are sent to receive out-patient treatment and 25% admitted as 
in-patients. 

Out-patient treatment takes an average of 2 hours to complete, in-patient treatment an average 
of 60 hours.  Both result in discharge. 

It is suggested that a time-homogeneous Markov jump process with states A, F, I, O and D could 
be used to model the progress of patients through the system, with the ultimate aim of reducing 
the average time spent in the hospital. 

(i) Sketch the transition diagram for this model, giving numerical values for the transition 
rates, and write down the generator matrix. [5] 

(ii) Calculate the proportion of patients who eventually receive in-patient treatment. [1] 

(iii) Determine an expression in terms of t  for each of the following: 

 (a) the probability that a newly-arrived patient is yet to be classified by a junior 
doctor after t hours  

 (b)  the probability that a newly-arrived patient is undergoing further investigation 
after t  hours. [4] 

(iv) Calculate the expected total time until discharge for a newly-arrived patient. [3] 

(v) Explain whether a time-homogeneous process is appropriate for modelling this 
situation.  [2] 

    [Total 15] 

END OF PAPER 
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Subject CS2: Assignment X2 

2019 Examinations 
 

Time allowed: 2¾ hours 

 

Instructions to the candidate 

1. Please: 

– attempt all of the questions, as far as possible under exam conditions  

– begin your answer to each question on a new page 

– leave at least 2cm margin on all borders  

– write in black ink using a medium-sized nib because we will be unable to mark 
illegible scripts 

– note that assignment marking is not included in the price of the course materials.  
Please purchase Series Marking or a Marking Voucher before submitting your script. 

– note that we only accept the current version of assignments for marking, ie you can 
only submit this assignment in the sessions leading to the 2019 exams. 

2. Please do not: 

– use headed paper 

– use highlighting in your script. 

 

At the end of the assignment 

If your script is being marked by ActEd, please follow  
the instructions on the reverse of this page. 

 

In addition to this paper, you should have available actuarial tables and an 
electronic calculator. 
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Submission for marking 

You should aim to submit this script for marking by the recommended submission date.  The 
recommended and deadline dates for submission of this assignment are listed on the summary page 
at the back of this pack and on our website at www.ActEd.co.uk. 

Scripts received after the deadline date will not be marked, unless you are using a Marking Voucher.  
It is your responsibility to ensure that scripts reach ActEd in good time.  If you are using Marking 
Vouchers, then please make sure that your script reaches us by the Marking Voucher deadline date 
to give us enough time to mark and return the script before the exam. 

When submitting your script, please: 

 complete the cover sheet, including the checklist 

 scan your script, cover sheet (and Marking Voucher if applicable) and save as a pdf 
document, then email it to: ActEdMarking@bpp.com 

 do not submit a photograph of your script  

 do not include the question paper in the scan. 

In addition, please note the following: 

 Please title the email to ensure that the subject and assignment are clear eg ‘CS2 Assignment 
X2 No. 12345’, inserting your ActEd Student Number for 12345. 

 The assignment should be scanned the right way up (so that it can be read normally without 
rotation) and as a single document.  We cannot accept individual files for each page.   

 Please set the resolution so that the script is legible and the resulting PDF is less than 4 MB 
in size.   

 Do not protect the PDF in any way (otherwise the marker cannot return the script to ActEd, 
which causes delays). 

 Please include the ‘feedback from marker’ sheet when scanning.  

 Before emailing to ActEd, please check that your scanned assignment includes all pages and 
conforms to the above. 
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Subject CS2: Assignment X2 
2019 Examinations 

Please complete the following information:  

Name: 

 

 

 

ActEd Student Number (see Note below): 

     
 

 

Number of following pages: _______ 

Please put a tick in this box if you have solutions 
and a cross if you do not: 

Please tick here if you are allowed extra time or 
other special conditions in the  
profession’s exams (if you wish to  
share this information): 
 
Time to do assignment 
(see Note below):        _____ hrs _____ mins 

Under exam conditions  
(delete as applicable):       yes / nearly / no 

Note:  If you take more than 2¾ hours, you should 
indicate how much you completed within this 
exam time so that the marker can provide useful 
feedback on your progress. 

Note: Your ActEd Student Number is printed on all 
personal correspondence from ActEd.  Quoting it will help 
us to process your scripts quickly.  If you do not know 
your ActEd Student Number, please email us at 
ActEd@bpp.com.   

Your ActEd Student Number is not the same as your 
IFoA Actuarial Reference Number or ARN. 

Score and grade for this assignment (to be completed by marker): 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Total 

2
 

3
 

5
 

7
 

7
 

7
 

8
 

8
 

8
 

12
 

13
 

80
 =_____% 

Grade:     A    B    C    D    E  Marker’s initials: ________ 

Please tick the following checklist so that your script can be marked quickly. Have you: 

[      ]  Checked that you are using the latest version of the assignments, ie 2019 for the sessions leading 
to the 2019 exams?  

[      ]  Written your full name in the box above? 
[      ]  Completed your ActEd Student Number in the box above?  
[      ]  Recorded your attempt conditions?   
[      ]  Numbered all pages of your script (excluding this cover sheet)? 
[      ]  Written the total number of pages (excluding the cover sheet) in the space above? 
[      ]  Included your Marking Voucher or ordered Series X Marking?  
[      ]  Rated your X1 marker at www.ActEd.co.uk/marking? 

 

Please follow the instructions on the previous page when submitting your script for marking. 
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Feedback from marker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes on marker’s section 

The main objective of marking is to provide specific advice on how to improve your chances of 
success in the exam.  The most useful aspect of the marking is the comments the marker makes 
throughout the script, however you will also be given a percentage score and the band into which 
that score falls.  Each assignment tests only part of the course and hence does not give a complete 
indication of your likely overall success in the exam.  However it provides a good indicator of your 
understanding of the material tested and the progress you are making with your studies: 

A = Excellent progress      B = Good progress     C = Average progress   
D = Below average progress     E = Well below average progress 

 
Please note that you can provide feedback on the marking of this assignment at: 

www.ActEd.co.uk/marking 
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X2.1 A certain species of insect is subject to a constant force of mortality of   per day.  Determine an 
exact expression in terms of   for the curtate expectation of life of a new-born insect. [2] 

X2.2 In a certain population, the force of mortality at age x  is given by: 

 
0.02 70 75
0.04 75 80
0.07 80 85

x

x
x
x


 

  
  

  

Calculate the probability that a life now aged exactly 73 will die between exact age 79 and exact 
age 82.    [3] 

X2.3 Let xT  denote the complete future lifetime of a life now aged exactly x . 

(i) Define in terms of probabilities involving xT : 

 (a) the survival function, ( )xS t   

 (b) the force of mortality, x t  . [2] 

Under the Weibull model for mortality, the survival function is of the form: 

 ( ) exp( )xS t t    

where , 0   . 

(ii) Derive an expression in terms of   and   for x t   under this model. [2] 

(iii) Determine an expression involving   for ( )xE T  in the case when 1  . [1] 
    [Total 5] 

X2.4 (i) (a) Define a Markov jump process. 

 (b) Explain the condition needed for such a process to be time-homogeneous.  [3] 

(ii) (a) Give formulae for calculating the maximum likelihood estimates of the transition 
rates in a time-homogeneous Markov jump process, defining any notation that 
you use. 

 (b) Outline the principal difficulties in fitting a Markov jump process model with 
time-inhomogeneous rates, and explain how these might be overcome.  [4] 

    [Total 7] 
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X2.5 A certain variety of tomato is susceptible to blight, which is always fatal.  A researcher decides to 
model the life cycle of the tomato using a multiple state model with the following states: 

1. not suffering from blight 

2. suffering from blight 

3.  dead. 

The transition rates are dependent on the age of the plant and are as follows: 

 m( )x  is the mortality rate at exact age x  of a blight-free plant 

 s ( )x  is the rate of contracting blight at exact age x   

 u ( )x  is the mortality rate at exact age x  of a plant suffering from blight. 

(i) Draw and label a transition diagram for this multiple state model. [2] 

Let ( , )ijp x y  denote the probability that a plant is in State j  at age y  ( y x ) given that it was in 

State i  at age x .  

(ii) Write down an expression involving transition rates for each of the following probabilities: 

 (a) 11( , )p x x t   

 (b) 22( , )p x x t   [3] 

(iii) Write down an integral expression for 12( , )p x x t  in terms of transition rates and the 
probabilities in (ii).  [2] 

    [Total 7] 

 
X2.6 (i) Explain the differences between random censoring and Type I censoring in the context of 

an investigation into the mortality of life insurance policyholders.  Include in your 
explanation a statement of the circumstances in which the censoring will be random, and 
the circumstances in which it will be Type I, and give an example of each. [4] 

(ii) Explain what is meant by non-informative censoring in the investigation in (i).  Describe a 
situation in which censoring might be informative in this investigation. [3] 

    [Total 7] 
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X2.7 (i) State the age range over which Gompertz’ Law is an appropriate model for human 
mortality.  [1] 

(ii) Show that, under Gompertz’ Law, the probability of survival from exact age x  to exact 
age x t+  is equal to: 

  

( 1)
exp

ln

x tc c
B
c


        [3] 

For a certain population, estimates of survival probabilities are available as follows: 

 5 60 0.912p    

 10 60 0.804p   

(iii)  Calculate values of B  and c  consistent with these observations. [4] 

 Hint:    10 5 51 ( 1)( 1)c c c   
    [Total 8] 
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X2.8 Consider the following multiple state model in which ( )S t , the state occupied at time t  by a life 
initially aged x , is assumed to follow a continuous-time Markov process.   

 

 

State 1 State 2 State 3

State 4

 

Let ij
x t   denote the force of transition at age x t  ( 0t  ) from State i  to State j , and let 

 ( ) | (0)ij
t xp P S t j S i   .   

(i) Derive from first principles the forward differential equation: 

   21 22 21 23 31 21 12 14
t x t x x t t x x t t x x t x tp p p p

t
      


   


  

 stating all the assumptions that you make.  [5] 

(ii) Write down forward differential equations for 23
t xp  and 32

t xp . [3] 
    [Total 8] 
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X2.9 Mrs Pye, the baker, makes delicious custard tarts.  One day last week she made 16 tarts and 
placed them for sale in her shop at 8am.  During the rest of the day, the following tart-related 
events took place. 

Time Event 

8.30am A man bought a tart on his way to work. 

10.00am A woman bought two tarts. 

11.00am Mrs Pye’s clumsy assistant accidentally knocked one of the tarts on to the floor, 
meaning that it couldn’t be sold. 

12.30pm Some students from the local college bought 4 tarts. 

1.00pm Mrs Pye ate one of the tarts during her lunch break. 

2.00pm A family bought 3 tarts. 

3.00pm Two more tarts were sold. 

4.00pm The shop closed and the assistant took the remaining tarts home. 

 
(i) Calculate the Kaplan-Meier estimate of the probability that a tart is sold before closing 

time.   [4] 

(ii) Sketch the hazard function, ( )h t , implied by the Kaplan-Meier model of custard tart sales.    
    [4] 
    [Total 8] 
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X2.10 As part of a clinical trial, a statistician is studying the survival rates of patients who have 
undergone a certain surgical procedure.   Below is an extract from the statistician’s data.  Patients 
were observed from their date of operation until their date of exit. 

Patient number Date of operation Date of exit Reason for exit 

1 1 February 2017 1 January 2018 Censored  

2 1 April 2017 1 October 2017 Death  

3 1 April 2017 1 January 2018 Censored  

4 1 July 2016 1 July 2017 Censored  

5 1 August 2017 1 January 2018 Censored  

6 1 November 2016 1 January 2017 Death  

7 1 January 2017 1 January 2018 Censored  

8 1 March 2017 1 November 2017 Death  

9 1 May 2017 1 November 2017 Death  

10 1 June 2017 1 January 2018 Censored  

 
You can assume that the censoring was non-informative with regard to the survival of any 
individual patient.   

(i) Calculate the Nelson-Aalen estimate of the cumulative hazard function, ( )t , where t  is 
the time in months since having the operation.   [4] 

(ii) Hence calculate an estimate of the survival function for patients who have had this 
operation.  [2] 

(iii) Construct an approximate 95% confidence interval for the probability that a patient 
survives for at least 10 months after having the operation. [4] 

(iv) Comment on the statement that at least 90% of patients survive for 10 months or more 
after having the operation.   [2] 

    [Total 12] 
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X2.11 Suppose that in a time-inhomogeneous Poisson process the transition rate at time t  is ( )t . 

(i) Sketch the transition diagram for this process. [2] 

(ii) (a) Write down the matrix forms of the Kolmogorov forward and backward 
differential equations for this process. 

 (b) Hence, or otherwise, give the Kolmogorov forward and backward differential 
equations for the probability ( , )ijp s t , where 0 i j  . [6] 

Now suppose that ( ) 0.01( 2)t t    and that the process is in State 1 at time 5.  

(iii) (a) Determine an expression for the probability that the process remains in State 1 
until time r , where 5r  .  

 (b) Hence, or otherwise, calculate the probability that the process is in State 2 at time 
10.  [5] 

    [Total 13] 

END OF PAPER 
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Time allowed: 2¾ hours 

 

Instructions to the candidate 

1. Please: 

– attempt all of the questions, as far as possible under exam conditions  

– begin your answer to each question on a new page 

– leave at least 2cm margin on all borders  

– write in black ink using a medium-sized nib because we will be unable to mark 
illegible scripts 

– note that assignment marking is not included in the price of the course materials.  
Please purchase Series Marking or a Marking Voucher before submitting your script. 

– note that we only accept the current version of assignments for marking, ie you can 
only submit this assignment in the sessions leading to the 2019 exams. 

2. Please do not: 

– use headed paper 

– use highlighting in your script. 

 

At the end of the assignment 

If your script is being marked by ActEd, please follow  
the instructions on the reverse of this page. 

 

In addition to this paper, you should have available actuarial tables and an 
electronic calculator. 
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Submission for marking 

You should aim to submit this script for marking by the recommended submission date.  The 
recommended and deadline dates for submission of this assignment are listed on the summary page 
at the back of this pack and on our website at www.ActEd.co.uk. 

Scripts received after the deadline date will not be marked, unless you are using a Marking Voucher.  
It is your responsibility to ensure that scripts reach ActEd in good time.  If you are using Marking 
Vouchers, then please make sure that your script reaches us by the Marking Voucher deadline date 
to give us enough time to mark and return the script before the exam. 

When submitting your script, please: 

 complete the cover sheet, including the checklist 

 scan your script, cover sheet (and Marking Voucher if applicable) and save as a pdf 
document, then email it to: ActEdMarking@bpp.com 

 do not submit a photograph of your script  

 do not include the question paper in the scan. 

In addition, please note the following: 

 Please title the email to ensure that the subject and assignment are clear eg ‘CS2 Assignment 
X3 No. 12345’, inserting your ActEd Student Number for 12345. 

 The assignment should be scanned the right way up (so that it can be read normally without 
rotation) and as a single document.  We cannot accept individual files for each page.   

 Please set the resolution so that the script is legible and the resulting PDF is less than 4 MB 
in size.   

 Do not protect the PDF in any way (otherwise the marker cannot return the script to ActEd, 
which causes delays). 

 Please include the ‘feedback from marker’ sheet when scanning.  

 Before emailing to ActEd, please check that your scanned assignment includes all pages and 
conforms to the above. 
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Number of following pages: _______ 

Please put a tick in this box if you have solutions 
and a cross if you do not: 

Please tick here if you are allowed extra time or 
other special conditions in the  
profession’s exams (if you wish to  
share this information): 
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(see Note below):        _____ hrs _____ mins 

Under exam conditions  
(delete as applicable):       yes / nearly / no 

Note:  If you take more than 2¾ hours, you should 
indicate how much you completed within this 
exam time so that the marker can provide useful 
feedback on your progress. 

Note: Your ActEd Student Number is printed on all 
personal correspondence from ActEd.  Quoting it will help 
us to process your scripts quickly.  If you do not know 
your ActEd Student Number, please email us at 
ActEd@bpp.com.   

Your ActEd Student Number is not the same as your 
IFoA Actuarial Reference Number or ARN. 

Score and grade for this assignment (to be completed by marker): 
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Grade:     A    B    C    D    E  Marker’s initials: ________ 

Please tick the following checklist so that your script can be marked quickly. Have you: 

[      ]  Checked that you are using the latest version of the assignments, ie 2019 for the sessions leading 
to the 2019 exams?  

[      ]  Written your full name in the box above? 
[      ]  Completed your ActEd Student Number in the box above?  
[      ]  Recorded your attempt conditions?   
[      ]  Numbered all pages of your script (excluding this cover sheet)? 
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[      ]  Rated your X2 marker at www.ActEd.co.uk/marking? 
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Feedback from marker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes on marker’s section 

The main objective of marking is to provide specific advice on how to improve your chances of 
success in the exam.  The most useful aspect of the marking is the comments the marker makes 
throughout the script, however you will also be given a percentage score and the band into which 
that score falls.  Each assignment tests only part of the course and hence does not give a complete 
indication of your likely overall success in the exam.  However it provides a good indicator of your 
understanding of the material tested and the progress you are making with your studies: 

A = Excellent progress      B = Good progress     C = Average progress   
D = Below average progress     E = Well below average progress 

 
Please note that you can provide feedback on the marking of this assignment at: 

www.ActEd.co.uk/marking 
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X3.1 A life office is comparing the mortality of its policyholders in the age range 31 nearest birthday to 
60 nearest birthday with a set of mortality rates prepared by the Continuous Mortality 
Investigation (CMI).  The life office finds that its mortality rates are lower than those of the CMI at 
18 ages and higher than those of the CMI at 12 ages.   

An analyst carries out the grouping of signs test on the data using a 5% significance level and 
discovers that the test is only just passed – one fewer run of positive deviations would have 
meant that the test failed. 

Determine the number of runs of positive deviations in the life office’s data. [2] 

X3.2 A study is being conducted, using the Cox regression model, into how smoking affects a patient’s 
future lifetime after they have had a serious heart attack.  The survival times and smoking status 
for 6 patients are shown in the table below.  Patients have been labelled as ‘censored’ if they 
were still alive at the end of the investigation or if their death was not considered to be 
attributable to the heart attack. 

Patient number Time to death 

(weeks) 

Smoker (yes/no) 

 

Censored (yes/no) 

1 3 Yes No 

2 n/a (still alive) No Yes 

3 9 No No 

4 10 Yes Yes 

5 8 No Yes 

6 7 No No 

 
The force of mortality for life i  at duration t  is modelled as:  

 0( , ) ( )exp( )i it Z t Z    

where: 

 t  is the duration in weeks since having a heart attack 

 0( )t  is the baseline hazard function at time t  

 
1 if life  is a smoker
0 if life  is a non-smokeri

i
Z

i


 


  

   is a regression parameter 

Write down the partial likelihood function of   given these data values. [4] 
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X3.3 In an investigation of mortality during the period 1 January 2017 to 1 July 2018, information is 
available about the number of lives under observation aged x  next birthday on 1 January 2017, 
1 January 2018 and 1 July 2018.  Information is also available about the number of deaths during 
the period, classified by age last birthday. 

(i) Derive a formula for the central exposed to risk that corresponds to the death data, 
stating any assumptions that you make. [5] 

(ii) The force of mortality for deaths with age label x  in this investigation estimates x f  .  

Determine the value of f . [1] 
   [Total 6] 

X3.4 A mortality investigation is being conducted by a life insurance company. 

(i) Explain why, when investigating its mortality statistics, the company may divide the data 
into smaller groups.   [2] 

(ii) Describe the two main potential problems with subdividing mortality data.   [2] 

(iii) List four factors that could be used to subdivide mortality data. [2] 
    [Total 6] 

X3.5 (i) Explain the terms ‘undergraduation’ and ‘overgraduation’. [3] 

(ii) List the possible dangers to a life company of using undergraduated or overgraduated 
mortality rates.  [5] 

    [Total 8] 
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X3.6 A medium-sized UK pension scheme has recently carried out an investigation of the mortality of 
its pensioners.   

The data used to produce the crude rates, and the proposed graduated rates, are shown below. 

Age nearest 
birthday 

Central 
exposed to 

risk 

Observed 
number of 

deaths 

Crude 
mortality 

rate 

Graduated 
mortality rate 

Standardised 
deviation 

60 - 64 1,388.9 10 0.0072 0.0061 0.5249 

65 - 69 1,188.8 17 0.0143 0.0131 0.3615 

70 - 74 880.5 28 0.0318 0.0262 1.0266 

75 - 79 841.6 34 0.0404 0.0487 –1.0912 

80 - 84 402.8 41 0.1018 0.0839 1.2394 

85 - 89 123.9 19 0.1533 0.1338 0.5949 

90 - 94 27.9 7 0.2509 0.1975 0.6346 

95 - 99 10.0 3 0.3000 0.2706 0.1787 

100+ 7.5 2 0.2667 0.3455 –0.3673 

 
(i) Test the proposed graduation for: 

 (a) overall goodness of fit 

 (b) bias over the whole age range 

 clearly stating any conclusions that you draw.  [7] 

(ii) Comment on the use of the graduated rates to value the benefits payable from the 
scheme.  [2] 

    [Total 9] 
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X3.7 The following Lee-Carter mortality projection model is being fitted to some historical data: 

 , ,ln x t x x t x tm a b k e     

where: 

 ,x tm  is the central mortality rate at age x  in Year t  

 xa  and xb  are factors relating to mortality rates projected for age x  

 tk  is a factor relating to mortality rates projected for Year t   

 ,x te  is an independent and identically distributed error term. 

In this particular model there are 37 different projection years ( 0,1, ..., 36t  ), where 0t   is the 
base calendar year for the projection. 

(i) State the constraints that are typically imposed on the estimated values of xb  and tk  
when fitting the model. [1] 

(ii) A model has been fitted to the data, and it is found that estimated values of tk  are 
related as follows: 

  1
ˆ ˆ 0.01t tk k     

 Given that these values satisfy the overall constraints specified in part (i), calculate the 
estimated values of 0k  and 10k  for this model. [2] 

(iii) The following ratio is used to show the projected change in mortality at a particular age x  
over the first ten years of the projection: 

  ,10

,0

ˆ

ˆ
x

x

m

m
 

 where ,ˆ x tm  is the predicted mortality rate from the fitted model ignoring error terms. 

  (a) Calculate this ratio for the case where ˆ 1xb  . 

 (b) Three of the estimated values of xb  are:  

   50 65 75
ˆ ˆ ˆ0.14,    0.28,    1.30b b b      

  Calculate the values of the above ratio for 50x  , 65 and 75. [3] 

(iv) With reference to the values you have calculated in part (iii) or otherwise, explain how the 
sign and magnitude of the value of the xb  parameter influences the impact of the 
assumed time trend on projected mortality rates using the Lee-Carter model. [4] 

    [Total 10] 
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X3.8 An investigation has been carried out into the survival rates of patients who have just undergone 
a certain medical procedure at one of two major hospitals.  The data recorded for each patient 
were sex, drug treatment received and hospital attended.  A Cox proportional hazards model was 
fitted to the data, and the results are given below. 

Covariate Fitted parameter 
value 

Estimated standard 
error 

   

Sex:   

Male 0  

Female 0.20 0.11 

   

Drug treatment received:   

Treatment A 0  

Treatment B 0.12 0.05 

Treatment C 0.05 0.03 

   

Hospital attended:   

Hospital A 0  

Hospital B 0.06 0.04 

 
(i)  Write down a formula for the force of mortality according to this model.  You should 

define all the terms that you use.   [3] 

(ii) Explain why this model is a proportional hazards model.  [1] 

(iii) In the context of this model state the group of lives: 

 (a) to which the baseline hazard refers 

 (b) with the lowest force of mortality. [2] 

(iv) Explain whether attending Hospital B rather than Hospital A significantly improves the 
chances of survival. [3] 

(v) Calculate the proportion, according to the fitted model, by which the force of mortality 
for a male patient on Treatment B who attended Hospital A exceeds that for a female 
patient on Treatment C who attended Hospital B.     [2] 

    [Total 11] 
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X3.9 You have been given the following data relating to an insurance company mortality investigation. 

Age last 
birthday 

Policies in force on 1 July  Deaths in 

2015 2016 2017 2018  2015 2016 2017 2018 

          

63 4,192 4,444 4,885 4,889  104 100 117 109 

64 3,998 4,200 4,664 4,334  122 114 130 124 

65 3,940 4,166 4,321 4,533  118 120 129 140 

 
(i) Calculate estimates of the force of mortality for those lives aged 63, 64 and 65 last 

birthday, indicating clearly the ages to which your estimates relate.  State any 
assumptions you make. [6] 

(ii) Explain the relationship between the initial mortality rate and the force of mortality under 
the assumptions of the Poisson model. [2] 

(iii) Hence calculate estimates of the initial mortality rate for those lives aged 63, 64 and 65 
last birthday, indicating clearly the ages to which your estimates relate. [2] 

    [Total 10] 

X3.10 A large life office is investigating the recent mortality experience of its term assurance 
policyholders.  It has been decided to graduate the data by reference to a standard table using the 
formula: 

 x
s
x

ax b



      

where s
x  is the rate for the standard table. 

(i) Outline the considerations that you would take into account in choosing an appropriate 
standard table.  [5] 

(ii) Explain how you would check whether the above formula is suitable. [3] 

(iii) Describe how you would estimate a  and b  in the above formula using: 

 (a) a weighted least squares approach 

 (b) the method of maximum likelihood.  

 In each case you should state the function to be optimised. [6] 
    [Total 14] 

END OF PAPER 
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Instructions to the candidate 

1. Please: 

– attempt all of the questions, as far as possible under exam conditions  

– begin your answer to each question on a new page 

– leave at least 2cm margin on all borders  

– write in black ink using a medium-sized nib because we will be unable to mark 
illegible scripts 

– note that assignment marking is not included in the price of the course materials.  
Please purchase Series Marking or a Marking Voucher before submitting your script. 

– note that we only accept the current version of assignments for marking, ie you can 
only submit this assignment in the sessions leading to the 2019 exams. 

2. Please do not: 

– use headed paper 

– use highlighting in your script. 

 

At the end of the assignment 

If your script is being marked by ActEd, please follow  
the instructions on the reverse of this page. 

 

In addition to this paper, you should have available actuarial tables and an 
electronic calculator. 
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Submission for marking 

You should aim to submit this script for marking by the recommended submission date.  The 
recommended and deadline dates for submission of this assignment are listed on the summary page 
at the back of this pack and on our website at www.ActEd.co.uk. 

Scripts received after the deadline date will not be marked, unless you are using a Marking Voucher.  
It is your responsibility to ensure that scripts reach ActEd in good time.  If you are using Marking 
Vouchers, then please make sure that your script reaches us by the Marking Voucher deadline date 
to give us enough time to mark and return the script before the exam. 

When submitting your script, please: 

 complete the cover sheet, including the checklist 

 scan your script, cover sheet (and Marking Voucher if applicable) and save as a pdf 
document, then email it to: ActEdMarking@bpp.com 

 do not submit a photograph of your script  

 do not include the question paper in the scan. 

In addition, please note the following: 

 Please title the email to ensure that the subject and assignment are clear eg ‘CS2 Assignment 
X4 No. 12345’, inserting your ActEd Student Number for 12345. 

 The assignment should be scanned the right way up (so that it can be read normally without 
rotation) and as a single document.  We cannot accept individual files for each page.   

 Please set the resolution so that the script is legible and the resulting PDF is less than 4 MB 
in size.   

 Do not protect the PDF in any way (otherwise the marker cannot return the script to ActEd, 
which causes delays). 

 Please include the ‘feedback from marker’ sheet when scanning.  

 Before emailing to ActEd, please check that your scanned assignment includes all pages and 
conforms to the above. 
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Time to do assignment 
(see Note below):        _____ hrs _____ mins 

Under exam conditions  
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Note:  If you take more than 3¼ hours, you should 
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Note: Your ActEd Student Number is printed on all 
personal correspondence from ActEd.  Quoting it will help 
us to process your scripts quickly.  If you do not know 
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ActEd@bpp.com.   
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Grade:     A    B    C    D    E  Marker’s initials: ________ 

Please tick the following checklist so that your script can be marked quickly. Have you: 

[      ]  Checked that you are using the latest version of the assignments, ie 2019 for the sessions leading 
to the 2019 exams?  

[      ]  Written your full name in the box above? 
[      ]  Completed your ActEd Student Number in the box above?  
[      ]  Recorded your attempt conditions?   
[      ]  Numbered all pages of your script (excluding this cover sheet)? 
[      ]  Written the total number of pages (excluding the cover sheet) in the space above? 
[      ]  Included your Marking Voucher or ordered Series X Marking?  
[      ]  Rated your X3 marker at www.ActEd.co.uk/marking? 

 

Please follow the instructions on the previous page when submitting your script for marking. 

w
w
w
.m

as
om

om
si
ng

i.c
om

mailto:ActEd@bpp.com
http://www.ActEd.co.uk/marking?


© IFE: 2019 Examinations    The Actuarial Education Company 

Feedback from marker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes on marker’s section 

The main objective of marking is to provide specific advice on how to improve your chances of 
success in the exam.  The most useful aspect of the marking is the comments the marker makes 
throughout the script, however you will also be given a percentage score and the band into which 
that score falls.  Each assignment tests only part of the course and hence does not give a complete 
indication of your likely overall success in the exam.  However it provides a good indicator of your 
understanding of the material tested and the progress you are making with your studies: 

A = Excellent progress      B = Good progress     C = Average progress   
D = Below average progress     E = Well below average progress 

 
Please note that you can provide feedback on the marking of this assignment at: 

www.ActEd.co.uk/marking 
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X4.1 Claim amounts arising from a particular group of policies follow a Pareto distribution with mean 
1,000 and standard deviation 1,500.   

Calculate the proportion of claims that exceed 2,000. [3] 

X4.2 Claim amounts from a particular portfolio of insurance policies are believed to follow a Weibull 
distribution.  A random sample of 2,000 claims was collected.  The sample median was found to 
be 1,500 and 5% of claims exceeded 6,000.   

Estimate the parameters of the Weibull distribution using the method of percentiles.  [4] 

X4.3 (i) The shape parameter,  , in a particular generalised extreme value distribution is equal 
to 1 .  Identify the type of extreme value distribution, state its key characteristic, and 
give an example of a distribution of this type. [2] 

(ii) State the key advantage that the generalised Pareto distribution has over the generalised 
extreme value distribution when modelling extreme losses. [2] 

    [Total 4] 

X4.4 A loss amount random variable, X , follows a ( , )Pa    distribution. 

(i) Define the excess loss over the threshold u . [1] 

(ii) Derive the CDF of this threshold exceedance and hence identify its distribution. [3] 
    [Total 4] 
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X4.5 A company observes its quarterly utility bills over the last 5 years { : 1,2, ,20}tq t   .   

(i) The company decomposes the time series as follows: 

  t t t tq y     

 where ty  is the underlying zero-mean stationary time series. 

 (a) The time series exhibits quarterly seasonal variation, t .  Describe one method of 
removing this variation, giving any formula or filter used. 

 (b) The time series also exhibits a linear trend t a bt   .  Describe one method of 
removing this trend. [3] 

The seasonal variation and linear trend are removed and the sample ACF, kr , and sample 

PACF, k̂ , of the resultant zero-mean stationary time series, tz , are obtained: 
 

 

 

 

 

 

 

 

(ii) State, with reasons, an appropriate time series to model the observations tz . [2] 
    [Total 5] 

X4.6 Claims from a particular group of policies are thought to have a lognormal distribution with 

parameters   and 2 .  Claims over the last 5 years have a sample mean of £2,000 and a sample 
standard deviation of £500.   

(i) Obtain the method of moments estimates of   and 2 . [3] 

(ii) Estimate the median claim amount using the fitted distribution. [3] 
    [Total 6] 
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X4.7 A moving average time series is defined by the relationship: 

 1 2 33.1 0.25 0.5 0.25t t t t tX            

where 2(0, )t N   denotes white noise. 

(i) Determine the mean and variance of tX . [2] 

(ii) Calculate the autocorrelation function k , 0,1,2,...k  . [4] 
    [Total 6] 

X4.8 (i) Explain why we might expect the CPI and NAEI to be cointegrated. [2] 

 The CPI (Consumer Price Index) is a measure of the average cost of a basket of goods and 
services and the NAEI (National Average Earnings Index) is a measure of the average 
employee pay. 

(ii) A multivariate process is defined by: 

  1 21.2 0.2 x
n n n nX X X      

  10.6 y
n n nY X    

 where x
n  and y

n  are independent white noise processes. 

 Show that nX and nY  are cointegrated with cointegrating vector (0.6, 1) . [4] 
    [Total 6] 

X4.9 (i) Explain what is meant by an ( )I d  process. [1] 

(ii) Classify each of the following processes as ( , , )ARIMA p d q  where possible: 

 (a) 10.6t t tX     

 (b) 2 31.4 0.5t t t tY Y       

 (c) 1 2 11.4 0.4t t t t tW W W         

 In each case t  denotes white noise with mean 0 and variance 2 . [6] 
    [Total 7] 
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X4.10 (i) Show that the mean residual life of the (2,1)Gamma  distribution is given by: 

  
2( )
1

xe x
x





 [5] 

(ii) Use the mean residual life to compare the tail of the (2,1)Gamma distribution with that of 
the (1)Exp distribution. [3] 

    [Total 8] 

X4.11 A stationary (1,1)ARMA  process, nX , is defined by: 

 1 1n n n nX X       

where t  denotes white noise with zero mean and variance 2 . 

(i) State the range of values of   for which the process is invertible. [1] 

The autocorrelation function of this process is given by: 

 1
2

( )(1 ) 1,2,3,
1 2

k
k k   

 
 

 
 

  

The sample autocorrelation coefficients at lags 1 and 2 for a time series that is believed to 
conform to a stationary, invertible (1,1)ARMA  model have been calculated to be 1 0.440r   and 

2 0.264r  . 

(ii) (a) Obtain the method of moments estimates of   and  . 

 (b) Outline briefly how the method of least squares could be used to estimate the 
parameter values. 

 (c) State when the maximum likelihood estimates are equivalent to the least squares 
estimates. [7] 

The most recently observed values of the time series are: 

 79 80 79 80ˆ ˆ0.214 1.087 0.169 1.181x x         

(iii) (a) Determine the 1 and 2 step ahead estimates for 81x  and 82x  using the fitted 
values of   and   obtained in part (ii)(a). 

 (b) The simplest form of exponential smoothing (with smoothing parameter 0.2) used 
at time 79 gave a forecast for 80x  of 0.625.  Determine the forecast for 81x . [3] 

    [Total 11] 
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X4.12 A researcher is using the Box-Jenkins approach to model an observed time series X  as an 
( , , )ARIMA p d q  process.   

(i) Explain what it means to say that X  is an ( , , )ARIMA p d q  process. [1] 

(ii) The following table shows some information relating to the d th order differences of the 
observed series: 

Properties of d X  0d   1d   2d   3d   4d   

Sample 
autocorrelation 

coefficients 

1r  0.33 –0.40 –0.63 –0.74 –0.79 

2r  0.19 –0.04 0.15 0.32 0.43 

3r  0.12 –0.11 –0.12 –0.17 –0.23 

4r  0.18 0.18 0.20 0.18 0.17 

Sample variance  4.4 6.0 16.7 54.4 189.9 

 
 State, with reasons, which value of d  you consider most appropriate if this series is to be 

modelled using an ( , , )ARIMA p d q  model. [2] 

(iii) Having selected an appropriate value of d  and carried out some further calculations, the 
researcher has decided that a zero-mean (1,1)ARMA  model provides a good description 

of the series d X . 

 The 100 residuals for this model are found to contain 74 turning points.  The sample 
autocorrelations at lags 1,2, ,5  (respectively) are calculated to be: 

  +0.14   –0.05   +0.10   +0.12   –0.02 

 Carry out each of the following tests, explaining what each test is designed to check for: 

 (a) the Ljung-Box (‘portmanteau’) test 

 (b) the turning point test 

 (c) inspection of the sample autocorrelation function.  

 You should state your conclusions clearly. [10] 
    [Total 13] 
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X4.13 A univariate (2)AR  process has defining equation: 

 1 20.7 0.1n n n nX X X      

where n  is a white noise process with mean 0 and variance 2 . 

(i) Explain whether the process is: 

 (a) stationary  

 (b) invertible 

 (c) purely indeterministic  

 (d) Markov.   [5] 

(ii) (a) Calculate the values of 1  and 2 , the autocorrelation function at lags 1 and 2, 
and show that the autocorrelation function for lag k  ( 2)k   is given by: 

   1 20.7 0.1k k k      

 (b) Show that: 

   2
2 5

k k k
A B k     

  is a solution of 1 20.7 0.1k k k      and hence calculate the values of the 
constants A  and B . 

 (c) Calculate 1  and 2 , the partial autocorrelation function for lags 1 and 2 and 
state what will happen for larger values of k . [12] 

(iii) Explain how the univariate (2)AR  process 1 20.7 0.1n n n nX X X      can be expressed 
as a multivariate (1)VAR  process 1n n nX M X   . [2] 

(iv) Determine whether the (1)VAR  process is: 

 (a) stationary 

 (b) Markov . [4] 
    [Total 23] 

END OF PAPER 
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Time allowed: 3¼ hours 

 

Instructions to the candidate 

1. Please: 

– attempt all of the questions, as far as possible under exam conditions  

– begin your answer to each question on a new page 

– leave at least 2cm margin on all borders  

– write in black ink using a medium-sized nib because we will be unable to mark 
illegible scripts 

– note that assignment marking is not included in the price of the course materials.  
Please purchase Series Marking or a Marking Voucher before submitting your script. 

– note that we only accept the current version of assignments for marking, ie you can 
only submit this assignment in the sessions leading to the 2019 exams. 

2. Please do not: 

– use headed paper 

– use highlighting in your script. 

 

At the end of the assignment 

If your script is being marked by ActEd, please follow  
the instructions on the reverse of this page. 

 

In addition to this paper, you should have available actuarial tables and an 
electronic calculator. 
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Submission for marking 

You should aim to submit this script for marking by the recommended submission date.  The 
recommended and deadline dates for submission of this assignment are listed on the summary page 
at the back of this pack and on our website at www.ActEd.co.uk. 

Scripts received after the deadline date will not be marked, unless you are using a Marking Voucher.  
It is your responsibility to ensure that scripts reach ActEd in good time.  If you are using Marking 
Vouchers, then please make sure that your script reaches us by the Marking Voucher deadline date 
to give us enough time to mark and return the script before the exam. 

When submitting your script, please: 

 complete the cover sheet, including the checklist 

 scan your script, cover sheet (and Marking Voucher if applicable) and save as a pdf 
document, then email it to: ActEdMarking@bpp.com 

 do not submit a photograph of your script  

 do not include the question paper in the scan. 

In addition, please note the following: 

 Please title the email to ensure that the subject and assignment are clear eg ‘CS2 Assignment 
X5 No. 12345’, inserting your ActEd Student Number for 12345. 

 The assignment should be scanned the right way up (so that it can be read normally without 
rotation) and as a single document.  We cannot accept individual files for each page.   

 Please set the resolution so that the script is legible and the resulting PDF is less than 4 MB 
in size.   

 Do not protect the PDF in any way (otherwise the marker cannot return the script to ActEd, 
which causes delays). 

 Please include the ‘feedback from marker’ sheet when scanning.  

 Before emailing to ActEd, please check that your scanned assignment includes all pages and 
conforms to the above. 
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Note:  If you take more than 3¼ hours, you should 
indicate how much you completed within this 
exam time so that the marker can provide useful 
feedback on your progress. 

Note: Your ActEd Student Number is printed on all 
personal correspondence from ActEd.  Quoting it will help 
us to process your scripts quickly.  If you do not know 
your ActEd Student Number, please email us at 
ActEd@bpp.com.   

Your ActEd Student Number is not the same as your 
IFoA Actuarial Reference Number or ARN. 
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Please tick the following checklist so that your script can be marked quickly. Have you: 

[      ]  Checked that you are using the latest version of the assignments, ie 2019 for the sessions leading 
to the 2019 exams?  

[      ]  Written your full name in the box above? 
[      ]  Completed your ActEd Student Number in the box above?  
[      ]  Recorded your attempt conditions?   
[      ]  Numbered all pages of your script (excluding this cover sheet)? 
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Feedback from marker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes on marker’s section 

The main objective of marking is to provide specific advice on how to improve your chances of 
success in the exam.  The most useful aspect of the marking is the comments the marker makes 
throughout the script, however you will also be given a percentage score and the band into which 
that score falls.  Each assignment tests only part of the course and hence does not give a complete 
indication of your likely overall success in the exam.  However it provides a good indicator of your 
understanding of the material tested and the progress you are making with your studies: 

A = Excellent progress      B = Good progress     C = Average progress   
D = Below average progress     E = Well below average progress 

 
Please note that you can provide feedback on the marking of this assignment at: 

www.ActEd.co.uk/marking 
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X5.1 Claims on a motor insurance policy have a gamma distribution with mean £2,000 and standard 
deviation £100.  The insurer effects proportional reinsurance with retained proportion 85%.  
Determine the:  

(a) mean amount paid by the insurer (after reinsurance) 

(b) variance of the amount paid by the reinsurer 

(c) moment generating function of the claim amount paid by the insurer (after 
reinsurance).  [4] 

X5.2 Consider a portfolio of insurance policies, on which the number of claims has a binomial 
distribution with parameters 1,000n   and 0.01p  .  The claim size distribution is assumed to be 
exponential with mean £100.  Claim amounts are assumed to be independent random variables 
and to be independent of the number of claims. 

The insurer arranges individual excess of loss reinsurance with a retention limit of 200. 

Calculate the mean of IS , where IS  is aggregate annual claims paid by the insurer net of 
reinsurance.   [4] 

X5.3 Second Life (SL) is a small life insurance company. 

Responding to demand from brokers, SL is developing a new product called Seconds Out.   This is 
to be a product aimed at retired couples who wish to purchase large amounts of cover to provide 
a tax-efficient transfer of their wealth to their dependants.  The policy pays out when the second 
of the two policyholders dies. 

SL is developing pricing assumptions for this new product, and is considering using one of the 
following two copulas to handle the correlated mortality expected with this product: 

 Clayton copula:   1/
[ , ] 1C u v u v

       

 Farlie-Gumbel-Morgenstern (FGM) copula:   [ , ] 1 1 1C u v uv u v        

One of the pricing assumptions is that the probability of survival for ten years for a 70-year-old life 
(regardless of gender) is 10 70 0.58p  . 

(i) Using each of the two copulas with parameters 0.3   and 0.1    respectively, 
calculate the probability of paying a death benefit in the ten-year period following the 
issue of a Seconds Out policy to a couple who are both aged exactly 70. [3] 

(ii)  Discuss the suitability of the copulas above by comparing the results to those when 
independent deaths are assumed. [3] 

  [Total 6] 
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X5.4 Under a special reinsurance arrangement, a reinsurer agrees to pay an amount Z  in respect of 
each claim X  arising from a certain risk, where: 

 
0 if  1,000

1,000 if  1,000 2,000
1,000 if  2,000

X
Z X X

X


   
 

 

Given that X  has a lognormal distribution with parameters 5   and 2 4  , calculate the 
reinsurer’s expected payment amount per original claim. [8] 

X5.5 The annual premium for a certain class of household insurance policies is £190.  The total annual 
claims from a single policy has a compound Poisson distribution with Poisson parameter 0.25.  
Individual claim amounts have a Pareto distribution with parameters 4   and 1,800  .  Every 
time a claim is settled the insurance company incurs an expense.  The amount of this expense is a 
random variable, uniformly distributed on the interval (£35,£85) and independent of the claim 
amount.   

Suppose that a portfolio comprises n  independent policies of this type and let S  denote the total 
aggregate claims and expenses arising from the portfolio in a year. 

(i) Show that: 

  ( ) 165 var( ) 288,952E S n S n   [6] 

(ii) Assuming that the distribution of S  is approximately normal, estimate the number of 
policies that the insurer must sell to be at least 99% sure of making a profit on the 
portfolio.  [3] 

    [Total 9] 
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X5.6 Suppose that X  and Y  are random variables that can each take values in the range ( , )   and 
that have the following characteristics: 

 The marginal cumulative distribution function of X  is 1( ) (1 )x
XF x e   . 

 The marginal cumulative distribution function of Y  is 1( ) (1 )y
YF y e   . 

 The joint cumulative distribution function of X  and Y  is 1
, ( , ) (1 )x y

X YF x y e e     . 

(i)  Show that the copula function for X  and Y  is   11 1[ , ] 1C u v u v
    . [2] 

(ii) Show that this is an Archimedean copula with generator function 1( ) 1t t   . [4] 

(iii) Determine the coefficients of lower and upper tail dependence for this copula.  

 Hint: you can use L’Hôpital’s rule, ( ) ( )lim lim
( ) ( )x a x a

f x f x
g x g x 





. [5] 

    [Total 11] 

X5.7 Claims on a home insurance policy have a Pareto distribution with parameters 4   and 
7,500  .  The insurer effects an individual excess of loss reinsurance treaty with a retention 

limit of £3,000. 

(i) (a) Calculate the probability that a claim involves the reinsurer. 

 (b) Calculate the insurer’s expected payment per claim. [5] 

Next year the claim amounts on these policies are expected to increase by 10% but the 
reinsurance treaty will remain unchanged.   

(ii) (a) Calculate the probability that a claim now involves the reinsurer. 

 (b) Explain whether the insurer’s expected payment per claim will also increase by 
10%. 

 (c) Calculate the reinsurer’s expected claim payment next year on those claims in 
which it is involved. [8] 

    [Total 13] 
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X5.8 Insurance Company A has taken out an individual excess of loss reinsurance contract with a 
retention limit of £40,000.  Individual claim amounts, gross of reinsurance, are believed to follow 
an exponential distribution with unknown parameter  . 

Over the last year, the following claims data are observed: 

Claims below retention: 12,220  10,429  36,834  14,623 
    36,932  13,205  28,506 

Claims above retention: 3 in total 

(i) (a) Estimate   using maximum likelihood estimation. 

 (b) Apply the method of percentiles using the median claim to estimate  . [7] 

Insurance Company B has a policyholder excess of £50,000 on its policies.  The individual claim 
amounts, X , are believed to have a Pareto ( ,200 000)  distribution (before the excess is applied) 
with PDF: 

 1
200,000( ) , 0

(200,000 )
Xf x x

x









 


 

where   is an unknown parameter. 

(ii) (a) Show that the conditional distribution of the amount paid by the insurer, Y , has a 
Pareto ( ,250 000)  distribution, with PDF: 

   1
250,000( ) , 0

(250,000 )
Yf y y

y









 


 

 The amounts paid the insurer, iy , on the last five claims (ie after the £50,000 excess has 
been deducted) were: 

  £153,000 £376,000 £120,000 £20,000 £108,000 

 (b) Use this information and the distribution from part (a) to determine, ̂ , the 
maximum likelihood estimate of  . [7] 

    [Total 14] 
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X5.9 A historian is classifying some old documents that have recently been discovered.  These are 
known to be written in one of the five languages English, French, German, Spanish or Italian. 

Unfortunately, the writing on some of the documents has been badly eroded and only a few 
letters are still legible.  So the historian has asked you to help identify the correct language based 
on the frequency with which certain letters occur in the documents.  It is known that the letter 
frequencies for similar documents are as shown in the table below. 

LETTER ENGLISH FRENCH GERMAN SPANISH ITALIAN 

A 8% 8% 7% 12% 12% 

G 2% 1% 3% 2% 2% 

H 6% 1% 5% 1% 1% 

I 7% 8% 7% 6% 10% 

N 7% 7% 10% 7% 7% 

O 7% 8% 7% 6% 10% 

T 9% 7% 6% 5% 6% 

U 3% 6% 4% 3% 3% 

Other 51% 54% 51% 58% 49% 

 
You intend to use a naïve Bayesian approach to identify the languages. 

(i) Show that the posterior probability that a piece of text (Text i ) is written in English can be 
calculated using the formula: 

  

(Text  is in English| , , , , , , , , )

( , , |Text  is in English) (Text  is in English)
( , , |Text  is in Language ) (Text  is in Language )

i i i i i i i i i

i i

i i
k

P i A G H I N O T U

P A i P i
P A i k P i k










 

 where , , , , , , ,i i i i i i i iA G H I N O T U  and i  denote the number of occurrences of the letters 
A, G, H, I, N, O, T, U and other letters (respectively) in Text i , and Language k  
( 1,2, ,5)k    denotes the five languages. [2] 

(ii) (a) Calculate the posterior probability that the test message ‘BONJOUR MONSIEUR 
DUPONT’ is written in each of the five languages using a naïve Bayes approach, 
assuming initially that each language is equally likely. 

 (b) Comment on your answer to part (ii)(a). [6] 

The historian has shown you one badly damaged fragment, which has the following text: 

 T ????? S ?? G ??? W ??????????? L ?? H ? U ? S ? M ? O ????????????? E ??? E ???? E 

The ?’s denote letters that are illegible.  You should ignore these completely in your calculations. 
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This fragment is believed to be written in one of the five languages with the following prior 
probabilities: 

Language ENGLISH FRENCH GERMAN SPANISH ITALIAN 

Probability 40% 20% 20% 10% 10% 

 
(iii) (a) Calculate the posterior probability that the text in this fragment is written in each 

of the five languages using a naïve Bayes approach, assuming the prior 
probabilities shown in the table above. 

 (b) State the conclusions you would draw from your answers to part (iii)(a). [7] 
    [Total 15] 
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X5.10 The members of an organisation are covered by group life insurance which pays a specified 
benefit amount if a member dies.  The membership consists of two categories of member who 
are entitled to the following benefit amounts: 

 Number of 
members 

Benefit amount Probability of dying 
during year 

Active members 1,250 £50,000 0.008 

Affiliated members 250 £20,000 0.012 

Total 1,500   

 
The aggregate claims payable during the year can be assumed to conform to the individual risk 
model. 

(i) State the individual risk model formula for modelling the aggregate claim amount for a 
portfolio and the assumptions underlying it. [2] 

(ii) Show, from first principles, that if X  denotes the claim amount payable during a given 
year in respect of an individual member, then: 

2( ) and var( ) (1 )E X bq X b q q    

 where q  is the probability that the member dies during the year and b  is the benefit 
amount.  [3] 

(iii) Derive a similar formula for the skewness (ie the third central moment) of X . [2] 

(iv) Hence calculate the mean, variance and coefficient of skewness of the total claim amount 
arising for all members during a given year.   [4] 

(v) Calculate the probability that the aggregate claims payable in a given year will exceed 
£1 million, using a normal approximation with no continuity correction. [3] 

(vi) Comment on the likely accuracy of your approximation in part (v). [2] 
    [Total 16] 

END OF PAPER 
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For the session leading to the April 2019 exams – CS2 & CM1 Subjects 
 
Marking vouchers 
 

Subjects Assignments Mocks 

CS2, CM1 13 March 2019 20 March 2019 

 
Series X and Y Assignments 
 

Subjects Assignment 
Recommended 

submission date 
Final deadline date 

CS2, CM1 X1 21 November 2018 9 January 2019 

CS2, CM1 X2 5 December 2018 23 January 2019 

CS2, CM1 X3 19 December 2018 30 January 2019 

CS2, CM1 Y1 9 January 2019 6 February 2019 

CS2, CM1 X4 23 January 2019 20 February 2019 

CS2, CM1 X5 6 February 2019 27 February 2019 

CS2, CM1 Y2 20 February 2019 13 March 2019 

 
Mock Exams 
 

Subjects 
Recommended 

submission date 
Final deadline date 

CS2 (Paper A/B), CM1 (Paper A/B) 6 March 2019 20 March 2019 

 
We encourage you to work to the recommended submission dates where possible.   
 
If you submit your mock on the final deadline date you are likely to receive your script back less than a week 
before your exam. 
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For the session leading to the September 2019 exams – CS2 & CM1 Subjects 
 
Marking vouchers 
 

Subjects Assignments Mocks 

CS2 21 August 2019 28 August 2019 

CM1 28 August 2019 4 September 2019 

 
Series X and Y Assignments 
 

Subjects Assignment 
Recommended 

submission date 
Final deadline date 

CS2 
X1 

22 May 2019 3 July 2019 

CM1 29 May 2019 10 July 2019 

CS2 
X2 

5 June 2019 10 July 2019 

CM1 12 June 2019 17 July 2019 

CS2 
X3 

12 June 2019 17 July 2019 

CM1 19 June 2019 24 July 2019 

CS2 
Y1 

26 June 2019 24 July 2019 

CM1 3 July 2019 31 July 2019 

CS2 
X4 

10 July 2019 31 July 2019 

CM1 17 July 2019 7 August 2019 

CS2 
X5 

17 July 2019 7 August 2019 

CM1 24 July 2019 14 August 2019 

CS2 
Y2 

31 July 2019 14 August 2019 

CM1 7 August 2019 21 August 2019 

 
Mock Exams 
 

Subjects 
Recommended 

submission date 
Final deadline date 

CS2 (Paper A/B) 14 August 2019 28 August 2019 

CM1 (Paper A/B) 21 August 2019 4 September 2019 

 
We encourage you to work to the recommended submission dates where possible.   
 
If you submit your mock on the final deadline date you are likely to receive your script back less than a week 
before your exam. 
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Solution X1.1  

This question is about the classification of stochastic processes according to their time set and 
state space.  Stochastic processes are covered in Chapter 1. 

A counting process has a discrete state space (as the number of events recorded up to a given 
time t  must be a whole number).  Its time set can be discrete or continuous. 

A time series has a discrete time set and a continuous state space. 

A compound Poisson process has a continuous time set.  Its state space can be either discrete or 
continuous. 

A simple random walk has a discrete time set and a discrete state space. 

Since we must put one process into each cell of the table, the solution is as follows: 

  Time set 

  Discrete Continuous 

St
at

e 
Sp

ac
e 

 

Discrete 

 

Simple random 
walk 

Counting process 

 

Continuous 

 

Time series 
Compound 

Poisson process 

    
    [½ for each correct entry] 
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Solution X1.2  

This question is about the periodicity of Markov chains.  It is based on the material in Chapter 2. 

(i) Meaning of periodic 

A state in a Markov chain is periodic with period  1d  if a return to that state is possible only in a 
number of steps that is a multiple of d .  [1] 

 If there is no such 1d  , then the state is aperiodic. 

A Markov chain has period d  if all the states in the chain have period d .   [1] 
    [Total 2] 

(ii) Periodic or aperiodic? 

Chain 1  

This is aperiodic because neither state satisfies the definition of periodic.  From State 1 it is not 
possible to return to State 1 at all, and a return to State 2 will occur after just 1 step. [1] 

Chain 2  

This is periodic with period 2 because a return to each state is possible only in an even number of 
steps.    [1] 

Alternatively, we could explain why State 1 is periodic with period 2, and then use the fact that the 
chain is irreducible to infer that State 2 must have the same periodicity as State 1. [1] 

Chain 3 

A return to State 1 is possible in 3 or 4 or 6 or 7 etc steps.  These numbers are not restricted to a 
multiple of some number greater than 1.  So State 1 is aperiodic.   

Since the chain is irreducible, all the states have the same periodicity, ie they are all aperiodic.    

So the chain is aperiodic. [1] 

Alternatively, we could consider each state separately and explain why it is aperiodic – for State 2 
and State 3, a return is possible in 3 or 4 or 6 or 7 etc steps; a return to State 4 is possible in 4 or 7 
or 8 etc steps.  Again these numbers are not restricted to a multiple of some number greater 
than 1.     [1] 
    [Total 3] 
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Solution X1.3  

The Markov property is introduced in Chapter 1, and used extensively in Chapters 2 to 5. 

(i) Mathematical definition of the Markov property 

The Markov property says that: 

    1 1 2 2( ) | ( ) , ( ) , ..., ( ) , ( ) ( ) | ( )n nP X t A X s x X s x X s x X s x P X t A X s x         

for all times 1 2 ns s s s t      in the time set, all states 1 2, , ..., nx x x  and x  in the state 
space, S , and all subsets A  of S . [2] 

(ii) Proof 

For all times 1 2 ns s s s t      in the time set, all states 1 2, , ..., nx x x  and x  in the state 
space, S , and all subsets A  of S : 

 

 

 
1 1 2 2

1 1 2 2

( ) | ( ) , ( ) , ..., ( ) , ( )

( ) ( ) | ( ) , ( ) , ..., ( ) , ( )

n n

n n

P X t A X s x X s x X s x X s x

P X t X s x A X s x X s x X s x X s x

    

         [1] 

  ( ) ( ) | ( )P X t X s x A X s x         since the process has independent increments  [1] 

  ( ) | ( )P X t A X s x    [1] 

So ( )X t  has the Markov property. 
    [Total 3] 
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Solution X1.4  

This question involves estimating transition probabilities in a Markov chain.  It is based on the 
material in Section 7.1 of Chapter 2. 

(i) Estimated transition probabilities 

The sequence of observations is: 

 SSRCSCCSCRRCSSRCCSCCS 

Using the notation ijn  to denote the number of times that State i  is followed by State j , we 

have: 

 
2 3 2
5 3 1
0 3 1

SS SC SR

CS CC CR

RS RC RR

n n n
n n n
n n n

  
  
  

  [1½] 

The transition probability ijp  is estimated by ˆ ij
ij

ik
k

n
p

n



.  So, for example: 

 
2 2ˆ

2 3 2 7
SS

SS
SS SC SR

np
n n n

  
   

  

Similar calculations lead to the following matrix of estimated transition probabilities: 

 

 
 
 
 
 
 

32 2
7 7 7
5 3 1
9 9 9

3 1
4 40

S C R

S
C
R

   [1½] 

    [Total 3] 

(ii) Probability of a sunny day on 23 July 

We know that 21 July was a sunny day. 

21 July is the last day for which we have data (as it corresponds to the final day in the 3-week 
period). 

The probability that it is sunny on both the 22 and 23 July is estimated to be 
2 2 4
7 7 49
  . [½] 

The probability that it is cloudy on 22 July and sunny on 23 July is estimated to be 
3 5 15
7 9 63
  . [½] 

The probability that it is rainy on 22 July and sunny on 23 July is estimated to be 
2 0 0
7
  . [½] 
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So the estimated probability of a sunny day on 23 July is
4 15 470 0.31973

49 63 147
    . [½] 

    [Total 2]
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Solution X1.5  

This question involves a time-homogeneous Markov jump process.  It is an application of the 
material in Chapter 4. 

(i) Probability 

Let ( )N t  denote the number of breakdowns up to time t .  Then the state space of ( )N t  is the set 
{0, 1, 2, ..., 10} . 

Drawing a transition diagram might help you see what’s going on.  We have: 

0 1 2 3

1
4

1
2 1

... 10

1 1

 

Since we are considering a new boiler, we know that (0) 0N  .  We require  (5) 1P N  , which 

can be calculated using the equation: 

      (5) 1 1 (5) 0 (5) 1P N P N P N       

First of all, we have: 

  
1
45

(5) 0 0.28650P N e 
    [1] 

We can calculate  (5) 1P N   using a differential equation or an integral equation.  Integral 

equations are not covered until Part 2 of the course, but we include this approach here as a valid 
alternative. 

Method 1 – differential equation 

Adopting the usual notation: 

  ( ) ( ) | (0)ijp t P N t j N i    

the forward differential equation for   01( ) 1 ( )P N t p t   is: 

 01 00 01
1 1( ) ( ) ( )
4 2

d p t p t p t
dt

   [1] 

This can be solved using the integrating factor method, by first writing it in the form: 

  01 01 00
1 1( ) ( ) ( )
2 4

d p t p t p t
dt
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For this model, ( ) ( )ii iip t p t  since, once state i  has been left, a return to it is impossible.  So:  

 


  400 00( ) ( )
t

p t p t e  

and the differential equation becomes: 

 


  401 01
1 1( ) ( )
2 4

td p t p t e
dt

 [½] 

Multiplying through by the integrating factor 2
t

e  gives: 

 2 2 401 01
1 1( ) ( )
2 4

t t tde p t e p t e
dt

   [½] 

The LHS can also be written as: 

 2 01( )
td e p t

dt
 
 
 

  

This can be checked using the product rule for differentiation.  

Then integrating both sides of the equation with respect to t , we get: 

 2 401( )
t t

e p t e C   [½] 

where C  is a constant of integration.   

Setting 0t  : 

 0 1 1C C      [½] 

Hence: 

 2 401( ) 1
t t

p t e e  
  

 
   

and: 

  
5 5
2 401(5) 1 (5) 1 0.20442P N p e e  

     
 

 [½] 

Method 2 – integral equation 

 We can write  (5) 1P N   in the following integral form: 

    
5

00 01 110
 stay in state move from  stay in state 1
0 up to time  state 0 to from time  to 

 state 1 at       time 5
   time 

(5) 1 ( ) (5 )

t t

t

P N p t p t dt     [1] 
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For this model:  

 


  400 00( ) ( )
t

p t p t e  [½] 

and:  
   

5
2

11 11(5 ) (5 )
t

p t p t e  [½] 

So: 

 

   5 5
24 2 4

5 5 5
2 4 2 4

5 51 1
4 40 0

5

0

(5) 1

1 0.20442

tt t

t

P N e e dt e e dt

e e e e

 

 

  

   
     

   

 

 [1½] 

as before. 

So the probability that a new boiler will break down more than once in the next 5 years is: 

  (5) 1 1 0.28650 0.20442 0.50908P N       [½] 

    [Total 5] 

A completely different approach is to use a 3-state model where: 

 State 0 = never broken down 

 State 1 = broken down once 

 State 2+ = broken down more than once.   

Then   02(5) 1 (5)P N p   .  We can calculate this using the differential equation: 

  

02 00 02 01 12 02 2 2

00 01 02

01

00 02

( ) ( ) ( ) ( )

1( ) 0 ( ) ( ) 0
2

1 ( )
2

1 1 ( ) ( )
2

d p t p t p t p t
dt

p t p t p t

p t

p t p t

       





  

     



    [2] 

This equation can be solved using the integrating factor method by first writing it in the form: 

   
 

 
     

 
402 02 00

1 1 1( ) ( ) 1 ( ) 1
2 2 2

td p t p t p t e
dt

 [½] 
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Multiplying through by the integrating factor 2
t

e  gives: 

 2 2 2 402 02
1 1( ) ( )
2 2

t t t tde p t e p t e e
dt  

 
   

 
  [½] 

The LHS can also be written as: 

 2 02 ( )
td e p t

dt 
 
 
 

  

This can be checked using the product rule for differentiation. 

Then integrating both sides of the equation with respect to t : 

 2 2 402 ( ) 2
t t t

e p t e e C      [1] 

where C  is a constant of integration.   

Setting 0t  : 

 0 1 2 1C C       [½] 

So: 

 4 202 ( ) 1 2
t t

p t e e 
      

and:  

  
5 5
4 202(5) 1 (5) 1 2 0.50908P N p e e 

        [½] 

    [Total 5] 

(ii) Expected lifetime of a boiler 

For 0, 1, ..., 9i  , the expected holding time in State i  is 1

i
, where i  is the total force out of 

State i .  State i  must be followed by State 1i  .  So the expected lifetime of a boiler is: 

  
9

0

1 4 2 8 1 14
ii 
      years [1] 

Part (ii) cannot be answered using the alternative 3-state model, as this does not explicitly 
consider the 10th breakdown. 
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Solution X1.6  

This question is about estimating transition rates in a time-homogeneous Markov jump process.  It 
is based on the material in Chapter 4. 

(i) Likelihood function 

The likelihood function is: 

        904 112 34 26 2 7L e e         [2] 

Full marks should be awarded if a constant factor has been included or if the equal to symbol has 
been replaced with the proportionality symbol,  . 

(ii) Maximum likelihood estimate  

The log-likelihood function is: 

    ln 904 112 34ln 26ln 2ln 7lnL                  [½] 

The log-likelihood function may also be given as: 

 ln 112 26ln terms that don't involve L        

Differentiating with respect to  : 

 ln 26112L
 


  


 [1] 

Setting this equal to 0 gives: 

 
26ˆ 0.23214

112
    [½] 

    [Total 2] 

(iii) Confidence interval 

Let   denote the maximum likelihood estimator of  .  Since   is asymptotically normally 
distributed, an approximate 95% confidence interval for   is: 

  ˆ 1.96 var    [1] 

Asymptotically, the variance of the estimator is given by the CRLB: 

   2

2

1var
lnLE








 
   

  

The formula for the CRLB is given on page 23 of the Tables. 
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The required second derivative is: 

 
 



2

2 2
ln 26L
 

  

So var( )  is estimated by: 

 
 2262

112
2

2
ˆ

ˆ1 0.0020727
26 26lnL

 



 


  





 [1] 

Hence an approximate 95% confidence interval for   is: 

  0.23214 1.96 0.0020727 0.14291, 0.32138   [1] 

    [Total 3] 
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Solution X1.7  

This question involves a derivation from Chapter 3. 

Consider a time interval of length t h , where h  is a small amount.  The probability that a life 
now aged x  survives for the next t h  years is t h xp .  Splitting the interval into two parts (one 
of length t  years and the other of length h  years) and using the Markov property, we have: 

 t h x t x h x tp p p     [1] 

Now: 

  1 1 ( )h x t h x t x tp q h o h         [1] 

So: 

 (1 ) ( )t h x t x h x t t x x tp p p p h o h         

Rearranging, we see that: 

 

( )t h x t x
t x x t

p p o hp
h h





  

  [1] 

Then letting 0h   gives: 

 t x t x x tp p
t

 


 


  [½] 

since 
0

( )lim 0
h

o h
h

 .  [½] 

We can solve this differential equation by separating the variables: 

 ln
t x

t x x t
t x

p
t p

p t
 


   


  [1] 

Changing notation from t  to s , we have: 

 ln s x x sp
s

 


 


  

Now integrating with respect to s  between the limits 0s   and s t , we obtain: 

  0
0

ln
t

t
s x x sp ds     [1] 

ie: 0
0

ln ln
t

t x x x sp p ds      
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Since 0 1xp   and ln1 0 , this simplifies to: 

  
0

ln
t

t x x sp ds      [½] 

So, taking exponentials gives the result: 

 
0

exp
t

t x x sp ds 
 
  
 
 
  [½] 

    [Total 7] 
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Solution X1.8  

This is another question about Markov chains, based on the material in Chapter 2. 

(i) Transition graph 
 

 

 

 

 

 

 

 

 

     
    [2] 

(ii) Range of values 

The transition matrix will be valid if the entries in each row add up to 1 (which they do) and each 
entry lies in the range [0,1] . 

We can see that the   entries require 0 1   and that the 2  entries require 1 1   .  So 
we must have 0 1  . [½] 

The 21     entry requires 20 1 1     .  Since 0  , it automatically follows that 
21 1    .  However, we need to work out the values of   for which 20 1     .  The 

roots of the quadratic equation 20 1      can be obtained using the quadratic formula: 

 
21 ( 1) 4 ( 1) 1 1 5 0.618  or 1.618

2 2
       
   

 
 [1] 

Since the coefficient of 2  is negative, the graph of   21     has an inverted U shape.  This 
means that it takes positive values between the two roots, ie for the range 1.618 0.618   .  
    [½] 

  

  
  

  

C D

A B
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The 21 2    entries require 20 1 2 1     .  Again, since 0  , it automatically follows 

that 21 2 1    .  However, we need to work out the values of   for which 20 1 2    .  

The roots of the quadratic equation 20 1 2     are: 

 
22 ( 2) 4 ( 1) 1 2 8 0.414  or 2.414

2 2
       
   

 
 [1] 

The graph of 21 2    also has an inverted U shape.  So it takes positive values when  
2.414 0.414   .    [½] 

Putting all of this together, we see that all of the conditions: 

 0 1   

 1.618 0.618    

 2.414 0.414    

must be satisfied.  So we must have 0 0.414  . [½] 
    [Total 4] 

(iii) Irreducible and/or aperiodic? 

The chain is not irreducible since State D is an absorbing state (ie it is impossible to leave State D).  
    [½] 

In the case when 0.414  , every state has an arrow to itself, and so every state is aperiodic (as 
a return is possible in any number of steps). [1] 

In the case when 0.414  , neither State B nor State C has an arrow to itself.  However, a return 
to State B is possible in 2 or 3 or 4 etc steps.  These numbers are not restricted to a multiple of 
some number greater than 1.  So State B is aperiodic.  The same reasoning applies for State C. [1] 

So the chain is aperiodic. [½] 
    [Total 3] 

(iv)(a) Expected number of quarters until rating changes  

If 0.1  , then 21 2 1 0.2 0.01 0.79       .  So the probability that Company XYZ is rated B 
in Quarter 2 is 0.79 and the probability that its rating changes at the end of the first quarter is 
0.21.    [½] 

The probability that the first change happens at the end of the second quarter is 0.79 0.21 . [½] 

Similarly the probability that the first change happens at the end of the third quarter is 
20.79 0.21 , and so on. 

So, the expected number of quarters until the first rating change is: 

 2 3(1 0.21) (2 0.79 0.21) (3 0.79 0.21) (4 0.79 0.21)             [1] 
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We can write this as: 

  2 30.21 1 2 0.79 3 0.79 4 0.79         [½] 

The expression in brackets is of the form 2 31 2 3 4x x x    , where 0.79x  .  Using the 
binomial expansion: 

 2 2 3(1 ) 1 2 3 4x x x x         for 1 1x     

we see that: 

 2 3 2
2

11 2 0.79 3 0.79 4 0.79 (1 0.79)
0.21

           [1] 

So the expected number of quarters until the first rating change is: 

 2
1 10.21 4.76

0.210.21
     [½] 

Alternatively, we could say: 

 

2 3 2 3

2 3

2 3

1 2 0.79 3 0.79 4 0.79 1 0.79 0.79 0.79

0.79 0.79 0.79

0.79 0.79

           

   

  



 







 

Each line on the RHS of the equation immediately above is the sum to infinity of a geometric 

progression.  Using the formula 
1

a
r

 where a  denotes the first term and r  denotes the common 

ratio, we see that: 

 
 

          
  

   

    



 



2
2 3

2

2

1 0.79 0.791 2 0.79 3 0.79 4 0.79
1 0.79 1 0.79 1 0.79

1 1 0.79 0.79
0.21

1 1
0.21 1 0.79

1
0.21

  

as before.   [1] 

Another alternative is to let: 

 2 31 2 0.79 3 0.79 4 0.79S          (*) 
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Then: 

 2 3 40.79 0.79 2 0.79 3 0.79 4 0.79S           (†) 

Subtrac ng (†) from (*) gives: 

 2 3 4(1 0.79) 1 0.79 0.79 0.79 0.79S         

The terms on the RHS form a geometric progression with 1a   and 0.79r  , so: 

 
1 1

1 0.79 0.21
RHS  


  

and hence: 

 
2

1

0.21
S     [1] 

(iv)(b) Probability that first change is an upgrade 

The probability that the first rating change is an upgrade is the probability that Company XYZ 
moves to a rating of A when it first changes rating.  This is: 

 
2

(move to State A) 0.1 10(move to State A|leave State B) 0.47619
(leave State B) 0.21 212

PP
P


 

    


    [1] 
Alternatively, we can calculate this probability as follows: 

 

2

(upgrade at end of Q1) (stay in B in Q2, and upgrade at end of Q2)

(stay in B in Q2 and Q3, and upgrade at end of Q4)

0.1 0.79 0.1 0.79 0.1

0.1
1 0.79

0.47619

P P

P







     










  [1] 
    [Total 5] 
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Solution X1.9  

This question involves turning a non-Markov process into a Markov process by increasing the 
number of states.  It is an application of the material in Chapter 2. 

(i) Why process is not Markov 

If a policyholder is on Level 2, the probability of moving to Level 4 depends on the level the 
policyholder was on last year.  Hence the process is not Markov. [1] 

(ii) New process 

If a policyholder on Level 2 has a claim-free year, then next year this policyholder will be on either 
Level 3 or Level 4, depending on whether or not the previous year was claim-free.  So we need to 

split Level 2 into two levels.  Let’s call these Level 2  (moving up from Level 1, ie the previous 

year was claim-free) and Level 2  (moving down from Level 3, ie the previous year was not 

claim-free).  If a policyholder on Level 2  has a claim-free year, then next year this policyholder 

will move to Level 4 (ie move up two levels).  If a policyholder on Level 2  has a claim-free year, 
then next year this policyholder will move up to Level 3 (ie move up one level).  This new process 
is Markov and has 5 states. [2] 

(iii) Transition graph for Y(t) 

Using the labelling system defined in part (ii), the transition graph is as follows: 

1

2
+

2
–

3 4 0.8

0.8

0.8

0.2

0.8

0.2

0.2

0.8

0.2

0.2

   [2] 
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(iv) Transition matrix 

The one-step transition matrix is: 

 

1 2 2 3 4
1 0.2 0.8 0 0 0

2 0.2 0 0 0 0.8
0.2 0 0 0.8 02
0 0 0.2 0 0.83
0 0 0 0.2 0.84

 





 
 
 
 
 
 
  

 [1] 

(v) Sufficient conditions for unique stationary distribution 

The chain has a finite number of states, 5 …. [½] 

… so it has at least one stationary distribution. [½] 

The chain is also irreducible as every state can be reached from every other state … [½] 

… so it has a unique stationary distribution. [½] 

Because the chain is irreducible, the states will either all be aperiodic or will all have the same 
period.  State 1 is aperiodic since it is possible to stay in state 1 in successive time periods.   So all 
the states are aperiodic. [½] 

Since the chain is aperiodic as well as having a finite state space and being irreducible, the process 
with settle down to its unique stationary distribution in the long run. [½] 
    [Total 3] 

(vi) Probability of being on Level 2 in the long run 

The stationary distribution is the vector of probabilities   that satisfies the equation: 

 P    

where P  is the transition matrix from part (iv).  Writing out the system of equations in full, we 
have: 

(1) 1 12 20.2 0.2 0.2        

(2) 1 20.8    

(3) 3 20.2    

(4) 4 320.8 0.2      

(5) 3 4 420.8 0.8 0.8        [1] 
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We will discard equation (1) and replace it with: 

(6)  1 3 42 2 1             

We will now use equations (2) to (5) to express all the probabilities as multiples of 2  .  

Rearranging (3), we see that: 

  3 25    

Using this in (4) gives: 

  
 

4 3 2

2 2

2

5 0.8

5 5 0.8

21

  

 





 



 

 



 

Then from (5): 

 3 42

2 2

2

0.8 0.8 0.2

0.8(5 ) 0.2(21 )

0.2

  

 





 



  

  



 

 2 20.25     

and from (2): 

 1 2 2 2
1 1.25(0.25 ) 0.3125

0.8
         [2] 

We can now use (6) to obtain the value of 2  : 

 

  2

2

0.3125 0.25 1 5 21 1

16
441









    

   [1] 

In addition: 

 2 2
40.25

441
      

So the long-run probability of being on Level 2 is: 

  2 2
20
441

     [1] 
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There is no need to work out the complete stationary distribution as we are only interested in the 
long-run probability of being on 10% discount. 
    [Total 5] 
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Solution X1.10  

This question involves an application of the material in Chapter 4 on time-homogeneous Markov 
jump processes. 

(i) Generator matrix and transition diagram 

Let jT  denote the holding time in State j , , , ,j A F I O .  Then each jT  is an exponential random 

variable.  Let j  denote the exponential parameter for jT , so that 1( )
j

jE T  .  j  also represents 

the total force of transition out of State j . 

We are told that the expected waiting time in State A is 1 hour.  So 1A   per hour.    

On leaving State A, a patient enters one of State I, State O or State F.   

The probability of moving to State I is 1 in 10.  So 1 1
10 10AI A    per hour.   

The probability of moving to State O is 5 in 10.  So 5 1
10 2AO A    per hour.   

The remainder of the total force out of State A must be directed towards State F.  So 
1 1 2

10 2 51AF      per hour. [1] 

We can use this information to begin to construct the transition diagram: 

 

1
10

2
5

1
2

O

I

A F

 

Now consider transitions out of State F.  The expected holding time in State F is 3 hours.  So F , 

the total force of transition out of State F, is 1
3  per hour.   

On leaving State F, a patient enters one of State D, State I or State O.   
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The corresponding probabilities are 50%, 25% and 25%.  So: 

 

1 1
3 6

1 1
3 12

1 1
3 12

0.5  per hour

0.25  per hour

0.25  per hour

FD

FI

FO







  

  

     [1] 

Adding these transitions to the diagram, it becomes: 

 

1
10

2
5

1
12

1
12

1
2

O

D

I

A F

1
6

 

The expected holding time in State O is 2 hours, after which the patient is discharged.  So 
1
2OD   per hour.  [½] 

The expected holding time in State I is 60 hours, after which the patient is discharged.  So 
1

60ID   per hour.  [½] 
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So the completed transition diagram is as follows: 

 

1
10

2
5

1
12

1
12

1
2

1
2

O

D

I

A F

1
60

1
6

 [1] 

Markers: Please award 4 marks for the correct diagram.  Students do not have to explain how the 
rates are calculated in order to obtain the marks. 

The generator matrix is: 

 

2 1 1
5 10 2
1 1 1 1
3 12 12 6

1 1
60 60

1 1
2 2

1 0

0

0 0 0

0 0 0

0 0 0 0 0

A F I O D

A
F
I
O
D

 
 
 
 
 
 
 
 
  

 [1] 

    [Total 5] 

(ii) Proportion receiving in-patient treatment 

Patients will end up in State I  either by going directly from State A  or by going via State F .  So 
the probability of eventually reaching state I  is: 

 0.1 0.4 0.25 0.2     [1] 

(iii)(a) Probability that patient is yet to be classified by a junior doctor 

This is the (occupancy) probability that the patient is still in State A at time t  hours: 

     1( ) t t
AAp t e e     [1] 
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(iii)(b) Probability that patient is undergoing further investigation 

Here we want an expression for ( )AFp t .  We can determine this from the forward differential 
equation: 

  2 1
5 3( ) ( ) ( )AF AA AF

d p t p t p t
dt

      [1] 

where ( ) ( ) t
AA AAp t p t e   since it is impossible to return to State A once it has been left. 

We can solve this using the integrating factor method.  We first need to rewrite the equation as: 

 1 2
3 5( ) ( ) t

AF AF
d p t p t e
dt

   

Then multiplying through by the integrating factor /3te , we obtain: 

 /3 /3 2 /31 2
3 5( ) ( )t t t

AF AF
de p t e p t e
dt

   

The LHS can also be written as: 

  /3 ( )t
AF

d e p t
dt

  

Integrating both sides of this equation with respect to t : 

 /3 2 /33
5( )t t

AFe p t e C    [1] 

where C  is a constant of integration. 

When 0t  , ( ) 0AFp t  .  So: 

  3
5C   

and:  /33
5( ) ( )t t

AFp t e e    [1] 

    [Total 4] 

Alternatively, we could use an integral approach.  Integral equations are not covered until Part 2 
of the course, but we include this approach here as a valid alternative. 

A patient who is in state F  after t hours must have started in State A at time 0, remained in state 
A  until some earlier time s , say, then made the transition to state F  at time s  and remained in 
state F  from time s  to time t .  The notation that represents this sequence of events is: 

 
1
3( )2

5( ) ( ) t ss
AFAA FFp s p t s e e        [1] 
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Since s  can take any value between 0 and t ,  we need to integrate with respect to s  between 
0s   and s t .  So the required probability is: 

 
1 1 2 1 2 1
3 3 3 3 3 3( ) 3 32 2 2

5 5 5 2 50 0
(1 ) ( )

t tt s t s t t ts te e ds e e ds e e e e                 [2] 

(iv) Expected time until discharge  

Let jm  denote the expected time until discharge for a patient currently in State j , , , ,j A F I O .  

We have to calculate the value of Am . 

A patient is expected to spend 1 hour in State A before moving on to one of States F, I or O.  The 
corresponding probabilities are 0.4, 0.1 and 0.5.  So: 

 1 0.4 0.1 0.5A F I Om m m m      [1] 

We know that 60Im   hours and 2Om  hours. 

A patient in State F is expected to remain in that state for 3 hours before moving to one of 
States I, O or D.  The corresponding probabilities are 0.25, 0.25 and 0.5.  So: 

 3 0.25 0.25 3 0.25 60 0.25 2 18.5F I Om m m         hours [1] 

and hence: 

 1 0.4 18.5 0.1 60 0.5 2 15.4Am         hours [1] 
    [Total 3] 

(v) Is a time-homogeneous model appropriate? 

By using a time-homogeneous model, we are assuming that the transition rates (and hence 
expected waiting times and proportions of patients classified in each category) are constant over 
time.     [1] 

This is unlikely to be the case in practice as the department may be particularly busy at weekends 
or during the winter months, resulting in longer waiting times for patients.  Also, the periods of 
time for treatments and the proportion of patients classified in each category may change over 
time with medical advances or changes in medical guidelines.  So a time-inhomogeneous model is 
likely to be more appropriate. [1] 
    [Total 2] 
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Solution X2.1  

This question is about curtate future lifetime, which is introduced in Chapter 6. 

The curtate expectation of life of a new-born insect is: 

 2 3
0 0

1 1

k
k

k k
e p e e e e   

 
   

 
          [1] 

This is the sum to infinity of a geometric progression with first term a e   and common ratio 

r e  .  Using the formula 
1

a
r

 for the sum to infinity, we see that: 

 0
1

ee
e










   [1] 

    [Total 2] 

Solution X2.2  

This is a survival/death probability question, based on the material in Chapter 6. 

The probability that the life dies between exact age 79 and exact age 82 is: 

 6 73 3 79 6 73 3 79(1 )p q p p    [½] 

Breaking up the probability 6 73p  at age 75 (as the force of mortality changes at that age), we 
have: 

 2 0.02 4 0.04 0.2
6 73 2 73 4 75p p p e e e         [1] 

Similarly, breaking up the probability 3 79p  at age 80, we have: 

 0.04 2 0.07 0.18
3 79 79 2 80p p p e e e        [1] 

So the required probability is: 

 
0.2 0.18(1 ) 0.13487e e     [½] 

Markers: Please give credit for other valid approaches, eg calculating the probability as: 

 6 73 79 7 73 2 80p q p q  
   [Total 3] 
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Solution X2.3  

This question is also based on material from Chapter 6. 

(i)(a) Survival function 

The survival function is defined as follows: 

 ( ) ( )x xS t P T t    [1] 

(i)(b) Force of mortality 

In terms of probabilities involving xT : 

 
0

( | )lim x x
x t

h

P T t h T t
h

 


  
   [1] 

    [Total 2] 

(ii) Force of mortality under the Weibull model 

Using the formula:  

 ln ln ( )x t t x xp S t
t t

 
 

   
 

 [1] 

we see that, for the Weibull model: 

 1( )x t t t t
t t

       


 
    

 
 [1] 

    [Total 2] 

The formula ln ( )x t xS t
t

 


 


 can be derived from the expression given in (i)(b) as follows: 

 

0 0

0 0

0 0

( | ) (  and )lim lim
( )

( ) ( ) ( )lim lim
( ) ( )

( ) ( ) ( ) ( )1lim lim
( ) ( )

1 ( ) ln ( )
( )

x x x x
x t

h h x

x x x
h hx x

x x x x
h hx x

x x
x

P T t h T t P T t h T t
h hP T t

P t T t h P T t P T t h
hP T t hP T t

S t S t h S t h S t
h S t S t h

S t S t
S t t t
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 Another way of obtaining the expression for x t   is to compare the general formula 

0
exp

t
t x x sp ds 

   
   (which appears on page 32 of the Tables) with the given survival function.  

Doing this, we see that: 

   

  0

0

exp exp
t

x s

t
x s

t ds

ds t





 

 





    
 

 



  [1] 

Differentiating both sides with respect to t  gives the same answer as above. [1] 

(iii) Expected value 

When 1  , x t   .  Since the force of mortality is constant, the random variable xT  is 

exponentially distributed with parameter  . So 
1( )xE T


 . [1]  

Another way to deduce that the distribution of xT  is exponential is to compare the survival 
functions for the Weibull and exponential distributions: 

Weibull: ( ) exp( )xS t t e      when 1    

Exponential: ( )xS t e    

These have the same form, so  ( )xT Exp   when 1   and hence 
1( )xE T


 . [1] 

The expected value can also be derived by integration: 

 
0 0 0 0

1( ) ( )
t

t
x t x x

eE T p dt S t dt e dt



 

   
  

     
  

     [1] 

  

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 4 CS2: Assignment X2 Solutions 

© IFE: 2019 Examinations The Actuarial Education Company 

Solution X2.4  

This question is based on material covered in Chapters 4 and 5. 

(i)(a) Definition of a Markov jump process 

A Markov jump process is a stochastic process with a continuous time set and a discrete state 
space that satisfies the Markov property.   [1] 

The Markov property says that the past history of the process is irrelevant.  It is only the current 
state that affects the transition probabilities. [1] 

Alternatively, we could define the Markov property mathematically.  The process ( )X t has the 
Markov property if: 

    1 1 2 2( ) | ( ) , ( ) , ..., ( ) , ( ) ( ) | ( )n nP X t A X s x X s x X s x X s x P X t A X s x         

for all times 1 2 ns s s s t      in the time set, all states 1 2, , ..., nx x x  and x  in the state 
space, S , and all subsets A  of S . [1] 

(i)(b) Condition needed for a Markov jump process to be time-homogeneous 

A Markov jump process is time-homogeneous if its transition probabilities  |t sP X j X i   

depend only on the length of the time interval t s . [1] 
    [Total 3] 

Alternatively, we could say that a Markov jump process is time-homogeneous if its transition rates 
are constant, ie they do not vary over time.   [1] 

(ii)(a) MLEs of the transition rates in a time-homogeneous Markov jump process 

In the time-homogeneous case, the transition rates ij , i j , are estimated by: 

 ˆ ij
ij

i

n
t

   

where ijn  denotes the observed number of transitions from State i  to State j , and it  denotes 

the total observed waiting time in state i .   [1] 

In addition: 

 ˆ ˆii ij
j i

 


    [½] 

(ii)(b) Difficulties in estimating the rates for a time-inhomogeneous process 

In the time-inhomogeneous case, it is impractical to estimate ( )ij t  for all values of t  since this 

would require a huge amount of calculation and a huge amount of data.   [½] 
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A possible procedure is to divide the time interval into subintervals, assume that the transition 
rates are constant over each subinterval, and estimate the transition rates for each subinterval 
using the procedure described above.   [1] 

However, our estimates would be based on a much smaller amount of data, compared to the 
time-homogeneous case, and would be less reliable. [½] 

Alternatively, we could select an appropriate functional form for ( )ij t  and use the data to 

estimate the relevant parameters.  This is only possible if we have an idea of what kind of formula 
would be appropriate.  [½] 
    [Total 4] 
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Solution X2.5  

This question is an application of a time-inhomogeneous Markov jump process.  These processes 
are covered in Chapter 5. 

(i) Transition diagram 

The transition diagram for this model is as follows: 

 

1: not 
suffering 

from blight

2: suffering 
from blight

3: Dead 

 

 

 [2] 

(ii) Expressions involving transition rates 

(a) 11( , )p x x t  

11( , )p x x t  is the probability that a plant will be in State 1 at exact age x t  given that it is in 
State 1 at exact age x .  Since a return to State 1 is impossible, this is an occupancy probability, so: 

  11 11
0

( , ) ( , ) exp ( ) ( )
t

p x x t p x x t x s x s ds 
 
        
 
 
   [2] 

Alternatively, we could write: 

  11( , ) exp ( ) ( )
x t

x
p x x t s s ds 

 
    
 
 
   [2] 

(b) 22( , )p x x t  

This is another occupancy probability: 

 22 22
0

( , ) ( , ) exp ( )
t

p x x t p x x t x s ds
 
      
 
 
   [1] 

( )x

( )x   ( )x
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Alternatively, we could write: 

 22( , ) exp ( )
x t

x
p x x t s ds

 
   
 
 
   [1] 

    [Total 3] 

(iii) Integral expression 

12( , )p x x t  is the probability that a plant will be in State 2 at exact age x t  given that it is in 
State 1 at exact age x .  For this to happen, the plant must remain in State 1 until exact age x s , 
say, then transition from State 1 to State 2 at exact age x s , and remain in State 2 from exact 
age x s  to exact age x t .  Since s  can take any value between 0 and t , we have: 

 12 11 22
0

( , ) ( , ) ( ) ( , )
t

p x x t p x x s x s p x s x t ds        [2] 

Alternatively, we could write: 

 12 11 22( , ) ( , ) ( ) ( , )
x t

x
p x x t p x u u p u x t du


     [2] 
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Solution X2.6  

Types of censoring are discussed at the start of Chapter 7. 

(i) Differences between random censoring and Type I censoring 

Both random censoring and Type I censoring are examples of right censoring.  Right censoring 
occurs when a life exits the investigation for a reason other than death.   [½] 

With random censoring, the censoring times are not known in advance – they are not chosen by 
the investigator and are random variables.   [1] 

An example of random censoring in life insurance is the event of a policyholder choosing to 
surrender a policy.    [1] 

Type I censoring occurs when the censoring times are known in advance, ie the censoring times 
are chosen by the investigator.   [1] 

An example of Type I censoring is when observation ceases for all those still alive at the end of the 
period of investigation.   [1] 
    [Maximum 4] 

(ii) Non-informative censoring 

Censoring is non-informative if it gives no information about the future patterns of mortality by 
age for the censored lives.   [1] 

In the context of this investigation, non-informative censoring occurs if at any given time, lives are 
equally likely to be censored regardless of their subsequent force of mortality.  This means that 
we cannot tell anything about a person’s mortality after the date of the censoring event from the 
fact that they have been censored.   [1] 

In this investigation withdrawals might be informative, since lives that are in better health may be 
more likely to surrender their policies than those in a poor state of health.  Lives that are censored 
are therefore likely to have lighter mortality than those that remain in the investigation.   [1] 
    [Total 3] 

Markers: Please give credit for any suitable examples. 
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Solution X2.7  

Gompertz’ Law is covered at the end of Chapter 6. 

(i) Age range 

The Gompertz model is appropriate at ages over about 30. [1] 

Gompertz’ Law states that x
x Bc  , so it is appropriate for ages at which the force of mortality is 

increasing exponentially. 

(ii) Survival probability 

The probability of survival from exact age x  to exact age x t  is: 

 
0

exp
t

t x x sp ds 
      [½] 

Under Gompertz’ Law: 

 x s
x s Bc 
   

So: 

 ln
0 0 0 0
t t t tx s x s x s c

x s ds Bc ds Bc c ds Bc e ds 
        [½] 

Integrating gives: 

 
ln

0 0
0

1
ln ln ln

ts c x xtt x s t
x s

e Bc Bcds Bc c c
c c c

 
 

             
   [1] 

Using the formula ( )AB A Be e , we have: 

 
 1

exp 1 exp 1 exp
ln ln ln

x tc cx
t x t

t x
Bc B Bp c c c

c c c

                              
 [1] 

    [Total 3] 

(iii) Values of B and c 

We have: 

 60 5
5 60 0.912 exp ( 1)

ln
Bp c c
c

      
  

 60 10
10 60 0.804 exp ( 1)

ln
Bp c c
c

      
 [½] 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 10 CS2: Assignment X2 Solutions 

© IFE: 2019 Examinations The Actuarial Education Company 

Taking logs: 

 60 5( 1) ln0.912
ln
B c c
c
      

 60 10( 1) ln0.804
ln
B c c
c
      [½] 

Dividing these equations: 

 
5

10
1 ln0.912

ln0.8041
c
c





  [1] 

Now, using the hint: 

 
5

5 5 5
1 1 ln0.912

ln0.804( 1)( 1) 1
c

c c c


 
  

  [½] 

 
1/5ln0.804 1 1.064721

ln0.912
c      

 
  [½] 

and hence: 

 60 5
ln0.912 ln1.064721 0.000364

1.064721 (1.064721 1)
B  
 


  [1] 

    [Total 4] 
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Solution X2.8  

Differential equations for time-inhomogeneous Markov jump processes are covered in Chapter 5. 

(i) Derivation of differential equation 

Consider the interval from age x  to age x t h  .  Using the Markov assumption… [½] 

… we can write: 

(*) 21 21 11 22 21 23 31
t h x t x h x t t x h x t t x h x tp p p p p p p       [1] 

We now assume that for any two distinct states i  and j , and 0t  : 

 ( )ij ij
h x t x tp h o h    

and the probability that a life makes two or more transitions in a short time interval of length h  is 
( )o h .      [1] 

So we can write: 

 21 21 ( )h x t x tp h o h    

 31 31 ( )h x t x tp h o h    

and: 

 11 12 13 14 12 141 1 ( )h x t h x t h x t h x t x t x tp p p p h h o h               [1] 

Since the probability of more than one transition in a short time interval of length h  is ( )o h , the 
13

h x tp   term is included in the ( )o h  term in the equation above. 

Substituting these expressions into (*) gives: 

  21 21 12 14 22 21 23 311 ( )t h x t x x t x t t x x t t x x tp p h h p h p h o h              [½] 

We can rearrange this to get: 

  
21 21

22 21 23 31 21 12 14 ( )t h x t x
t x x t t x x t t x x t x t

p p o hp p p
h h

   
   


      [½] 

Finally, letting 0h  , we obtain the result: 

  21 22 21 23 31 21 12 14
t x t x x t t x x t t x x t x tp p p p

t
      


   


  

since 
0

( )lim 0
h

o h
h

 .  [½] 

    [Total 5] 
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(ii) Other forward equations 

The corresponding differential equations for 23
t xp  and 32

t xp  are: 

  23 22 23 23 31 34
t x t x x t t x x t x tp p p

t
    


  


 [1] 

and: 

  32 31 12 32 21 23 24
t x t x x t t x x t x t x tp p p

t
      


   


 [2] 

    [Total 3] 

These differential equations follow the usual pattern.  For example, in the first one, we are 
thinking about going from State 2 to State 3, and we can construct the RHS of the equation as 
follows: 

 Imagine that the life is in State 2 at time 0 (ie at age x ).   

 If the life is in State 2 at time t  (the probability of this is 22
t xp ), then to get into State 3 at 

age x t , it must instantaneously go from State 2 to State 3 at age x t .  So we multiply 

by 23
x t  . 

 If the life is in State 3 at time t  (probability 23
t xp ), then it must stay there.  We need the 

31
x t   term to ensure that it doesn’t move to State 1 at age x t , and the 34

x t   to 
ensure that it doesn’t move to State 4.   

 We don’t need a term containing 21
t xp  since going from State 1 to State 3 requires two 

transitions, and we are assuming that we can have only one transition in any given 
instant. 

 We don’t need a term containing 24
t xp  either since it is impossible to go from State 4 to 

State 3.   
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Solution X2.9  

This question involves the Kaplan-Meier model, which is described in Chapter 7. 

(i) Kaplan-Meier estimate 

Let ( )S t  denote the probability that a tart has not been sold by time t , where time is measured in 
hours since 8am (the opening time of the shop).  The Kaplan-Meier estimate of ( )S t  is: 

 ˆ( ) 1
j j

j j j

j jt t t t

d n d
S t

n n 

   
        

   
    

where: 

 jt  is the j th sale time 

 jd  is the number of tarts sold at time jt   

 jn  is the number of tarts for sale just before time jt . 

We have: 

j   jt  jn  jd  j j

j

n d
n


 

1 0.5 16 1 15
16   

2 2 15 2 13
15   

3 4.5 12 4 8
12   

4 6 7 3 4
7   

5 7 4 2 2
4   

    [2] 

So the Kaplan-Meier estimate of the probability that a tart has not been sold before closing time, 
ie 4pm,  is: 

 15 13 8 134 2
16 15 12 7 4 84

ˆ(8)S        [1] 

and hence the Kaplan-Meier estimate of the probability that a tart is sold before closing time is: 

 71
84

ˆˆ(8) 1 (8) 0.84524F S      [1] 

    [Total 4] 

Markers: Please award full marks for the correct answer.  The figures do not have to be set out in a 
table. 
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(ii) Sketch of hazard function 

Under the Kaplan-Meier model, the estimated hazard function is given by: 

 ˆ j
j

j

d
n

    at time jt   

and is zero at all times at which a sale does not take place.  So we have: 

 

1
16
2

15
4

12
3
7
2
4

for 0.5

for 2

for 4.5ˆ( )
for 6

for 7

0 otherwise

t

t

t
h t

t

t

 

 

  
 

 



 [2] 

A sketch of this function is given below: 

 
2 4 6 8

0.1

0.2

0.3

0.4

0.5

0.6

t

estimated 
hazard

 [2] 
    [Total 4] 
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Solution X2.10  

This question involves the Nelson-Aalen model, which is described in Chapter 7. 

(i) Nelson-Aalen estimate of cumulative hazard 

We first have to work out the length of time for which each patient was observed.  These figures 
are given in the table below. 

Patient number 
Length of observation 

period (months) 
Reason for exit 

1 11 Censored  

2 6 Death  

3 9 Censored  

4 12 Censored  

5 5 Censored  

6 2 Death  

7 12 Censored  

8 8 Death  

9 6 Death  

10 7 Censored  

    [1] 

So we have: 

Death times: 2, 6 (two deaths) and 8 

Censoring times: 5, 7, 9, 11, 12 (two lives) 

No life is observed for more than 12 months. 

The calculations for the cumulative hazard function are summarised in the following table: 

jt  jn  jd  ˆ j
j

j

d
n

   

2 10 1 0.1 

6 8 2 0.25 

8 5 1 0.2 

    [2] 
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The Nelson-Aalen estimate of the cumulative hazard function is then given by: 

 

0 for 0 2
0.1 for 2 6ˆˆ ( )
0.35 for 6 8
0.55 for 8 12

j

j
t t

t
t

t
t
t




 
       
  

  [1] 

    [Total 4] 

Markers: Please award full marks for the correct answer.  The figures do not have to be set out in a 
table. 

(ii) Estimate of survival function 

The Nelson-Aalen estimate of the survival function is: 

  
1 for 0 2
0.90484 for 2 6ˆˆ( ) exp ( )
0.70469 for 6 8
0.57695 for 8 12

t
t

S t t
t
t

 
       
  

 [2] 

(iii) Confidence interval for survival probability 

The variance of the Nelson-Aalen estimator of the integrated hazard function is given by: 

 
 

3var ( )
j

j j j

t t j

d n d
t

n


      

So: 

 3 3 3
1 9 2 6 1 4var (10) 0.064438
10 8 5
        

  [1] 

An approximate 95% confidence interval for (10)  is: 

  

ˆ (10) 1.96 var (10) 0.55 1.96 0.064438

0.55 0.49754

0.05246, 1.04754

      

 





 [2] 

So an approximate 95% confidence interval for (10)S  is: 

    1.04754 0.05246, 0.3508, 0.9489e e    [1] 

    [Total 4] 
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(iv) Comment 

As the confidence interval constructed in (iii) contains the value 0.9, there is insufficient evidence 
(at the 2.5% significance level) to reject the hypothesis that at least 90% of patients survive for 10 
months or more after the operation. [2] 

The significance level here is 2.5% because the 95% confidence interval in part (iii) has 2.5% in 
each tail.  The hypothesis here refers to ‘at least 90%’, which is one-sided. 
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( )t ( )t ( )t ( )t

Solution X2.11  

This question on a time-inhomogeneous Poisson process is an application of the material in 
Chapter 5. 

(i) Transition diagram 

The transition diagram for a time-inhomogeneous Poisson process with rate ( )t  is: 

 

0 1 2 3 ...

    [2] 

(ii)(a) Matrix form of differential equations 

The matrix form of the Kolmogorov forward differential equations for a time-inhomogeneous 
Markov jump process is: 

 ( , ) ( , ) ( )P s t P s t A t
t





  

where ( , )P s t  is the matrix of transition probabilities and ( )A t  is the generator matrix at time t . 

So, for this model, the matrix form of the forward differential equations is: 

 

00 01 02

11 12

22

00 01 02

11 12

22

( , ) ( , ) ( , )
0 ( , ) ( , )
0 0 ( , )

( , ) ( , ) ( , ) ( ) ( ) 0
0 ( , ) ( , ) ( ) ( )
0 0 ( , ) ( ) ( )

0

p s t p s t p s t
p s t p s t

p s tt

p s t p s t p s t t t
p s t p s t t t

p s t t t

 
 

 

 
 

  
 
 
 

  
    
  
  
  





   





    

 

    [2] 

The matrix form of the Kolmogorov backward differential equations for a time-inhomogeneous 
Markov jump process is: 

 ( , ) ( ) ( , )P s t A s P s t
s
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For this model, we have: 

 

00 01 02

11 12

22

00 01 02

11 12

22

( , ) ( , ) ( , )
0 ( , ) ( , )
0 0 ( , )

( ) ( ) 0 ( , ) ( , ) ( , )
( ) ( ) 0 ( , ) ( , )

( ) ( ) 0 0 ( , )
0

p s t p s t p s t
p s t p s t

p s ts

s s p s t p s t p s t
s s p s t p s t

s s p s t

 
 

 

 
 

  
 
 
 

  
     
  
  
  





   





    

  

    [2] 

(ii)(b) Component form 

For 0 i j  , the forward differential equation is: 

 , 1( , ) ( , ) ( ) ( , ) ( )ij i j ijp s t p s t t p s t t
t

 


 


  [1] 

The terms on the RHS of the equation above can be obtained from the matrix expression 

( , ) ( , ) ( )P s t P s t A t
t





 by multiplying the i th row of the matrix ( , )P s t  by the j th column of the 

matrix ( )A t . 

Alternatively, we could think about this as follows.  Take the probability that the process goes from 
State i  at time s  to State 1j   at time t , and multiply this by the force of transition from State 

1j   to State j  at time t .  Then add the probability that the process goes from State i  at time s  
to State j  at time t , multiplied by the force of transition that keeps the process in State j  at time 
t , ie ( )t .  (These are the only non-zero terms.) 

The corresponding backward differential equation is: 

 

1,

1,

( , ) ( ) ( , ) ( ) ( , )

( ) ( , ) ( ) ( , )

ij ij i j

ij i j

p s t s p s t s p s t
s

s p s t s p s t

 

 





      

    [1] 

    [Total 6] 

The terms on the RHS of the equation above can be obtained from the matrix expression 

( , ) ( ) ( , )P s t A s P s t
s


 


 by multiplying the i th row of the matrix ( )A s  by the j th column of the 

matrix ( , )P s t . 
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Alternatively, we could think about this as follows.  Start with the force of transition that keeps the 
process in State i  at time s , ie ( )s , and multiply this by the probability that the process goes 
from State i  at time s  to State j  at time t .  Then add the force of transition from State i  to 
State 1i   at time s  multiplied by the probability that the process goes from State 1i   at time s  
to State j  at time t .  (There are no other non-zero terms.)  Finally, since the process is 
time-inhomogeneous and this is a backward differential equation, we include an extra factor of 

1  in the RHS. 

(iii)(a) Occupancy probability 

The probability that the process stays in State 1 from time 5 to time r  is: 

 11
5 5

(5, ) exp ( ) exp 0.01( 2)
r r

p r t dt t dt
   
       
   
   
    [1] 

Now: 

 2 2 2 2

55

1 1 1 1( 2) 2 2 5 2 5 2 22.5
2 2 2 2

r r
t dt t t r r r r                            

So: 

  2 2
11

1(5, ) exp 0.01 2 22.5 exp 0.005 0.02 0.225
2

p r r r r r
             

  [1] 

(iii)(b) Probability that the process is in State 2 at time 10 

The probability that the process is in State 2 at time 10 given that it is in State 1 at time 5 can be 
written in integral form as follows: 

 
10

12 11 22
5

(5,10) (5, ) ( ) ( ,10)p p r r p r dr    [1] 

The factors in the integrand represent the probability that the process stays in State 1 until time r , 
transitions from State 1 to State 2 at time r , and then stays in State 2 from time r  to time 10.  
Integrating over all possible values of r  (ie from 5 to 10) gives the required probability. 

From part (iii)(a), we know that: 

  2
11(5, ) exp 0.005 0.02 0.225p r r r      
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An expression for 22( ,10)p r  can be derived in a similar way: 

  

10

22

10

10
2

2

2

( ,10) exp ( )

exp 0.01( 2)

1exp 0.01 2
2

1exp 0.01 50 20 2
2

exp 0.005 0.02 0.7

r

r

r

p r t dt

t dt

t t

r r

r r


 
  
 
 

 
   
 
 

            

        
  

  





  [1] 

So: 

 

 

2 210
0.005 0.02 0.225 0.005 0.02 0.7

12
5

10
0.475

5

10
0.475 2

5

0.475

0.475

(5,10) 0.01( 2)

0.01 ( 2)

10.01 2
2

0.01 50 20 (12.5 10)

0.01 47.5

0.29540

r r r rp e r e dr

e r dr

e r r

e

e

    









 

 

    

     

 







 [1] 
    [Total 5] 

Alternatively, you might notice that: 

 
10 10

11 22
5 5

(5, ) ( ,10) exp ( ) exp ( ) exp ( )
r

r
p r p r t dt t dt t dt  

     
         
     
     
     [1] 
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Then, since: 

 
1010 10

2

55 5

1( ) 0.01( 2) 0.01 2 0.475
2

t dt t dt t t           
    [1] 

it follows that: 

 
10 10

0.475 0.475
12

5 5
(5,10) 0.01( 2) 0.01 ( 2) 0.29540p e r dr e r dr         [1] 

as before. 

 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2: Assignment X3 Solutions Page 1 

The Actuarial Education Company © IFE: 2019 Examinations 

Solution X3.1  

This question covers graduation tests and is based on the material in Chapter 10. 

Here we have: 

 1n   number of positive deviations 12   

 2n  number of negative deviations 18   [½] 

From page 189 of the Tables, the critical value for this test is 4.  This means that the data will fail 
the test if there are 4 or fewer runs of positive deviations. [1] 

The data have only just passed the test, so there must be 5 runs of positive deviations. [½] 
    [Total 2] 

Solution X3.2  

The form of the partial likelihood function for a Cox regression model is covered in Chapter 8. 

From the given data we see that Patient 1 (a smoker) dies first, and at time 3.  Since there were 2 
smokers and 4 non-smokers in the at-risk group just before time 3, the contribution to the partial 
likelihood from the first death is:  

 
2 4

e
e



 
  [1] 

The second life to die is Patient 6 (a non-smoker).  Just before this death, there were 1 smoker and 4 
non-smokers at risk.  So the contribution to the partial likelihood from the second death is: 

 1
4e 

   [1] 

The third life to die is Patient 3 (a non-smoker).  Just prior to this death there are 1 smoker and 2 
non-smokers at risk.  Note that Patient 5 is censored at time 8, so is no longer part of the at-risk 
group.  The contribution to the partial likelihood from this death is therefore: 

 1
2e 

   [1] 

So the partial likelihood function is: 

 

   2
1 1( )

2 4 4 2 2 2 4

e eL
e e e e e

 

    
    

    
 [1] 

    [Total 4] 
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Solution X3.3  

This question tests the census approximation, which is covered in Chapter 9. 

(i) Central exposed to risk 

Let ( )xP t  denote the number of lives at time t  aged x  next birthday and suppose that time is 
measured in years from 1 January 2017.   [½] 

We know the values of (0)xP , (1)xP  and (1½)xP  for all x , and we are given the numbers of deaths 
during the investigation aged x  last birthday. 

Since the death data and the census data don’t match, define ( )xP t  to be the number of lives at 
time t  aged x  last birthday. [½] 

Then:  

 
1½
0

( )c
x xE P t dt   [½] 

Assuming that ( )xP t  varies linearly between time 0 and time 1, and also between time 1 and time 
1½ …    [1] 

    1 1(0) (1) (1) (1½)
2 4

c
x x x x xE P P P P        [½] 

Now:  

 (0) number of lives at time 0 aged  last birthdayxP x   

So:  

 1(0) number of lives at time 0 aged 1 next birthday (0)x xP x P      [½] 

Similarly: 

 1 1(1) (1)   and    (1½) (1½)x x x xP P P P     [½] 

So: 

 

   1 1 1 1

1 1 1

1 1
(0) (1) (1) (1½)

2 4

1 3 1(0) (1) (1½)
2 4 4

c
x x x x x

x x x

E P P P P

P P P

   

  

   

    [1] 

    [Total 5] 

(ii) Value of f   

Since deaths are classified according to age last birthday, the rate interval starts at exact age x  
and ends at exact age 1x  .  So the age in the middle of the rate interval is ½x  , ie ½f  . [1] 
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Solution X3.4  

This bookwork question tests the material at the start of Chapter 9. 

(i) Why the company may subdivide its mortality data 

Mortality risk varies between individuals for many reasons.  However, mortality models assume 
that we are dealing with identical lives, ie groups of people who have the same mortality 
characteristics.    [1] 

Companies often subdivide the data according to characteristics that are known to have a 
significant effect on mortality.  This helps to reduce the heterogeneity within each group. [1] 
    [Total 2] 

(ii) Two main problems 

One problem with subdividing data is that some of the subgroups may be very small, containing 
only a few individuals.  [½] 

Estimates of mortality rates derived from the small groups will be unreliable, as the small group 
size could make it difficult to ascertain the true underlying rates.  [½] 

The other main problem is that there may be missing data or the data may be inaccurate or may 
contain mistakes.    [½] 

This could result in unreliable mortality estimates. [½] 
    [Total 2] 

(iii) Factors used to subdivide the data 

Any four of the following: 

 sex   [½] 

 age   [½] 

 smoker status  [½] 

 occupation  [½] 

 nationality or ethnic group  [½] 

 type of policy  [½] 

 level of underwriting [½] 

 duration in force [½] 

 sales channel  [½] 

 policy size  [½] 

 known impairments [½] 

 current state of health [½] 

 disabilities  [½] 
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 postcode/geographical location [½] 

 residential status (eg homeowner, renting)  [½] 

 marital status  [½] 
    [Maximum 2] 
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Solution X3.5  

This is a bookwork question about graduation.  It is based on the material at the beginning of 
Chapter 10. 

(i) Undergraduation and overgraduation 

When graduating a set of crude mortality rates, there is a trade off between smoothness and 
close adherence to the crude rates (goodness of fit). [½] 

A satisfactory graduation must achieve an appropriate balance between these two extremes. [½] 

Overgraduation occurs when too much emphasis is given to smoothness.  Overgraduated rates 
show a smooth progression from age to age, but the resulting rates do not adhere closely to the 
crude rates.   [1] 

Undergraduation occurs when too much emphasis is given to goodness of fit.  Undergraduated rates 
adhere closely to the crude rates, but the resulting rates do not show a smooth progression from 
age to age.   [1] 
    [Total 3] 

(ii)   The dangers of overgraduation 

Inadequate premium rates 

The office may make losses through underestimating mortality for death benefits or 
overestimating mortality for survival benefits (since the graduated rates do not accurately reflect 
the true mortality rates at all ages). [1] 

Excessive premium rates 

The reverse occurs where the office may lose business through setting excessively high premium 
rates.    [½] 

Selection 

The office may be exposed to selection from other offices whose premium rates more accurately 
reflect the true mortality rates. [½] 

Reserves 

Using biased rates can also lead to inappropriate levels of reserves being held.  Holding 
insufficient reserves can endanger the company’s solvency, whereas holding excessive reserves 
will reduce the company’s profitability. [1] 

The dangers of undergraduation 

Inappropriate premium rates 

The office may make losses or lose business if the premium rates at particular ages have been 
distorted by random sampling errors that were not smoothed out. [1] 
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Anomalies 

The office may lose business or incur unnecessary alteration expenses if the rates do not show a 
consistent progression from age to age.  (Policyholders may wait a few years because the rates 
become cheaper, or they may surrender and take out a new policy to take advantage of an 
anomaly in the rates at a particular age.) [1] 
    [Total 5] 
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Solution X3.6  

This question concerns graduation tests.  These tests are covered in Chapter 10. 

(i)(a) Test for overall goodness of fit 

We are testing the null hypothesis: 

 0 :H  the graduated rates are the true mortality rates underlying the data 

against the alternative hypothesis: 

 1 :H  the graduated rates are not the true mortality rates underlying the data [1] 

The test statistic for the chi-squared goodness-of-fit test is: 

 2 2 2 20.5249 0.3615 ( 0.3673) 5.1104xz          [1] 

We compare this against an appropriate chi-squared distribution.  The method of graduation has 
not been stated, so it is unclear how many degrees of freedom to deduct.  However, since the test 
covers 9 age groups, we must have fewer than 9 degrees of freedom. [½] 

This is a one-tailed test with large values of the test statistic being significant. 

From page 169 of the Tables, we see that: 

 the upper 5% point of 2
8  is 15.51 

 the upper 5% point of 2
7  is 14.07 

 the upper 5% point of 2
6  is 12.59. 

Most methods of graduation would involve the loss of 2 or 3 degrees of freedom, so for any 
reasonable number of degrees of freedom this result is not significant at the 5% level. [1] 

So we conclude that the graduated rates are a good overall fit to the observed rates. [½] 

(i)(b) Test for overall bias 

The signs test can be used to check whether or not the graduated rates are biased, ie whether they 
are consistently higher or lower than the observed rates. 

The cumulative deviations test can also be used to check for overall bias in the graduated rates. 

Only one of these tests is required here. 

The null and alternative hypotheses are as stated above for the chi-squared test. 

Signs test 

Under the null hypothesis, the number of positive deviations, N , has a (9,0.5)Binomial  
distribution.   [1] 

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 8 CS2: Assignment X3 Solutions 

© IFE: 2019 Examinations The Actuarial Education Company 

Looking at the data, we see that there are 7 positive and 2 negative deviations.    

This is a two-tailed test, so the p -value of the test is: 

  2 ( 7) 2 1 ( 6)P N P N      

From page 187 of the Tables: 

 ( 6) 0.9102P N     

So the p -value is:  

 2(1 0.9102) 0.1796    [1] 

This is not significant at the 5% level.  So we conclude that the graduated rates are not biased and 
are a good fit to the observed rates. [½] 

However, inspection of the standardised deviations shows that the graduated rates are generally 
less than the observed rates (even though this bias is not statistically significant).  The graduated 
rates display lighter mortality than the observed rates. [½] 
    [Total 7] 

Cumulative deviations test 

The calculations needed to calculate the observed value of the test statistic are as follows.  The 
expected number of deaths in each age group is given by the central exposed to risk multiplied by 
the graduated mortality rate. 

Age group 
Central 

exposed to 
risk 

Observed 
number of 

deaths 

Graduated 
mortality 

rate 

Expected 
number of 

deaths 

60 – 64 1,388.9 10 0.0061 8.4723 

65 – 69 1,188.8 17 0.0131 15.5733 

70 – 74 880.5 28 0.0262 23.0691 

75 – 79 841.6 34 0.0487 40.9859 

80 – 84 402.8 41 0.0839 33.7949 

85 – 89 123.9 19 0.1338 16.5778 

90 – 94 27.9 7 0.1975 5.5103 

95 – 99 10.0 3 0.2706 2.7060 

100+ 7.5 2 0.3455 2.5913 

Total  161  149.2809 

    [1] 
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The observed value of the standardised test statistic is: 

 
observed deaths expected deaths 161 149.2809 0.9592

149.2809expected deaths

 
  


 [½] 

We compare this against the standard normal distribution.  This is a two-tailed test with both 
large positive and negative values of the test statistic being significant.  Since the value of the test 
statistic lies between –1.96 and +1.96 (the lower and upper 2.5% points of the standard normal 
distribution), the observed value of the test statistic is not significant at the 5% level.  So we 
conclude that the graduated rates are not biased and are a good fit to the observed rates. [1] 

However, inspection of the standardised deviations shows that the graduated rates are generally 
less than the observed rates (even though this bias is not statistically significant).  The graduated 
rates display lighter mortality than the observed rates. [½] 

(ii) Comment 

Using lower mortality rates will tend to overstate the value of pension fund liabilities.  So using 
these graduated rates would not be risky for the scheme, but it may lead to larger (usually 
employer) contributions than are necessary. [1] 

However the observed rates will reflect the current mortality rates and not the future mortality 
rates that will be experienced by the scheme’s pensioners.  Mortality rates may improve over 
time.  If the valuation does not anticipate this improvement then the scheme’s pension liabilities 
may be undervalued.  This problem could be mitigated by projecting the observed rates.   [1] 
    [Total 2] 
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Solution X3.7  

Mortality projection is covered in Chapter 12. 

(i) Usual constraints 

The usual parameter constraints imposed when fitting the Lee-Carter model are: 

 
all 

ˆ 1x
x

b      and   
all 

ˆ 0t
t
k    [1] 

(ii) Values of 0k  and 10k   

If 
all 

ˆ 0t
t
k  , then the value of t̂k  at the median value of t  is zero because t̂k  is a linear function 

of t .  The median year is 18t  , so we have: 

 18
ˆ 0k     [1] 

which gives: 

 0̂ 0 18 ( 0.01) 0.18k       

and: 10
ˆ 0 8 ( 0.01) 0.08k       [1] 

    [Total 2] 

(iii)(a) Value of ratio when 1xb    

We have: 

  10,10
10 0

,0 0

ˆ ˆˆˆ exp
ˆ ˆ ˆexp

ˆ ˆˆ ˆexp

x xx
x

x x x

a b km
b k k

m a b k

         
 [1] 

When 1xb  : 

 10 0
ˆ ˆ,10 0.08 0.18 0.1

,0

ˆ
0.905

ˆ
x k k

x

m
e e e

m
       [½] 

(iii)(b) Value of ratio for ages 50, 65 and 75  

In general for this fitted model we have: 

 ,10

,0

ˆ

ˆ
x

x

m

m
   ˆ0.1

10 0
ˆ ˆ ˆexp xb

xb k k e     
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So: 

 50,10 0.1 ( 0.14) 0.014

50,0

ˆ
1.014

ˆ
m

e e
m

      [½] 

 65,10 0.1 0.28 0.028

65,0

ˆ
0.972

ˆ
m

e e
m

      [½] 

 75,10 0.1 1.30 0.13

75,0

ˆ
0.878

ˆ
m

e e
m

       [½] 

    [Total 3] 

(iv) How the xb  parameter affects the projected time trend 

When ˆ 1xb   , the projected change in mortality over time directly reflects the change in the time 

trend function t̂k  over the specified time period (eg in this model this leads to a 9.5% reduction in 
mortality over the first ten years of the projection). [1] 

When ˆ
xb  is positive, the change in mortality over time is in the same direction as the time trend 

function (eg in this model positive ˆ
xb  apply at ages 65 and 75 and so mortality is projected to 

reduce over the ten-year projection period at these ages). [1] 

When ˆ
xb  is negative, the trend in mortality assumed at that age is in the opposite direction to the 

time trend function in the model (eg in this model a negative value of ˆ
xb  applies at age 50 and so 

mortality rates are predicted to rise over the ten- year period at this age). [1] 

When ˆ0 1xb  , the change in mortality over time is smaller in absolute terms than the change 

in the time trend function (eg this applies at ages 50 and 65 in this model, where changes in 
mortality of 1.4%  and 2.8%  respectively are projected, both of which are less in absolute 
terms than the 9.5% change obtained when ˆ 1xb  ). [1] 

When ˆ 1xb  , the change in mortality over time is greater in absolute terms than the change in 

the time trend function (eg in this model this applies at age 75, where a reduction of 12.2% in 
mortality is projected for the ten-year period). [1] 
    [Maximum 4] 

Markers: Please award ½ mark for each description and ½ mark for suitable evidence in each case.   
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Solution X3.8  

This question is based on the Cox regression model, which is covered in Chapter 8. 

(i) Model of force of mortality 

The model for the force of mortality is: 

  0 1 2 3 4( , ) ( )exp 0.20 0.12 0.05 0.06t t Z Z Z Z     Z  

where: 

 t  time since patient underwent procedure  

 0( )t   baseline hazard at time t  

  1 2 3 4, , ,Z Z Z ZZ  

 1
1 if patient is female
0 if patient is male

Z


 


 

 2
1 if patient received Treatment B
0 if patient did not receive Treatment B

Z


 


 

 3
1 if patient received Treatment C
0 if patient did not receive Treatment C

Z


 


 

 4
1 if patient attended Hospital B
0 if patient attended Hospital A

Z


 


 [3] 

Markers: Please give credit for alternative correct solutions.  Deduct ½ mark for each omission, 
subject to a minimum of 0. 

(ii) Proportional hazards model 

The model is a proportional hazards model since the hazards of different lives with covariate 

vectors ( )1Z  and ( )2Z  are in the same proportion at all times, ie the ratio 
 
 

( )

( )

,

,

t

t





1

2

Z

Z
 does not 

depend on t .   [1] 

(iii)(a) Baseline hazard group 

The baseline hazard refers to the lives whose Z  values are all 0, ie to male patients on Treatment 
A who attended Hospital A.   [1] 

(iii)(b) Group with lowest force of mortality 

Here we must make the power in the exponential as negative as possible. 
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The lives with the lowest force of mortality according to this model are those for which 1 1Z  , 

2 0Z  , 3 1Z   and 4 1Z  , ie female patients on Treatment C who attended Hospital B.   [1] 
    [Total 2] 

(iv)  Comparison of Hospital A with Hospital B 

Suppose that 4  is the parameter associated with covariate 4Z .  We want to test the null 
hypothesis: 

 0 4: 0H    (ie hospital is not significant) 

against the alternative hypothesis: 

 1 4: 0H    (ie Hospital B is better) [1] 

The estimated value of 4  is 0.06, and the standard error of the estimator is 0.04.  So the value 
of our test statistic is: 

 
0.06 0 1.5
0.04

 
   [1] 

Comparing this with the lower 5% point of the standard normal distribution (–1.6449), we find 
that it does not fall into the rejection region.  So there is insufficient evidence to conclude that 
attending Hospital B improves the chances of survival. [1] 
    [Total 3] 

Alternatively, we could construct an approximate one-sided 95% confidence interval for 4  and 
check whether or not 0 lies within the interval.   

The interval is: 

       4 4
ˆ, 1.645 , 0.06 1.645 0.04 ,0.0058se            

Since 0 lies in this interval, there is insufficient evidence to reject the null hypothesis (as stated 
above).  

(v) Proportion 

According to the model, the force of mortality at time t  since the procedure for a male patient on 
Treatment B who attended Hospital A is: 

  0( ,0,1,0,0) ( )exp 0.12t t   [½] 

Also, the force of mortality at time t  since the procedure for a female patient on Treatment C 
who attended Hospital B is: 

    0 0( ,1,0,1,1) ( )exp 0.20 0.05 0.06 ( )exp 0.31t t t         [½] 
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Dividing the first of these expressions by the second, we obtain: 

 
 
 

0 0.43

0

( )exp 0.12
1.5373

( )exp 0.31
t

e
t




 


 

So the force of mortality for the male patient exceeds the force of mortality for the female patient 
by 53.73%.     [1] 
    [Total 2] 
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Solution X3.9  

This question is about estimating mortality rates using the census method, and the relationship 
between   and q  under the assumptions of the Poisson model.  The census method is covered in 
Chapter 9 and the Poisson model is covered in Chapter 3. 

(i) Estimates of the force of mortality 

The most reasonable assumption we can make here is to assume that the average number of 
policies in force throughout the year can be approximated by the number in force on 1 July each 
year.    [1] 

We can then estimate the force of mortality by dividing the number of deaths ( x ) by the central 
exposed to risk: 

 ˆ x
c
x

 
E
    [½] 

Deaths are classified by age last birthday at the date of death.  So at the start of the rate interval, 
all lives are aged exactly x . [½] 

In the middle of the year of age ( , 1)x x   the lives will be aged ½x  .  So this will give us an 
estimate of ½x  .  [1] 

This leads to the following results: 

Age c
xE  x    ½ˆx   

63 18,410 430 0.0234 

64 17,196 490 0.0285 

65 16,960 507 0.0299 

    [3] 

For example, when 63x  , we have: 

 4 192 4 444 4 885 4 889 18 410c
xE , , , , ,      

 104 100 117 109 430x       
    [Total 6] 

(ii) Relationship between the initial rate of mortality and the force of mortality  

The initial rate of mortality at age x  last birthday is xq . 

The general formula for deriving survival probabilities from the force of mortality is: 

 
0

exp
t

t x x sp ds 
   
   [½] 

The Poisson model assumes that   is constant over the year of age ( , 1)x x  . [½] 
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So: 

 
1
0

1 1 exp 1x xq p ds e          
   [1] 

    [Total 2] 

(iii) Estimates of the initial rates of mortality 

We can estimate the initial rates of mortality using the formula in part (ii) and the estimated 
values of   from part (i): 

Age ½ˆx     ½ˆ ˆ1 exp( )x xq      

63 0.0234 0.0231 

64 0.0285 0.0281 

65 0.0299 0.0295 

    [1] 

At the start of the year of age ( , 1)x x   the lives will be aged x .  So these will give us estimates of 

xq .    [1] 
    [Total 2] 
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Solution X3.10  

This question is about the standard table method of graduation.  The topic is covered in 
Chapter 11. 

(i) Considerations in choosing table 

Whatever table is chosen it must satisfy several key criteria, in particular: 

 it must be available for all classes of lives, eg males and females [1] 

 it must relate to a similar class of lives, eg assurances and not annuities in this case [1] 

 it must be a ‘benchmark’ table, ie generally acceptable to all other actuaries  [½] 

 it should be up-to-date, ie relate to fairly recent experience [½] 

 it must cover the age range for which rates are required. [½] 

In addition it should have the correct pattern of rates by age (not necessarily the correct level of 
rates though).   [1] 

It should not have any special features that are unlikely to be present in the experience being 
graduated.   [1] 
    [Maximum 5] 

(ii) Checking suitability of formula 

The formula implies that the ratio of the rates varies linearly with age.  Is there any external 
evidence to indicate that this is the correct pattern? [1] 

A check could be made by plotting x
s
x





 against x .  The plot should be roughly linear. [2] 

    [Total 3] 

(iii)(a) Weighted least squares estimation 

The function to be optimised is:  

 2ˆ[ ( )]s
x x x

x
S w ax b     [1] 

xw  should be inversely proportional to the variance of the estimator x . [1] 

Alternatively, we could say that the weights should be proportional to the exposure at each age. 

To determine the estimates of a  and b , we calculate the partial derivatives 
S
a



 and 
S
b



, set 

these equal to 0, and solve the resulting simultaneous equations. [1] 
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(iii)(b) Maximum likelihood estimation 

We have: 

 x  observed number of deaths at age x  

 c
xE  central exposed to risk at age x  

and the graduated rates are to be calculated from the relationship: 

 ( )s
x x ax b      

The function to be optimised is: 

  ( )x x
x

L P D     

where ( )c
x x xD Poisson E  .   [1] 

So: 

 
( )

( )
( )

( )
!

c s xx x
c s
x x x

E ax b c s
x x E ax b

xx x

e E ax b
L C e ax b


 





 
 

        

where C  is a constant that does not depend on a  or b . [1] 

We usually take logs before attempting to optimise L , as this makes the differentiation easier. 

To determine the estimates of a  and b , we calculate the partial derivatives 
log L

a



 and 
log L

b



, 

set these equal to 0, and solve the resulting simultaneous equations. [1] 

Alternatively, we could set L
a



 and L
b



  equal to 0 and solve the resulting equations. 

    [Total 6] 
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Solution X4.1  

The Pareto distribution is introduced in Chapter 15. 

Let X  denote the claim amount random variable.  Then  ( , )X Pa   for some values of   and   
to be determined.  Using the formulae for the mean and variance of a Pareto random variable 
from page 14 of the Tables, we have: 

 

 


 
 

2
2

2

( ) 1,000
1

var( ) 1,500
( 1) ( 2)

E X

X





 

  [½] 

Squaring the equation for the mean and substituting into the equation for the variance gives: 

 


2
21,000 1,500

2



  [½] 

Rearranging: 

 

 

   

 

2 2

2 2 2

1,000 1,500 ( 2)

(1,500 1,000 ) 2 1,500

3.6

 



   [½] 

Hence: 

     1,000( 1) 1,000 2.6 2,600    [½] 

and the proportion of claims that exceed 2,000 is: 

 
                    

3.6 3.62,600 2,600( 2,000) 1 (2,000) 1 1 0.12823
2,600 2,000 4,600XP X F   [1] 

    [Total 3] 
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Solution X4.2  

The method of percentiles is introduced in Section 3 of Chapter 15. 

Let X  denote the claim amount random variable. 

The median of the distribution is the value of x  such that ( ) 0.5XF x .  Assuming that  ( , )X W c  , 
this is the value of x  such that: 

  1 0.5cxe


  

Setting 1,500x  (the sample median) gives: 

  ˆ(̂1,500) ln0.5c    (*) [1] 

The 95th percentile of the distribution is the value of y  such that ( ) 0.95XF y , ie ( ) 0.05P X y  .  
Assuming that  ( , )X W c  , we have: 

  1 0.95cye


 

Setting  6,000y  (the 95th percentile from the sample) gives: 

  ˆ(̂6,000) ln0.05c    (†) [1] 

Dividing (†) by (*): 

 

ˆ
ˆ

ˆ
(̂6,000) ln0.054

ln0.5(̂1,500)

ln0.05ˆln4 ln
ln0.5

ˆ 1.055838

c
c










 

    
 

     [1] 

Substituting this into (*): 

 
 1.055838

ln0.5ˆ 0.000307
1,500

c    [1] 

     [Total 4] 
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Solution X4.3  

Generalised extreme value distributions and generalised Pareto distributions are studied in 
Chapter 16. 

(i) Type of distribution 

Since  0 , this is a Weibull-type GEV distribution. [1] 

The key characteristic of these distributions is that they have finite upper limits.   [½] 

Examples include the beta, uniform and triangular distributions. [½] 
    [Total 2] 

(ii) Advantage of generalised Pareto distribution 

The key advantage of the generalised Pareto distribution is that it makes use of all the data in the 
tail.    [1] 

The generalised extreme value distribution, however, might exclude some extreme data values 
because these are not the most extreme within a particular block. [1] 
    [Total 2] 
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Solution X4.4  

Threshold exceedance is defined in Chapter 16. 

(i) Excess over the threshold u 

The excess of X  over the threshold u  is given by: 

  |X u X u    [1] 
    [Total 1] 

(ii) Distribution of threshold exceedance 

Let   |W X u X u .  Then the CDF of W  is: 

     ( ) ( | )P W w P X u w X u   [½] 

Using the conditional probability formula, we have: 

 

  
 



  




 




(  and )( )
( )

( )
( )

( ) ( )
1 ( )

X X

X

P X u w X uP W w
P X u

P u X u w
P X u

F u w F u
F u

  [1] 

Since  ( , )X Pa   : 

 

                          
        

           
 
  

     

1 1

( )

1 1

1

u w u
P W w

u

u u w

u

u
u w

 



 





 
 




 
 







  [1] 

This is the CDF of the Pareto distribution with parameters   and u .  So: 

   | ( , )X u X u Pa u   [½] 
    [Total 3] 
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Solution X4.5  

The Box-Jenkins approach to modelling time series is covered in Chapter 14. 

(i)(a) Removing seasonal variation 

Any one of the following three methods for two marks in total. 

1. Seasonal differencing [½] 

 Quarterly variation means that the period is four quarters (ie 4t t   ). [½] 

 So we subtract the value from four quarters ago: 

  4 4( )t t tq q q     [1] 

2. Method of moving averages [½] 

 Quarterly variation means that the period is four quarters (ie 4t t   ). [½] 

 So we calculate a symmetrical average of four terms about tq : 

   1 1 1
2 1 1 24 2 2t t t t tq q q q q        [1] 

3. Method of seasonal means [½] 

 Quarterly variation means that the period is four quarters (ie 4t t   ). [½] 

 We first calculate estimates of the seasonal means from the data 1 20{ , , }q q : 

  

1
1 1 5 9 13 175

1
4 4 8 12 16 205

ˆ ˆ( )

...

ˆ ˆ( )

q q q q q

q q q q q

 

 

     

     

 [½] 

 where 1
20

ˆ iq    is the sample mean of the data. 

 Then we subtract the appropriate seasonal mean from the data to produce the series: 

  

1

4

ˆ 1, 5, ,17

...

ˆ 4, 8, ,20

t

t

t

q t

z

q t





  

 

  





 [½] 

 which has no seasonal component. 
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Alternatively, we could subtract from each observation the estimated mean for that 
period, obtained by averaging the corresponding observations in the sample: 

  

1
1 5 9 13 175

1
4 8 12 16 205

( ) 1, 5, ,17

...

( ) 4, 8, ,20

t

t

t

q q q q q q t

z

q q q q q q t

      

 

      





 [1] 

(i)(b) Linear trend 

Any one of the following two methods for one mark in total. 

1. Least squares trend removal 

 Estimate a  and b  using least squares regression. [½] 

 (ie determine a  and b  that minimise 2 2( )t ty x a bt    ). 

 Then subtract the regression line from the observed values, ˆˆtq a bt  . [½] 

2. Differencing 

 Subtract the previous observed value: 

  1t t tq q q     [1] 
    [Total 3] 

(ii) Fitted time series 

An appropriate time series is an (2)AR  process ( 1 1 2 2t t t tz z z      ). [1] 

This is because the SPACF cuts off after lag 2. [½] 

Also, the SACF decays slowly to 0, which is consistent with an autoregressive process. [½] 
    [Total 2] 
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Solution X4.6  

Method of moments estimation is covered in Chapter 15. 

(i) Method of moments estimates 

Let X  denote the claim amount random variable.  From page 14 of the Tables:  

 
2½( )E X e     and      

2 22var( ) ( 1)X e e      

The method of moments estimates of   and 2  are obtained by equating the sample and 
population moments:  

 
2 2 2ˆ ˆ ˆ ˆ ˆ½ 2 22,000 ( 1) 500e e e         [1] 

Substituting the square of the first equation into the second equation gives: 

 
2 2

ˆ2 2 2
2

500ˆ2,000 ( 1) 500 ln 1 0.0606246
2,000

e 
 

       
 

 [1] 

Substituting this back into the first equation gives: 

 2ˆ ˆln2,000 ½ 7.57059     [1] 

Alternatively we could equate the first two non-central moments: 

  
2 2ˆ ˆ ˆ ˆ½ 2 2 2 22,000 500 2,000e e        [1] 

Substituting the square of the first equation into the second equation gives: 

 
2ˆ2 2 2 2ˆ2,000 500 2,000 ln1.0625 0.0606246e       [1] 

Substituting this back into the first equation gives: 

 2ˆ ˆln2,000 ½ 7.57059     [1] 
    [Total 3] 

(ii) Median claim amount 

The median claim amount, M , satisfies the equation: 

 ( ) 0.5P X M     [½] 

Since 2log ( , )X N   , it follows that 
ln (0,1)X N


  . [½] 
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Now: 

 

ln(0,1) 0.5

ln 0

MP N

M

M e







   
 


 

     [1] 

Using the fitted distribution, the median is estimated to be: 

 ˆ 7.57059 1,940.285e e     [1] 
    [Total 3] 
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Solution X4.7  

Moving average processes are covered in Chapter 13. 

(i) Mean and variance 

The mean and variance are as follows: 

 

1 2 3

1 2 3

( ) (3.1 0.25 0.5 0.25 )

3.1 ( ) 0.25 ( ) 0.5 ( ) 0.25 ( ) 3.1

t t t t t

t t t t

E X E

E E E E

   

   

  

  

    

       [1] 

 

1 2 3

2 2 2
1 2 3

2

var( ) var(3.1 0.25 0.5 0.25 )

var( ) 0.25 var( ) 0.5 var( ) 0.25 var( )

1.375

t t t t t

t t t t

X    

   



  

  

    

   

  [1] 

Alternatively, we could calculate the variance by writing it in terms of covariance: 

 

1 2 3

1 2 3

2 2 2 2 2 2 2

2

var( ) cov( , )

cov(3.1 0.25 0.5 0.25 ,

3.1 0.25 0.5 0.25 )

0.25 0.5 0.25

1.375

t t t

t t t t

t t t t

X X X

   

   

   



  

  



    

   

   

   [1]

 
The constant of 3.1 can be omitted as it does not affect the variance or covariance.

 

    [Total 2] 

(ii) Autocorrelation function 

The process is stationary as it is the sum of stationary white noise terms, so we can calculate the 
autocovariance function as follows (ignoring the 3.1’s as they will not affect the results): 

 2
0 cov( , ) var( ) 1.375t t tX X X     from (i) 

 

1 1

1 2 3 1 2 3 4

2 2 2 2

cov( , )

cov( 0.25 0.5 0.25 , 0.25 0.5 0.25 )

0.25 (0.5)(0.25) (0.25)(0.5) 0.5

t t

t t t t t t t t

X X

       

   



      



      

     [½] 

 

2 2

1 2 3 2 3 4 5

2 2 2 2

cov( , )

cov( 0.25 0.5 0.25 , 0.25 0.5 0.25 )

0.5 0.25 0.5625

t t

t t t t t t t t

X X

       

  



      



      

    [½] 
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3 3

1 2 3 3 4 5 6

2

cov( , )

cov( 0.25 0.5 0.25 , 0.25 0.5 0.25 )

0.25

t t

t t t t t t t t

X X

       





      



      

  [½] 

 0k   for 3k   [½] 

Since 0k k   , the autocorrelation function is: 

 
2

1 2
0.5 4 ( 0.364)

111.375



    [½] 

 
2

2 2
0.5625 9 ( 0.409)

221.375



    [½] 

 
2

3 2
0.25 2 ( 0.182)

111.375



    [½] 

Finally, 0 1   and 0k   for 3k  . [½] 
    [Total 4] 
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Solution X4.8  

Cointegration is covered in Chapter 14. 

(i) Why CPI and NAEI might be cointegrated 

CPI is price inflation, which drives wage inflation (the NAEI).  So we would expect them to ‘move 
together’.   [1] 

Neither process is stationary – they both have a trend (as prices and wages increase over time), so 
they may both be (1)I .  [1] 
    [Total 2] 

(ii) Cointegrated 

We need to show that X  and Y  are both (1)I  and that 0.6X Y  is stationary.  

We can check the stationarity of X  by calculating the roots of its characteristic equation.   
Rewriting the equation as: 

 1 21.2 0.2 x
n n n nX X X      

we see that its characteristic equation is: 

 21 1.2 0.2 0      [½] 

The roots of this equation are: 

 
21.2 ( 1.2) 4 0.2 1

5, 1
2 0.2


    

 


  [½] 

Differencing once will eliminate the root of 1.  The only remaining root is strictly greater than 1 in 
absolute value, so X is stationary and hence X  is (1)I . [½] 

Alternatively, to show that X is stationary, we could difference the process as follows: 

 

1 2

1 1 2

1

1.2 0.2

( ) 0.2( )

0.2

x
n n n n

x
n n n n n

x
n n n

X X X

X X X X

X X







 

  



  

    

     [½] 

The characteristic equation of X  is: 

 1 0.2 0     [½] 

Since the root of this equation is strictly greater than 1 in absolute value, X is stationary.   [½] 

It is also acceptable to deduce stationarity from the fact that the coefficient of 1nX   in the 

equation 10.2 x
n n nX X      is less than 1 in magnitude. [1½] 
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The process Y is defined by the equation: 

 10.6 y
n n nY X    

Since Y  is a linear combination of the (1)I  process X   and the stationary process y , Y  is (1)I .  
    [1] 

Alternatively, we could consider differencing the process Y : 

 

1 1 2 1

1

( ) (0.6 ) (0.6 )

0.6

y y
n n n n n n

y
n n n

Y Y X X

Y X

 



   



    

      

Since X  is stationary and the white noise terms are stationary, it follows that Y  is also 
stationary.  Hence Y  is (1)I . [1] 

We now consider the process 0.6X Y .  The defining equation for this process is: 

 1 2 10.6 0.6(1.2 0.2 ) (0.6 )x y
n n n n n n nX Y X X X          [½] 

 

1 2

1

0.12 0.12 0.6

0.12 0.6

x y
n n n n

x y
n n n

X X

X

 

 

 



   

     [½] 

Since X  is stationary and the white noise process is stationary, it follows that 0.6X Y  is also 
stationary.   [½] 
    [Total 4] 
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Solution X4.9  

ARIMA processes are covered in Chapter 13. 

(i) I(d) 

A process, X, is said to be ( )I d  (‘integrated of order d ’) if the d th difference, d X , is a stationary 
process.   [1] 
    [Total 1] 

Note that unless 0d  , X  is not stationary. 

(ii)(a) Classify X 

This is an (1)MA  process and hence it is stationary (as it is the sum of stationary white noise 
terms).  So it is an (0,0,1)ARIMA  process. [1] 

(ii)(b) Classify Y 

This is an (2,3)ARMA  process. [½] 

We check stationarity by calculating the roots of the characteristic equation of the autoregressive 
part.  Rewriting the equation as: 

 2 31.4 0.5t t t tY Y       

we see that the characteristic equation is: 

 21 1.4 0     [½] 

The roots of this equation are 1
1.4

  , ie 0.8452 .  [½] 

These roots are less than 1 in magnitude, so the process is not stationary.  Differencing will not 
eliminate these roots, so this process is not an ARIMA process. [½] 

(ii)(c) Classify W 

This is an (2,1)ARMA  process. [½] 

We check stationarity by calculating the roots of the characteristic equation of the autoregressive 
part.  Rewriting the equation as: 

 1 2 11.4 0.4t t t t tW W W         

we see that the characteristic equation is: 

 21 1.4 0.4 0      [½] 
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The roots of this equation are: 

 
21.4 ( 1.4) 4 1 0.4 2.5, 1

2 0.4
     
 


  [½] 

Differencing once will eliminate the root of 1.  The only remaining root is strictly greater than 1 in 
absolute value, so W is stationary (1,1)ARMA .   [1] 

Here the value of p is 1 since there is only one remaining root.  Differencing has no effect on the 
value of q. 

Alternatively, to show that W is stationary, we could difference the process as follows: 

 

1 2 1

1 1 2 1

1 1

1.4 0.4

( ) 0.4( )

0.4

t t t t t

t t t t t t

t t t t

W W W

W W W W

W W

 

 

 

  

   

 

   

     

      [1] 

The characteristic equation of W is: 

 1 0.4 0     [½] 

The root of this equation is 2.5, which is strictly greater than 1 in absolute value.  So W is 
stationary.    [½] 

So W  is an (1,1,1)ARIMA  process. [½] 
    [Total 6] 
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Solution X4.10  

Mean residual life and tail weights are covered in Section 4 of Chapter 16. 

(i) Mean residual life 

The mean residual life is given by: 

 
 1 ( )

( )
1 ( )

x
F y dy

e x
F x








  [1] 

The PDF of the (2,1)Gamma  distribution is: 

 
21( )
(2)

x xf x xe xe  


, 0x    

Here we are using the fact that (2) 1! 1   . 

The CDF can be obtained by integrating the PDF: 

 
0 0

( ) ( )
x x

tF x f t dt te dt     [½] 

Integrating by parts: 

 

 
0

0

0

0

( )

1

xxt t

x
x t

xx t

x x

F x te e dt

xe e dt

xe e

xe e

 

 

 

 

     

  

     

   





   

So: 

 1 ( ) ( 1)x x xF x xe e x e         [1½] 

and: 

  1 ( ) ( 1) y

x x
F y dy y e dy
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Integrating by parts again: 

 

   

 

1 ( ) ( 1)

0 ( 1)

( 1)

( 1) (0 )

( 2)

y y
xx x

x y

x

x y
x

x x

x

F y dy y e e dy

x e e dy

x e e

x e e

x e

  


 

 

 



       

   

     

   

 

 



  [1½] 

So the mean residual life is: 

 ( 2) 2( )
1( 1)

x

x
x e xe x

xx e




 

 


 [½] 

    [Total 5] 

(ii) Comparison with exponential distribution 

By the memoryless property of the exponential distribution, the mean residual life of ( )Exp   is: 

 
1( )E X


   

So the mean residual life of (1)Exp  is 1. [1] 

This can also be obtained as follows: 

 
 1 ( )

0( ) 1
1 ( )

y y x
x x x

x x x

F y dy e dy e ee x
F x e e e

 
 



  

        


 
 [1] 

The mean residual life of (2,1)Gamma  is: 

 
2 1( ) 1
1 1

xe x
x x


  
 

  

This is a decreasing function of x , whereas the mean residual lifetime of (1)Exp  is a constant.  [1] 

This indicates that (2,1)Gamma  has a lighter tail than (1)Exp . [1] 
    [Total 3]
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Solution X4.11  

Invertibility is covered in Chapter 13.  Estimating the parameters in a time series process and 
forecasting are covered in Chapter 14. 

(i) Invertiblility 

The process is invertible provided | | 1  . [1] 
    [Total 1] 

This can be deduced as follows, but no explanation is required to obtain the mark.  The 
characteristic equation of the moving average part is: 

 1 0    

The root of this equation is 1


  .  The process is invertible if 1  , ie if 1  . 

(ii)(a) Method of moments 

The method of moments estimates of   and   are obtained by equating the expressions for 1  
and 2  with the corresponding sample autocorrelation coefficients: 

 2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( )(1 ) ( )(1 ) ˆ0.440 and 0.264
ˆ ˆ ˆ ˆˆ ˆ1 2 1 2

      
   

   
 

   
 [½] 

Dividing gives: 

 
0.264ˆ 0.6
0.440

    [½] 

Substituting 0.6   into the first equation: 

 2

ˆ ˆ(0.6 )(1 0.6 ) 0.440
ˆ ˆ1 1.2

 
 

 


 
 [½] 

 2ˆ ˆ ˆ ˆ(0.6 )(1 0.6 ) 0.440(1 1.2 )          

 2ˆ ˆ0.16 0.832 0.16 0      [½] 

The roots of this quadratic equation are: 

 
2 20.832 0.832 4 0.16ˆ 0.2, 5

2 0.16
    
   


 [1] 

Since the process is invertible, the method of moments estimate of   is –0.2. [½] 
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(ii)(b) Least squares estimation 

The steps in the process are as follows: 

 Assume 0 0  , and obtain (iteratively) expressions for 1 , 2 , … [½] 

 Obtain 2
i  in terms of   and  . [½] 

 Calculate values of   and   that minimise this expression. [½] 

 Use these values of   and   to work backwards to time zero from the most recent 
known values of the time series, to determine an updated value for 0 . [½] 

 Repeat the process to find improved estimates for   and  . [½] 

(ii)(c) Maximum likelihood estimation 

The maximum likelihood estimates and least squared estimates are equivalent if we assume that 
2(0, )t N  .   [1] 

    [Total 7] 

(iii)(a) 1 and 2 step ahead estimates 

The fitted model is: 

 1 10.6 0.2n n n nx x       

Hence the 1 and 2 step-ahead forecasts are: 

 80 80 81 80ˆ ˆ ˆ(1) 0.6 0.2 (0.6 1.087) 0 (0.2 1.181) 0.416x x            [1] 

 80 80 82 81ˆ ˆ ˆ ˆ(2) 0.6 (1) 0.2 (0.6 0.416) 0 (0.2 0) 0.2496x x            [1] 

(iii)(b) Exponential smoothing 

Exponential smoothing uses the formula: 

 1ˆ ˆ(1) (1 ) (1)n n nx x x     

We are told that the estimate at time 79 for 80x  is 79ˆ (1) 0.625x   and the smoothing parameter 
is 0.2  .  Hence, our estimate of 81x  is: 

 80 79 80ˆ ˆ(1) (1 ) (1)x x x     [½] 

 

(0.8 0.625) (0.2 1.087)

0.7174

   

  [½] 
    [Total 3] 
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Solution X4.12  

ARIMA processes are defined in Chapter 13.  Selecting an appropriate value of d  and testing 
whether the residuals conform to white noise are covered in Chapter 14.  

(i) Definition of ARIMA process 

X  is an ( , , )ARIMA p d q  process if the d th difference, d X , is a stationary ( , )ARMA p q  
process.   [1] 

This means that d X  is a stationary process whose defining equation is of the form: 

 
     1 1 2 2

1 1 2 2

d d d d
t t t p t p

t t t q t q

X X X X      

      

  

  

           

    




  

where   is a white noise process. 

(ii) An appropriate value of d 

There are two things to consider when selecting an appropriate value for d . 

We want the value of d  that minimises the sample variance.  This would lead us to set 0d  . 
    [1] 

We should also examine the sample autocorrelation coefficients.  If these decay slowly from 1, 
this is an indication that differencing is required.  However, this is not the case for the 
(undifferenced) process X , which again leads us to choose 0d  . [1] 
    [Total 2] 

(iii) Statistical tests 

For each of these tests, the null hypothesis is: 

 0 :H  the residuals form a white noise process with zero mean [½] 

(a) Ljung-Box test 

The formula for the test statistic is given on page 42 of the Tables.   

This test checks for correlation between the residuals.  If the residuals form a white noise process, 
then the sample autocorrelations will be small. [1] 

Here we have 5m   and 100n  .  The observed value of the test statistic is: 

 
2 2 2 2 2 2

1

0.14 ( 0.05) 0.1 0.12 ( 0.02)( 2) 100 102 4.904
99 98 97 96 95

m
k

k

rn n
n k

              
  [1] 

Since the fitted model is (1,1)ARMA , ie 1p   and 1q  , we compare the value of the test statistic 

with the 2
3  distribution.   [½] 
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This is a one-tailed test.  From page 169 of the Tables, we see that the upper 5% point of the 2
3  

distribution is 7.815.    [½] 

Since 4.904 7.815 , we have insufficient evidence at the 5% level to reject the null hypothesis.  
Hence we conclude that the residuals are uncorrelated. [½] 

(b) Turning point test 

This test checks whether the residuals are patternless. [½] 

Formulae for the expected value and variance of the number of turning points are given on 
page 42 of the Tables.  Here we have 100n   and: 

 2 1
3 3( ) 98 65E T     [½] 

 1,57116 100 29
90 90var( ) ( 17.456)T       [½] 

The test is carried out using a normal approximation to the distribution of T .  Since T  is a 
discrete random variable, we should use a continuity correction when calculating the value of the 
test statistic.  This gives a test statistic of: 

 
1 1
2 3
1,571

90

73 65
1.955


  [1] 

This is a two-tailed test (as too many or too few turning points would suggest a non-random 
pattern).  The upper and lower 2.5% points of the standard normal distribution are 1.96 .   [½] 

Since 1.955 1.960 , there is insufficient evidence to reject the null hypothesis at the 5% 
significance level.   So we conclude that the residuals are patternless. [½] 

Alternatively, we could calculate the approximate p-value of the test as follows: 

      
1 1
2 3
1,571

90

73 65
2 74 2 (0,1) 2 1 (1.9547) 2 1 0.9747 0.0506P T P N

          
 
 

 [1] 

Since this is more than 5%, there is insufficient evidence to reject the null hypothesis.  So we 
conclude that the residuals are patternless. [1] 

If no continuity correction is used, the value of the test statistic is 2.074 and the p-value is 3.80%.  
This would lead us to reject the null hypothesis and we would conclude that the residuals are not 
patternless.   

Markers: Deduct 1 mark for omission of the continuity correction. 

(c) Inspection of the SACF 

This test also checks whether the residuals are uncorrelated. [½] 
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The ACF of the residuals should be zero for all lags except 0.  An approximate 95% confidence 
interval for k , 1k  , is 2 0.2n    (or more accurately 1.96 0.196n   ).   [1] 

Since all the values lie within this confidence interval, there is insufficient evidence to reject the 
null hypothesis.   [½] 
 
The tests suggest that the residuals form a white noise process and hence the fitted (1,1)ARMA  
model is satisfactory.  [½] 
    [Total 10] 
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Solution X4.13  

Univariate processes are covered in Chapter 13.  Multivariate processes are covered in Chapter 14. 

(i)(a) Stationary? 

To check stationarity, we examine the roots of the characteristic equation.  Rewriting the defining 
equation as: 

 1 20.7 0.1n n n nX X X       

We see that the characteristic equation is: 

 21 0.7 0.1 0     [½] 

The roots of this equation are: 

 
20.7 ( 0.7) 4 0.1 1 5,2

2 0.1
     
 


  [½] 

Since both of the roots are greater than one in magnitude the process is stationary.   [½] 

(i)(b) Invertible? 

A process X  is invertible if we can express the white noise as a linear combination of terms 
involving X .  In this case, we can write: 

 1 20.7 0.1n n n nX X X      

So X  is an invertible process. [½] 

AR processes are always invertible.  When fitting a time series model, we calculate the residuals by 
inverting the process. 

(i)(c) Purely indeterministic? 

The value of nX  is a linear combination of the past two values of the process itself plus a random 
white noise term, n .  The further into the future we go, the more random terms are added and 
so past values of the process become less and less useful for predicting future values.   [½] 

So the process is purely indeterministic. [½] 

(i)(d) Markov? 

The Markov property states that future probabilities depend only on the current state of the 
process.      [1] 

Here nX  depends on 1nX   and 2nX  . [½] 

So the process is not Markov. [½] 
    [Total 5] 
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(ii)(a) ACF 

We know from part (i) that the process is stationary.  So we can write down the Yule-Walker 
equations for the autocovariance function in the usual way.  For an AR process, we do not need to 
determine an expression for 0  to be able to calculate k  (as the factors of 0  will cancel). 

The autocovariance at lag 1 is: 

 

1 1

1 2 1

0 1

cov( , )

cov(0.7 0.1 , )

0.7 0.1

n n

n n n n

X X

X X X





 



  



  

   [1] 

Rearranging: 

 

1 0

1 0

1
1

0

1.1 0.7

7
11

7
11

 

 






 

     [½] 

The autocovariance at lag 2 is: 

 

2 2

1 2 2

1 0

cov( , )

cov(0.7 0.1 , )

0.7 0.1

n n

n n n n

X X

X X X





 



  



  

   [1] 

So: 

 2
2 1

0

7 190.7 0.1 0.7 0.1
11 55

 


         [½] 

In general for 2k  , we have: 

 

1 2

1 2

cov( , )

cov(0.7 0.1 , )

0.7 0.1

k n n k

n n n n k

k k

X X

X X X





 



  

 



  

   [1] 

So: 

 1 2
1 2

0 0

0.7 0.1 0.7 0.1k k k
k k k

    
 

 
 


     [½] 
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(ii)(b) General solution to the difference equation 

Suppose that 
2 5

k k k
A B   , for 2k  .  Then: 

 1 2 1 1 2 20.7 0.1 0.7 0.1
2 5 2 5

k k k k k k
A B A B      

   
       

   
 [½] 

The right-hand side of this equation can be written as: 

 2 2(0.7 2 0.1 2 ) (0.7 5 0.1 5 )
2 5k k
A B

         [1] 

and this simplifies to: 

 
2 5k k
A B
    [½] 

So: 

 1 20.7 0.1k k k      

as required. 

Markers: Please award only 1 mark if the formula for the general solution of a second-order 
differential equation is quoted (without proof) from page 4 of the Tables. 

We now have to calculate the values of A and B.  We need two equations to do this.  Since the 
difference equation holds for 2k  , we can consider 3  and 4 . 

We have: 

 3 2 1
19 7 490.7 0.1 0.7 0.1
55 11 275

          [½] 

 4 3 2
49 19 1240.7 0.1 0.7 0.1

275 55 1,375
          [½] 

So: 

 3 3 3
49

2752 5
A B      [½] 

 4 4 4
124

1,3752 5
A B      [½] 

Multiplying 4  by 2, we see that: 

 3 4
2 248

1,3752 5
A B
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Then subtracting 3 : 

 

4 3
2 248 49

1,375 2755 5

3 3
625 1,375

625 5
1,375 11

B B

B

B

  

  

       [1] 

Substituting this back into the equation for 3  gives: 

 

3 3
1 5 49

11 2752 5

16
11

A

A

    
 

   [1] 

In fact, the general autocorrelation function 1 20.7 0.1k k k      also holds for 1k   and 
2k  .    

For example, using the results from part (ii)(a): 

 1 1 0 10.7 0.1 0.7 0.1         

and:  

 2 1 1 00.7 0.1 0.7 0.1         

Similarly, we can see that the formula:  

 1 1 2 20.7 0.1
2 5 2 5 2 5k k k k k k
A B A B A B

   
   

       
   

 

 holds for 1k   and 2k  .  

Hence: 

 1 1 1
7

112 5
A B      [1] 

 2 2 2
19
552 5

A B     [1] 

Solving these simultaneously gives 5
11

B    and 16
11

A  as before. [2] 
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(ii)(c) PACF 

Using the formulae given on page 40 with 7
1 11   and 19

2 55   gives: 

 1 1
7

11
     [½] 

 
2

2 1
2 2

1

1
101

 



  


 [½] 

Since this is an (2)AR  process, 0k   for 2k  . [½] 
    [Total 12] 

(iii) Multivariate process 

We can express 1 20.7 0.1n n n nX X X      as a (1)VAR  process as follows: 

 1

1 2

0.7 0.1
1 0 0

n n n

n n

X X
X X



 

      
       

      
 [1] 

This is of the form 1n n nX M X    where: 

 
1

0.7 0.1
1 0 0

n n
n n

n

X
X M

X





     
       
     

 [1] 

    [Total 2] 

(iv)(a) Stationary 

A (1)VAR  process is stationary if the eigenvalues of matrix M  are strictly less than 1 in 
magnitude.    

The eigenvalues are the values of   that satisfy the equation: 

 
0.7 0.1

det 0
1



  

  
 [1] 

ie: 

 2(0.7 )( ) ( 0.1)(1) 0.7 0.1 0            [½] 

The roots of this equation are: 

 
20.7 ( 0.7) 4 1 0.1 0.2,0.5

2 1
     
 


  [1] 

Since both of the eigenvalues are less than one in magnitude the process is stationary.   [½] 
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(iv)(b) Markov 

From the matrix equation, we see that nX  depends on 1nX   only. [½] 

So the process is Markov. [½] 
    [Total 4] 
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Solution X5.1  

Reinsurance is covered in Chapter 18. 

(a) Mean amount paid by the insurer (after reinsurance) 

Let Y  be the amount paid by the insurer (after reinsurance).  Then 0.85Y X  and: 

 ( ) 0.85 ( ) 0.85 2,000 £1,700E Y E X     [1] 

(b) Variance of the amount paid by the reinsurer 

Let Z  be the amount paid by the reinsurer.  Then 0.15Z X  and: 

 2 2 2 2var( ) 0.15 var( ) 0.15 100 £ 225Z X     [1] 

(c) MGF of the amount paid by the insurer (after reinsurance) 

We have: 

 0.85 (0.85 )( ) ( ) ( ) ( ) (0.85 )tY t X t X
Y XM t E e E e E e M t     [½] 

We know that X  has a gamma distribution.  We can calculate the parameters of this distribution 
from the mean and variance: 

 ( ) 2,000E X 


   

 2
2var( ) 100X 


    

Dividing these we see that 0.2   and hence 2,000 0.2 400    . [1] 

From page 12 of the Tables, the MGF of X  is: 

 
400

400( ) 1 (1 5 )
0.2X
tM t t


     

 
,  0.2t    

Hence: 

 
400

4000.85( ) (0.85 ) 1 (1 4.25 )
0.2Y X

tM t M t t


      
 

,  
1

4.25
t    [½] 

    [Total 4] 
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Solution X5.2  

The insurer’s aggregate claim amount random variable net of reinsurance is discussed in 
Chapter 20. 

If X  is the gross individual claim amount random variable, then (0.01)X Exp  and the amount 
paid by the insurer on a claim is:  

 
if  200

200 if  200
X X

Y
X


  
 

The aggregate amount paid by the insurer is 1 2I NS Y Y Y    , where (1000,0.01)N Bin . 

We have: 

 ( ) 1,000 0.01 10E N     [½] 

  

200

0 200

200
0.01

0

( ) ( ) 200 ( )

0.01 200 1 (200)x

E Y xf x dx f x dx

x e dx F





 

  

 

  [1] 

Integrating by parts gives: 

 

2002000.01 0.01 2
0

0

2

( ) 200

200

x xE Y xe e dx e

e

  



     

 



2000.01 2
0

100 200xe e     

2100(1 )

86.466

e 

  [1½] 

Hence: 

 ( ) ( ) ( ) 10 86.466 £864.66IE S E N E Y     [1] 
    [Total 4] 

Alternatively, we could calculate the expected amount paid by the reinsurer on an individual mean 
claim, ( )E Z , and calculate ( )E Y  as ( ) ( )E X E Z .   

The amount paid by the reinsurer on an individual claim is: 

 
0 if  200

200 if  200
X

Z
X X
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The reinsurer’s individual mean claim amount is: 

      0.01

200 200
( ) 200 ( ) 200 0.01 xE Z x f x dx x e dx

 
       

Using the substitution 200u x  : 

  0.01 200 2 0.01

0 0
( ) 0.01 0.01u uE Z u e du e u e du

 
        

The integral part of the expression above is the mean of the (0.01)Exp  distribution, which is 100.  

So 2( ) 100E Z e .  [2] 

Since (0.01)X Exp , it follows that   100E X  .   

So 2( ) ( ) ( ) 100 100 86.466E Y E X E Z e      as before. [½] 
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Solution X5.3  

Copulas are covered in Chapter 17. 

(i) Probability of paying a death benefit 

The probability of death within 10 years for each life is: 

 10 70(10) 1 1 0.58 0.42u v F p      

 

[1] 

Hence, the Clayton copula gives: 

   1/0.30.3 0.3[0.42,0.42] 0.42 0.42 1 0.2111C
      [1] 

and the FGM copula gives: 

    2[0.42,0.42] 0.42 1 0.1 0.58 0.58 0.1705C        [1] 

[Total 3] 

(ii)  Suitability of the copulas  

If the deaths are independent, then the probability of paying a benefit is: 

 0.42 0.42 0.1764    [1] 

However, the two lives covered are related (‘retired couples’), so we would expect the probability 
of paying a benefit to be higher than under the assumption of independence.  Hence the Clayton 
copula is more appropriate. [1] 

If we are intending to introduce dependence (ie positive correlation) between the two lives, then 
a model that decreases the mortality probability relative to the independent calculation (such as 
the FGM model) is unsuitable.  [1] 
    [Total 3] 

  

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2: Assignment X5 Solutions Page 5 

The Actuarial Education Company © IFE: 2019 Examinations 

Solution X5.4  

Excess of loss reinsurance is covered in Chapter 18. 

The reinsurer’s expected payment amount is given by ( )E Z , where: 

 
2,000

1,000 2,000
( ) ( 1,000) ( ) 1,000 ( )E Z x f x dx f x dx


     [1] 

 
2,000 2,000

1,000 1,000 2,000
( ) 1,000 ( ) 1,000 ( )xf x dx f x dx f x dx


      [1] 

 
2,000

1,000
( ) 1,000 (1,000 2,000) 1,000 ( 2,000)xf x dx P X P X       

Using the formula for the truncated moments of the lognormal distribution (given on page 18 of 
the Tables), we have: 

 

2½ ln2,000 ln1,000( )

ln2,000 ln1,0001,000

ln2,0001,000 1

E Z e    
 

 
 




                  

               

       
 [2] 

 

7[ ( 0.69955) ( 1.04612)] 1,000[ (1.30045) (0.95388)]

1,000[1 (1.30045)]

e       

   [1] 

 7(0.24210 0.14776) 1,000(0.90328 0.82992) 1,000 (1 0.90328)e        [2] 

 103.456 73.36 96.72    

 126.82   [1] 
    [Total 8] 

  

w
w
w
.m

as
om

om
si
ng

i.c
om



Page 6 CS2: Assignment X5 Solutions 

© IFE: 2019 Examinations The Actuarial Education Company 

Solution X5.5  

This question is based on the collective risk model, which is covered in Chapters 19 and 20.  

(i) Mean and variance of S 

Let N  denote the number of claims in a year, X  denote the amount of an individual claim, and Y  
denote the expense associated with the claim.  Then: 

 1 NS T T     

where i i iT X Y  .   

S  has a compound Poisson distribution with (0.25 )N Poisson n , so using the appropriate 
formulae from page 16 of the Tables: 

  ( ) ( ) 0.25 ( ) 0.25 ( ) ( )E S E T nE X Y n E X E Y      [1] 

and: 

 

2 2

2 2

2 2

var( ) ( ) 0.25 ( )

0.25 2

0.25 ( ) 2 ( ) ( ) ( )

S E T nE X Y

nE X XY Y

n E X E X E Y E Y

     

    

      [1] 

Since (4,1800)X Pa , we have: 

 
1,800( ) 600

3
E X     [½] 

 2 2 21! 2!(4 2) (1 2)( ) 1,800 1,800 1,080,000
(4) 3!

E X    
    


 [½] 

Alternatively, 
2

2 2 2
2

4 1,800( ) var( ) [ ( )] 600 1,080,000
3 2

E X X E X 
    


. [½] 

Formulae for the moments of a Pareto random variable are given on page 14 of the Tables. 

Also, since (35,85)Y U , we have:  

 
35 85( ) 60

2
E Y 

    [½] 

 2 3 3 1
3

1 1( ) (85 35 ) 3,808
85 35 2 1

E Y    
 

 [½] 

Alternatively, 
2

2 2 2 1
3

(85 35)( ) var( ) [ ( )] 60 3,808
12

E Y Y E Y 
     . [½] 
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Formulae for the moments of a continuous uniform random variable are given on page 13 of the 
Tables. 

So we have: 

  ( ) 0.25 600 60 165E S n n     [1] 

and: 

 1 1
3 12var( ) 0.25 1,080,000 (2 600 60) 3,808 288,952S n n         [1] 

    [Total 6] 

Alternatively, we can use the formula: 

  2var( ) ( )var( ) var( ) ( )S E N T N E T   

where, by independence: 

  var( ) var( ) var( )T X Y    

However, it is quicker to use the compound Poisson formula. 

Another alternative is to calculate the mean and variance of the aggregate claim and expense 
amount per policy, and then sum over all policies. 

Note that var( ) var( ) var( )C ES S S   where 1C NS X X    and 1E NS Y Y     since ES  and 

CS  are NOT independent.  (An expense only occurs if a claim occurs.) 

(ii) Number of policies needed 

We now assume that: 

 (165 , 288952 )S N n n  approximately 

To make a profit we must have total outgo less than total premium income, ie 190S n .  So we 
require: 

  190 165( 190 ) (0,1) (0,1) 0.04651
288,952

n nP S n P N P N n
n

 
    

 
  [1] 

For this probability to be at least 99%, we must have: 

 0.04651 2.3263n   [½] 

ie  2,501.9n    [½] 

So the smallest value of n  is 2,502. [1] 
    [Total 3] 
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Solution X5.6  

Copulas are introduced in Chapter 17.  Archimedean copulas are defined in Section 5.4 of 
Chapter 17. 

(i)  Copula function 

Let ( )Xu F x  and ( )Yv F y .  Then: 

 

1

1

1

(1 )

1

1

x

x

x

u e

u e

e u

 

 

 

 

  

    [½] 

Similarly 1 1ye v   .   [½] 

Substituting these expressions for x  and y  into , ( , )X YF x y , we have: 

    1 11 1 1 1
,[ , ] ( , ) 1 ( 1) ( 1) 1X YC u v F x y u v u v

               

as required.    [1] 
    [Total 2] 

(ii) Generator function 

To show that this is an Archimedean copula, we must show that it is of the form: 

         1,C u v u v      

where   is the generator function, and  1   is the pseudo-inverse function. [1] 

Suppose that: 

 1( ) 1s t t      

Then: 

 1 11 ( 1)t s t s        [1] 

So: 

 1 1( ) ( 1)s s       

Since this formula is valid for all 0s  , the pseudo-inverse function is: 

  1 1( ) ( 1)s s     [1] 
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Hence: 

 

           

 

 

11

11 1

11 1

1

1 1 1

1

u v u v

u v

u v

     

 

 

   

    

     

as required.   [1] 
    [Total 4] 

(iii) Coefficients of lower and upper tail dependence 

The coefficient of lower tail dependence is:  

 
0

[ , ]limL
u

C u u
u




  [1] 

So, for this copula: 

 
 

 

11

10 0 0

2 1 1 1 1lim lim lim
2 22 1

L
u u u

u

u uu u


  



  


   


  [1] 

The coefficient of upper tail dependence is: 

 
1

1 2 [ , ]lim
1U

u

u C u u
u




 



  [1] 

So for this copula: 

 
  11

1

1 2 2 1
lim

1U
u

u u

u








  



 

The limit in this fraction has the form 
0
0

, which is undefined.  However, we can use L’Hôpital’s rule 

given, ( ) ( )lim lim
( ) ( )x a x a

f x f x
g x g x 





 , to determine the limit. 

 
   22 1 2

1

2 ( 1) 2 2 1 2 ( 1)( 2)(2 1)lim 0
1 1U

u

u u




  



         
  

 
 [2] 

    [Total 5] 
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Alternatively, we could say: 

 

  
  

1

11

1

11

1

11

2

21

2

1

1

1 2 2 1 1
lim

1 2 1

2 1 4 2 1
lim

2 1 2

2 4 2lim
2 3

2 4 2lim
2 3

2( 1)lim
( 1)( 2)

2( 1)lim 0
2

U
u

u

u

u

u

u

u u

u u

u u
u u

u u
u u

u u
u u

u
u u

u
u
































  


 

   


  

 


 

 


 




 


 


  [2] 

As another alternative, we could set 1x u  .  Then: 

 
 

1
11

0 0

21 2 11 2(1 ) 2(1 ) 1 1lim limU
x x

xx x x
x x


 




 

               

and: 

 
1 1 12 2 (1 ) 1 11

1 1 1 1
x x x

x x x x

                          
  

So: 

 

0

0

0

0

0

11 2
1lim

1 1lim 2
(1 )

(1 ) 1lim 2
(1 )

2
lim 2

(1 )

2lim 2
1

2 2 0

U
x

x

x

x

x

xx
x

x

x
x x x

x x
x x

x
x x

x























  



 
    

    
   

 
   

    

    [2] 

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2: Assignment X5 Solutions Page 11 

The Actuarial Education Company © IFE: 2019 Examinations 

Solution X5.7  

Reinsurance is covered in Chapter 18. 

(i)(a) Probability claim involves the reinsurer 

Let X  denote the individual claim amount random variable.  Then (4,7500)X Pa .  Using the CDF 
of the Pareto distribution from page 14 of the Tables, we have: 

 
47,500( 3,000) 1 (3,000) 0.260308

7,500 3,000
P X F        

 [1] 

(i)(b) Insurer’s expected payment per claim 

Let Y  denote the amount of a claim paid by the insurer.  Then: 

 
if  3,000

3,000 if  3,000
X X

Y
X


  
  

So: 

 

3,000

0 3,000

3,000 4

5
0

( ) ( ) 3,000 ( )

4 7,500 3,000 ( 3,000)
(7,500 )

E Y xf x dx f x dx

x dx P X
x


 


  



 

  [1] 

Either of the following two methods could be used to evaluate ( )E Y . 

Method 1 

We can evaluate the integral using integration by parts and use the value of ( 3,000)P X   from 
part (i)(a).  This gives: 

 
3,000 3,0004 4

4 4
00

7,500 7,500( ) (3,000 0.260308)
(7,500 ) (7,500 )

E Y x dx
x x

 
     

   
  [1] 

 

3,0004 4

4 3
0

7,500 7,5003,000 780.925
10,500 3(7,500 )

780.925

x

 
     

  

 
4 4

3 3
7,500 7,500 780.925

3 10,500 3 7,500

 
    

   
 [1] 

 

911.079 2,500

£1,588.92

  

  [1] 
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Method 2    

We can evaluate the integral by making the substitution 7,500u x  .  This gives: 

 
10,500 4

5
7,500

4 7,500( ) ( 7,500) (3,000 0.260308)E Y u du
u


     [1] 

          

10,500 4 5

4 5
7,500

10,5004 5

3 4
7,500

4 7,500 4 7,500 780.925

4 7,500 7,500 780.925
3

du
u u

u u

 
  

 
    
  


 

[1]

 

           1,692.003 ( 2,500) 780.925 £1,588.92       [1] 

    [Total 5] 

Alternatively, if we let Z  denote the amount paid by the reinsurer on a claim, then we could 
calculate ( )E Y  using the formula ( ) ( )E X E Z .   

Since (4,7500)X Pa :  

 7,500( ) 2,500
4 1

E X  


 [½] 

Also:  

 
0 3,000

3,000 3,000
X

Z
X X


   

  

So: 

 
 

4

5
3,000

4 7,500( ) ( 3,000)
7,500

E Z x dx
x

 
 


  [1] 

Using the substitution 3,000u x   gives: 

 
 

4

5
0

4 7,500( )
10,500

E Z u du
u

 



  [½] 

We can transform the integrand into u  multiplied by the PDF of the (4,10 500)Pa  distribution as 
follows: 

 
 

 

44

4 5
0

4 10,5007,500( )
10,500 10,500

E Z u du
u

 



  [1] 
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The integral part of the expression above is the mean of the (4,10 500)Pa  distribution, which is 
10,500 3,500

4 1



.  So: 

 
4

4
7,500( ) 3,500 911.08

10,500
E Z     [½] 

and hence: 

 ( ) 2,500 911.08 £1,588.92E Y     [½] 

(ii)(a) Probability claim next year involves the reinsurer 

The claim amount random variable for next year is 1.1X .  Using the CDF of the Pareto distribution 
from page 14 of the Tables: 

    
4

3,000 3,000
1.1 1.1 3,000

1.1

7,500(1.1 3,000) 1 0.28920
7,500

P X P X F
 
       
  

 [1] 

(ii)(b) Effect on insurer’s mean claim payment 

The average claim amount retained by the insurance company will increase by less than 10%. [½]   

This is because the retention limit is unchanged, ie the insurer still pays a maximum amount of 
£3,000 in respect of each claim.   [½]   

The amounts that the insurer has to pay out on small claims (that were less than £3,000 /1.1 ) will 
increase by 10%.  However, the amount paid on claims that were already more than £3,000 will 
not change at all, and the amounts paid on claims that were between £3,000 /1.1  and £3,000 will 
increase by less than 10%. [1] 

(ii)(c) Reinsurer’s expected payment on claims in which it is involved 

Let Z  denote the reinsurer’s claim payment random variable next year.  Then: 

 
 
 

3,000
1.1

3,000
1.1

0 if  1.1 3,000 if 

1.1 3,000 if  1.1 3,000 if 

X ie X
Z

X X ie X

    
   


 [1] 

So: 

 
3,000 3,000

1.1 1.1

4

5
4 7,500( ) (1.1 3,000) ( ) (1.1 3,000)

(7,500 )
E Z x f x dx x dx

x

      
   [1] 

Then any one of the following three methods could be used to evaluate the integral. 
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Method 1 

Using integration by parts, we get: 

 
3,000 3,000

1.1 1.1

4 4

4 4
7,500 7,500( ) (1.1 3,000) 1.1

(7,500 ) (7,500 )
E Z x dx

x x

  
     

   
  [1] 

The first term on the RHS is 0.  So: 

 

 3,000
1.1

4 4

3 33,000
1.1

7,500 7,500( ) 1.1 0 1.1 £1,084.52
3(7,500 ) 3 7,500

E Z
x

  
   

         
      

 

 [1] 

Method 2 

We can use the substitution 7,500u x   to obtain: 

 
3,000

1.1

3,000
1.1

4

5
7,500

4 4

4 5
7,500

4 7,500( ) (1.1 11,250)

1.1 4 7,500 4 7,50011,250

E Z u du
u

du
u u









  

  
 





 

[1]

 

          

 

3,000
1.1

4 4

3 4
7,500

1.1 4 7,500 7,50011,250
3

0 ( 1,084.52) £1,084.52

u u





  
   
  

   

 

[1] 

Method 3 

We can use the substitution  1.1 3,000u x   to obtain: 

 
4

5
0

4 7,500( )
1.1 3,0007,500

1.1

uE Z du
u

  
  

 

  [½] 

Multiplying the top and bottom of the integrand by 51.1  gives: 

 
 

 

4

5
0

4 8,250
( )

11,250
E Z u du

u

 
 


  [½] 
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We can transform the integrand into u  multiplied by the PDF of the (4,11250)Pa  distribution as 
follows: 

 
 

 

44

4 5
0

4 11,2508,250( )
11,250 11,250

E Z u du
u

 
 


  [½] 

The integral part of the expression above is now the mean of the (4,11250)Pa  distribution, which 

is 
11,250 3,750

4 1



.  So: 

 
4

4
8,250( ) 3,750 1,084.52

11,250
E Z     [½] 

( )E Z  is the mean amount paid by the reinsurer on all claims.   

We want the mean amount paid by the reinsurer on claims in which it is involved.  This is the 
reinsurer’s conditional mean: 

    
3,000

1.1 3,000
1.1

( ) 1,084.52| 3,750
0.28920

E ZE Z X
P X


    


 [1] 

    [Total 8] 

Alternatively, we could use the following result from Chapter 18 relating to a Pareto distribution: 

If ( , )X Pa  , then ( , )X kX Pa k    . [1] 

With 4  , 7,500   and 1.1k  , we have  (4,8250)X Pa  . [1] 

Also, if ( , )X Pa   and there is a retention level of M , then the reinsurer’s conditional 
distribution is | 0 ( , )Z Z Pa M   . [1] 

With (4,8250)X Pa   and a retention level of 3,000, we have | 0 (4,11250)Z Z Pa    . [1] 

Hence the mean amount paid by the reinsurer on claims in which it is involved is: 

   11,250| 0 3,750
3

E Z Z      [1] 
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Solution X5.8  

This question involves parameter estimation, which is covered in Chapter 15 and reinsurance, 
which is covered in Chapter 18. 

(i)(a) Maximum likelihood estimate 

The likelihood of observing the 7 known claims 1 7( , , )x x  and the 3 unknown claims greater 
than £40,000 is: 

 3
1 7( ) ( ) ( ) ( 40,000)L f x f x P X       [½] 

 

1 7 3

37 40,000

[1 (40,000)]

i

x x

x

e e F

e e

 

 

 



 

 

    

    



 [½] 

 7 152,749 120,000e e     [½] 

 7 272,749e    [½] 

The log-likelihood is: 

 ln ( ) 7ln 272,749L      [½] 

Differentiating with respect to  : 

 
7ln ( ) 272,749d L

d


 
   [½] 

This derivative is equal to 0 when: 

 7 0.0000257
272,749

    [½] 

Checking that we have a maximum: 

 
2

2 2
7ln ( ) 0 maxd L

d


 
     [½] 

So the maximum likelihood estimate of   is 0.0000257. 

(i)(b) Method of percentiles estimate 

The sample median of the 10 claims is the ½(10 1) 5½  th value.  By interpolation, this is: 

 ½(28,506 36,834) 32,670   [1] 

The median of the distribution is the value of m  such that: 

 ( ) ( ) 1 ½mF m P X m e       [1] 
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Equating the distribution median to the sample median: 

 32,670 ln½1 ½ 0.0000212
32,670

e         [1] 

So the method of percentiles estimate of   is 0.0000212. 
    [Total 7] 

(ii)(a) Conditional distribution 

Let Y  be the amount paid by the insurer on a claim.  Since the insurer only makes a payment if a 
claim is greater than the excess: 

 50,000 | 50,000Y X X    [½] 

The PDF of Y  is given by: 

 ( )( ) , 50,000
( 50,000)

X
Y

f xf y x
P X

 


 [½] 

ie: 

 ( 50,000)( ) , 0
( 50,000)

X
Y

f yf y y
P X


 


 [½] 

Alternatively, we can obtain the PDF of Y  by differentiating the CDF.  For 0y  : 

 

( ) ( ) ( 50,000 | 50,000)

( 50,000  and 50,000)
( 50,000)

(50,000 50,000)
( 50,000)

( 50,000) (50,000)
( 50,000)

Y

X X

F y P Y y P X y X

P X y X
P X

P X y
P X

F y F
P X

     

  




  




 




  

Differentiating then gives: 

 ( 50,000)( )
( 50,000)

X
Y

f yf y
P X





  

Now: 

 200,000( 50,000) 1 (50,000)
200,000 50,000

P X F


       
 [½] 

and:  

 1 1
200,000 200,000( 50,000)

(200,000 50,000) (250,000 )
Xf y

y y

 

 
 

 
 

  
  

 [½] 
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So: 

 1
250,000( ) , 0

(250,000 )
Yf y y

y









 


 [½] 

This is the PDF of the Pareto distribution with parameters   and 250,000. 

(ii)(b) Maximum likelihood estimate 

The likelihood function of observing the sample data is: 

 

1 5

1 1
1 5

5 5

( 1)

( ) ( ) ( )

250,000 250,000
(250,000 ) (250,000 )

250,000
(250,000 )

Y Y

i

L f y f y

y y

y

 

 







 



 



  

 
  

 










 [1] 

and the log-likelihood is: 

 

ln ( ) 5ln 5 ln250,000 ( 1)ln (250,000 )

5ln 5 ln250,000 ( 1) ln(250,000 )

i

i

L y

y

   

  

      

    



  [½] 

Differentiating with respect to  : 

 
5ln ( ) 5ln250,000 ln(250,000 )i

d L y
d


 

     [½] 

This is equal to 0 when: 

 
5 5ln250,000 ln(250,000 )iy

     

ie when: 

 5
ln(250,000 ) 5ln250,000iy

 
 

 [½] 

From the given data: 

 ln(250,000 ) 64.370iy    [½] 

So ln ( ) 0d L
d




  when: 

 
5 2.25

64.370 5 12.4292
  

 
  [½] 
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Now check that this does in fact give a maximum: 

 
2

2 2
5ln ( ) 0 maxd L

d


 
     [½] 

So ̂ , the maximum likelihood estimate of  , is 2.25. 
    [Total 7] 
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Solution X5.9  

The Naïve Bayes approach to classification is covered in Chapter 21. 

(i) Formula 

Using the definition of conditional probabilities, ie 
( , )( | )

( )
P X YP X Y

P Y
 , we have: 

 
(Text  is in English, , , )

(Text  is in English| , , )
( , , )

i i
i i

i i

P i A
P i A

P A


 





 [½] 

Using the same definition in reverse, ie ( , ) ( | ) ( )P X Y P X Y P Y , we can write the numerator as: 

 (Text  is in English, , , ) ( , , |Text  is in English) (Text  is in English)i i i iP i A P A i P i     [½] 

Using the law of total probability, we can write the denominator as: 

 ( , , ) ( , , |Text  is in Language ) (Text  is in Language )i i i i
k

P A P A i k P i k     [½] 

So: 

 

(Text  is in English| , , , , , , , , )

( , , |Text  is in English) (Text  is in English)
( , , |Text  is in Language ) (Text  is in Language )

i i i i i i i i i

i i

i i
k

P i A G H I N O T U

P A i P i
P A i k P i k










 [½] 

    [Total 2] 

(ii)(a) Test message 

The test message ‘BONJOUR MONSIEUR DUPONT’ contains 21 letters with the counts shown in 
the table below. 

Letter A G H I N O T  U Other 

Count 0iA   0iG   0iH   1iI   3iN   4iO   1iT   3iU   9i 

    [1] 

Since we are assuming that the prior probabilities, ie (Text  is in English)P i  etc, are all equal here, 
these will cancel out in the equation we derived in part (i), so that: 

 

(Text  is in English| , , , , , , , , )

( , , |Text  is in English)
( , , |Text  is in Language )

i i i i i i i i i

i i

i i
k

P i A G H I N O T U

P A i
P A i k
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The naïve Bayes approach assumes that the events 0, 0, , 9i i iA G     are independent.  So 
we can now calculate (using slightly abbreviated notation and the letter frequencies given for 
each language): 

 

1 3 4 1 3 9

18

( 0, , 9|English) 0.07 0.07 0.07 0.09 0.03 0.51

3.27 10

i iP A C

C

        

 



 [½] 

where C  is the multinomial coefficient 
21!

3! 4! 3! 9!  
 that arises from repeated letters.   

We can actually ignore the constant C  as it will cancel out when we calculate the posterior 
probabilities. 

Similarly: 

 

1 3 4 1 3 9

17

( 0, , 9|French) 0.08 0.07 0.08 0.07 0.06 0.54

6.63 10

i iP A C

C

        

 



 [½] 

 

1 3 4 1 3 9

17

( 0, , 9|German) 0.07 0.10 0.07 0.06 0.04 0.51

1.51 10

i iP A C

C

        

 



 [½] 

 

1 3 4 1 3 9

18

( 0, , 9|Spanish) 0.06 0.07 0.06 0.05 0.03 0.58

2.67 10

i iP A C

C

        

 



 [½] 

 

1 3 4 1 3 9

18

( 0, , 9|Italian) 0.10 0.07 0.10 0.06 0.03 0.49

9.05 10

i iP A C

C

        

 



 [½] 

Markers: If the prior probabilities are included, all these probabilities (and the total below) will be 
divided by 5.  Please award full marks to students who include prior probabilities (correctly) in their 
calculations. 

The sum of the probabilities above is 179.64 10 C .  So the posterior probabilities are: 

 
18

17
3.27 10(English| 0, , 9) 3%
9.64 10

i iP A





    


   

 
17

17
6.63 10(French| 0, , 9) 69%
9.64 10

i iP A





    


   

 
17

17
1.51 10(German| 0, , 9) 16%
9.64 10

i iP A
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18

17
2.67 10(Spanish| 0, , 9) 3%
9.64 10

i iP A





    


   

 
18

17
9.05 10(Italian| 0, , 9) 9%
9.64 10

i iP A





    


  [1] 

(ii)(b) Comment 

The highest probability (69%) corresponds to French.  So we would conclude that the test 
message is most likely to be French. [1] 

We can see that the test message is indeed in French.  So the model has identified the language 
correctly in this case.  [½] 
    [Total 6] 

(iii)(a) Probabilities for the fragment 

If we remove the ?’s, the fragment says ‘TSGWLHUSMOEEE’, which contains 13 letters with the 
counts shown in the table below.  (We’ve called this fragment Text j .) 

Letter A G H I N O T  U Other 

Count 0jA   1jG   1jH   0jI   0jN   1jO   1jT   1jU   8j 

    [1] 

We can then calculate: 

 

1 1 1 1 1 8

9

( 0, , 8|English) 0.02 0.06 0.07 0.09 0.03 0.51

1.04 10

j jP A K

K

        

 



 [½] 

where K  is the multinomial coefficient 
13!
8!

.  Similarly: 

 

1 1 1 1 1 8

10

( 0, , 8|French) 0.01 0.01 0.08 0.07 0.06 0.54

2.43 10

j jP A K

K

        

 



 [½] 

 

1 1 1 1 1 8

9

( 0, , 8|German) 0.03 0.05 0.07 0.06 0.04 0.51

1.15 10

j jP A K

K

        

 



 [½] 

 

1 1 1 1 1 8

10

( 0, , 8|Spanish) 0.02 0.01 0.06 0.05 0.03 0.58

2.31 10

j jP A K

K

        

 



 [½] 
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1 1 1 1 1 8

10

( 0, , 8|Italian) 0.02 0.01 0.10 0.06 0.03 0.49

1.20 10

j jP A K

K

        

 



 [½] 

Applying the prior probabilities gives: 

 9 10( 0, , 8|English) (English) 1.04 10 0.40 4.15 10j jP A P K K           

 10 11( 0, , 8|French) (French) 2.43 10 0.20 4.86 10j jP A P K K           

 9 10( 0, , 8|German) (German) 1.15 10 0.20 2.31 10j jP A P K K           

 10 11( 0, , 8|Spanish) (Spanish) 2.31 10 0.10 2.31 10j jP A P K K           

 10 11( 0, , 8|Italian) (Italian) 1.20 10 0.10 1.20 10j jP A P K K          [1] 

The sum of these is 107.29 10 K .  So the posterior probabilities are: 

 
10

10
4.15 10(English| 0, , 8) 57%
7.29 10

j jP A





    


   

 
11

10
4.86 10(French| 0, , 8) 7%
7.29 10

j jP A





    


   

 
10

10
2.31 10(German| 0, , 8) 32%
7.29 10

j jP A





    


   

 
11

10
2.31 10(Spanish| 0, , 8) 3%
7.29 10

j jP A





    


   

 
11

10
1.20 10(Italian| 0, , 8) 2%
7.29 10

j jP A





    


  [1] 

(iii)(b) Conclusions 

The model predicts that the fragment is most likely to be written in English (with probability 
57%).    [1] 

German is also a possibility (with probability 32%), but the other three languages are unlikely.  [½] 
    [Total 7] 

In fact the original message in the fragment was: 

THISMESSAGEISWRITTENINENGLISHBUTSOMEOFTHELETTERSAREILLEGIBLE 

To disguise the message, we chose 70% of the letters at random and replaced them with ?’s. 
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Solution X5.10  

The individual risk model is discussed in Chapter 20. 

(i) Formula and assumptions 

The formula for the total claims from the portfolio is: 

 1 2 nS X X X     

where iX  is the claim amount from the i th member (which may be zero). [½] 

The assumptions underlying this model are: 

 there are a fixed number of risks (ie members), n  [½] 

 claims occur independently for each member [½] 

 the number of claims for each member is either 0 or 1. [½] 
[Total 2] 

(ii) Mean and variance 

Let X bI , where I  is an indicator random variable denoting whether or not a claim is paid, 
ie ( 0) 1P I q   , ( 1)P I q   and b  is the fixed benefit amount. 

Then (1, )I Bin q , so: 

 ( )E I q     and    var( ) (1 )I q q   [1] 

 Since b  is a constant: 

 ( ) ( ) ( )E X E bI bE I bq    [1] 

and: 

 2 2var( ) var( ) var( ) (1 )X bI b I b q q     [1] 
    [Total 3] 

Alternatively, we could use the conditional expectation formula from page 16 of the Tables.  Since: 

 
0 if 0

( | )
if 1

I
E X I

b I


  
  [½] 

it follows that: 

 

( ) [ ( | )]

( | 0) ( 0) ( | 1) ( 1)

0 (1 )

E X E E X I

E X I P I E X I P I

q bq bq



     

       [½] 
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We can derive the formula for var( )X   using the conditional variance formula: 

 var( ) [var( | )] var[ ( | )]X E X I E X I    

This is also give on page 16 of the Tables.   

Since the claim amount is fixed: 

 var( | ) 0X I     [½] 

So: 

 [var( | )] 0E X I    

 

 22

2 2 2

2 2 2

2

var[ ( | )] ( ( | )) [ ( | )]

0 ( 0) ( 1) ( )

(1 )

E X I E E X I E E X I

P I b P I bq

b q b q

b q q

   

      

 

    [1] 

and hence: 

 2var( ) 0 (1 )X b q q     [½] 

Another alternative is to use the fact that X  is a compound binomial random variable.  The 
number of claims, N , has a (1, )Binomial q  distribution and the individual claim amount is the 
constant, b .   [1] 

Then using the formulae for the mean and variance of a compound random variable from page 16 
of the Tables: 

 ( ) ( ) ( )E X E N E b bq   [1] 

 

2

2

2

var( ) ( )var( ) var( )[ ( )]

0 (1 )

(1 )

X E N b N E b

q q q b

b q q

 

    

 

 

[1]
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(iii) Skewness 

We have: 

 

3

3 2 3

3 2 3

2 3

skew( ) [( ( )) ]

3 ( ) 2 ( )

( ) 3 ( ) ( ) 2 ( )

3 2

(1 )(1 2 )

I E I E I

E I I E I E I

E I E I E I E I

q q q

q q q

 

    

  

  

    [1] 

So: 

 3 3skew( ) skew( ) skew( ) (1 )(1 2 )X bI b I b q q q      [1] 
    [Total 2] 

Alternatively, we could use the fact that X  is a compound binomial random variable and consider 
its CGF.  This is a rather long-winded approach, however.  Using the notation Y  to denote the 
individual claim amount random variable, the MGF of X  is:  

 ( ) (ln ( ))X N YM t M M t  

This formula is given on page 16 of the Tables.   

Now, since (1, )N Binomial q : 

 ( ) (1 ) t
NM t q qe      

In addition: 

 ( ) ( )tY tb
YM t E e e     

So the MGF of X  is: 

 ln ( )( ) (1 ) (1 ) ( ) (1 )YM t tb
X YM t q qe q qM t q qe           [½] 

and its CGF is: 

 ( ) ln ( ) ln[(1 ) ]bt
X XC t M t q qe     

w
w
w
.m

as
om

om
si
ng

i.c
om



CS2: Assignment X5 Solutions Page 27 

The Actuarial Education Company © IFE: 2019 Examinations 

The skewness is equal to the third derivative of the CGF evaluated at the point 0t  : 

 ( )
[(1 ) ]

bt

X bt
qbeC t
q qe

 
 

 

 
2 2

2 2
[(1 ) ] (1 )( )

[(1 ) ] [(1 ) ]

bt bt bt bt bt

X bt bt
q qe qb e qbe qbe q q b eC t

q qe q qe
     

   
 

 

2 3 2

4

3

4

[(1 ) ] (1 ) (1 ) 2[(1 ) ]( )
[(1 ) ]

(1 )(1 2 )
[(1 ) ]

bt bt bt bt bt

X bt

bt

bt

q qe q q b e q q b e q qe qbeC t
q qe

q q q b e
q qe

       
 

 


 

 

[1]

 

So: 

 3( ) (0) (1 )(1 2 )Xskew X C q q q b     [½] 

(iv) Mean, variance and skewness of the total claim amount 

If S  is the total claim amount, then: 

 ( ) 1,250 50,000 0.008 250 20,000 0.012 560,000E S         [1] 

 

2 2

10

var( ) 1,250 50,000 0.008 0.992 250 20,000 0.012 0.988

2.59856 10

S        

   [1] 

 

3 3

15

( ) 1,250 50,000 0.008 0.992 0.984 250 20,000 0.012 0.988 0.976

1.2433029 10

skew S          

 
    [1] 
Hence, the coefficient of skewness is: 

 

 
15

3 2 3 210

( ) 1.2433029 10 0.297
(var( )) 2.59856 10

skew S
S


 


 [1] 

Markers: Please award follow-through marks for the coefficient of skewness if an incorrect 
formula for the skewness is derived in part (iii). 
    [Total 4] 

(v) Probability 

We now assume that: 

 10(560 000, 2.59856 10 )S N   approximately [½] 
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So the required probability is: 

 
10

1,000,000 560,000( 1,000,000) (0,1)
2.59856 10

P S P N
    
  

 [1] 

 1 ( (0,1) 2.72952)P N    [½] 

 0.00317  [1] 
    [Total 3] 

Markers: Please award follow-through marks if an incorrect mean and/or variance is calculated in 
part (iv). 

(vi) Comment 

A normal distribution gives the most accurate answers if the distribution is symmetrical.  The 
coefficient of skewness calculated in part (iv) shows that the distribution is positively skewed, but 
not by very much.  So the value is probably not that inaccurate. [1] 

On the other hand, we are looking at a probability relating to the distribution of values in the 
upper tail, where a normal distribution is likely to approximate less well than at the centre of the 
distribution.   [1] 
    [Total 2] 
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